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Abstract

This paper presents a study on speaker-independent continuous Mandarin
speech recognition over the telephone. A comparison of several cepstral bias
removal techniques such as cepstral mean subtraction (CMS), signal bias removal
(SBR) and stochastic matching (SM) for telephone channel compensation was first
investigated. Then some modifications and combinations of these techniques were
developed for further improvement of the environmental robustness under
telephone environments. To better estimate the contextual acoustics and co-
articulation in spontaneous telephone speech, the between-syllable context-
dependent phone-like units (;uch as triphones, biphones and demiphones) were
used to train the speech models. In addition, the discriminative capabilities of the
speech models were further enhanced using the minimum classification error (MCE)
algorithms. Experimental results showed that the achieved recognition rates for
Mandarin syllables were as high as 59.53%, which indicated a 27.81% of error rate

reduction.
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1. Introduction

Dufing the past few yeérs, ‘interest’ has increased in dev;eloping spoken dialogue systems over
the telephone [1]. Apparently, the recognition performance under telephone environments
becomes crucial for a successful spoken dialogue system [2-3]. However, many problems
arise from high-quality micrdphone to telephone networks such that the telephony based
speech recognition is still very challenging. First, the speaker independence is highly desired
in telephone environments. Secondly, the environmental variabilities become much more
serious due to the channel distortions and the fairly’ high ambient background noise levels.
Thirdly, the spontaneous speech over the telephone is very often ill;structured and co--
articulated [4-5]. In this paper, some methods for ovércorhing these problems were developed
and investigated.

As we know, the channel noise is usually convoluted with the speech signal in time
domain, which becomes an additive term in the logarithmic spectral domain or cepstral
domain. Therefore the channel noise can be compensated by subtracting a bias term from the
noisy speech signal in cepstral dorﬁain (called cepstral bias removal). A comparative study of
some widely used cepstral bias removal techniques such as cepstral mean subtraction
(CMS)[6], signal bias removal (SBR)[7] and stochastic matching (SM)[8] were first
investigated. Then some modifications and combinations were applied based on these
techniques for further improvement of the environmental robustness under telephone
environments. In order to better estimate the contextual acoustics and co-articulation in
spontaneous telephone speech, the between-syllable context-dependent phone-like units (such
as triphones, biphones and demiphones) are modeled. Moreover, the minimum classification
error (MCE) algorithms are further used to enhance the discriminating ability of the speech
models [9].

The baseline system is based on the context-dependent phone-like units (PLU)
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considering the within-syllable parts only and without any compensation, in° which the
average recognition rates for Mandarin syllables were 43.94%. The recognitioh accuracies can
be immediately increased to 49.24% using the cepstral bias removal tech’niqueé for channel
noise compensation and further improved to 58.56% when the between-syllable context-
dependent phone models are used. Furthermore, the achieved recognition rates weré improved
to as high as 59.53% using the minimum classification error algorithms as the post processing,
which indicated a 27.81% of error rate reduction as compared to the baseline system.

This paper is organized into 5 sections. Section 2 describes the baseline recognition
system and the speech database used in the experiments. The cepstral bias removal techniques
are described in section 3. In section 4, the experiments based on different types of between-
syllable context-dependent phone models are performed and discussed. Section 5 finally gives

the concluding remarks.
2. Baseline Recognition System

2.1 Speech Database

The speech database was produced by 59 male and 54 female speakers over the telephone
provided by Telecommunication Laboratories, Taiwan, Republic of China. Each speaker
produced 120 Mandarin sentences such that a total of 13,560 Mandarin sentences (5.87 hrs)
are included in the speech database. The signal-to-noise ratios (SNR) of this database are
distributed from 10 to 40 dB, in which 9.09%, 56.36% and 34.55% of this database locate in
10~20 dB, 20~30 dB and 30~40 dB, respectively. In the following experiments, 51 male and
49 female speakers were used to train the gender-dependent, speaker-independent models and

the rest 8 male and 5 female speakers were used as the testing speakers.
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2.2 Front-end Processing

The télephone speech, which has a band of 150 Hz ~ 3.8 kHz, was sampled at an 8k Hz rate.
After end-point detection is performed, 32 ms hamming window is applied every 10 ms with a
pre-emphasis factor of 0.95. 14-order mel-frequéncy cepstral coefficients (MFCC) were
derived from the power spectrum filtered by a set of 30 triangular band-pass filters. In
- addition, the first order derivatives of the 14 mel-frequency cepstral coefficients as well as the
first and second order derivatives of the log short-time energy were also calculated to result in

a feature vector of 30 dimensions for each frame [10].

