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Longest Tokenization

JIN GUO*

Abstract

Sentence tokenization is the process of mapping sentences from character strings
into strings of tokens. This paper sets out to study longest tokenization which is a rich
family of tokenization strategies following the general principle of maximum tok-
enization. The objectives are to enhance the knowledge and understanding of the
principle of maximum tokenization in general, and to establish the notion of longest
tokenization in particular. The main results are as follows: (1) Longest tokenization,
which takes a token n-gram as a tokenization object and seeks to maximize the object
length in characters, is a natural generalization of the Chen and Liu Heuristic on the
table of maximum tokenizations. (2) Longest tokenization is a rich family of distinct
and unique tokenization strategies with many widely used maximum tokenization
strategies, such as forward maximum tokenization, backward maximum tokenization,
forward-backward maximum tokenization, and shortest tokenization, as its members.
(3) Longest tokenization is theoretically a true subclass of critical tokenization, as the
essence of maximum tokenization is fully captured by the latter. (4) Longest tok-
enization is practically the same as shortest tokenization, as the essence of
length-oriented maximum tokenization is captured by the latter. Results are obtained
using both mathematical examination and corpus investigation.

Keywords: sentence tokenization, tokenization disambiguation, maximum tok-
enization, critical tokenization, word segmentation, word identi-
fication.

1. Introduction

Sentence tokenization' is the task of converting a sentence from a character string into a
string of word-like tokens. It is widely agreed to still be an open problem in Chinese
Language Processing (Chen, 1996; Gan, Palmer and Lua, 1996; Huang, Chen and Chang,
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1996; Huang and Xia, 1996; Sproat, Shih, Gale and Chang, 1996; Su, Chiang and Chang,
1996; Sun and Huang, 1996) and is getting recognition as a general problem in Compu-
tational Linguistics (Guo, 1997; Wu, 1997). It has been stated in the literature that major
obstacles lie in tokenization ambiguities and unknown words in real text, and in the lack
of a consensus on standard for tokenization which includes an operational definition of
the notion of words and a complete and consistent set of tokenization rules (Liu, Tan and
Shen, 1994; Huang, Chen and Chang, 1996).

As to tokenization ambiguity resolution, what is interesting is the fact that, at least
for Chinese, a quite intuitive heuristic, referred to here as the principle of maximum
tokenization®, alone can deliver closed-dictionary tokenization accuracy anywhere above
98% (Liang, 1986; Liu, 1986). It is believed that the principle of maximum tokenization
is "the most powerful and commonly used disambiguation rule" (Chen and Liu, 1992,
104). However, "there are a few variations of the sense" (Chen and Liu, 1992, 104) of the
principle, and different realizations "were invented one after another and seemed inex-
haustible" (Webster and Kit, 1992, 1108). This implies that the principle is still not well
understood, and that much better realizations might be waiting to be discovered.

Therefore, we set for ourselves the task of enhancing our knowledge and under-
standing of this vague but powerful tokenization principle. The starting point for this
study was the following Chen and Liu Heuristic (Chen and Liu, 1992, 104):

(1) "The most plausible segmentation is the three word sequence with the maximal
length."

According to Chen and Liu (1992, 104), this is adopted after having "done the
experiments with each of different variations" of the principle, and "achieves as high as
99.69% accuracy". However, we have never seen evidence in the literature that it has
been studied except for the original proposal; thus, we believe it is worth being inves-
tigated further.

What we will establish in this paper is a set of tokenization strategies, collectively
referred to as longest tokenization. Both mathematical examination and corpus inves-
tigation will be conducted to explore its theoretical implications and practical behaviors.

In particular, we will demonstrate that (1) Longest tokenization, which takes a
token n-gram as a tokenization object and seeks to maximize the object length in char-
acters, is a natural generalization of the Chen and Liu Heuristic (Chen and Liu, 1992) on
the table of maximum tokenizations. (2) Longest tokenization is a rich family of distinct

2. Also known in the literature as maximal matching.
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and unique tokenization strategies with many widely used maximum tokenization
strategies, such as forward maximum tokenization, backward maximum tokenization,
forward-backward maximum tokenization (Liu, 1986; Liang, 1986), and shortest tok-
enization (Wang, 1989), as its members. (3) Longest tokenization is theoretically a true
subclass of critical tokenization (Guo, 1997). (4) Excépt for ordinary cases where longest
tokenization is forward and/or backward tokenization by definition, longest tokenization
is practically the same as shortest tokenization.

While the proper solution for sentence tokenization need not necessarily be in the
form of shortest tokenization or critical tokenization, this study is nevertheless
informative in understanding the principle of maximum tokenization, and is instructive
with regard to sentence tokenization practice. It is believed proper to claim that the two
most significant implications of this study are that: (1) the essence of the principle of
maximum tokenization has been fully captured by critical tokenization; and (2) the
essence of length-oriented realizations of the principle has been fully captured by the
token-based forward and/or backward maximum tokenizations at one extreme, and by the
sentence-based shortest tokenization at the other.

The rest of this paper is organized as follows. We will first review in Section 2
various maximum tokenization strategies proposed in the literature, and develop in
Section 3 the notion of longest tokenization. We will then analyze in Section 4 theoretical
relationships among members of the longest tokenization family and those representative
maximum tokenization strategies, and investigate in Section 5 practical relationships
through detailed data examination on a large representative corpus. Major results
achieved will be summarized in Section 6. There is also an appendix showing some
indications on the proof of several theorems in Section 4.

