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max P (W ,W 2,., Wi }C1,C 2,., Cn)
~ max P (W 1)*P(W 2)* . . * P(Wk)
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Abstract

This paper describes our on-going project on grammatical inference for Chinese. We here
emphasize on the design of our sem-syn initial grammar thgt is a set of stochastic context-free rules
and whose probabilistic parameters will be iteratively re-estimated in a corpus-based inference
technique. Manually developing and maintaining a grammar for a NLP system has long been
regarded as a painful and endless job. Besides, this conventional approach usually results in a
grammar with limited coverage. With large bodies of text corpora available on computers,. corpus-
based grammatical inference (GI) techniques seem to provide a promising solution to the problems.
An initial grammar is one of the important components in GI techniques and its function 18 to
facilitate the inference process to proceed. In this paper, we describe the design of our sem-syn
initial grammar and how it corresponds to the information given in Sinica Corpus on which our
inference system is based. We also give a brief introductibn to our Chinese grammatical inference
system, showing how the system will use the sem-syn initial grammar to generalize structure from

the Corpus.
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1. Introduction

Grammar plays an indispensable role in most NLP systems. Conventional handcrafted
approach to grammar construction and maintenance has been regarded as painful and
endless work. Besides, this conventional approach usually results in a grammar with
limited coverage. With the increasing availability of large text corpora in machine-readable
form, Grammatical Inference (GI) [Pereira and Schabes, 1992] has surged to provide a
promising solution to the problems. In GI, there are two components which are essential to.
the inference process, namely inference algorithms and initial grammars. An inference
algorithm takes the responsibility of Jearning grammatical knowledge fiom a set of
language samples; whereas an initial grammar is regarded as seed knowledge needed for
the inference process to proceed. A well-designed initial grammar can assist the inference

algorithm to produce a generalized grammar.

Initial grammars utilized in GI may be classified into four types. First, a null grammar, or
an empty grammar, leamns all its rules gradually from a set of training sentences in the
course of the inference process. Using this approach, inference systems usually start to
learn simple grammatical structures from short sentences. This is done by sorting the
training data by length and presenting them to the inference systems in an ascending length
order [Carroll and Charniak, 1992]. The main disadvantage of this approach is that it tends
to acquire a large number of specific rules rather than a set of general ones. This lack of

generality leads to an uncontrollable grammar size.

Second, a seed grammar, or core grammar, consists of a set of manually produced rules.
Acquisition of new rules proceeds in the course of parsing the training sentences. The

pattern of required new rules is often linguistically restricted in order to narrow down the
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number of plausible candidates [Osbomé and Bridge, 1994] [Hindle, 1989]. One of the
limitations in this method is that only one parse analysis is allowed to trigger the
acquisition process. As a result, new rules are acquired based solely on the first parse
available. This conflicts the fact that natural language is ambiguous, and thus all possible

analyses should be taken into consideration.

Third, an initial grammar may consist of all possible rules, which are generated using a
predefined set of non-terminals and terminals. The form of the rules is usually limited in
Chomsky Normal Form and each fule is given a random initial probability. The inference
process iteratively modifies the probabilities according to the frequency of use of the rules
in the parses of a training set [Pereira and Schabes, 1992]. One disadvantage of this
approach is the arbitrary non-terminal labeling of the inferred grammar, which may be
linguistically implausible and therefore may weaken the ability for subsequent

interpretation of analyzed sentences.

An alternative to these three types of initial grammar is the hybrid grammar used in the

Explicit-Implicit technique [Briscoe and Waegner, 1992] [Shih, Young and Waegner,
1995]. The hybrid grammar consists of two sets of prqduction rules, namely explicit and
implicit. The explicit rules, like the core grammar mentioned above, are manually
produced; the implicit part is similar to the third type of initial grammar but with
headedness constraint [Jackendoff, 1977] imposed on the rules. The former aims to analyze
general syntactic structure of the target language, whereas the later is responsible for
analyzing the sentences the former fails to generate, including the ill-formed. This hybrid

initial grammar aims to obtain the merits of the previous two approaches.