2.3 Acoustic Modeling

The basic speech units used for recognitioh in this study are phone-like units (PLU) [11-12],
in which a total of 34 context-independent (CI) PLU’s are included. In fact, the most widely
used units in the Mandarin speech recognition are the 22 Initial’s and 40 Final’s, where Initial
means the initial consonant and Final means the vowel part but including possible media and
nasal ending [10]. This is because of the mono-syllabic structure of the Mandarin Chinese, in
which each Mandarin syllable can be decomposed into an Initial/Final format. One can note
that ea;:h Initial is represented by one phoneme while each Final contains one to several
phonemes. Accordingly, the numbers for the context-independent (CI) Initial/Final and PLUk
are 34 and 62, respectively. Also, when the right context dependency is considered, i.e., the A
speech units are regarded as different ones with respect to the beginning phonemes of the
following units, the numbers for the right context dependent (RCD) Initial/Final and PLU can
be expanded into 149 and 145, respectively. However, when the inter-syllable transitions are
considered, the numbers for the RCD Initial/Final and PLU are immediately increased to 1269
and 480, respectively. Furthermore, if both the right and the left context dependencies are

included, the numbers for Initial/Final and PLU will be further increased to 13,336 and 4605,
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respectively. One can find that the amount of Initial/Final units is nearly 3 times of that of
phone-like units considering both the left and the right contextual effects. Because it is highly
necessary to model the contextual acoustics and co-articulation in spontaneous telephone
speech, we choose the PLU as the basic speech unit. The 3-state left-to-right continuous
hidden Markov model (CHMM) [13] was trained for each PLU and the number of mixtures
per state is dynamically determined by the amount of available training data with a maximum
of 8 mixture components.

The block diagram of the training phase is shown in Fig. 1. The context-independent (CI)
PLU based models are first obtained using the forward-backward algorithm, in which the
initial model parameters were derived from uniform segmentation. Then the CI-PLU models
were used as the initial seed models to derive the within-syllable CD-PLU models using the
forward-backward algorithm. Furthermore, the between-syllable CD-PLU models can be
trained using the Within-syllable CD-PLU models as the initial models. Finally, the minimum
classification error (MCE) algorithms are used for further enhancement of the discriminative

capability of the between-syllable CD-PLU models.

2.4 Performance Baseline

This recognition process is based on the Viterbi search algorithm for obtaining the optimal
Mandarin syllable sequence. Also; the recognition rates are evaluated as one minus
substitution rates, insertion rates as well as deletion rates. In the baseline experiments, the
within-syllable right-context-dependent (RCD) PLU’s were used as the speech units. The
average recognition rates for male and female testing speakers were 45.30% and 42.57%

respectively as shown in the Table 1.
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male female average

Recognition
rates(%)

45.30 42.57 43.94

. Table 1 : The baseline experimental results using 145 within-syllable right-

context-dependent phone-like units.

Speech data Uniform segmentation

v

Forward-backward
algorithm

Context-independent
models

Forward-backward
algorithm

within-syllable context-
dependent models

Forward-backward
algorithm

between-syllable context-
dependent models

p| Minimum classification
error training

l

Figure 1 : The block diagram of the training procedure.
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3. Cepstral Bias Removal

As mentioned pr¢viously, the channel noise is convbluted with the clean speech signal in time
domain and becomes additive in logarithmic spectral domain or cepstral domain. Therefore,
the corrupted speech signal y can be represented by the bias transformation y = x + h, where y,
x and h denote the cepstral representations for noisy speech, cleah speech and channel noise,
respectively. The cepstral bias removal techniques are thus developed to estimate the cepstral
bias % and then subtract the bias from the noisy speech cepstral vectors. Three kinds of widely
used cepstral bias removal techniques are discussed and improved in the following, including

cepstral mean subtraction (CMS), signal bias removal (SBR) and stochastic matching (SM).

3.1 Cepstral Mean Subtraction (CMS)
In CMS [6], we make the assumptions that the cepstral mean of speech signal over a long time
equals to zero such that the cepstral bias of channel noise can be estimated by long-time

average of the noisy speech cepstral vectors.

Yo (1)

’*]|—-
M~

t=1

where y, means the noisy feature vector at frame ¢ with a total of 7 frames. A few methods are
investigated here for the estimation of the cepstral bias # in CMS, depending on the amount T
of the speech data.

