MAT -- A Project to Collect Mandarin Speech Data Through Telephone Networks in Taiwan

Hsiao-Chuan Wang*

Abstract

A cooperative project, called *Polyphone*, was initiated by the Coordinating Committee on Speech Databases and Speech I/O Systems Assessment (*COCOSDA*) in 1992. Accordingly, a project to collect *M*andarin speech data across *T*aiwan (*MAT*) was conducted by a group of researchers from several universities and research organizations in Taiwan. The purpose was to generate a speech corpus for the development of Mandarin-based speech technology and products. The speech data were collected at eight recording stations through telephone networks. The speakers were chosen so as to reflect the population of the gender, the dialect, the educational level, and the residence in Taiwan. A preliminary Mandarin speech database of 800 speakers has been produced. The final goal is to generate a speech database of at least 5000 speakers.

Key words: Mandarin speech, Speech database, Speech I/O systems assessment, Telephone network

1. Introduction

The "Polyphone" project was initiated by the Coordinating Committee on Speech Databases and Speech I/O Systems Assessment (COCOSDA) during the International Conference on Spoken Language Processing (ICSLP-92) held in Banff, Canada, in October, 1992 [Jones and Mariani 1992]. The purpose was to coordinate the speech data collection of major languages in the world. Representatives from Europe, the USA, Canada, Australia, Japan, China, and Taiwan showed great interest in joining this project. Each language group had to seek funding from its own country. The status and progress of the "Polyphone" project of each language group were reported in the following COCOSDA meetings held in Berlin, Germany (September 1993), Yokohama, Japan (September 1994), Madrid, Spain (September 1995) and Philadelphia, the USA (September 1996). Furthermore, a Linguistic Data Consortium (LDC) was formed in the USA, in 1992. This consortium, started with a \$5 million grant, was hosted by the University of Pennsylvania, USA. The mission of LDC was to share experiences and to

^{*} Department of Electrical Engineering, National Tsing Hua University, Taiwan. E-mail: hcwang@ee.nthu.edu.tw

coordinate the release of corpora developed by its members. By 1995, 29 speech corpora had been released by LDC [LDC 1996]. An additional 31 speech corpora were scheduled to be released in 1996 and 1997. Most of the speech corpora are English collected in the United States. Mandarin Chinese only appears as a subset of the ORI Multi-language telephone corpus. Another group coordinating the speech databases is the European Language Resources Association (ELRA). Thirty-four speech databases were listed in the catalogue of ELRA by December 1996 [ELRA 1996]. Appendix A shows some databases reported by LDC and ELRA. Some speech data collection projects reported in recent years are briefly described as follows;

TED (Translanguage English Database) --

224 oral presentations recorded at EUROSPEECH'93 in Berlin [Lamel et al. 1994].

VAJ (Voice across Japan) --

a telephone database of 10,000 speakers collected in Japan [Kudo et al. 1994].

Dutch Polyphone Corpus --

a telephone database of 5,000 speakers [Damhuis et al. 1994].

RAFAEL.0 (Scandinavian) --

telephone speech data of 3000 speakers from Denmark, Norway and Sweden [Rosenbeck *et al.* 1994].

```
VESTEL (Spanish) --
```

a telephone speech corpus collected in Spanish [Tapias et al. 1994].

```
VAHA (Voice across Hispanic America) --
```

telephone speech of 5000 speakers in the US [Godfrey 1994]

```
CEUDEX (Spanish) --
```

400 phonetically balanced sentences from 300 speakers [Torre et al. 1995].

Bulgarian speech database (Bulgarian) [Misheva et al. 1995].

PhonDat (German Verbmobil project) [Hess et al. 1995].

EUROM -(Danish, Dutch, English, French, Italian) -a spoken language resource for the EU [Chan *et al.* 1995].

BABEL (Bulgarian, Estonian, Hungarian, Romanian, and Polish) -an eastern European multi-language database [Roach *et al.* 1995].

USTC-95 (Putonghua) --

Mandarin Chinese speech database collected from 280 speakers in Mainland China [Wang *et al.* 1996].

SIVA (Italian) --

speech database for speaker verification [Falcone and Gallo 1996].

FRESCO (French) --

a telephone speech collection project to generate a database of 1000 speakers [Langmann *et al.* 1996].

Korean speech database ---

a multi-level speech database for spontaneous speech processing [Hahn et al. 1996].

Romanian speech database --

a project to collect Romanian speech data for speech recognition and synthesis [Boldea *et al.* 1996].

It is obvious that researchers in many countries have attempted to produce speech databases of their own languages. Some of them are designed as multilingual databases. Cooperative projects have worked well in European countries. Mandarin Chinese is a spoken language used by about a quarter of the population in the world. However, no Mandarin speech database of more than one thousand speakers has been reported.

