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Abstract

In this paper we present a novel approach to truncate combined word-based and class-based n-gram
language model using Kullback-Leibler distance criterion. First, we invéstigate_ a reliable backoff
scheme for unseen n-gram using class-based language model, which outperforms conventional
approaches using (n-1)-gram in perplexity for both training and testing data. As for the language model
truncation, our approach uses dynamic thresholds for different words or word contexts determined by
the Kullback-Leibler distance criterion, as opposed to the conventional scheme which truncates the
language model by a constant threshold. In our experiments, 80% of the parameters are reduced by
using the combined word-based and class-based n-gram language_ model and the Kullback-Leibler
distance truncation criterion, while the perplexity only increases 1.6%, as compared with the word

bigram language model without any truncation.

1. Introduction

In the large vocabulary continuous speech recognition, the n-gram language model has been
widely used as the effective lingpistic constraint to determine the final transcription among
several text hypotheses. In order to get a reliable language model, we need a lot ’of text data
and therefore the size of a language model will be also very large. HoWever, due to the
constraint of memory, a huge language model will make the speech recognition system

impractical. Thus reducing the language model size is important.

An intuitive approach to reduce the language model size is to truncate k-gram entries
that appear below a given threshold in the training corpus. Another common approach use the

class-based n-gram language model (Brown 1992, Jardino 1993, Martin 1993), which is
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intrinsically more compact and outperforming the word-based model at estimating unseen
word sequences. However, given enough training data, the performance of the word-based
model usually surpasses that of the class-based model because it is more accurate in capturing

sequential relationships between particular words.

To keep the advantage of word-based and class-based language models, combining these
two models within the backoff probability estimation phase is a good approach (Niesler 1996).
By using the class-based model as the backoff estimation instead of the lower order word-
 based model, the performance is apparently improved. Furthermore, with this more accurate
backoff estimation using class-based model, we can impose a heavier truncation on word-based
model, which only slightly degrades the performance. Therefore, a combined model of both
word-based and class-based model for backoff estimation under heavy truncation could meet
the high accuracy. and cbmpact memory storage requirement at the same time, and this is our
approach. Another advantage of this corhbined model we proposed is that its performance is
always higher than using class-based language model alone. Even in the worst case, it still
performs as well as the class-based model. That is, if all word n-gram entries have been
truncated, this ‘combined model will be the same as the class-based model alone. From this
viewpoint, heavy truncation can be done since the lowest bound of performance can also keep

in the level of class-based models.

In order to get a better truncation for a given amount of parameters, we use the
_ Kullback-Leibler distance criterion (Kneser 1996, Kullback 1958) to determine the thresholds
for all k-gram entries where k < n. In our truncating procedure, if N(W;Wi1,..., Wik) <
Th(wi, Wi, . .., Wisk-1), then the context entry (Wi, Wi, ..., Wix) Will be deleted, where
N(Wi,Wis1,...,Wik) 1S the occurrence count of word context (Wi, Wiy, ..., W) In training

corpus, and Th(w;,Wis1,...,Wis1) is the threshold given context (Wi, Wi+1,...,Wisk-1).

The rest of this paper is organized as follows: Section 2 describes the language model
which combining word-based and class-based models; Section 3 describes the truncating
criterion  named as Kullback-Leibler distance; Section 4 describes the algorithm of truncation
using Kullback-Leibler distance criterion; Section 5 presents the experiméntal results of the

perplexity measures. Finaliy, in Section 6 we will give a brief conclusion.
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2. Combined Language Model

This language model combines word-baséd and class-based models within the backoff
framework. The conventional n-gram probability estimated by maximum-likelihood approach
has been proven very effective for modeling language. However, word sequence not present in
the training corpus will resulf in zero probability for the test data. Therefore, we need backoff
scheme to calculate the probability for unseen events. Briefly, when we compute the likelthood
of word contexts, a certain amount df the total probability mass for the conditioning context
should be redistributed to the unobserved words. In the conventional model, the redistribution
is proportional to the probability from the next lower-order model. However, from past
experiences, we know that the class-based language model is more robust for estimating the
probabilities for unseen events. Based on this concept, we believe that using class-based
language model in backoff phase can make more accurate estimation among unseen word

sequences.