2. Maximum Tokenization

Numerous sentence tokenization strategies following the general principle of maximum
tokenization have been proposed in the literature. Among them, forward maximum tok-
enization, backward maximum tokenization, forward-backward maximum tokenization
(Liang, 1986; Liu, 1986), and shortest tokenization (Wang, 1989) have generally been
regarded as the most representative ones. It has also been claimed that critical tok-
enization is "the only type of tokenization completely fulfilling the principle of maximum
tokenization." (Guo, 1997, 590)

In this section, we will review each of these tokenization strategies by presenting a
brief description followed by two simple examples adapted from Guo (1997). Before
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that, however, let us examine exhaustive tokenization.

Exhaustive tokenization (ET), as the name implies, aims to produce all possible tok-
enizations. More precisely, a word string is an ET tokenization of a character string, if the
concatenation of the former reproduces the latter. ET is not a type of maximum tok-
enization strategy, but is the base for all types of tokenization strategies.

EXAMPLE 1: Given the mini-English dictionary D={a, d, f, n s, u, fund, funds, and,
sand), the character string S=fundsand has the set of all possible tokenizations
E D(fundsand V={flu/n/d/sla/n/d, fund/s/a/n/d, flu/n/d/s/and, funds/a/n/d, f/u/n/d/sand,

find/s/and, funds/and, fund/sand}, where ED(S ) denotes the set of exhaustive tok-

enizations for character string S over dictionary D.

EXAMPLE 2: Given the dictionary D={a, b, c, d, ab, bc, cd, abc, bcd}, the character string
S=abcd has the set of exhaustive tokenizations E( abcd)={a/b/c/d, ab/c/d, a/be/d, a/b/cd,

abc/d, ab/cd, a/bed) This set can be depicted as in Figure 1 below.

Figure 1 The exhaustive tokenization set
ED(abcd)z{a/b/c/d, a/b/cd, a/be/d, a/bed, ab/c/d, ab/cd, abe/d}.

Also illustrated in Figure 1 is the cover relation between different tokenizations: a
word string covers another if the concatenation of some words in the latter reproduces the
former. For instance, ab/cd covers both ab/c/d and a/b/cd but not a/bc/d. As has been
proven in (Guo, 1997), the cover relation is a (reflexive) partial order. Thus, a set of
tokenizations forms a partially ordered set, or simply a poset (e.g., Kolman and Busby,
1987), on the cover relation. Poset is an important type of mathematical structure with
many neat mathematical properties. In short, the collection of different tokenizations for

a character string is not merely a mixture but is well structured.
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The procedure of forward maximum tokenization (FT) is: given a character string
to be tokenized and a tokenization dictionary, match the string against the dictionary, find
the first longest match from the beginning of the string, take it out as the first token, and
then repeat the procedure until no more tokens can be taken out.

EXAMPLE 1 (CONT.): The character string S=fundsand has the unique forward max-
imum tokenization funds/and, i.e., F D(ﬁmdsand)= {funds/and}, where F D(S ) denotes the

set of forward maximum tokenizations for character string S over dictionary D. Note that
three dictionary tokens, f, fund, and funds, match the character string S=fundsand from its
beginning, but that funds is the longest one among the three and, hence, the first token
produced.

EXAMPLE 2 (CONT.): The character string S=abcd has the word string abc/d as its sole
FT,ie., F (S)={abc/d)}.

The procedure of backward maximum tokenization (BT) is the same as that of
forward maximum tokenization except that, while the dictionary matching and tok-
enization process goes from left to right in F7,, it goes in the reverse direction, from right
to left, in BT.

EXAMPLE 1 (CONT.): BD(fundsand)={fund/vand}, where BD(S ) denotes the set of

backward maximum tokenizations for character ‘string S over dictionary D. Note that
three dictionary tokens, d, and, and sand, match the character string S=fundsand from its
ending, but that sand is the longest one among the three and, hence, the first token
produced.

EXAMPLE 2 (CONT.): B, (abcd)={a/bcd).
The procedure of forward-backward maximum tokenization (FBT) is actually
not independent but is the union of FT and BT. That is, a word string is an FBT tok-

enization if it is either FT or BT. FBT is also known as dual-direction maximum tok-
enization (DT).

EXAMPLE 1 (CONT.): D(fundsand)={funds/and, fund/sand}, where D,(S) denotes the

set of forward-backward maximum tokenizations for character string S over dictionary
D. Note that the tokenization funds/and is from FT, and that fund/sand is from BT.

EXAMPLE 2 (CONT.): DD(abcd )={abc/d, a/bcd).

Note that, by definition, it is always true that DD(S)=FD(S) UBD(S).
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A word string is a shortest tokenization (ST) if it contains the minimum number
of words possible; i.e., it has the shortest word string length.

EXAMPLE 1 (CONT.): SD(fundsand )={funds/and, fund/sand}, where SD( S) denotes the

set of shortest tokenizations for character string S over dictionary D. Note that both
tokenizations funds/and and fund/sand have word string length 2, and that there is no
shorter valid tokenization for S=fundsand. The three-word tokenization fund/s/and is not
an ST.

EXAMPLE 2 (CONT.): S o abcd)={abc/d, ab/cd, a/bcd).

