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Abstract

This paper introduces a method for designing a robust Mandarin keyword spotting system. Keywords
which will be extracted from an uttered sentence are modeled by sequences of states. These state models
that represent the subsyllables of Mandarin speech are generated by using the existing speech database.
The non-keyword portions of an input utterance are filtered out by filler models. A simplified signal bias
removal technique is applied to overcome the influences due to channel distortion and speaker variation.
State integrated Wiener filters are used for noise compensation. Proposed techniques are evaluated by

several experiments to show their effectiveness for robust speech recognition.

1 Introduction

In many applications, an input utterance can be recognized by extracting its keywords without
tfanscribing.all the sentence. This keyword spotting technique allows a speaker to talk to a
machine naturally. Without complicated recognition algorithm, such as the continuous speech
recogniﬁoh, the keyword spotting method provides an alternate implementation of speech
input. For small vocabulary applications, keyword spotting is an effective method for

implementing a voice input system. Many researchers have been attracted into this area and’
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developed some remarkable keyword spotting methods [Wilpon, Miller, and Modi 1991,
Wilcox and Bush 1992, James and Young 1994, Huang, Wang, and Soong 1994, Sukkar and
Lee 1996] . ’

A typical keyword spotting method is based on hidden Markov model (HMM) technique
[Wilpon, Rabiner, Lee, and Goldman 1990] where a word or a subword is modeled as a
Markov chain of states. The filler models are used for filtering out the non-keyword portion of
the utterance. Usually, the filler models can be generated by using speech data of selécted non-
keywords. A decision making scheme must be provided for discriminating those non-keyword

| speech and silence in an uttérance. The performance of a keyword spotting algorithm depends

on the effectiveness of screening the xion—keyword portion.

In this paper, a keyword spotting method for Mandarin speech is introduced. The
continuous density HMM technique is applied. An utterance is modeled by a finite state
network composed of keyword models and filler models. Viterbi decoding algorithm is used to
find the optimal state sequence and then the score of the utterance is calculated. A likelihood
ratio test is applied to extract the keyword from an input utterance. Both keyword models and
filler models are generated by using the state models trained by an existing speech database
[Hwang, Cheng; and Wang 1996]. This implies that a keyword s.p_otting system can be
- implemented by using the existing state models so that no training procedure is necessary in

building an application system.

In order to overcome the channel distortion and the speaker variation, a simplified signal
bias removal (SBR) algorithm [Rahim and Juang 1996] is developed. The background noise is
compensated by using state integrated Wiener filters [Vaseghi and Milner 1997]. This robust
keyword spotting system has been implemented on a personal computel.' to demonstrate its

capability in voice response applications®

2 Mandarin Syllables and their Hidden Markov Models
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Mandarin speech is a tonal and syllabic language. Each Chinese character corresponds .to a
syllable. There are about 1300 distinctive syllables in Mandarin speech. Without concerning the
tones, the number of base syllables is 408. Usually we represent a Méndarin syllable as an
Initial-Final model. The final portion is its rhyme'part, and the‘im‘tial portion is a consonant.
Some of syllables are vowel only, and no consonant appears in the initial part. We refer these
syllables as null-initials. Since the acoustic characteristic of the initial is affected by its
following final, we consider the initial a context-dependent unit. Totally, there are 38 context-
independent finals and 99 right-context-dependent initials in Mandarin speech. Also, there are
33 syllables of null-initials. In this study, the initials are modeled by 3-state HMMs, and the
finals by ;1-_state HMMs. For a syllable of null-initial;bits initial part id modeled by a 2-state
HMM. Including a silence state, there are totally 498 states must be modeled.