In this combined model, the probability estimation formula of a given word context with
n words Wi,.g, ..., w;is as follows:

B, (wih) if w, eW, (&)

1
a(h)P, ,(w1C(h)) otherwise o

PWA=W, | W)= {

where
® /=W, .., W means the word history. For example of trigram model, 2 = w;,, w;,.

® W,(h) is the set of words which connect to word context h in training corpus, i.e, if
word w € W,(h), it means that there is an n-gram entry that stores the word context (h,w)

and its count.

® P,.(w|h)isthe word conditional probability given h for which w belongs to W,(h), i.e.,
the n-gram entry (h,w) exists in the word-base model. The estimation of P,,,(w | /) will

use both word-based and class-based models.

® (h) is the backoff weight for the given history h. In our combined language model,
linear backoff (Placeway 1993) was employed.

® P..(w]|C(h))is the word conditional probability given C(h) where C(h) is the class

sequence of words in the history. The estimation of P.,( w | C(h) ) uses class-based
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language model only.

The linear backoff approach (Placeway 1993) is a robust and simple method that cén be
regarded as a HMM grammar structure ( Fig. 1 ). In contrast to conventional backoff scheme
(Katz 1987), this approach estimates the probability by a linear combination of direct
estimating path and backoff path.

To see the formula of the linear backoff approach, firstly, we define two terms Py, ( w |
h ), the direct estimation probability, and « ( ), the backoff probability mass, as follows:

Null-state of w,

__ N@w)
PW(WIb) N R 2 | o) Pl w3 | Clv))

. . O (Waawb)

o) = RUNT(h) o (W, Wa) O O (W we)

N(h)+R(h) P O (W, Wa)

O (wﬁa WB)

. Fig. 1: Example of HMM Bigram Grammar Structure
where N(A,w) is the number of times that word w occurred behind- context 4 in training
corpus, R(%) is the number of distinct words that occurred behind context A, and T(#) is the
count of total truncated entries, i.e., T(k) = £y N(hw’) where w’ is the word that the entry
(h,w’) has been truncated. Note that we should not modify N(#) and R(4) after truncating, i.e.,
the values of N(#) and R(#) are conditional on whole training corpus and they are independent

of truncating process.

In the equations above, Py, ( w | 2 ) is the direct estimation probability of word w given .
the history A énd o A ) is the total probability mass through backoff path (null-state) in Fig. 1.
For the unseen events, e.g., (w,, w;) and ( w,, w.) in Fig. 1, the probabilities ére all estimated
by going through the backoff path. As for the observed events, e.g., ( w, w;) and ( w,, w. ) in
Fig. 1, the probabilities are estimated not only through a direct arc path but also a null-state
path. Thus the equation of P,,,(w | /) is as follows:

B, (wlh) =B, (wlh)+a(h) B, (wIC (4)) 4)

where C(h) is {C(Wix+1), ..., C(wi.1)} and C(w) is the class of word w. We assign P .(w |
C(h)) as follows:

P.,(wlC(h)=PwIC(w)B,(C(w)C(Ah)) )
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where

N(w)
PwIlC = 6
wlC(w)) NC) ©6)
P(CwIC(h) = R‘(w]c.(ﬁ)(C(W)IC(b))'*’ a(C(h) P, (CWIC(h-1)) @)

The estimation of Pcgy | ciy (C(w) | C(h)) and « ( C(h) ) is the same as that for P, |, (w | h)
and o (h) except ‘that the word and word history sequence number become class and class
sequence history number in training corpus and the backoff weight o ( C(h) ) is estimated by
lower order class-based language model. Although the above model is complex, we can prove

that the summation of probabilities equal to one for all words given the history.
3. Truncation Using Kullback-Leibler Distance Criterion

In order to have a better truncation result, we exploit the Kullback-Leibler distance criterion to
measure the quality of truncated language model and determine thresholds for all word k-gram
entries where k < n. Let P; denote the probability distribution of initial language model without
any truncation and Pr denote the probébility distribution of truncated language model. The

Kullback-Leibler distance of these two models is as follows:

P (wlh)

XE, ®)

D(B3B)=2 B (hw)log
bw
where P(w | A ) =Py(w | k) in the initial mbdel and Pr(w | h)=Py(w | h) in the

truncated model.

