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Abstract

In this paper, a method to detect prosodic phrase structure of Mandarin speech is proposed. It
first employs an RNN to discriminate each inpuf frame of an utterance among three broad classes of
syllable initial, syllable final, and silence. Outputs of the RNN are then used to drive an FSM for
segmenting the input utterance into four types of segment. They include three stable-segment - I
(initial), F (final), and S (silence), and a transition-segment - T (transition). Appropriate modeling
features are thus extracted from the vicinities of F-segments, and used to model the prosodic states for
inter-F-segment intervals. Two prosodic-state modeling schemes are studied. One uses VQ to encode
the modeling features and directly classify inter-F-segment intervals into 8 prosodic states. The othei'
uses an RNN, trained with relevant linguistic features as output targets, to implicitly represent the
prosodic status by the outputs of its hidden layer. Prosodic states can be obtained by vector-quantizing
the outputs of the hidden layer of the RNN. Experimental results showed that linguistically -

meaningful interpretations of these prosodic states can be observed.

1. Introduction

Continuous speech contains the actual words spoken as well as supra-segmental information,
such as stress, timing structure, and fundamental frequency (FO) contour patterns. This

information is generally referred to as the prosody of the speech, which is affected in turn by

the sentence type, the syntactical structure, the semantics, the emotional state of the speaker,
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etc [Sagisaka 1996]. Traditional speech recognition methods have totally neglected this

prosodic information in their recognition process. However, prosodic modeling gets more and |
more attentions in recent years in the area of speech recognition. Many researches have been
devoted to the exploration of relevant prosodic cues from input speech utterance with the
purpose of assisting in speech recoghition [Compbell 1993, Kompe 1995, Wang 1994,
Wightman 1994]. A prosodic model can be generally defined as a mechanism to describe the
relationship between the acoustic features extracted from the prosodic parameter contours
representing the prosodic phrase structure of speech and the linguistic features extracted from
the associated text. Two basic types of prosodic model can be found. One is a model designed
to detect the prosodic phrasev structure of an utterance by using some features extracted from
 the prosodic parameter contours. Its main purpose is to provide an additional score to help
speech recognition. The other type of prosodic model is designed to predict the embedded
prosodic phrase structure from a text by using some linguistic features extracted from the text.
Obviously, it is mainly used in text-to-speech to help the generation of prosodic information

for synthesizing natural speech [Chen 1996a].

In this paper, we are interested in the first type of prosodic model. A méthod to detect the
prosodic ‘phrase structure of the input speech is proposed. Our final goal is to derive a
prosodic modelv in thé pre-processing stage of a speech recognizer for the use in the following

| recognition process to assist in speech recognition. In this preliminary study, only the prosody
- modeling is discussed. The primary' problem encountered in this study is how .to extract
appropriate modeling features from the input speech under the constraint that a priori
information about syllable or word boundaries is not available [Wightman 1994]. The
problem is solved by first dividing the input utterance intp labeled-segments, and then extract

modeling features from stationary voiced segments.

The organization of the paper is stated as follows. Section 1 briefly describes baékground
information and states the problem. Section 2 presents the pfoposcd method of prosodic-state
detection. Experimental results are given in Section 3. Conclusions are given in the last

section.
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2. The proposed method

Fig. 1 shows a block diagram of the proposed method of prosodic-state detection. It consists
of five main parts: spectral feature extraction, recurrent neural network (RNN) pre-classifier,
finite state machine (FSM) based segmentation [Chen 1996b], modeling feature extraction,
and prosodic state classification. Input speech signal is first divided into frames. Some
spectral features are then extracted for each frame. An RNN is then employed to discriminate
each input frame arﬂong three broad classes. They include syllable initial, syllable final, and
silence. Outputs of the RNN are then used to drive an FSM to segment the input utterance into
four types of segrhent. They include three stable-segment types of I (initial), F (final), and S
(silence), and a transition-segment type of T (transition). Appropriate modeling features are
then extracted from the vicinities of F-segments, and used to model the prosodic states for
inter-F-segment interval. Two prosodic-state modeling schemes are proposed. One uses VQ to
directly classify input features of two contiguous F-segments into 8 prosodic states. The other
uses an RNN, trained with relevant lingﬁistic features as output targets, to implicitly represent
the prosodic status by the outputs of its hidden layer. Finite number of explicit prosodic states
can then be obtained by vector-quantizing the outputs of the hidden layer of the RNN. In the

following, these five parts are discussed in more detail.
2.1. Spectral feature extraction

A pre-processing was used to extract spectral features for RNN-based pre-classification. In the
pre-processing, a short-time spectral analysié by 256-point FFT was performed for each of
200-sample' frame padding with 56 zero-samples. Tﬁe frame shift is 100 samples. The
spectrum of each frame was compressed non-linearly into 20 frequency channels (in mel-scale)
using a bank of 20 triangular windows. The energy spectrum was then log-compressed and
cosine-transformed to calculate 12 mel cepstral coefficients. Besides, 12 delta mel cepstral
coefficients and one delta log-energy were also calculated using a 7-frame window. So, there

are in total 25 spectral features used in the pre-classification.
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2.2. The RNN pre-classifier