2. Speech Databases in Taiwan

Researches on speech processing have been conducted by many universities and organizations in Taiwan during the past decade. Some researches have produced remarkable results, such as the Mandarin dictation machine developed at National Taiwan University and Academia Sinica [Lee *et al.* 1995], the Chinese text-to-speech system developed at National Chiao Tung University [Hwang, Chen and Wang 1996], and the Venus Dictate (a large vocabulary speech recognition system) developed at National Cheng Kung University [Huang and Wang 1994]. Many speech databases have been generated for these research purposes. Telecommunication Laboratories (TL) of the Chung Hua Telecommunication Co. is a research organization which has carried out many researches on speech recognition and synthesis for telephone network services. This research organization has also generated some speech databases and distributed them to universities for research purposes. Some of speech the databases produced in Taiwan are shown in the table in Appendix B.

In this survey, we find that most of these speech databases were collected using microphones in laboratories. The speech data were mostly contributed by college students. For each database, the number of speakers was around 100. Since close-talk microphones were used, the speech quality was well controlled. These databases can satisfy some basic researches, but may not be practical for developing a telephone speech recognition technique where the speech signal is contaminated by noises and channel

distortion. Furthermore, the databases were produced individually in different laboratories so that there was no common format or description standard. Because of the lack of a standard speech database, it is not possible to perform a fair assessment for these developed prototypes.

3. MAT Project

In response to the "Polyphone" project, a group of researchers in the area of speech processing in Taiwan also initiated a speech data collection project called MAT (M and arin speech data across Taiwan). The objective of the MAT project was to produce a speech database of Mandarin Chinese spoken in Taiwan. Some targets were set for this project.

- (1) The PC will be the platform for speech data collection and speech file editing.
- (2) The speech data can be collected through a microphone or the telephone system.
- (3) A popularly used sound card will be chosen for speech signal input and output.
- (4) A generalized format must be designed for the speech data files.
- (5) The database should cover all the phonetic properties of Mandarin speech.
- (6) The speakers should reflect the population of the genders, the dialects, the educational level, and the residence in Taiwan.

Since August, 1995, this project has been sponsored by the National Science Council, the ROC. In its first year, the scheduled tasks were

- (1) to set up standard hardware and software for speech data collection,
- (2) to design the contents of the database, and
- (3) to generate a preliminary database of at least 500 speakers.

The result of the first year of work is a preliminary database of 800 speakers. This preliminary database will be tested by potential users to verify its availability and quality. The final goal is to produce a speech database of at least 5000 speakers.

4. Data Collection System

In this project, we set up eight speech data collection stations in universities and research organizations. Each station consisted of a personal computer equipped with a telephone interface card to allow speakers to input their voices by using any telephone handset around Taiwan through the public switching telephone network. A detailed description of the hardware organization is giving below:

- (1) A PC with an Intel 486 or Pentium CPU is the kernel of the speech data collection station.
- (2) A Dialogic D/41D card is added to the PC to provide a telephone interface.
- (3) A Sound Blaster card with 16-bit ADC and DAC channels is used for speech input. It is also used to play back speech during speech file editing.
- (4) The Analog Extension Bus (AEB) on the Dialogic card is connected to the Line-In port of the Sound Blaster card to get 16-bit linear PCM signal input. This allows users to choose input from a telephone line or from a microphone.
- (5) An external hard disk and optical disk are necessary for mass storage.

The software is designed in two parts: a speech recording program and a speech file editing program.

4.1 Speech Recording Program (VCORDER)

This program runs in a DOS environment and provides the functions of an I/O driver, an interface with the speaker, prompt for speech input, extraction of speech signals, detection of endpoints of utterances, initiation of the file header, and generation of speech files. A menu-type user interface is designed to allow users to specify the default file header parameters, the recording environment, the signal input channel (through a telephone line or a microphone), and the encoding mode. For MAT data collection, the sampling rate is set to 8 kHz, and the data mode is 16-bit linear PCM.

4.2 Speech File Editing Program (VEDITOR)

This program works in a Windows environment. It provides a tool for users to edit speech files. The file header parameters, as well as the waveform, can be displayed on the screen. The user can edit the file header, modify the waveform, and playback the edited voice in an interactive mode.

Furthermore, the prompting voices and prompting sheet can be easily changed by replacing the prompting voice files and the prompting text files. That means that the system can be easily converted to fit any specific purpose. This speech data collection system has been designed not only for the MAT project, but also for other speech data collection projects in the future. It will produce speech data files in a standard format.