1. Global bias : A single bias vector is estimated with all of the available training speech
data and shared by all of the training speakers.

2. Speaker-dependent bias : The bias vectors are estimated for each speaker separately
such that a total of 100 bias vectors are obtained for all the 100 training speakers,
respectively.

3. Sentence-dependent bias : Each sentence can obtain its individual bias vector for the

compensation of the channel noise.
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4. Sequential sentence-dependent bias : It is very often that the estimation of the cepstral
bias is coarse on a sentence-by-sentence basis due to the insufficient length for an
individual sentence. Therefore, the cepstral bias is sequentially obtained by the
interpolation of the current estimate with the previous estimates.

The experimental results are shown in Table 2. One can find that the performance was
even degraded using the global bias in CMS (43.03% vs. 43.94%). This is probably because
the channel effects in telephone environments are almost constant for a given call but vary
with calls such that a single bias can not represent the channel effept very well and even
smears the speech signal characteristics. However, when the speaker-dependent cepstral
biases are used, the average recognition rates can be improved from 43.94% to 48.86%; which
indicates a 8.78% of error rate reduction. Also, the sentence-dependent bias estimation
provides an average recognition rate of as high as 46.01%. It is apparent that the
compensation due to the speaker-dependent bias outperforms that using the sentence-
dependent bias. However, the sentence-dependent bias estimation is much more practical and
feasible in real-world applications. Therefore, the sequential sentence-depehdent bias
estimation approach is developed to incrementally update the cepstral bias. It can be noted
that comparable recognition rates with that using the speaker-dependent cepstral bias were

achieved based on the sequential sentence-dependent bias estimation (48.74% vs. 48.86%).

male female average
Global 44.53 41.52 43.03
Speaker-dependent | 50.86 46.86 48.86
Sentence-dependent 48.78 43.23 46.01
Sequential sentence- 51.01 46.46 48.74
dependent

Table 2. The experimental results using different cepstral bias estimation
methods in cepstral mean subtraction (CMS).
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3.2 Signal Bias Removal (SBR)
In SBR [7], a codebook Q is first trained using all the available training data and the cepstral
bias is obtained by maximizing the likelihood function p(¥| A, €2), where ¥ means a set of

noisy speech vectors Y ={y,, ¥, ..., ¥r}.

v, =argmax p(y, | 1,Q;), (2)
; ,
1T
h=~—2(y, _V:) (3)
T 3 , ‘

where v, designates the encoded codeword for the observation vector y, at frame ¢.
Apparently, CMS is a special case of SBR with the codebook size set to 1. In this study, three
kinds of codebooks are developed, including ad hoc codebook, hierarchy codebook and
phone-dependent codebook. In the ad hoc codebook, the codebook size is fixed and the
codewords are trained using all the training speech based on the LBG algorithm, while in the
hierarchy codebook, the codebook size is gradually increaséd such that the cpestral bias can
be hierarchically updated using the codebook from smaller size to larger size. Instead of the
data-driven codebook by vector quantization methods, the phone-dependent codebook is used;
i.e., the training data corresponding to same context-independent PLU is clustered such that a

total of 34 codéwords cab be obtained.

On the other hand, in the encoding process, the soft decision is used for the estimation of
the cepstral bias such that eq. (3) is expressed as below.
_ 1L . m k k L 4
h——Z[ZW, (yl—vl )/ZW,] ( )
T i=1 k=1 k=1 _
where v, means the k-th nearest codeword for the observation vector y, and
wh =1/|ly, —v,* ||* is the corresponding weighting factor.

Table 3 shows the experimental results using different types of codebook in SBR. It can
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be found that competitive recognition accuracies can be obtained using the ad hoc codebook
with different sizes (46.79%, 46.48% and 46.26% for codebook size of 16, 32 and 64,
respectively). In addition, when the hierarchy codebook is used where the codebook size is
gradually increased from 16, 32 to 64, the recognition rates can be further improvéd to
47.35%. As shown in the last row of Table 3, the phone-dependent codebook can further
provide slight improvement in recognition rates up to 47.50%. In Table 4, the encoding
processes based on soft decision and hard decision’are compared, in which the recognition

rates can be further improved by 0.3%~0.5% using the soft decision for different types of

codebook.
codebook | codebook 1 femal
type size male emale average
16 48.68 44 .89 46.79
ad hoc 32 48.73 4422 46.48
64 48.41 44.11 46.26
hierarchy | 16,32,64 48.80 45.90 4735
phone- 34 49.33 45.67 47.50
dependent