The speech database for generating the state models consists of 5045 phonetically balanced
Mandarin words spoken by 51 males and 50 females. It includes 408 base syllables in Mandarin
speech. These speech data were recorded in an office room via a high-quality microphone. The
speech signal was sampled at 8 kHz with 16 bits per sample. The speech signal is pre-
emphasized and then a Hamming window of 256 'sémpling points is applied before calculating
its cepstral coefficients. The frames are spaced by 128 sampling points. For each frame, a 12-
order cepstrum is extracted. A feature vector consists of 12 cepstral coefficients, 12 delta
cepstral coefficients, a delta log-energy, and a delta delta log-energy. Finally, an utterance is
represented by a sequence of 26-dimensional feature vectors. The state model is a mixture of

Gaussian densities. 498 state models are generated ﬁsing the speech database described above.

3. Scoring Method for Keyword Spotting

In this study, we assume that an input utterance contains one keyword only. Then an utterahce
is modeled by a network structure such that a sequence of nodes representing a keyword is
preceded by a filler model and followed by another filler model. The silence state is added to
the beginning and ending nodes of this network for filtering out the silence portions before and

after the speech. The filler model is for filtering out the garbage speech in the utterance.
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For an input utterance, Viterbi decoding is applied to calculate the maximum likelihood
score and to obtain its corresponding optimal state sequence. Along the optimal state sequence,
the local likelihood scores belonging to the keyword states are accumulated as a keyword
score.

J+M, -1
L(0",87)=1og P(O"|S})= > log P (0!

i=J

Sk.i)s (1)
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where 0" ={0},0},,,--0,,), _, } are the feature vectors of the frames belonging to keyword v,

Sy =15¢,; s8¢ ju1» Sk jom,-1 } 18 the corresponding states belonging to keyword v, M, is the

number of frames belonging to keyword v, and j is the starting frame of the keyword. If the
likelihood scores of those decoded keyWord states are calculated based on filler models, we
obtain a normalization score.
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where Sy is a set of the filler states. Then we define a likelihood ratio as follows, .

L(O")=(log P(O"|S{)—log P(O"|S¢ ) M, . (3)

This ratio will be used for determining the recognized keyword,

2 :mgx{L(O”)}. ' (4)

In order to screen out those cases of abnormal keyword duration, we set a limit to bound the
keyword duration in a reasonable range. When a keyword detected in an utterance is out of the

bound, this keyword is wrong and the utterance is indicated as no keyword existing.

4. Compensation of Channel Effect
The channel effect may be due to a telephone line or a microphone. We can consider the '

channel effect a convolution noise. In frequency domain, the resulted speech signal is

expressed as
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Y(@)=H (@)X (a) , s
where Y (@) is the distorted speech, A (@) is the channel éffect, and X (w) is the original
speech. When Eq.(5) is transformed into cepstral domain, the channel effect becomes an
additive term,

c,(n)y=c,(n)+6(n). _ (6)‘
When an utterance is represented by a sequence of feature vectors,‘ and the feature vector

consists of cepstral coefficients and delta cepstral coefficients, the bias can be assumed to be

an additive constant vector.

Cpt =Crp +b, (7)
where ¢, is the feature vector of distorted speech in 7-th frame, ¢, , is the feature vector of
original speech in #-th frame, and b is a bias vector. The procedure for finding the bias vector is
as foliows [Rahim and Juang 1996];
(a) Apply Viterbi decoding on the test utterance to find its optimal state sequence,
S={5,,8,"51}.

(b) Apply following equation to estimate the bias vector,
1Z |
b:_z(cy,t*mi)’ (8)
T t=1 )

where m; is the mean of state model i corresponding to the decoded state s, in /-th frame, and

T'is the number of frames in the utterance.

When the bias vector is obtained, we can apply this bias to adapt all the state models,
m;=m;+b . 9)
Viterbi decoding algorithm is applied again to the test utterance based on adapted models. This
procedure, i.e. Eq.(8) and Eq.(9), can be iterated so that a converged bias vector is obtained
and all the state models are adapfed to new ones. Finally, the input utterance is recognized
based on the new state models. Usually, two iterations is enough to obtain converged bias
vector. If training utterances are used for finding this constant bias vector, the adaptati'dn
operation is not necessary during the recognition phase. Speaker adaptation is exactly similar

to channel compensation with given training utterances by a specific speaker.
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S. Compensation of Additive Noise