5. Speech File Format

Each utterance is collected and stored as a speech file. The speech file is identified by the file name extension ".vat". It is a binary file composed of two parts; the file header and the sampled data. The file format is designed to contain as many parameters as in the

"Macrophone" project initiated by SRI International [Bernstein, Taussig, and Godfrey 1994] and in the VAJ project initiated by Texas Instruments [Kudo *et al.* 1994].

5.1 File Header

The length of a file header is 256 bytes. It can be extended to 512 bytes by attaching an additional 256-byte block. This extended block can be used for additional transcripts of speech data. There are 28 parameters and 3 blocks defined in the file header. The parameters in the file header can be grouped into several categories.

- (1) Basic data including the header length, the sampled data length, the recording date, the recording time, the recording site, and the database name.
- (2) Data type including the encoding type, the sampling rate, and the number of bits per sample.
- (3) Content description- including the prompting sheet number, the item number, and the number of transcribed characters of the recorded utterance.
- (4) Speaker's personal data including the speaker's gender, age, accent, education level, mother tongue, daily language, and residence.
- (5) Speaking style and quality- including the speaking rate, articulation, effort, mode, and quality.
- (6) Signal conditions including the signal condition and signal quality.

Three blocks are used to store the transcribed Chinese characters, the phonetic symbols of the Chinese characters, and the user defined information. The maximum number of transcribed Chinese characters is 27. This is enough to pronounce an ordinary sentence. The Chinese characters are represented in Big-5 code. Their corresponding phonetic symbols are denoted using Pin-Yin. A detailed description of the file header is given in Appendix C.

5.2 Sampled Date

The sampled data of speech signal are in binary format. This sequence of sampled data retains the waveform of the recorded utterance as well as its preceding and succeeding silent portions. After a speech file is edited, the silence portion is set to about 0.5 seconds before and after the speech signal. This allows the user to get the background noise information from the retained silent portions.

6. Material Design

6.1 Spoken Materials

The spoken materials are designed for generation of speech models and evaluation of the telephone-based speech recognition systems developed for Mandarin speakers. The framework of the material design was created by Dr. Chiu-Yu Tseng of Academia Sinica [Tseng 1995]. The materials were extracted from two text corpora of 77,324 lexical entries and 5,353 sentences. Forty sets of speech materials were produced to generate the prompting sheets. A brief description of the speech materials is given as follows.

- (1) They cover 407 base-syllables without concerning the tones in Mandarin Chinese.
- (2) They contain 1062 words with two to four syllables in each word. These words cover 338 tone combinations and 1351 voiced vs. voiced/unvoiced combinations.
- (3) They contain 400 sentences with at most 27 Chinese characters in each sentence. These sentences cover 399 base-syllables, 289 tone combinations, and 1434 voiced vs. voiced/unvoiced combinations.

This database also contains 200 numbers pronounced in five different ways. A set of examples is shown below. Their pronunciation is transcribed in Pin-Yin shown in parentheses:

(1) Digit sequence - 118 2720 (yi1 yi1 ba1 er4 qi1 er4 ling2).

(2) Date - 2nd of October (shi2 yue4 er4 ri4)

(3) Time - 10:33 am (shang4 wu3 shi2 shi2 san1 shi2 san3 fen1)

(4) Price - 1341 dollars (ti1 qian1 san1 bai3 si4 shi2 yi1 yuan2)

(5) Car plate - WB 4522 (W - B - si4 wu3 er4 er4)

6.2 **Prompting Sheet**

The prompting sheets are designed to guide speakers as they input speech data. The necessary information for speakers is given on the first page. This page also has nine questions used to gather information about the speaker, such as the speaker's gender, age, language background, education level, and residence. These data are used to set some parameters in the file header. The speaker's responses to these questions are collected as spontaneous speech data. The second page contains 57 items. The speaker is asked to read these items following instructions given by the system. These items are grouped into four parts:

(1) 5 numbers spoken in different ways (Prompting Item No. 10 - 14),

(2) 12 isolated Mandarin syllables (Prompting Item No. 15 - 26),

(3) 30 isolated words of 2 ~ 4 characters (Prompting Item No. 27 - 56), and

(4) 10 phonetically balanced sentences (Prompting Item No. 57 - 66).

These materials are arranged into 40 phonetically rich sets so that 40 prompting sheets are accordingly generated. That means that a speaker can provide utterances with as many syllables and phonetic combinations as possible. A sample of the prompting sheet is shown in Appendix D.

7. A Preliminary Database

A preliminary database was produced in June 1996. This first version of the MAT database (MAT Database version 1.0) contains 52671 speech data files. Each file is an utterance collected from a speaker. There are 424 male and 376 female speakers who provided the speech data. For convenience, the speech data are arranged into five subsets, which are shown in Table 1.