A word string is a profile tokenization (PT), if it, by itself, is a profile token, or if
it contains a profile token and the left and right substrings with respect to the profile token
are profile tokenizations. A dictionary token is a profile token of a character string to be
tokenized, if it matches the character string and is not part of any other dictionary token
matching the same string at the same position. Simply put, profile tokens are the most
prominent tokens in a sentence, and profile tokenization segments a sentence by
repeatedly identifying profile tokens. Profile tokenization takes a type of island-driven
strategy with profile tokens as islands.

EXAMPLE 1 (CONT.): PD(fundsand )={funds/and, fund/sand}, where PD( S) denotes the

set of profile tokenizations for character string S over dictionary D. Note that both funds
and sand are profile tokens of the character string S=fundsand, but that fund and and are

not.

EXAMPLE 2 (CONT.): PD( abcd)={abc/d, a/bcd). Note that only abc and bed are profile

tokens; thus, ab/cd is not a profile tokenization as it does not contain any profile token.

A word string is a critical tokenization (CT) if it is not covered by any other
tokenization. This implies that no valid tokenization can be produced by concatenating
adjacent words in any critical tokenization. In terms of the tokenization poset described
above, a critical tokenization (Guo, 1997) is precisely a minimal poset element (Kolman
and Busby, 1987).

EXAMPLE 1 (CONT.): C D( (fundsand)={funds/and, fund/sand}, where C D( S) denotes the

set of critical tokenizations for character string S over dictionary D. Note that fund/s/and
is not a critical tokenization since by concatenating its first two words fund and s, the
valid tokenization funds/and can be reproduced.

EXAMPLE 2 (CONT.): C D( abcd)={abc/d, ab/cd, a/bed)}. Note that a/b/cd is not a critical
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tokenization since by concatenating its first two words a and b, the valid tokenization

ab/cd can be reproduced.

The complex example below is purposely crafted to further clarify the above
reviewed maximum tokenization strategies.

EXAMPLE 3: Given the dictionaty D={a, b, ¢, d, e, f, g h, i, ], k [, abc, abcd, cdefgh, defg,
ghijkl, hij}, the character string S=abcdefghijkl has the roken graph (Wang, 1989) shown
in Figure 2, and has the different types of tokenizations summarized in Figure 3.

abed cdefgh ghijkl

Figure 2 Token graph.

Character String
S = abcdefghijkl

Tokenization Dictionary ;
D= fa, b, e,7d, e, £, g, h, T4, k, 1, abc, defg, hij,
abcd, cdefgh, ghijkl }

Forward Maximum Tokenization
Fp(S) = ( abcd/e/£f/ghijkl }

Backward Maximum Tokenization
Bp(S) = { abcd/e/f/ghijkl }

Forward-Backward Maximum Tokenization
Dp(S) = { abcd/e/f/ghijkl }

Shortest Tokenization
Sp(S) = { abcd/e/f/ghijkl }

Profile Token
{abcd, cdefgh, ghijkl}

Profile Tokenization -
Pp(S) = { abcd/e/f/ghijkl, a/b/cdeffh/i/j/k/1 }

Critical Tokenization
Cp(S) = {abcd/e/f/ghijkl, abc/defg/hij/k/1,
a/b/cdefgh/i/j/k/1}

Figure 3 Different maxium tokenizations
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3. Longest Tokenization

In the preceding section, we reviewed various representative tokenization strategies
following the principle of maximum tokenization. This leads us to postulate here that the
core of the principle is the search for certain kinds of extremes - the longest affix tokens
for FT, BT and FBT, the shortest token string length for ST, the profile tokens for PT, the
minimum poset elements for CT, and the like.

Furthermore, we find that such extremes can be categorized according to both the
type of a tokenization object and the value of an object attribute. The tokenization object
can be a single token, a token string, or something in between, such as a stream of n
adjacent (n-gram) tokens. The object attribute can be the length in characters or tokens,
the poset property, or features such as frequency and probability. By tabulating maximum
tokenization strategies according to both the type of their tokenization objects and the
value of the object attributes, we have devised the table of maximum tokenizations.

For example, both FT and BT (and, hence, FBT) fit the slot which takes a single
token as a tokenization object and seeks to maximize the object length in characters. ST
takes a complete token string as an object but goes on to minimize the object length in
tokens. On the other hand, PT takes a single token while C7 takes a whole token string as
an object but both seek minimum poset elements. These are tabulated in Table 1. (The
row labeled Token N-gram will be explained shortly.)

Attribute
Extreme

Object Length Poset Property

Single Token FT, BT, FBT Pl

Object

Token String ST Gk

Table 1. Table of maximum tokenizations.

By studying Table 1, it becomes trivial to understand that the Chen and Liu
Heuristic also fits the table as a tokenization strategy that takes a token trigram (con-
secative triple tokens) as an object and seeks to maximize the object length in characters.
Since the Chen and Liu Heuristic was originally implemented (Chen and Liu, 1992) in
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the forward direction from left to right, it will hereafter be referred to as left-to-right
token trigram maximum tokenization or LR(3).

After found the position of LR(3) in the table of maximum tokenizations, some
natural generalizations arise. Firstly, instead of a token trigram, the tokenization object
can be a token n-gram (consecutive n tokens) of any order n. This leads to the general
left-to-right token n-gram maximum tokenization or LR(n). Notice that LR(]) is, by
definition, the same as FT, i.e., LR(1)=FT. It is also trivial to demonstrate that, for each
character string S, there exists a sufficiently large number N such that LR(n)=ST holds for
any n2>N, i.e., LR(c0)=ST. That is, FT and ST are the two polar members of the LR(n)
family.