In Section 2, we describe the design of our sem-syn initial grammar that is a modified
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hybrid grammar tailored for Chinese inference. This is followed by in a brief introduction
to our Chinese inference system in Section 3, and our conclusion and future work outlined

in Section 4.
2. The Design of Sem-Syn Hybrid Grammar

In our system, parts-of-speech rather than words in Sinica Corpus are used in the inference
process; therefore, before designing the initial grammar, it is important to examine the POS

set utilized in the corpus. There are two issues to be taken into consideration here.

‘ The Chinese Knowledge Information Processing (CKIP) group in Academia Sinica used to
classify Chinese wqrds into 178 parts-of-speech for their dictionary of 80,000 entries
[CKIP, 1993]. This large set of POSs aims to describe the phenomenon in detail that
semantic interpretation of Chinese words has strong influence on the structures of
sentences. For instance, “FBF in the sentence “FFELF T is originally the
object of the verb “Z54F” , but is moved to the beginning of the sentence because it is a
definite noun (we know which house it is). This large set of POS was later reduced to 46
for Sinica Corpus [CKIP, 1995]. This reduction was done by merging some semantically
similar words into one. For instance, the semantically intransitive verb “EE” in the
sentences “EFSFIRE" and “EFSTFE AT was originally given two
different POSs (vh11 and vh12 respectively) because of their different syntactic behaviors.
Nevertheless, these two together with other fi\}e POSs carrying different syntactic forms of

the verb were assigned the same POS, vh, in the corpus.

The second issue is about words carrying different syntactic forms as arguments. In Sinica

Corpus, a verb, which takes various syntactic forms as its arguments, is not given different
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POSs if the semantics interpretation of the verb in those forms does not change. Here, we
call it one-word-one-tag policy. According to this policy, if a verb can take bpth a clause -
(the verb is called #JZF) and a noun phrasev (the verb is called EHEF) as its
arguments, it will only be given one POS which carries a larger element(here it is marked
as ) Zs1iEA]). For instance, the verb “G¥&@~ can take both a noun phrase and a clause
as the arguments in the sentences “FRFIRTIRBAFEAIETE" and “BARIMUHFA

S EZSHEEEESFE" | although its POS in the corpus is ve(H]JZ L)

A sem-syn initial grammar in our system is designed to handle the complexities mentioned
above. Similar to the Explicit-hnplicit ‘technique, the grammar is divided into two
components: semantically-oriented and syntactically-oriented rules. The semantically-
oriented part of the initial grammar, which is manually developed, is the core part of the
grammar responsible for capturing genefal semantically-consistent structures. For instarice,
if a verb is classified as active intransitive verb (va: EIfER K#iliad]) in the corpus,
there will be a semantically-oriented rule: VP -->va, regardless of its syntactic behavior or

its other possible POSs.  The following is an example showing how the rules look like:

VPI [active +] --> va x KEHENT J
VPI [active +] > vb PP /* S HGHES */
VP1 [active -] --> vh * ERTRE */

- . N

VP1 [active -] -->VviPP - /* BEOIRBUG */

The feature active is utilized to indicate whether the verb is .an active (BJ{F) or a stative
(4REE) verb. Note that the stative intranstive verb vh also has other syntactic form that
carries an NP (-+/3T) as mentioned earlier in this section, but we leave it to the
syntactically-oriented rules to handle since its form is inconsistent with the definition of

vh.
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The syntactically-oriented part, designed to generate from rule templates, is to handle the
syntactic behaviors of a verb, accommodate the structures that are excluded due to the one-
word-one-tag policy, and even deai with ill-formed sentences in the corpus. Like implicit
rules with headedness constraint in the Explicit-Implicit technique, the syntactically-
oriented rules will be generated from the following templates:

NT -> NTNT

NT -> NT T

NT -> T NT

NT -> T T
" Where NT is a non-terminal and T is a terminal (part-of-speech) symbols used in the
grammar. However, implicit rules are a set of non-recursive rules with limited generating
power. It is believed that the syntactically-oriented rules need to handle the majority of the
training data due to the complexity of POSs in the corpus mentioned at the beginning of
this section. Therefore, it is desirable to loosen the headedness constraint so that the bar
level of a head daughter can be equal to or less than that of its mother. This results in a set

of recursively syntactically-oriented rules.