The function of the RNN pre-classifier is to discriminate each input frame among three broad
classes of syllable initial, syllable final, and silence. Fig. 2 shows the architecture of the RNN.
It is a two-layer net@ork with all outputs of the hidden layer being fed-back to itself as
additional inputs [Elman 1990]. The RNN has a distinct property of using its hidden nodes to
represent the contextual status of the previous inputs. It is therefore suitable for discriminating
dynamic speech patterns [Elman 1991, Robinson 1994]. The RNN can be trained by the back-
propagation (BP) algorithm with output targets being set according to the segmentation

positions given by an HMM recognizer [Lee 1991].
2.3. FSM-based segmentation

The function of the i‘SM is to segment the input utterance into I-, F-, S-, and T-segments. The
FSM is designed to conform to the phonetic structure of Mandarin base-syllables. Fig. 3
shows the state transition diagram of the FSM. To drive the FSM, all the three outputs of the
RNN are compared with two threshold values, 7/; and 74, . While one output is higher

than 7#, and the other two are all lower than TH ; , the FSM moves into the corresponding
stable state if it is a legal one. Otherwise, the FSM stays at T state. In this study, 7#; and
TH ; were set to be 0.2 and 0.8, respectively. After obtaining the state sequence encoded by

the FSM, we divide the input utterance into I-, F-, S- and T-segments.
2.4. Modeling feature extraction

We then extract 4 features relevant to prosody modeling for each F-type segment. They
- include three features representing the two ending points and the mean of the pitch frequency
contour overlapping with the current F—segment and one feature representing log-energy mean
of the F-segment. There are in total 9 modeling features used for detecting the prosodic state
of an inter-F-segment interval. They include the 8 features of the two neighboring F-segments

and one additional feature which represents the duration of the S-segment located between the
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two F-segments.
2.5. Prosodic state classification

Two prosodic state classification schemes are proposed in this study. One uses VQ to encode
the input modeling feature -vector and directly classify it as the prosodic state associated with
the encoded codeword. The other uses a two-layer RNN, trained with appropriate linguistic
features - extracted from the associated text as output targets, to implicitly represent the
prosodic status of the current inter-F-segment interval by using the outputs of its hidden layer.
The RNN has the same structure shown in Fig. 2. The inputs of the RNN consist of the same 9
modeling features used in the first scheme. And 6 output linguistic features are used in this
study. Two indicators showing, respectively, whether the current inter-F-segment interval is
an inter-word boundary and an intra-word boundary; Two indicators showing whether the
current inter-F-segment interval is a left boundary and a right boundary of a long word with
length greater than or equal to 3 syllables; One indicator showing whether there exists a
punctuation mark (PM) in the current inter-F-segment interval; One indicator showing
whether the two neighboring F-segments belong to the same syllable. The prosodic state is
finally obtained by vector quantizing the outputs of its hidden layer. Here, the codebook size

is also set to 8.

3. Simulations

Effectiveness of the proposed method was examined by simulations. A continuous-speech
Mandarin database provided by the Telecommunication Laboratories was used. The database
contains 452 sentential utterances and 200 paragraphic utterances. Texts of these 452
sentential utterances are Well-desi_gned, phonetically-balanced short sentences with lengths
less than 18 characters. Texts of these 200 paragraphic utterances are news selected from a
large news corpus to cover a variety of subjects including business, medicine, social event,
sport, literature, etc. All utterances were generated by a single male speaker. They were all
spoken naturally at a speed of 3.5-4.5 syllables per second. The database was divided into two

parts: a training set and an open- test set. These two sets consist of 28060 and 7034 syllables,
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respectively.

We first examine the performance of the RNN pre-classifier and the FSM-based
segmentation. Figs. 4(a-€) shows a typical example. It can be seen from these figures that all
syllable finals have been properly detected. Each syllable final has an F-segment associating
with it. By carefully examining all segmentation results, we find that the error rate for
syllable-final segmentation is about 7%. Two major types of error had been found. One is the
missing of an F-segment, i.e., a syllable final has no F-segments assigned to it. This usually
occurred for syllabies with Tone 5. Another type of error is caused by the missing of an I-
segment to make two neighboring finals being connected together to form a long aggregate F-
segment. This usually occurred at short voiced initials including nasai, liquid, and null initials.
It is noted that these errors are relatively unimportant to our prosodic-state detection because
our purpose is to model the global characteristics of the prosody-phrase structure. No
significant cues of the prosodic phrase structure are lost due to these errors. So both the RNN

and the FSM functioned quite well to meet our requirement [Chen 1996b].