Secondly, parallel to what BT is to FT, by taking a token n-gram as an object and by
seeking to maximize the object length in characters in the reverse direction from right to
left, we obtain the general right-to-left token n-gram maximum tokenization or
RL(n). Similarly, BT and ST are the two polar members of the RL(n) family, i.e.,
RL(1)=BT and RL(c0)=ST. ’

Thirdly, parallel to what FBT is to FT and BT, by takihg a token n-gram as an object

and by seeking to maximize the object length in characters in the dual directions from
both ends, we obtain the general dual-direction token n-gram maximum tokenization
or DD(n). That is, DD(n)=LR(n)+RL(n). As in the above, FBT and ST are the two polar
members of the DD(n) family, i.e., DD(1)=FBT and DD(c0)=ST.
EXAMPLE 1 (CONT.): For any n>2, we have F D(n, fundsand)= BD( n, fundsand)=
DD( n, fundsand)={funds/and, fund/sand}, where F D( n,S) denotes the set of LR(n) tok-
enizations for character string S over dictionary D. Similarly, we have B, \(n,S) for RL(n)
and DD(n,S)for DD(n). Note that, by definition, FD(i,S)=FD(S), BD(I,S)=BD(S), and
D, (1,5)=D(S).

EXAMPLE 2 (CONT.). FD(n, abcd):BD(n, abcd):DD(n, abcd)={abc/d, a/bcd)} for n>2.

EXAMPLE 3 (CONT.): The results of LR(n), RL(n) and DD(n) are in Figure 4 as follows.
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Left-to-Right Token N-gram Maximum Tokenization

Fp(1,S) = { abcd/e/f/ghijkl }
Fp(2,8) = { abec/defg/hij/k/1 }
Fp(3,8) = { abc/defg/hij/k/1 }
Fp(n,S) = { abcd/e/f/ghijkl } for n24

Right-to-Left Token N-gram Maximum Tokenization
Bp(n,S) = { abcd/e/f/ghijkl } for any n

Dual-Direction Token N-gram Maximum Tokenization

Dp(1,8) = { abcd/e/f/ghijkl }

Dp(2,8) = { abc/defg/hij/k/1, abcd/e/f/ghijkl }
Dp(3,8) = { abc/defg/hij/k/1l, abcd/e/f/ghijkl }
Dp(n,S) = { abcd/e/f/ghijkl } for n24

> Figure 4 Longest tokenization results.

EXAMPLE 4: The character string S iscomposed of 2k different characters,

§=c,...c, ..c,,. The tokenization dictionary D is made up of these 2k different characters
plus the two special tokens W =C,..C, and W =CpennCop D={c1, vy Cpp oy Coppp W =CC
W, =C,...C, k} . Figure 5 lists the tokenization results.

Left-to-Right Token N-gram Maximum Tokenization

Fp(n,8)={ c1/.../¢x_.1/wp } for n2k
Fp(n,S8)={ wa/Cxs1/lc../Cax } for n<k

Right-to-Left Token N-gram Maximum Tokenization
Bro(n;8)=¢ ci/.../[Cr.1/W } for all n and k

Dual-Direction Token N-gram Maximum Tokenization

Dp(n,S)={ c1/.../cx_1/wp } for n2k
Dp(n,S)={ C1/.../Ck_1/Wb, Wa/Ck*l/c../czk } for n<k

Shortest Tokenization
Sp(S)={ c./.. Syl Wy }

Profile Tokenization
CD(S)=( cl/.--/ck_llwb, wa/ckd/.../c“‘ }

Critical Tokenization Cp(S)={ ci1/.../Cx-1/Wy,
w,/chl/ e oo /Czk }

Figure 5 different maximum tokenization results.

With the table of maximum tokenizations, many more maximum tokenization
strategies can be naturally devised. For instance, instead of conducting tokenization in a
fixed direction of either left-to-right or right-to-left, we can also do by repeatedly
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searching for the object that has the global maximum object length in the substring to be
tokenized. To have the paper more focused, however, we will restrict ourselves only to
the above three types of generalizations.

It is worth noting that the pursuit of the maximum length is the single essential
common characteristic inherited from the Chen and Liu Heuristic and shared by all the
members of LR(n), RL(n) and DD(n). It is, thus, logical to collectively refer to these
tokenization strategies as Longest Tokenization (LT).

It is also worth noting the association between LR(n) tokenization and LR(n) parsing
(Aho and Ullman, 1972); i.e., both make decisions by looking ahead several tokens. As
tokenization has been stated in the literature as a special type of parsing, it is reasonable
to regard LR(n) tokenization as a result of the transplantation of the general LR(n) parsing
strategy to sentence tokenization.

4. Theoretical Relationships

This section explores logical relationships both between members of the longest tok-
enization family and between longest tokenizations and all the representative maximum
tokenization strategies reviewed in Section 2. The results will be presented as four
theorems, while some indications on the proof of these theorems will be given in

Appendix.