The two set of rules will be put together to form our sem-syn initial grammar with a set of
corresponding random probabilities. This grammar will then be ready for our inference
process to proceed.

3. The Chinese Grammatical Inference System

We are currently developing a corpus-based grammatical inference system for Chinese.
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The system consists of three components:

+  Initial Grammar-

The sem-syn hybrid grammar mentioned in the previous section is currently under
development. A grammar development environment tool called GDE [Carroll, Briscoe and
Grover 1991] is employed to develop our semantically-oriented rules in GPSG formalism,
whereas syntactically-oriented rules will be generated using four templates shown in
Section 2. Both parts of rules will then be converted into context-free rules and given
random initial probabilities to meet the requirement of the stochastic inference algorithm

mentioned below.

«  Corpus

The pre-tagged primary school textbooks from Sinica Corpus are used for both training
and testing. These data will be manually phrase-bracketed as a tree bank to provide the
phrasal information during inference process. The phrase-bracketed test set will be used to

examine the bracketing accuracy of the parses generated by the inferred grammar.

Inference Algorithm
‘The system utilizes a chart-based Inside-Outside algorithm [Waegner, 93]. It is a stochastic
inference algorithm that can take a stochastic context-free grammar as a source and
iteratively re-estimates the set of probabilistic parameters of the grammar. Analogous to
the forward and backward probabilities in conventional Hidden Markov Model(HMM),

this algorithm define the inside(e) and outside(f) probabilities as:

es,t,]) = P(S=">0(s), +.,00/6),
f(s,t,1) = P(S=">0(1),-+,0(s-1),1,0(t+1),**-,O(T)/G)
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where e(s,t,]) is the probability of the non-terminal symbol I generéting the observation
O(s),"+-.,0t), and f(s,t]) the probability of I being generated but not invol.ved in
generating the observatién O(1),++,0(s-1), and O(t+1),+-,0(T). G is the grammar, T is the |
total number of elements in the observation O(l),'".,O(T), and 1<s<t<T. The inside

probabilities are computed bottom-up, and outside probabilities are computed top-down.
Like training the transition and emission probabilities in HMM, the values of e and f of
non-terminal symbols can be used to re-estimate rule probabilities of the grammar in the

similar fashion.

In our system, the set of probabilistic parameters of the sem-syn grammar will be
iteratively re-estimated from all legitimate parses that conform with the bracketing
constraints in our training tree bank (it is called supervised training). The inference process
finishes when a change in total log pfobability of training sentences is less than a set

threshold.
4. Conclusion and Future Work

We have outlined our on-going research on the design of the sem-syn initial grammar for
the Chinese inference system. Unlike its European counterparts, Chinese language has its
structure complexity, which have lead to a different design on the initial grammar for

grammatical inference.

The sem-syn initial grammar has been under development in the project. We will soon start
to build up the tree bank for the supervised training and develop the inference system. We
hope that the inferred grammér will not only reflect the sentence structure in the training
set, but also can predict the unseen sentences (test data) which in some sense are of the
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same nature as the training data. This expectation will be verified by experiments in which
the test sentences are analyzed using the inferred grammar and their results (parses) are

examined using the test tree bank.
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A Way to Extract Unknown Words Without Dictionary

from Chinese Corpus and Its Applications
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Abstract

We propose a way to detect the unknown words from the corpus. We call such unknown words
Chinese frequent strings(CFS). The strings could be the combinations of some common Chinese
words that are defined in a traditional dictionary. Such Chinese frequent strings appear more than once
in some Chinese texts. The method we proposed can automatically detect such strings without using
any lexicon, and no word segmentation is needed.

We retrieve 55,518 Chinese frequent strings (reached for 13-gram in character) from a corpus
consisting of 536,171 characters. To show that the strings we got are useful, we use these strings in
Chinese phoneme-to-character and character-to-phoneme tasks. The test corpus contains manually-
tagged phonetic symbols for each character. The correctness of the phoneme-to-character test is 96.5%
and the correctness of the character-to-phoneme test is 99.7%. We make an MOS test about the
determination of prosodic segments. The MOS score is 4.66 relative to the prosodic segments in
spontaneous speech. This shows that the strings we retrieved are helpful in this aspect.