The additive noise can be modeled as adding a noise term to the clean speech in frequency
domain. |

Y(w)=X(0)+N(w), (10)
where X (@) is the clean speech, and N (@) is the additive noise. Many noise compensation

methods have been developed for compensating the additive noise. Here we use Wiener filter
to minimize the effect of noise [Vaseghi and Milner 1997]. In frequency domain, Wiener filter
is expressed as

Py (@)
P (0)+P (@)’

W(w)= .(ll)_

where P, (@) and P, (@) are the power spectrum densities of original speech and noise,

respectively. When a noisy speech is input to Wiener filter, the output would be

X (0)=W(0)Y (). - (12)
In cepstral domain, Eq.(12) becomes

cz(n)=c, (m)+c, (n), (13)
where

¢, (n)=cp, (n)-Cp, .5, (1) (14)

In our speech recognition system, Wiener filter is estimated and applied to state models to

adapt the models to noisy environment,

m;=cp —c,, - (15)
where
Cy =Cp, ~Chpspy- ' (16)
F,, is the power spéctrum density calculated for each state model during tlﬂe training phase.

Its corresponding cepstrum is ¢, . P, is the power spectrum density of noise which is

nn

estimated under silence input. Once P, is obtained and P, is available, ¢, | p can be

calculated. In our implementation, P, is calculated once in a stationary noisy environment.
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During recognition phase, a signal-to-noise ratio (SNR) is calculated for each utterance to

adjust P, .

6. Experiments

Some experiments were conducted to demonstrate the keyword spotting algorithm and the

effectiveness of our channel and noise compensation methods.

Experiment 1

Twenty city names in Taiwan were designated as keywords embedded in the uttered sentences.
Six speakers each provided 50 test utterances through microphones. Only one keyword was
embedded in each utterance. The garbage speech might appear before and after the keyword.

The accuracy was 94.7% for mixture number is 2 for each state model.

Experiment 2

Twenty city names in Taiwan were designated as keywords embedded in the uttered sentences.
Thirteen speakers each provided 20 test utterances through telephone system. Only one
keyword embedded in each utterance. The garbage speech might appear before and after the
keyword. The mixture number was 2 for each state model. The accuracy was 57.9% without
channel compensation. The accuracy increased to 82.6% when the proposed channel

compensation method was applied. The improvement was 24.7%.

Experiment 3

Thirty city names in Taiwan were designated as keywords embedded in the uttered sentences.
Fifteen speakers each provided 26 test utterances through microphones. Only one keyword
embedded in each utterance. The garbage speech might appear before and after the keyword.
The mixture number was 2 for each state model. In order to simulate various noise conditions,
test utterances were added by different noises with specific SNRs. The types of noises included
white noise, factory noise, car noisev and babble noise. The accuracy for various SNRs was

summarized in the following table.
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Table: Recognition Accuracy (%)

0dB 10dB 20dB
noise type SNR|no compe [compens (no compe [compens |no compe | compens
white noise 8.57 13.2 37.0 45.4 68.2 77.5
factory noise 16.1 243 557 58.6 79.6 82.6
car noise 65.4 78.2 77.1 81.1 81.8 82.5
babble noise 10.7 19.6 48.9 59.3 73.9 78.9
AVERAGE 252 33.8 54.7 61.1 75.9 80.4

The effectiveness of noise compensation depends on the type of additive noise. The result
shows that car noise does not influence to much on the recognition accuracy. White noise is
the most serious one because it affects a wide band of signal spectrum. In average the

proposed noise compensation method can gain an improvement of 4.5% to 8.6%.

7. Conclusion

A robust Mandarin keyword spotting system is presented. Keyword and filler models can be
generated by using the existing speech database. This allows user to define their own
application systems. A simplified signal bias removal technique is applied to overcome the
influences due to channel distortion and speaker variation. State integrated Wiener filters are
used for noise compensation. Experiments-show that the channel compensation can gain an
accuracy improvement of about 25%, and the noise compensation can improve 8.6% accuracy

in average when the SNR is 0dB.
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