Within the longest tokenization family, by definition, we always have DD(n,S)z
F(n,S) uBD(n,S), which implies FD(n,S)_CDD(n,S) and BD(n,S)gDD(n,S). That is, both

left-to-right and right-to-left token n-gram maximum tokenizations are always subclasses
of dual-direction token n-gram maximum tokenization of the same order. The following
theorem makes it clear that these are the only universally held logical relationships
between members of the longest tokenization family.

THEOREM 1I: For any positive n and m, none of the following relationships universally
holds:

(1) FD(n,S)gFD(m,S), nzm:..(2) BD(n,S)gFD(m,S), (3) DD(n,S)g FD(m,S),
(4) FD(n,S) _C_BD(m,S), (5) BD(n,S) gBD(m,S), n#m, (6) DD(n,S) gBD(m,S),

(7) FD(n,S) gDD(m,S), nzm, (8) BD(n,S) gDD(m,S), n=zm, (9) DD(n,S) gDD(m,S), n#m

That is, for each of the relationships listed above, and for any posivite n and m, there exist
a character string S and dictionary D such that the relationship does not hold.
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This theorem implies that, except for LR(n) and RL(n) to DD(n), no tokenization
strategy of the longest tokenization family is always part of or the same as another tok-
enization strategy of the family. In short, all the members of the longest tokenization
family are distinct and unique.

By definition, both FD(n,S)=FD(S) and BD(n,S)=BD(S) hold for n=1. Since every
longest affix token is also a profile token by definition, there always exist F D( S D( S)
and BD(S)_C PD(S). Hence, both FD(n,S) gPD(S) and BD(n,S) _CPD(S) hold for n=1. In
addition, as DD(n,S)=DD(S) for n=1 and DD(n,S)=FD(n,S)uBD(n,S), there is DD(n,S)g
PD(S ) for n=1. That is, for order n=1, members of the longest tokenization family are

always subclasses of profile tokenization. The following theorem makes it clear that
these are the only universally held logical relationships between profile tokenization and
members of the longest tokenization family.

THEOREM 2: For n>1, none of the following relationships universally holds:

(1) Py(S) C Fy(nS), (2) Fy(nS) < Py(S),
(3) P,(S) < B(n,S), (4)BynS)c PS),
(5) Py(S) € Dp(n.S), (6) Dp(n.S) < PS).

That is, for each of the relationships listed above, there exist a character string S and
dictionary D such that the relationship does not hold. :

This theorem implies that, except for LR(/), RL(1) and DD(1), which are true
subclasses of profile tokenization, no tokenization strategy of the longest tokenization
family is always part of or the same as profile tokenization, nor the other way around.

For the relationship between shortest tokenization and members of the longest
tokenization family, it has been seen in the previous section that LR(o0)=RL(c0)
=DD(0)=S8T. Let us refer a character string as having at least N tokens over a tok-

enization dictionary, if the shortest tokenization of the character string has N tokens.
There is the following theorem.

THEOREM 3: For any character string S with at least N tokens over a tokenization dic-
tionary D, the following three relationships hold true for any n>N:
(1) Fp(n,S)=S (S), (2) B(n,S)=S (S), (3) Dpy(n,S)=5 (S).

However, for each of the three relationships. and for any n<N, there exists a char-
acter string S, which has at least N tokens over a tokenization dictionary D, such that the
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relationship does not hold. That is, N is the supremum (the least upper bound) that makes
all the longest tokenization strategies with an order the same or higher than it equivalent
to shortest tokenization. In the next section, we will try to answer how high (or actually
how low) the supremum can be in practice by investigating a representative corpus.

For the relationship between critical tokenization and members of the longest tok-
enization family, it has been proven in (Guo, 1997) that both F’ D( Vi & D( S)and B D( S)c

CD(S) hold. Thus, DD(S)gCD(S) also universally holds true. That is, for order n=1,

members of the longest tokenization family are subclasses of critical tokenization. This is
actually a fact for longest tokenization on the whole.

THEOREM 4- U:;x F,(n,S)VUB,(n,S) < Cp(S) holds for any character string
S and tokenization dictionary D. Moreover, there exist a character string S and tok-

enization dictionary D such that U::1 F,(n,S)UB,(n, SiEC, (S

This theorem implies that the family of longest tokenization on the whole still can not
produce any word string that is not a critical tokenization. In other words, at least for
longest tokenization, all tokenizations obeying the principle of maximum tokenization
have already been discovered by critical tokenization.

While the first two theorems confirm that longest tokenization has really con-
tributed a rich set of distinct and unique maximum tokenization strategies, the last two
theorems reveal that no surprise can be expected as to shortest tokenization and critical
tokenization. The theoretical relationships discovered in this section, together with those
given in (Guo, 1997), can be figuratively summarized as shown in Figure 6 below.
Arrows in this figure are pointing from super-class tokenization strategies to their
respective sub-classes. For instance, LR(n) is a subclass of CT.
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FT=LR(1) BT=RL(1)

Figure 6 Theoretical relationships among different tok-
enization strategies.

5. Practical Relationships

This section demonstrates practical behaviors of different longest tokenization strategies
as compared to each other and to other maximum tokenization strategies. In particular,
we will see in this section that, at least on the Chinese PH corpus, except for trivial cases
of n=1 where the longest tokenization strategy is by definition the forward and/or
backward maximum tokenization, there is practically no difference between longest
tokenization and shortest tokenization.