Keywords: unknown words, phoneme-to-character, character-to-phoneme, prosodic segment

1. Introduction

An intact Chinese electric dictionary is required in the processing of Chinese natural
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language (Chang 1997). Such dictionary plays an important role in machine translation, text-
to-speech system, speech recognition system, and intelligent Chinese input methods. Yet there
are many unknown words or new words coming into being in the world. The unknown words
are various and diversified. Such as nominal compounds, verbal compounds, personal names,
organization names and their abbreviations (Chang 1997, Chen 1997). There are many works
focus on this problem recently (Chang 1994, Chang 1997, Chang etc. 1994, Chen and Bai
1997, Chen and Bian 1997, Chen 1994, Chien 1995, Sun 1994, Wu 1994).

We will propose a method to extract unknown words from corpus in Sect. 2. In Sect. 2,
we also try to find some unknown words in a Chinese corpus with phonetic symbol for each
character by our proposed method. And we applied the words we extracted to three
applications in Sect. 3 to show that the words we get are reasonable and useful. We will

discuss about our method in Sect. 4. We make some conclusions in Sect. 5.
2. The Proposed Method

Let’s give definition to a Chinese unknown word at the beginning of this section. A
Chinese unknown word is a Chinese string that is used frequently by the people. There are
about 13000 Chinese characters. The number of combinations of several characters is very
large. But there could be very few combinations meaningful. Such meaningful combinations
are Chinese words in the lexicon or unknown words if they do not appear in the lexicon. It is
more appropriate to use Chinese frequent strings (CFS) instead of Chinese unknown words.
For example, “/REREFHE” (can not help but study) is a Chinese frequent string since we
find such Chinese pattern in many Chinese texts. It is not a word but a combination of some
words that presents some meaningful idea.

2.1 Extracting Chinese Frequent Strings from Corpus

If a combination of some characters is a meaningful pattern, such combination will very
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likely appear more than once in a large corpus. We make a Chinese string pattern be a Chinese
frequent string if it appears twice or more in the corpus. Since not all the strings are
meaningful. It is very important to let a computer make a decision that which pattern is
meaningful.

Our method is divided into two steps. The first step is searching for all characters in the
corpus to determine which patterns appear more than one time. Such patterns will be gathered
into a database that is so called “may be a word” database. The entries in the “may be a word”
database are the strings and their number of occurrences. The second step is to find the raw
frequency for each entry in the database mentioned just now. The raw frequency of a entry is
the frequency of self appearance of the entry. And we can decide which patterns are
meaningful patterns according to the raw frequency.

2.2 Constructing the Database of “may be a word”

The first step is to construct the database “may be a word” from corpus. In this step we
collect each pattern that the number of characters of the pattern is less than or equal to 15. The
number of characters of every entry in the database is not greater than 15. This is because that
a breath group contains no more than 13 characters according to the experiments in our group
(Pan 1998, Jen 1997). We need to find the strings of length two or more than 13. The reason
will be explained later. | |

The frequency of each entry in the database is greater than or equal to two. Yet ﬁot all
the entries are the patterns we want. Some of them are nonsense. For instance, consider the

following fragment:
“WRABLSE  BABENEE  $FREATEAET - BPEARFEERRZ -/
TEEEERRE T FFENTAR , WEE  EFSREHFAHNENTH LT
- EETEMEBE - BARBWAR R —1RR  EREEHRAMGHE ERF
BT AR B AR R RIS EIC - TR A SERIRSIMS I A
1% - BB ERREMNE - UTEXCEER HNEBIERRIThX - Frafamsc -
i NEEENB I BRSNS - BB - RERRE - R
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SCHEEE NS - BARIERES - HRRE SRS EIEAERLEEGTSCHA
HWEE > BN TRECEC) TAMEZZHEE - BTREEAREE SRR
TERHFHY 7

There are 36 patterns that appear more then once. They are listed in the first column of
Table 1. There are some patterns that we may not wish to treat them as the unknown word.
Such as “4REP, “SRELEZL”, and “REIEER”, etc. However, The computer has no idea to get
rid of such items. They can work well by computing. The rest task of our method for
extracting unknown words is to identify the patterns automaﬁcally using a computer. This the
second step in our proposal.
2.3 Extracting Unknown Words form Database “may be a word”