We can show that D( Pr; P;) will be greater than or equal to zero and the equality holds
if P(w | h)=Pr(w | h) only. There is one assumption for using Kullback-Leibler distance
criterion: ‘the initial language model without truncation will be the best model comparing to
truncated models. Thus if we do any truncation, the resulted model will be worse than initial
model. Under this assumption, if the distance of a truncated model is lower, the concerned
model with Pr is more near to initial model P; and therefore the model is considered to be

better.

For each time we truncate the k-gram entries, if we use equation_‘f(S) to compute the

distance of initial model and truncated model, the computation cost is much expensive. To
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reduce the computational complexity, we can further derive equation (8). Let /4 denote the

first k word context in history 4. The equation (8) can be rewritten as follows:

D(B;B)= Y, }}(/;,W)1ogm+ > P[(f],W)lOgPI(WIb)

)
(bw), hy#hy })T (Wlb) (hw) b=ty PT (W'f])

If we change the threshold of k-gram entry with history 4;’, we can only calculate the

later term in equation (8). Thus we can define the term d( /) as follows:

' P (wlh)
d(h')= P (h,w)log—L—=
g (/I,W;hfhk‘ ! B (wlh)

= Y P (hw)logh (wlh)- | > B (h,w)log B (wlh) (10)

(hw) =ty (hyw), bg=by'
=d, (}]k|)_ dT (}Jk')

We can calculate the former term in equation (10), do ( /4’ ), in the initialization
procedure and store them. For each time we adjust the threshold, the later term dr(4;’) is the

one that we must calculate .
4. Truncating Algorithm

In the practical system, there is a constraint of the memory that we can use. Therefore the total
parameter number of all k-gram entries has an uppef bound. Our algorithm is to find the better
solution to determine what parameters in word-based language model should be truncated. The
parameters in class-based model will not be truncated because the class-based language is
much smaller than word-based language model and they are robust to calculate the backoff

probabilities.
Before describing our algorithm, firstly we define some terminology as follows:

® Th(h:'): the threshold of k-gram entries with word context hy’. If one (k+1)-gram entry
with history 4, is that its count occurring in training corpus is less than Th(/ ), this entry

will be deleted and its count will be added to T(/;’) as describing in backoff phase.

® Ny &', Th): the total number of m-gram ( m = k+1 ~ n ) entries with first k symbol

history equaling to 4, and their counts in training corpus are less than Th.
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® Ni: the total number of entries that has been deleted, i.e., Nr = Z - Nt( A, Th(h") ).

® Ny the total number of entries in the initial language model.

® dnr(A’, Th)=dr( A’ )/ (Ng( A, Th)-N( A’ , Th-1)) : the normalizing distance of
A’ given threshold Th.

The algorithm is as follows:

1) Initialize

1.1) Set all thresholds, Th(%; ), equal to 2 and total truncated entry number Nt=0.

1.2) Calculate do( 4’ ), dr( A’ ), and normalizing dist‘ance dnt( ", Th(h,’) ) for each A ’.
2) Loop

2.1) Find the best hy’ that has the émallest distance dn( 4’ , Th(/’) ) and let hg = Ay,

2.2) Calculate Nt. If Ny - N <= upper bound of parameter number, then break.

2.3) Set Th( A ) =Th( hg ) + 1. Calculate Nt and dn( 4, Th( hz).).
3) End

Instead of the stop condition for the loop in above algorithm, we can also change the
stop condition to control the performance of 6ur combined language model. For this case, we
don’t need the term Nt, but we must have one term AE that is the accumulative distance of
truncated model and initial model. If AE is larger than a threshold max-AE, then we stop the

loop.
5. Experimental Results
5.1 Experimental environment

The corpus in our experiments is obtained from newspapers of eight months. Seven out of
eight months' data is used for training, and the remaining one is used for testing. The lexicon is
provided by CKIP. The vocabulary size is 94188 and thé maximum length of word entries is
nine. After the word segmentation, there are 10,136,783 words in the training corpus and
1,521,867 words in the testing corpus. The resulted word bigram language model has
2,484,757 big‘ram entries and 55,380 unigram entries. The perpléxity of this model is 307.641.