The two resources used in this study are the Chinese PH corpus (Guo, 1993) and the
Beihang dictionary (Liu and Liang, 1989). The Chinese PH corpus is a collection of 4
million Chinese characters of news articles from the Xinhua News Agency, China. The
Beihang dictionary is a collection of about 50,000 word-like tokens, each of which occurs
at least 5 times in a balanced collection of more than 20 million Chinese characters.

What is unique in the PH corpus is that all unambiguous token boundaries with
respect to the Beihang dictionary have been marked. For this study, we have extracted
from the PH corpus al' multi-character fragments in between adjacent unambiguous
token boundaries that are not entries in the Beihang dictionary. This is the same as
extracting all maximum length fragments with critical ambiguities (Guo, 1997), or
disjunctive or overlapping type (Webster and Kit, 1992) tokenization ambiguities. In this

paper, such fragments are referred to as critical fragments (CF).

There are 14,984 distinct critical fragments which cumulatively occur 49,308 times
in the PH corpus. Their length distribution is given in Table 2 below. It has been observed
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that most critical fragments are very short. About 90% of the critical fragments have
merely 3 or 4 characters each, and there are only two fragments each with /7 characters.
The average length of these critical fragments is only 3.62 (=178,341/49,308) Chinese

characters. ‘
()] 2) (3)=(2)/49308 | (H=(1)*(2) (5) | (6)=(5)/14984
Length Occurrence Occurrence Volume Type Type
char.) (num.) (%) (char.) (num.) (%)
3 25492 51,70 76476 6539 43.64
4 19770 40.09 79080 6504 43.41
4 2391 4.85 11955 1184 7.90
6 1125 2.28 6750 585 3.90
1 258 0.52 1806 105 0.70
8 216 0.44 1728 43 0.29
9 18 0.04 162 16 0.11
10 34 0.07 340 6 0.04
11 4 0.01 44 2 0.01
Total 49308 100.00 178341 14984 100.00

Table 2. Critical fragment length distribution.

We will only use these critical fragments rather than the whole PH corpus to
compare various maximum tokenization strategies. This unique experimental con-
figuration, as compared with the general practice in the literature, can be justified with the
following three observations: (1) All the maximum tokenization strategies studied in this
token

paper make the same correct tokenization decision at all unambiguous

boundaries. (2) They make the same tokenization decision for all dictionary-entry
character fragments in between unambiguous token boundaries.* (3) They each produces
invariant tokenization results for any critical fragment regardless of the specific context

in which the critical fragment occurs.’

3. However, almost none of them can tell where the unambiguous boundaries are.

4. In other words, they have the same performance at the resolution of hidden ambiguity (Guo, 1997), or
combinational or conjunctive type ambiguity (Webster and Kit, 1992).

5. That is, all critical fragments are self-contained with respect to all the maximum tokenization strategies
studied in this paper. Note that this does not imply context-independence for any of these maximum tok-
enization strategies. The self-containment in tokenization only holds for critical fragments (Guo, 1997), not
for arbitrary character strings. After all, the sole purpose for employing larger tokenization objects is to
utilize more context constraints. Nevertheless, recognition of the self-containment property of critical
fragments reveals the limitation of the mainstream thinking of introducing context restrictions by enlarging
tokenization objects. In fact, for critical fragments, not only does the self-containment property hold for
maximum tokenization, but it also holds for its correct tokenizations. More precisely, we have observed the
very strong tendency of one tokenization per source (Guo 1997).
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Moreover, by comparing maximum tokenizations exclusively on the set of critical
fragments, inflated performance reports can largely be avoided. For instance, it has been
noted that more than 98 % of the token boundaries in the PH corpus are unambiguous, and
that almost all critical fragments have only two alternative critical tokenizations each.
Consequently, every maximum tokenization strategy should be able to achieve tok-
enization accuracy no worse than 99%, which becomes the dominant denominator that
makes differences among various maximum tokenization strategies insignificant. In
contrast, by concentrating on the set of critical fragments, the large denominator (the
known common part) is purposely removed; thus, differences among various maximum
tokenization strategies can be better highlighted.

Recall that only /4,984 distinct critical fragments cumulatively occur 49,308 times
in the PH corpus. Guided by the theoretical results given in the previous section, their
shortest tokenizations were generated, and the results are summarized in Table 3 below.
At one extreme, close to 98% of the critical fragment occurrences have exactly two
tokens each in their shortest tokenization. At the other extreme, only one critical fragment
(see Table 4 below) with 5 tokens in its shortest tokenization occurs once in the PH

corpus.
Length || Occurrences % || . Types %0
2 48110 97.57 || 14221 9491
3 1171 237 742 4.95
4 26 0.05 20 013
5 1 0.00 1 0.01
Total 49308 | 100.00 || 14984 | 100.00

Table 3. Shortest tokenization length distribution.

Based on the theorems given in the previous section, the first observation is that
LR(n)=RL(n)=DD(n)=ST holds for any n>5 on the PH corpus over the Beihang dic-
tionary. In addition, for the single critical fragment with at least 5 tokens, the tokenization
results are listed in Table 4. In short, LR(4)=ST holds with one miss; RL(4)=ST holds
with no exception; and DD(4)=ST holds perfectly in the PH corpus.