Subject		Prompting Item Numbers	Speaking Style	Description
MATDB-1	7191	1 - 9	spontaneous	short answering
MATDB-2	3991	10 - 14	read	statements numbers pronounced in five different ways
MATDB-3	9576	15 - 26	read	Mandarin syllables
MATDB-4	23939	27 - 56	read	words of 2 to 4 syllables
MATDB-5	7974	57 - 66	read	phonetically balanced sentences

 Table 1. Subsets of the MAT speech database

No screening mechanism is used to discard files with poor signal quality. The signal quality and condition are specified by the parameters in the file header. The statistics show that 901 speech files were inappropriately recorded. Futhermore, about 18% of the speech files were found to be contaminated by noises or distortion. Meanwhile, we allowed the database to be tested by potential users. A method for selecting good speech files will be decided upon after the testing period.

Since the number of speakers is still small in this preliminary database, the distributions of the speaker age, educational level, and residence can not reflect the distributions of the population in Taiwan. This situation will be improved when the number of speakers increases to 5000 in the subsequent recording process. The language background of the speakers is also interesting. The statistics for speaker accent, mother tongue, and daily language are shown in Table 2.

	Accent	Mother Tongue	Daily Language
Taiwanese Hokkian	120	499	108
Mandarin Chinese	378	202	661
Kakka	10	53	9
Aboriginal	0	0	0
non-Chinese	0	0	0
Unidentified	282	46	22

Table 2. Statistics for Speaker Language background

The table shows that more than 80% of the speakers use Mandarin as their daily spoken language even though many of their mothers speak Taiwanese Hokkian. This may come from the fact that most of the speakers are students. The table also shows that a speaker's accent is hard to identify during the editing process. The reason is that listeners in the editing process can not distinguish the accent. In fact, most of the people in Taiwan speak Mandarin with a Taiwanese accent.

8. Conclusion

The MAT is a project designed not only for collecting Mandarin speech data through a telephone network, but also for setting up a standard format for speech data files in Taiwan. Using this standard file format, speech databases produced in Taiwan can be easily shared by researchers and industry. The preliminary database is not perfect but can be used as test data for evaluating speech recognition systems. These telephone speech data can also be used to develop techniques for noise compensation, channel equalization, and robust speech recognition. The final goal of the MAT project is to produce a speech database of a large number of speakers so that we will have a good tool for developing Mandarin-based speech technologies in Taiwan.

Acknowledgments

This work has been sponsored by the National Science Council, the ROC, under contract no. NSC-85-2213-E-007-043. The author would like to thank his colleagues for their support and • contributions in data collection. They are (in alphabetical order) Dr. Chao-Huang Chang, Prof. Sin-Horng Chen, Prof. Ching-Tang Hsieh, Dr. Eng-Fong Huang, Prof. Yau-Tarng Juang, Prof. Lin-Shan Lee, Prof. Keh-Yih Su, Prof. Chiu-Yu Tseng, and Prof. Jhing-Fa Wang.

References

- Bernstein, J. and K. Taussig, J. Godfrey, "MACROPHONE: An American English Telephone Speech Corpus for Polyphone Project," *ICASSP'94*, Adelaide, Australia, 1994, I-81-I-84.
- Boldea, M. and A. Doroga, T. Dumitrescu, M. Pescaru, "Preliminaries of a Romanian Speech Database," *ICSLP'96*, Philadelphia, PA, 1996, pp.1934-1937.
- Chan, D. et al., "EUROM -- a Spoken Language Resource for the EU," EUROSPEECH'95, Madrid, Spain, 1995, pp.867-870.
- Damhuis, M. et al., "Creation and Analysis of Dutch Polyphone Corpus," ICSLP'94, Yokohama, Japan, 1994, pp.1803-1806.
- ELRA, ELRA Catalogue release 1.4, December 1996.
- Falcone, M. and A. Gallo, "The SIVA Speech Database for Speaker Verification: Description and Evaluation," *ICSLP'96*, Philadelphia, PA, 1996, pp.1902-1904.
- Godfrey, J. "Polyphone: Second Anniversary Report," Notes form the COCOSDA Workshop 94, Yokohama, Japan, 1994
- Hahn, M. and S. Kim, J. C. Lee, Y. J. Lee, "Constructing Multi-level Speech Database for Spontaneous Speech Processing," *ICSLP'96*, Philadelphia, PA, 1996, pp.1930-1933.
- Hess, W. and K.J. Kohler, H.G. Tillmann, "The PhonDat-verbmobil Speech Corpus," *EUROSPEECH'95*, Madrid, Spain, 1995, pp.863-866.
- Huang C.C. and J. F. Wang, "A Mandarin Speech Dictation System Based on Neural Network and Language Processing Model," *IEEE Trans. Consumer Electronics*, Vol. 40, No. 3, 1994, 437-445.
- Hwang, S.H. and S.H. Chen, Y.R. Wang, "A Mandarin Text-to-speech System," ICSLP'96, Philadelphia, PA, 1996, pp. 1421-1424.
- Jones, K. and J. Mariani (edited), Proceedings of the 1992 Workshop of the International Coordinating Committee on Speech Databases and Speech I/O Systems Assessment, Banff, Canada, October 1992.
- Kudo, I. and T. Nakama, N. Arai, N. Fujimura, "The Database Collection of Voice Across Japan (VAJ) Project," *ICSLP'94*, Yokohama, Japan, 1994, pp.1799-1802.
- Lamel, L.F. et al., "The Translanguage English Database (TED)," ICSLP'94, Yokohama, Japan, 1994, pp.1795-1798.
- Langmann, D. and R. Haeb-Umbach, L. Boves, E. den Os, "FRESCO: The French Telephone Speech Data Collection - Part of the European SPEECHDAT(M) Project," *ICSLP'96*, Philadelphia, PA, 1996, pp.1918-1921.
- LDC, A note of corpora released by LDC, 1996.