Table 3. The experimental results using different types of codebook in signal

bias removal (SBR).
codebook | decision 1 femal

type type male emale average

N hard 48.41 44.11 46.26

ad hoc(6H)™ ™ g 4921 44.31 46.76

hierarchy hard 48.80 45.90 47.35

soft 49.41 45.96 47.69

phone- hard 49.33 45.67 47.50

dependent soft 49.81 46.04 47.93

- Table 4. The comparative experimental results using hard decision and soft
decision in encoding process in signal bias removal (SBR).
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3.3 Stochastic Matching (SM)

In SM [8], the bias transformation function (y = x + h) is used to map the input corrupted
speech ont§ the acoustic space of speech models such that the recognition process can be
performed in matched conditions. The cepstral bias % can then be estimated in a maximum
likelihood manﬁer. |

Sim = argmsaxp(Y,S(") |H™,A L)

5
B =argmax p¥, SR A ) p(STY) ©)

where S” denotes the state sequence at the n-th iteration while A, means the speech models.
Suppose A, is modeled by Gaussian distributions, the cepstral bias can be estimated in the
following.

T
ZZZ?’,(",”’)Z;T»’(}’, _lun,m)
h = t=t n m | (6)

YY Sy, mE],

1=l n m

where (4, ,,Z,,) denotes the mean vector and covariance matrix of the speech models at

nm
state n and mixture m while 7,(n,m) means the corresponding posterior probability observing
the feature vector y, at frame ¢. In comparison with tfle formulations of the cepstral bias
estimation in eﬁs. (3) and (6) basded on SBR and SM separately, we found that similar forms
can be obtained, i.e., the weighting average of the difference between the noisy feature vectors
and the corresponding centroids in the acoustic space of training data. However, the
corresponding centroid for each observation vector comes from the speech models by Viterbi
decoding in SM while in SBR it is obtained by the vector quantization process of a training
codebook. In addition, because the cepstral bias is iteratively updated in the recognition
process in the SM method, better initial estimate of the bias can provide better improvement

of the performance. In other words, the SM method can be applied as the post processing after

the CMS or SBR compensation is used. The block diagrams of the three kinds of cepstral bias
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removal techniques discussed in this section are shown in Fig. 2.

speech
— — —>
speech
—> —> —>
speech «——
g _— . —>

Table 5 shows the experimental results based on SM approach. Note that although the
recognition rates can be increased from 43.94% to 45.56%, the improvements are indeed the
least as compared to the CMS and SBR methods. This is probably due to the mis-classified
labeling of the observation vectors in the model matching process. That is, the corresponding
distribution (4, ,,,=, ) in €q. (6) for the feature vector y, is probably incorrect. Therefore,
better speech models can provide more correct labelling results and thus better estimation of

the cepstral bias can be obtained. As shown in the last two rows of Table 5, when the SM is
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used as the post-processing after the CMS or SBR is performed, the performance can be
further improved. The recognition accuracy using the combination of SBR and SM

outperforms that using SBR only (47.93% vs. 47.48%) and so does CMS (49.24% vs.

48.86%).
male female average origin
SM 46.35 44.77 45.56 -
SBR+SM 49.62 46.23 47.93 47.48
CMS+SM 51.46 47.02 49.24 48.86

Table 5. The experimental results using different initial process in stochastic matching (SM).

4. Between-syllable Context-dependent Phone Models

4.1 Between-syllable Context-dependent Phone-like Units
In order to deal with the inter-syllable context variations for further improvement of
continuous Mandarin speech recognition, the between-syllable triphone models are used. In
other words, each speech model represents a phone with specific left and right contexts [14-
15]. As mentioned previously, the number of triphones is 4605 for the 34-phone set, which is
more than 30 times of that for the 145 within-syllable RCD phones used in the baseline
system. Apparently, the trainability will become poor due to the insufficient amount of
training data. In this study, we adopt two ways to increase the trainability using the triphone
models.
1. Back-off : When the occurrence of a triphone unit in the training database is less than
a pre-defined threshold, this triphone is replaced by its corresponding context-
independent phone unit or context-dependent biphone unit considering left or right

context dependency only.
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2. Sharing : The triphone units are tied together by the linguistic constraints.-

e Biphone : Unlike the triphohe units that depend on both the right and the left context,
the‘biphone units only depend on ksingle context. Therefore, the right context-dep‘éndent
(RCD) and left 'context-dependent (LCD) biphone units are used instead.

e Demiphone : Each demiphone unit can be divided into two sections whére the right
part is dependent on the right context while the left part depends on the left context,
separately. In this way, the needed number of mixture componeﬁts will not be increased
if the number of state per phone model is unchanged [16].