LR(2) | RL(2) | LR3) | RL3) | LR@ | RL@) | ST Tokenizations
0 SRER R 1TE K
SAE RiEE 1T B

NRER K HETT EHK
Bl 4% #E #T &
BlSt X Mk H#E1T &K

3)
0 1
0 1
1 1
1 0
1 0

N R (S IS (Y

1
1
1
1
0

o|o|o|—|—

Table 4. Tokenizations for the single critical fragment with at least 5 tokens.
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Similarly, to compare ST with LT for n=3, it is only necessary to investigate
fragments with at least 4 tokens. In addition to the single critical fragment with at least 5
tokens presented in Table 4 above, tokenization results for the only 26 critical fragment
occurrences with at least 4 tokens under ST, LR(3) and RL(3) are listed in Table 5. Note
that the shaded cells in the leftmost column are for the 17 ST's that are not RL(3), and the
shaded cells in the rightmost column are for the 16 ST's that are not LR(3). There is no
critical fragment found that has an LR(3) or RL(3) tokenization which is not an ST tok-
enization. Moreover, LR(3)_RL(3)=ST holds in the PH corpus.

Shade for Shade for

none RL(3) none LR(3)
WA s g F5
T =
hE AR Buh 4

2EH A\RAFAE FE N 2H ARKEAREG #F FN
2E ARAFAE FE A 2H ARAEAE F
2H ARKEAE FE M 2 ARAEXRE F SN

Hd BA R Buahmes| Ah BAR Papma# | B FBRAR ButhEgs
EE HORE 11 ERE EH L ERE H HE T B
R AR il fERGE HE A RR RRE
3 st 780 4 akhE| e 17 B B

17
HE WA T 2R B A 2R B
AEESNER A ELEGERE A
A B 4 E|EX B YL Bk
B s B STl Em o o S| B
BN A | @A 4k B BT B
e T # B Fo b TfF R
(o) mE s FUR[ Y1) EE UM |
ko BBlmve TeR Bt ABE|BUE T OMERR KEE| B
R ER R R
2 AR & k| EE AR &% k|
e AR EK| e AR &E K
g AR k| BE AR 4&E K
R Ul B e R 4 2 RE
&l /) 2 peleg b 8 Re| B
BT A\ B £E BT A AS &E| |
HIE R EHE | E A% EE | R

a0 (48 4B |HE [HE [HR R | (|| &

Table 5. LR(3), RL(3) and ST for CF's of at least 4 tokens.

The same procedure was also applied to compare ST and LT for n=2. The overall
results are summarized in Table 6 below. In short, the 49,308 critical fragments extracted
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from the PH corpus altogether produce 77,935 shortest tokenizations. Taking shortest
tokenization as a reference, longest tokenizations produce no extra and miss few. For
instance, the only flaw in dual-direction token n-gram maximum tokenization with
respect to shortest tokenization is DD(2), which has 7 absences.

Theory " Correct I Miss | Extra || Recall (%) | Precision (%)
LR(n) to ST
LR(2)=ST 77253 682 0 99.13 100.00
LR(3)=ST 77918 19 0 99.98 100.00
LR(4)=ST 77934 1 0 100.00 100.00
LR(n25)=ST 77935 0 0 100.00 100.00
RL(n) to ST
RL(2)=ST 77273 662 0 99.15 100.00
RL(3)=ST 77919 18 0 99.98 100.00
RL(4)=ST 77935 0 0 100.00 100.00
RL(n2>5)=ST 77935 0 0 100.00 100.00
DD(n) to ST
DD(2)=ST 77928 7 0 99.99 100.00
DD@3)=ST 71935 0 0 100.00 100.00
DD(4)=ST 77935 0 0 100.00 100.00
DD(n2>5)=ST JEEE) 0 0 100.00 100.00

Table 6. Longest tokenizations are practically the same as shortest tokenization.

In summary, what has been confirmed in this section is that except for n=1, where
LR(1)=FT, RL(1)=BT and DD(1)=FBT by definition, there is practically no difference
between LT and ST; i.e., LR(n)=RL(n)=DD(n)=ST for any n>2.

6. Summary

The objective of this paper has been to enhance our knowledge and understanding of the
powerful principle of maximum tokenization. The actual work has been to establish the
notion of longest tokenization, a rich set of tokenization strategies following the
principle of maximum tokenization. This has been done in four steps.

The first step was to form the table of maximum tokenizations through a critical
review of several representative maximum tokenization strategies frequently seen in the
literature. According to the table of maximum tokenizations, all the maximum tok-
enization strategies can be viewed as searching for extremes that are values of certain
attributes of certain tokenization objects.

The second step was to propose the notion of longest tokenization through
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identification and generalization of the specific tokenization obiect and the object
attribute used in the original Chen and Liu Heuristic. Briefly, longest tokenization takes
a token n-gram as an object and seeks to maximize the object length in characters.
Variations come from factors such as the order of the token n-gram (number of tokens)
and the direction (left-to-right, right-to-left, or both) of tokenization.

The third step was to establish theoretical positions for longest tokenization in the
already crowded family of maximum tokenizations. This was done by studying rheo-
retical relationships both within the longest tokenization family and between longest
tokenization and other maximum tokenization strategies. It has been proven that: forward
maximum tokenization, backward maximum tokenization, forward-backward maximum
tokenization, and shortest tokenization are all special cases of the longest tokenization
family, and that all the members of the longest tokenization family are true subclasses of
critical tokenization. Other than that, all the members of the longest tokenization family
are distinct and unique for all known maximum tokenization strategies studied in this
paper, including profile tokenization.