We have constructed a database that each entry may be a new word in the previous
subsection. The main idea of this subsection is to make sure which pattern we indeed need.
We will exclude a pattern whose appearance is due to the appearance of a longer pattern. For
‘instance, all the occurrences of “#XF}” are caused by the occurrences of HEREP. So “ARL”
will not be an unknown word. Again since “F4RFE}22” are brought in by “EH2AEIEEHY” and
«Z2BH 5 SRPLEE” | The frequency of “ H #RF} 22 appear by itself is only 1. The frequency that
a possible wbrd appear by itself is shown in the third column of Table 1.

We could extract the entry which frequency of self appearance is more than once to be

as our unknown words according to the third column of Table 1.
2.4 Implementation

We use a fraction of the Academia Sinica Balance Corpus as our training data (Chen
1996). The cofpus we used is raw text. There is no information of segmentation. The total
number of characters is 536,171. And the number of entries in “may be a word” database is
115,140. We applied the method mentioned in subsection 2.3 to decide which entry in the

database is a real word that appears twice or more truly in the training corpus. We get 55,518
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words. Appendix shows some high frequency words we extracted which can not be found in

an ordinary dictionary.

Table 1. The listing of string patterns.

String Pattern Occurrences Frequency of self
appearance

ANE
NEHY
B
X%
RELUN
HiZ
i
BRE
BRBE
HAREIER
BH
HIE
fozE
A
B2
B2
EH
BEA
HEERE
BREARE
3L
ML
REZ
REIERY
F
L
L]
TE
wEH

FEEAR
FEEARBE
i)

Y

3. System Applications

N W[N] W WLV WLV WVWITLVIR[NNINWVWILINININININ|WIANAN NN NW
ololv|o|lo|o|l=lw ool =INIOINININWIERIC|IOININI—=ININ|—

In order to make sure that the words we retrieved are useful, we applied the words we
retrieved to three tasks, namely Chinese character-to-phoneme(CTP) conversion, Chinese

phoneme-to-character(PTC) conversion, and the determination of breath groups in an input
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Chinese sentence.
3.1 The Chinese Character-to-Phoneme Task

The Mandarin text-to-speech system needs a character-to-phoneme system to get the
correct syllables (Lin 1998, Ouh-Young 1985, Pan 1998). To have high performance of
Chinese character-to-phoneme, we applied the words we retrieved in this aspect. The lexicon
we used is the combination of Academia vSinica dictionary and the words we retrieved from
the training corpus.

There are four principles in our CTP task. They are (1) the number of words should be
minimized. (2) The number of characters in a word should be as many as possible. (3) The
number of mono-character word should be minimized. (4) The probability of the combination
of words should be high.

We performed an outside test for the Chinese character-to-phoneme task. The test
corpus consists 82,610 characters with corresponding phonetic symbols for each character. To
ensure the correctness, we check the phonetic symbols manually. The correctness of outside
test is 99.7%.

3.2 The Chinese Phoneme-to-Character Task

The second work is the reverse of the work mention in subsection 3.1. That is Chinese
phoneme;to-character task. This task is more difﬁcult. There are some studies in thié problem
(Hsu 1995, Ho 1997). As we know, the best performance is 96% that is done by Hsu in "
Academic Sinica (Hsu 1995). Two possible applications of Chinese phoneme-to-character are
Chinese speech-recognition system and Chinese input system. There are many methods to
solve the problem. Three approaches have been proposed for this problem, (1) is the statistical
approach, (2) is the grammatical approach, and (3) is the semantic template.

We applied the lexicon mentioned in subsection 3.1 to finish the task. We also use the

same four principles in CTP to the task of PTC.
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The test of Chinese phoneme-to-character is inside test. The test corpus contains
536,171 characters with corresponding phdnetic symbols. The correctness of this test is
96.5%. Some errors like “B”, “fl1”, “fl”, “H> are not identified by our system. Such an
identification is generaliy considered an difficult problem. However, the proper names we
have trained could be identified by our strategies.