- Lee, L.S. et al., "Golden Mandarin (III) A User-adaptive Prosodic-segment-based Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary," ICASSP'95, Detroit, Michigan, 1995, pp. 57-60.
- Misheva, A. *et al.*, "Bulgarian speech database: a pilot study," *EUROSPEECH'95*, Madrid, Spain, 1995, pp.859-862.
- Roach, P. et al., "BABEL: An Eastern European Multi-language Database," ICSLP'96, Philadelphia, PA, 1996, pp. 1892-1893.
- Rosenbeck, P. et al., "The Design and Efficient Recording of a 3000 Speaker Scandinavian Telephone Speech Database: RAFAEL.0," ICSLP'94, Yokohama, Japan, 1994, pp.1807-1810.
- Tapias, D. and A. Acero, J. Esteve, J.C. Torrecilia, "The VESTEL Telephone Speech Database," *ICSLP'94*, Yokohama, Japan, 1994, pp.1811-1814.
- Torre, C. and L. Hernandez-Gomez, D. Tapias, "CEUDEX: A Database Oriented to Context-dependent Units Training in Spanish for Continuous Speech Recognition," *EUROSPEECH'95*, Madrid, Spain, 1995, pp.845-848.
- Tseng, C.Y. "A Phonetically Oriented Speech Database for Mandarin Chinese," *ICPhS'95*, Stockholm, Sweden, 1995, Vol. 3, pp.326-329.
- Wang, R.H. and D. Xia, J. Ni, B. Liu, "USTC95 A Putonghua Corpus," *ICSLP'96*, Philadelphia, PA, 1996, pp.1894-1897.

Appendix A - Speech Databases Reported by LDC in 1996

Database name	Sponsor	Size, CDs	Spkrs	Speaking Style	Sampling Rate, bit per sample	Contents and Descriptions
TMIT	ARPA	1	630	read sentences	16 kHz, 16 bits	10 phonetically rich sentences per speaker
NTIMIT, telephone version of TIMIT	NYNEX	2	630	read sentences	8 kHz	collected by transmitting all TIMIT recordings through a telephone handset over various channels
RM1, Resource Management Corpus	ARPA	4	160	read sentences	16 kHz, 16 bits	25,000 utterances, 1000 word vocabulary
RM2, Extended RM1	ARPA	2	4.	read sentences	16 kHz, 16 bits	2652 sentences per speaker
ATISO, Air Travel Information System Corpus	ARPA	6	36	spontaneous and read	16 kHz, 16 bits	disc 1 - 912 spontaneous utterances by 36 speakers disc 2 - read version of spontaneous utterances for 20 of 36 speakers disc 3-6 read speech, 3171
ATIS2, Air Travel Information System Corpus	ARPA	4	450	spontaneous	16 kHz, 16 bits	utterances from 10 speakers 15,000 utterances from 450 speakers at five sits, AT&T, BBN, CMU, MIT, and SRI
ATIS3 - Training Data	ARPA	3	137	spontaneous	16 kHz, 16 bits	over 774 scenarios with 7,300 utterances including the flight information for 46 cities and 52 airports
ATIS3 - Test Data	ARPA	2	137	spontaneous	16 kHz, 16 bits	two 1000-utterance test sets
WSJ0 or CSR-I, Continuous Speech Recognition Corpus (Wall Street Journal Sentences)	ARPA	15		read	16 kHz, 16 bits	31,000 utterances (40 hours of speech)
WSJ1 or CSR-II, Continuous Speech Recognition Corpus (Wall Street Journal Sentences)	ARPA	34		read and spontaneous	16 kHz, 16 bits	78,000 utterances (73 hours of speech)
ARPA CSR III - Continuous Speech Recognition Corpus (Financial News)	ARPA	3	180	spontaneous	16 kHz, 16 bits	20~40 sentences per speaker
SWITCHBOARD Corpus (recorded Telephone Conversations)	ARPA	28	543	spontaneous	8 kHz, μ-law	two-sided telephone conversations among 543 speakers from all areas of the US
SWITCHBOARD Corpus Excerpts (Credit Card Conversations)	ARPA	1	69	spontaneous	8 kHz, μ-law	35 conversations on the topic of "Credit Card Use"