The fourth step was to find practical positions for longest tokenization. This was
done through a detailed data investigation on the Chinese PH corpus. It has been verified
that, except for trivial cases where longest tokenization is the same as forward and/or
backward maximum tokenization, there is virtually no difference between longest tok-
enization and shortest tokenization.

In conclusion, a rich set of maximum tokenization strategies called longest tok-
enization has been well established in this paper. However, this pape: has also revealed
that no surprise can be expected from longest tokenization as the essence of the principle
of maximum tokenization is fully captured by critical tokenization, and the essence of
length-oriented realization of the principle is fully captured by token-based
forward/backward maximum tokenization and sentence-based shortest tokenization.

In this paper, we have also shown, in the table of maximum tokenizations, the token
n-gram profile tokenization PT(n), which is another rich family of maximum tok-
enization strategies each of which taking a token n-gram as a tokenization object and
searches for the minimum element of the object poset. By studying profile tokenization
in a way analogue to what has been done in this paper, results parallel to what have been
achieved for longest tokenization can be established: theoretically, all token n-gram
profile tokenization strategies are distinct and unique, but all are subclasses of critical
tokenization; practically, there is virtually no difference between profile tokenization and
critical tokenization. In particular, except for a single miss in PT(1), PT(n)=CT holds
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perfectly true for any positive n in the Chinese PH corpus.

It is worth noting that, while logically not universally hold true, both
LR(n)<LR(n+1) and RL(n)<RL(n+1) are actually realized in the PH corpus without
exception. We are thus interested in knowing the sufficient and necessary conditions
under which the monotonic relationships hold true.
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Appendix A: Hints for Theorem Proving
This appendix lists some indications on the proof of the four theorems presented in
Section 4.

THEOREM 1: This theorem can be proved by crafting, for each pair of tokenization
strategies of the longest tokenization family, a specific character string together with its
tokenization dictionary, and by demonstrating that the two tokenization strategies under
question produce different tokenization results for the character string.

Actually, Example 4 in Section 3, together with its symmetry which is formed by
inverting both the character string to be tokenized and all the tokens in the tokenization
dictionary, serves the purpose well. Let us denote A= {wa/c e /../cz k} B=(¢ 1/'"/Ck- /wb i

and AB={c ]/.../c f* /wb, wa/c " 1/'"/C2 k}, and denote the outcome of relationship testing (1

for true and O for false) as x/y, where x is for Example 4 and y is for the symmetry. Table
7 gives the results for all the nine relationships under all the three possible situations,

n>m, n<m, and n=m.
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For instance, in Situation 1 where n>m, by taking n=k and k>m, since LR(n)=B and
LR(m)=A in Example 4 and LR(n)=B and LR(m)=B in the symmetry, the test results of
the first relationship, which is LR(n)cLR(m), are 0/1, which effectively demonstrate that
the given relationship does not universally hold true. From Table 7, it is clear that the
Example 4, together with its symmetry, works in almost all the situations except for the
shaded three, which can be readily tackled with another similar example.

Relationship Situation 1 Situation 2 Situation 3
Left ¢ Right n>m . n<m n=m
Rel. Left Right Test | Left | Right | Test | Left | Right | Test | Left | Right
n M n=k k>m n<k k=m n<k m<k

LR(n) | LRm) | 0/1 | B/B | AB | 0/1 | A/B | B/B ﬁ
RL(n) | LR(m) | 0/1 | B/B | A/B | 1/0 | B/A | B/B | 000 | B/A | AB
DD(n) | LR(m) | O/1 | B/B | A/B | 0/0 |AB/AB] B/B | 0/0 |AB/AB| A/B
LRn) | RLam) | 1/0 | B/B | B/A | O/l | AB | BB 00 | A | BA
RL(n) | RLm) | 1/0 | B/B | B/A | 1/0 | B/A | BB |
DD(n) | RL(m) 0/0_|AB/AB] B/B | 0/0 AB/AB BIA_
LR(n) | DD(m) 0/l | A/B | BB
RL(n) | DD(m) 1/0 | B/A | BB
DD(n) | DD(m) AEJAB 0/0 |AB/AB| B/B

Ol ||| flwlo]|—

Table 7. Relationship testing for Example 4 and its symmetry.

THEOREM 2: This theorem can also be proved by shcwing concrete (counter) examples.
For the relationship between LR(n) and PT, the example can be a character string of 2n+3

different characters, S=c...c. ¢ _..c _c, . and atokenization dictionary which is
I “n+l n+2  2n+2 2n+3

made of these 2n+3 different single characters plus the following four tokens: W s

CpoCppp Wp=CpoiCppyp W=C, i€y and w=c  5.C

Fp(nS)={wwc, .} foranyn>I,and P (S)=({w,c

: .In this case, there exist
n+2

oGy cl...cnwL_}.

THEOREM 3: By definition.

THEOREM 4: 1t is straightforward to verify that U; F. L) UB,(n5) % C.(S)
holds for Example 3 in Section 2. Assume that the character string S=c 7Cp together
with its tokenization D, has one LR(n) tokenization, We F' D(n,S '), which is not a critical
tokenization, Wg C D(S ). Denote W=w oW By the definition of critical tokenization,

there must exist i and j, /<i<j<m, such that wl_...wj_eD. This is in conflict with the defi-

nition of LR(n).