‘We then examine the performance of the first prosodic state classification scheme using
VQ to encode the modeling features. Fig. 5 shows the codewords associated with the 8
prosodic states. By examining the pitch parameters of these codewords, we find that a
meaningful mapping between these prosodic states and the prosodic phrases structure does
exist. Specifically, the first two states correSpond to the beginning part of a prosodic phrase.
States 6 and 8 correspond to the ending part. States 4, 5 and 7 correspond to the intermediate
part. States 3 and 6 correspond, respectively, to minor and major breaks. Table 1 lists some
statistics, including the distributions of beginning and ending of sententiél and paragraphic
utterances, and the distribution of the existence of a PM in the current inter-F-segment interval.
It can be seen from this table that most utterances begin with State 1 and end with State 6.
And most PMs are associated with State 6. Table 2 lists the state transition probabilities. It can
be found from the table that States 2 and 4 follow State 1 to locate in the beginning part of a
prosodic phrase. State 5 follows States 2 and 4. State 7 follows State 4 and 5. States 6 and 8
follow .State 7. Fig. 4(h) shows a typical example of the encoded state sequence of an input
utterance. And Fig. 6 shows a finite state automata (FSA) obtained by drawing only

significant transition probabilities. Based on above discussions, the FSA is a meaningful
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model to describe the prosodic phrases structure of Mandarin speech [Wang 1994, Chen

1996a, Elman 1990, Elman 1991].

Lastly, we examine the performance of the second RNN-based prosodic-state-detection
scheme. The same statistics and state transition probabilities were calculated and listed in
Tables 3 and 4. It can be seen from Table 3 that almost all utterances start with State 7 and
end with State 2. And most PMs are associated with State 2. As compared with the results
shown in Tables 1 and 2, the RNN -based method performed better on prosodic-state detection
than the VQ-based method. Similar FSA can also be obtained by counting only significant
state transition probabilities (see Fig. 7). Fig. 4(h) shows a typical example of the encoded
state sequence of an input utterance. Finally, we examine the outputs of the RNN. Fig. 4(g)
shows the outputs of inter-word and intra-word indicators. It can be seen from the figure that
significant inter-word response always occurs at a word boundary. This property might be

useful to assist in speech recognition.

4. Conclusions

A new prosody modeling method has been discussed in this paper. Experimental results have
shown that a meaningful mapping between the resulting detected prosodic states and the
prosodic phrase structure can be found. So its performance is quite well. Due to its
effectiveness, further studies to incorporate it into a conventional speech recognizer is worthy
doing in the future.
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State
1 2 3 4 5 6 | 7 8 Prob. | 1 2|3 4 5 6 | 7 8
Prosodic Prosodic
cue cue
Beginning of 0.13(0.03(0.030.00]0.00]0.00 Beginning of |0.00|0.00|0.03(0.00]0.01 0.00 0.00
utterance utterance
Ending of |0.03]0.01]0.060.010.01 0.03 Ending of |0.08 0.00]0.00(0.00|0.00|0.00]0.00
utterance utterance
- PM 0.0410.020.12|0.02|0.08 0.08 PM 0.17 0.04]0.02(0.01{0.01]0.00/0.01

Table 1: The statistics of the prosodic states

detected by the VQ-based scheme.

Table 3: The statistics of the prosodic states

detected by the RNN-based scheme.

ext state ext state
Prob.| 1 2 3 4 5 6 7 8 Prob.| 1 2 3| 4 5 6 7 8
Previous Previous
state state
1 0.3818.3710.02 0.01]0.00 1 0.00|0.01 0.180.08 0.14
2 0.0210.310.13 | { 0.08 10.00 2 0.00]0.00]0.06]0.02 | 0.01 0.12
3 0.31] 0.01 |1 0.00]0.00(0.01]0.00 3 0.03]0.15(0.080.05 0.11]0.04
4 0.00/0.000.14]0.00 |1 0.16 4 0.0410.01(0.10]0.14]0.05 0.00
5 0.00(0.0810.17]0.10]0.38 0.01 5 0.14]0.13 |9 0.0710.36 ] 0.00]0.12
6 g 0.11(0.1310.02]0.00]0.00| 0.00 6 0.31|0.00|0.05
7 0.00]0.00|0.05]0.00(0.04 0.08|8 7 0.00]0.00 0.01 |§ 0.06
8 0.00]10.03(0.13]0.05 | 0.18(0.19]0.16 8 0.03]0.20|0.19 0.02

Table 2: Prosodic state transition

probabilities of the VQ-based scheme.

Table 4: Prosodic state transition

probabilities of the RNN-based scheme.
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Figure 1: A block diagram of the proposed prosodic-state detection method.
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Figure 2: The architecture of the RNN. Figure 3: The state transition diagram of the
FSM.
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Figure 4: A typical example of the proposed mrthod : (a) Waveform of the input speech; (b)

Initial-, (c) final- and (d) silence-outputs of the RNN pre-classifier; (¢) Segmentation results of

the FSM; (f) Pitch contour; (g) The inter- and intra-word scores generated by the RNN-based

prosodic-state classifier; (h) Prosodic state sequences generated by the VQ-based and RNN-

based schemes.
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- Figure 5: ‘VQ codewords associated with the 8 prosodic states, where b,b’ are the beginning
points of FO contours, e, e’ are the ending points of FO contours, m, m’ are means of FO

contours, and s is the averagé duration o_f S-segment.
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Figure 6: A FSA obtained by the VQ-based prosodic modeling scheme. -

Figure 7: A FSA obtained by RNN-based prosody modeling scheme.
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