Table A1. Speech Databases Reported by LDC in 1996

TI-46, TI 46-word	TI	1	16	read	12.5 kHz, 12 bits	26 utterances of the 46-word
Speaker-Dependent			1.2		Sector States	vocabulary
solated Word Corpus						
FIDIGITS, TI	TI	3	326	read	20 kHz	77 digit sequences per speaker
Speaker-Independent						
Connected-Digit						
Corpus						
HCRC Map Task	Univ. of			spontaneous	20 kHz, 16 bits	128 two-person conversations
	Glasgow	8	64			
ATC0, Air Traffic	ARPA	8		spontaneous	8 kHz, 16 bits	voice communication traffic betwee
Control Corpus						various controllers and pilots
SPIDRE Speaker	ARPA	2	45	spontaneous	8 kHz	a sub-set of SWITCHBOARD
Identification Corpus						collection.
identification corpus	1.4.4.1.1		1.1.1		and the second	45 target speakers, 4 conversations
					and the second	fromeach target speaker,
			10.000			100 calls of no target appearing
OCI Multi Languaga	Oregon	2	200	spontaneous	8 kHz	responses over telephone lines by
OGI Multi-Language		2	200	spontaneous	O KIIZ	speakers of English, Farsi, French,
Telephone Corpus	Graduate				A Real Provide	German, Hindi, Japanese, Korean,
	Institute				and the second	
	1200.000					Mandarin Chinese, Spanish, Tamil,
	1.1.1		1 Carl		President and	and Vietnamese,
						1927 calls, 175 calls per language
OGI Spelled and	Oregon	1		spontaneous	8 kHz	3,650 telephone calls
Spoken Word Corpus	Graduate		1.11			speakers pronounced their names,
	Institute		Sec. 1			where they were calling from,
					Carlos and	where they grew up, answered
	1		1.1.1.1		Contraction of the second	yes/no questions, and spelled their
	1		1.1		Contraction of the second	first names and last names.
MACROPHONE	SRI,	7	5000	spontaneous	8 kHz, µ-law	200,000 utterances through
	LDC		-	The second second		telephone lines from all regions of
			1.11		and the second	the United States
KING-92, Corpus for	ITT	1	51	read	8 kHz	one version from a high-quality
Speaker Verification						microphone, one version from a
Research						telephone handset; original
Research						data was sampled at 10 kHz but
						has now been re-sampled at 8 kHz
WSJCAM0	Cambrid	6	92	read	16 kHz	subjects were native speakers of
WSJCANO	ge Univ.	0	1	Teud		British English,
	ge Oniv.					90 utterances per speaker
NUNEY	NYNEX	2	1358	read	8 kHz, µ-law	phonetically-rich, isolated words,
NYNEX	NINEX	2	1558	reau	ο κιιζ, μ-iaw	93,667 isolated-word utterances
PHONEBOOK	1.1.1.1					55,007 Isolated-word utterances
Database	-		10	na d	16 kHa 16 hita	contonces of shorter than 80
LATINO-40 Spanish		12.1.2	40	read	16 kHz, 16 bits	sentences of shorter than 80
Read News Corpus	Research	1		1.1.1		characters,
	lab.					125 utterances per speaker
CTIMIT, Cellular	Lockhee	k 1	630	read	8 kHz	similar to NTIMIT,
TIMIT Speech	-Martin					TIMIT recordings were passed
Corpus	Sanders				and the second	through cellular circuits
FEMTIMIT, Far	ARPA	1	630	read	16 kHz, 16 bits	including low frequency noise
Field Microphone				and the second		
Recording of TIMIT						The second second