3.3 The Determination of Prosodic Segments

The third task we do is the determination of prosodic segments‘or breath groups
(Lopez-Gonzalo 1997, Pan 1998, Jen 1997) in a sentence. The prosodic segments are
important for a Mandarin text-to-speech system. To show the words we extracted are useful in
this aspect, we try to decide the prosodic segments in input Chinese sentence. We have
analyzed the real speech to get the prosodic segments. We found that a prosodic segment is
about 7 to 10 characters. And a prosodic segment contains one or more words. No word will
be divided to belong to different prosodic segments. N

The evaluation we take is objective MOS evaluation (Wei 1997). The evaluation data
are two paragraphs, say paragraph A and paragraph B. Two versions of the prosodic segments
of these two paragraphs are provided. One version is obtained by analyzing the real speech
and the other is got by our system. There are forty-two undergraduate students in the
Department of Chinese Lecture in our university making the evaluation. The students are
divided into two groups. One group takes the evaluation in paragraph A with prosodic
segments determined according to real speech and paragraph B with prosodic segments
determined by our system. The other group takes the evaluation in paragraph A with prosodic
segments determined by our system and paragraph B with prosodic segments determined
according to real speech. There are totally 50 sentences for every student.

The results are 3.834 for the prosodic segments of real speech and 3.572 for the prosodic

segments of our system. The relative score is 3.572/3.834*5=4.66. This means that the words
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we retrieved make good help in determining the prosodic segments. Since some meaningful
patterns or proper names can be identified by our system. The characters in such a pattern
should belong to the same prosodic segment.
4. Discussion
The features of our extraction of unknown words can be summarized in the followings
(1) Our méthod can extract any unknowns for corpus. Such unknowns could be people
names, origination names, verbal compounds, foreign translated nouns, and so no.
(2) We need no dictionary while extracting unknoWn words. And no Chinese word
segmentation is needed in preprocessing.
(3) We could find long word patterns in one pass.
* (4) There is not any rule applied in our system. The generation of rules very often
requires many humvén works.
(5) The computation of frequency for each word is very accurate in our system. We have
proposed a method to compute the frequency of occurrence for each word.
(6) There is no part-of-speech information needed. The use of part-of-speech information
generally requires a large amount of human involvement.
5. Conclusions
We have proposed a robust way to extract unknown words form corpus. We alsé show
that the words we retrieved are very useful. Such words make good help in Chinese phoneme-
to-character, Chinese character-to-phoneme, and the generation of prosodic segments in a
Mandarin TTS system.
Some future works we want to do are in the following three aspects.
(1) To extract more unknown words in a large corpus.
(2) Developing a robust system for Chinese phoneme-to-character task.

(3) Developing a high performance Mandarin text-to-speech system.
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Appendix: Some unknown words we extracted from corpus

Unknown Words Frequency Unknown Words Frequency
A 1417 B ST 17
fiiER 74| ZEBERY 8
e THA TR 8
fiEy 70} 4= v EE TERY 7

iER 65| \iEFETH TR £ 6
EfE | 62| IR FEFT 6
B SO EHE AER AT LA 6
tHE - ' - SIUTAREREAZERT 6
BT ‘ kd X/ QVATTRVN 4
HAFRF{ TN EFRRIBAR 8
TR 68| B ERHIEFTHR 6
FELE S SHIKESE 5
iERE SHER—ERAA 5
WIE B N SeE 4
HYLETE AL TR T 4
SEARRY 2R E BT 4
A1 39| EIT BRI 4
BT 39| =Tk LFTak 3
HIRRGR 39| ABE A Z FEIRYIRBRR 5
— = 24| FEE AR HSES 5
BFTTEA 20| BHATEFTATE A 5
[PERA I AZHI TR ER 4
I 18| R TN BRIAE) 4
HILEEE AN 18R — A BHIE 3
BFIA . 17| Ak g o 58 = TR ZeAT 4
—fEARY ISP AT BGREY BB Y) 3
TEIE 15| RIREERTE AR 3
HIRARY 15\ —ETE A EIAE 2
B 15| —EFHFRORIA 2
BERITLE I3|RE s EE SR FE A SR B 4
AN 12| — R AR ARETE S 2
HIERRRE INAERARAREER 2
BT LR IARERLBINT T 2
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