The structures of the between-syllable context-dependent phone based hidden Markov
models are shown in Fig. 3, including triphone, biphone and demiphone units. To further
improve the discriminative capability of the speech models, ‘the minimum classification error
(MCE) algorithm can be used as the post-processing in the training procedure [9]. During the
MCE training, the model parameters are iteratively adjusted in a maximum discriminability

manner such that the recognition errors can be minimized for the training speech database.

model male female average

Intra-LCD phone 48.21 38.65 43.43
Intra-RCD phone 51.53 46.75 49.19
Triphone 58.92 54.68 56.80
Inter-RCD phone 60.52 56.59 58.56
Inter-demiphone 59.20 54.88 57.04
Intra-RCD Initial/Final 52.92 48.55 50.74
Inter-RCD Initial/Final 59.41 51.51 55.46

Table 6. The experimental results based on different types of context-
dependent speech units (intra- denotes within-syllable while inter- denotes
between-syllable). '
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4.2 Experiments

In this subsection, we investigate the recognition performance based on different types of
context-dependent phone-like speech units. Here the cepstral mean subtraction (CMS)
technique based on speaker-dependent cepstral bias estimation discussed previously is used as
the front-end robust processing. Also, an extra silence model is added for the improvement of
the speech end-point detection. As shown in first two rows of Table 6, the recognition results
using within-syllable left context-dependent (LCD) and right context-dependent (RCD) are
compared. It can be found that the right contextual effects are more influential on the
recognition acéuracy than that of left contexts (49.19% vs. 43.43%). Also, slight improvement
can be obtained with the addition of the silence model as compared to the result shown in the
second row of Table 2 ( 48.86% vs. 49.19%). Then, when the triphone based models are used,
the recognition rates can be immediately improved to 56.80%, in which the error rates are
reduced by 14.98% with the expense ‘of more than 30 times of mixture components as shown
in Fig. 4. It is noted that there exist around 2600 unseen triphones out of 4605. Here the back-
off method is applied using between- syllable RCD PLU’s to predict the unseen triphones.
When the biphone and demiphone units are further used to tie the states of the triphone based
models, the needed mixture components can be reduced from 55,272 to 7,701 and 10,480
respectively as also shown in Fig. 4. The recognition accuracies are also improved from
56.80% to 58.56% and 57.04% respectively as liéted in Table 6. In other words, the
trainability as well as the sensitivity can be increased by sharing the parameters of the
triphone models. As a comparison, the within-syllable and between-syllable RCD Initial/Final
based models are trained and the results are also shown in Table 6. One can find that although
‘the recognition rates using Initial/Final units outperform that using PLU’s considering within-
syllable right context variations only (50.74% vs. 49.19%), the error rates and needed mixture

components are greatly increased when the between-syllable context dependency is included
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‘as also shown in Table 6 and Fig. 4. It is indicated that the error rates are reduced by 6.96%
using less than one half of mixture components compared with between-syllable RCD PLU
and Initial/Final based models. Finally, when the minimum classification error (MCE) training
algorithm is applied to the most successful betweeh-syllable RCD PLU based models, the
recognition rates can be further improved fromk 58.56% to 59.53% as shown in Table 7. In
comparison with the baseline system listed in Table 1, the recognition rates are increased from

43.94% to 59.53%, which indicates a 27.81% of error rate reduction.

Inter-RCD phone male female average
ML 59.41 51.51 58.56
MCE 61.78 '57.28 59.53

Table 7. The comparative results using ML and MCE training based on between-syllable
RCD phone models.

3. Conclusion

This paper presents a study on speaker-independent continuous Mandarin speech recognition
under telephone environments. The widely used cepstral bias removal techniques (CMS, SBR
and SM) were first compared and improved. Then the between-syllable context-dependent
phoné models (triphones, biphones and demiphones) wére trained. The minimum
classification error (MCE) training algorithm was further applied. Experimental results
showed that the achieved recognition rates can be improved from 43.94% to 59.53% as

compared to the baseline system using within-syllable RCD phone models.
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Figure 3. The structures of the between-syllable context-dependent phone based
hidden Markov models (HMM) : (a). triphone, (b). biphone and (c). demiphone.
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Figure 4. The total number of mixture components for the acoustic models

based on different types of speech units.
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