Database Name	Description			
ACCOR (7 languages)	acoustic and articulatory multilingual database, 7 languages recorded as			
	part of the ESPRIT-ACCOR project			
AIDA-1 (Italian)	several sets of meaningless words, phonetically dense and digits,			
	recorded by 20 males and 20 females			
BDLEX 23000 (French)	a phonetically transcribed French lexicon of 23000 canonical entries			
BDLEX 50000 (French)	a phonetically transcribed French lexicon of 50000 canonical entries			
BDSONS (French)	French and Canadian French speech database, recorded by 16 males and 16 females			
BREF sub-corpus BREF-80 (French)	5330 sentences read by 80 French speakers			
BREF sub-corpus BREF-Polylot (French)	3193 sentences read by 80 French speakers			
COLLECT-500 (Italian)	10 Italian digits and 5 command words, 500 speakers* calls			
COST 232 (English)	Multi-English Speech database, 797 calls received in Italy and UK			
Dutch Polyphone Database (Dutch)	telephone speech of 5050 Dutch speakers, 44 items per speaker, read and spontaneous			
English Polyphone Database -DB1	1000 speakers recorded over digital telephone lines, phonetically			
(English)	rich sentences, keywords, digits			
English Polyphone Database -DB2	phonetically rich sentences sub-set of DB1			
(English)				
Erlanger Bahnansage - ERBA (German)	10000 utterances read by 100 German speakers, domain of train inquire			
EUROM1	multilingual European speech database, recorded by a microphone,			
	60 speakers per language, numbers, sentences, isolated words			
EUROM1I (Italian)	Italian release of EUROM1			
French polyphone database FRESCO -DB1	35000 utterances, 1000 callers over telephones in France, phonetically			
(French)				
French polyphone database FRESCO -DB2	rich sentences, keywords, digits phonetically rich sentences sub-set of DB1			
(French)	phonetrearly refi sentences sub-set of DB1			
German polyphone database -DB1	1000 speakers, phonetically rich sentences, keywords, digits			
(German)				
German polyphone database -DB2	phonetically rich sentences sub-set of DB1			
(German)				
GRONINGEN (Dutch)	20 hours of reading of short sentences and short texts, from 238 speaker			
M2VTS (multi-language)	multiligual database designed to facilitate access control using			
	multimodal identification of human faces			
Onemastica Multi-language pronunciation	city names, street names, family names, first names, product names			
dictionaries (11 European languages)				
PHONDAT1 PD1 (German)	201 speakers, read 450 sentences per speakers			
PHONDAT2 PD2 (German)	16 speakers, 200 different sentences from train inquiry task			
SIEMENS 100 (German)	101 speakers, 100 sentences from German newspapers			
SIEMENS 1000 (German)	10 speakers, 1000 sentences from German newspapers			
SieTill telephone speech database (German)	36000 utterances, 730 speakers, digit sequences, dates, spelled names			
SIVA (Italian)	speech database for verification and identification, 2000 calls in Italian			
	language collected over telephones			
Strange Corpus 1 -SC1(German)	"Nordwind und Sonne" story read by 72 speakers with foreign accents and 16 native German speakers			
Swiss-French polyphone database (Swiss-	5000 speakers, 10 answers to questions, 28 read items			
French)				
Translanguage English database -TED	recording of 188 oral presentations in English given at EUROSPEECH.			
(English)				
(English) TEDPhone (multi-language)	93 in Berlin			
	polyphone like recording of 64 speakers in English and in their native languages			
BDBRUIT (French)	recording of French speech corrupted with noisy, especially the Lombar			
VERBMOBIL (German)	spontaneous speech database recorded in dialogue task			

 Table A2. Speech Databases reported by ELRA in 1996

Appendix B - Samples of Mandarin Speech Databases Developed in Taiwan

Database name	Sponsor	Size	Spkrs	Speaking Style	Sampling Rate, bit per sample	Contents and Descriptions
TL Telephone Words and Sentences	CHTC	380 MB	120	read	8 kHz, 16 bits	120 utterances per speaker
TL Telephone Isolated Words	CHTC	100 MB	116	read	8 kHz, 16 bits	50 utterances per speaker
TL Digits	СНТС	600 MB	100	read	10 kHz, 16 bits	6 sessions per speaker, 10 Mandarin digits and 30 digit sequences per session
TL Phonetically Balanced Words	CHTC	84	101	read	8 kHz, 16 bits	50 phonetically balances words per speaker
NTU-AS Isolated Syllables	NTU and AS	6.15 hrs	117	read	16 kHz, 16 bits	54 sets of 1345 mandarin syllables
NTU-AS Isolated Words	NTU and AS	5.44 hrs	73	read	16 kHz, 16 bits	44 sub-sets, including 3157 words
NTU-AS Phonetically Balanced Sentences A	NTU and AS	5.56 hrs	67	read	16 kHz, 16 bits	30 sets of 352 phonetically balanced sentences, covering 1300 mandarin syllables
NTU-AS Phonetically Balanced Sentences B	NTU and AS	2.04 hrs	47	read	16 kHz, 16 bits	11 sets of 333 phonetically balanced sentences, covering 1300 mandarin syllables
NTU-AS Phonetically Balanced Sentences C	NTU and AS	3.71 hrs	20	read	16 kHz, 16 bits	20 sets of 260 phonetically balanced sentences, covering 400 mandarin base-syllables
AS Phonetically Balanced Speech	AS	2.5 GB	96	read	16 kHz, 16 bits	each speaker pronounced 85 words,100 sentences, and 5 unrelated paragraphs
CCL-200 Syllables and Words	CCL, ITRI	12 GB	118	read	16 kHz, 16 bits	each speaker pronounced 2 sets of 1266 tonal syllables and 50 words
NCTU Continuous Speech	NCTU	1.5 GB	60	read	16 kHz, 16 bits	each speaker read the news of about 1500 Chinese characters