All following experiments use tésting corpus to evaluate perplexities.
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5.2 Class-Based Bigram Language Model

Our class-based language model is generated by two phases. In the first phase, we use
simulated annealing approach [2] to cluster words. However, the result of the first phase is not
good enough. In the second phase, we use the clustering result of first phase to be the 1n1t1al

condition and use k-means-style algorithm [3] to improve it.

In both algorithms, we classify 27,829 highest frequency words for three class models
with 999, 499, and 249 classes respective, and the words in the residual part are all collected

into one class. Thus the total numbers of classes are 1000, 500, and 250.

For the simulating annealing algorithm, the parameters (To, Tf, O, max, Imax) are set to (1,
107, 0.9, 20000,5000) empirically. It takes at most 48.0 CPU hours on a Pentium 166
machine with 128M ram. For the k-means-style approach, the time complexity is larger. For

the case of 1000 classes, we need 5 days for 10 iterations.

Table 1 show perplexity values for simulating annealing approach and k-means-style
approach in second phase. The results show that the performance was improved after second

phase process.

class number 250 - 500 1000
Simulating Annealing " 538.326 469951 412,632 -
k-means-style algorithm 513.094 - 450.246 392.211

Table 1. Perplexity measures of class-based bigram language model

5.3 Combined Bi gram Language Model

The combined bigram language models discussed in section 2 are gcneratéd by combining
word-based bigram model and class-based bigram models that have 250, 500, 1000 classes

respectively. The perplexity values with no truncation are shown in the table 2.

Class number 250 500 1000 Word-Bigram
Parameter number 60,030 216,270 620,087 2,540,137
Perplexity value 291.724 292.260 294.523 307.641

Table 2. Perplexity measure of combined bigram and word bigram language model

Note that combined bigram language model with 1000 classed is not the best. Inversely,

the combined language model with 250 classes is better than the other two models. Since our
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language model structure is as HMM that contains a null-state path for not only unseen events
but also observed events, there will be an overestimation problem if class number is too large.

Therefore it still exists a problem to choose the best class number.
5.4 Truncation on Word Bigram Models with Constant Threshold

We truncate the bigram entries that their counts are smaller than a given threshold and then
calculate the perplexity values for word bigram model. The experimental results are shown in

table 3.

Word bigram model
threshold Total number of perplexity value
__parameters

2 541,014 346.461
3 387,483 363.109
4 300,430 378.260
5 245,734 391.455
6 207,909 403.767
8 . 158,931 424919
10 128,077 444307
20 63,753 515.61

Table 3. Parameter number and perplexity value for word bigram models with constant threshold

5.5 Truncation on Word and Combined Language Models Using Kullback-Leibler Distance

We truncate the bigram entries on both word-based and combined language models by
Kullback-Leibler distance criterion. The entry numbers for both models are near the result of -

constant threshold. The parameter numbers and perplexity values are shown in table 4.

Word bigram model combined bigram model
Total number of perplexity Total number of | ~ perplexity

parameters value parameters value
541,011 347339 540,992 315.706
387,468 362.261 387,480 326.210
300,425 375.658 300,424 335.350
245,731 387.655 245,733 344157
207,909 398.966 207,909 352.622
158,931 417.654 158,930 367.882
128,076 434.089 128,077 383.165
63,753 496.737 63,752 485.330

Table 4. Parameter number and perplexity value for word and combined bigram models with dynamic threshold determmed
by Kssullback-Leibler distance where class number is 250.
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Comparing table 4 with table 3, using Kullback-Leibler distance criterion to determine
thresholds for all words will be better than constant threshold under the same number of
parameters, especially when the total number of truncated entries is large. Besides, the
combined language model is better than other two models. The perplexity of combined

model is about less than 10% of word model.
6. Conclusion

In this paper, we have present the combined word-based and class-based language model
within backoff framework. Our experiments show that this combined language model is better
than conventional n-gram language models. Besides, for a pfactical system, the number of
parameters in a language model can not be too much. We develop a truncation algorithm based
on Kullback-Leibler distance criterion that show that the resulted model will outperform the
model truncated by constant threshold. Finally, in order to get a good trade-off between
complexity and performance, we show that the truncation on combined word-based and class-

based n-gram language model using Kullback-Leibler distance criterion will have better results.
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