Notes: CHTC - Chung Hua Telecommunication Co., TL - Telecommunication laboratories of CHTC, NTU - National Taiwan University, AS - Academia Sinica, ITRI - Industrial Technology Research Institute, CCL - Computer and Communication Research Laboratory of ITRI, NCTU - National Chiao Tung University

Appendix C - File Header of Speech Data File

Seq.	Parameter	Description				
No.						
1	header_length	code indicating length of file header, 128 bytes or 512 bytes				
2	data_lentgh	number of samples				
3	database_name	code indicating the name of the database				
4	encoding_mode	code indicating the encoding method, 16-bit linear PCM, 8-bit ADPCM, A-law PCM, μ -law PCM, or others				
5	bit_per_sample	number of bits per sample				
6	sampling_rate	number of samples per second				
7	recording_date	date of recording, year-month-day time				
8	recording_time	time of recording, hour-minute				
9	recording_site	code indicating the recording station				
10	speaker_gender	code indicating the speaker's gender				
11	speaker_age	code indicating the range of the speaker's age				
12	speaker_accent	code indicating the speaker's accent				
13	speaker_education	code indicating the level of the speaker's education				
14	speaker_mother_tongue	code indicating the speaker's mother tongue				
15	speaker_daily_language	code indicating the speaker's daily language				
16	speaker_residence	code indicating the speaker's residence				
17	prompting_sheet_ID	ID number of the prompting sheet, 3 digits - 4 digits				
18	prompting_item	prompting item number, 2 digits				
19	speaking_style	code indicating the speaking style				
20	speaking_quality	code indicating the speaking quality				
21	speaking_rate	code indicating the speaking rate				
22	speaking_articulation	code indicating the articulation type				
23	speaking_effort	code indicating the effort of speaking				
24	signal_condition	code indicating the signal condition				
25	signal_quality	code indicating the signal quality				
26	reserved	user defined parameter				
27	assessing_date	date of recently assessing, year-month-day				
28	character_length	number of Chinese characters				
29	Chinese_characters	up to 27 Chinese characters in Big-5 codes				
30	Mandarin_syllables	Pin-Yin of transcript syllables				
31	extended_block	an optional block defined by the user				

Collect Mandarin Speech Data

Appendix D - Sample of Prompting Sheet

在台灣之國語語音收集計畫 MANDARIN ACROSS TAIWAN (MAT)

> 錄 音 提 示 卡 第一頁 所需時間約六分鐘

歡迎您參加在台灣之國語語音收集計畫的錄音工作,您的聲音資料,將用以建立語音資料庫,作為科技研究之用。 請撥電話號碼 ,就可以經由電話開始錄音工作。 <電腦語音>歡迎參加在台灣之國語語音收集計畫,您的聲音將錄 音,用來建立語音資料,作為科技研究之用,如果您 不願意聲音被錄下,請立刻掛斷電話,如不掛斷,以 下錄音即將開始。

<電腦語音>請按鍵輸入您的提示卡編號。(見第二頁上端)

(若操作不當或輸入提示卡編號不正確,錄音系統會 要求您重新輸入,若三次輸入皆不正確,即終止此錄 音程序。)

<電腦語音> 以下請在聽到嗶聲之後回答所問問提:

1. 您日常講的是國語、閩南語、客家語或是其他那種語言? _____

2. 您母親講的是國語、閩南語、客家語或是其他那種語言? _____

3. 您是男性或女性? _____

4. 您現在住在那一縣市? _____

您的教育程度是小學、國中、高中、專科、大學、或研究所程度?

6. 您是在民國那一年出生? _____

7. 請問現在時間是幾點幾分? _____

8. 您有沒有自用汽車? _____

9. 您是不是在學學生? _____

89