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Abstract

This paper presents a phoneme-to-text conversion system for Chinese language using long-distance
language modeling. First of all, we employ extended bigrams (Huang 1993) of window size d to capture
the long-distance dependent relations in Chinese language, in which d bigram tables are estimated
independently from the training data for distance 1 to d. Each bigram table is associated with a mixture
weight, which can be optimized based on the held-out data using deleted interpolation algorithm (Ney
1994). The system then performs the tree-trellis search (Soong 1991) to generate N-best sentence
hypotheses, and integrates these extended bigram probabilities at sentence level. In our experiments, we
generate 200 best sentence hypotheses and the integration of long-distance bigram reduces the error rate
by about 11% as compared with word bigram language model only. Secondly, to reduce the number of
parameters, we merge the extended bigram tables from distance 2 to d to form a single long-distance
bigram table, disregarding the influence caused by different distances. Since the model éomplexity is
significantly reduced, we derive a very efficient stack decoding algorithm for the integration of this
augmented long-distance information. Experiments show that the error rate remains the same as that of d

extended bigrams using N-best search algorithm, while the search efficiency is significantly. improved.

1. Introduction

It has been studied intensively for many years to find good approaches to input Chinese
characters, for which standard keyboard is not well- suited. Technologies including Speech
Recognition, Hand-Writing Recognition, Optical Character Recognition (OCR) have been
adopted for this task, aiming to provide users with very efficient and natural ways to input

Chinese characters. However, these systems are not prevailing mainly because special hardware
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is required or the technologies are not mature enough to be accepted by the users. Keyboard
input methods are still the most widely used ones. There are tens of different methods for the
input of Chinese using keyboard. In this paper, we confine ourselves to deriving good models
and search algorithms for the phoneme-to-text conversion task, éonverting the input tonal
syllable sequence into Chinese characters. These syllables are composed of sequences of
phonemes from the standard phoneme set (97, %, I'l, T, etc.) and 5 tones. Each phoneme
and tone is associated with a key stroke. In Chinese language, a large portion of syllables have
tens of homonym characters, and some of them even have more than a hundred. The goal of
this system is therefore to automatically pick the right one from the homonym set as accurate as
possible.

There are a lot of related researches being explored in this topic. Among them, ;%%
(Kuo 1995) and GOING (Hsu 1994) are probably the most noticeable ones. ;£ system uses

a rule-based and statistic-based hybrid method to this problem. Morphological rules, word
length heuristics, and syntactic and semantic connection tables are applied to enhance the
accuracy. In GOING system, Semantic Pattern Matching based approach is adopted, which
requires linguistic experts to derive a lot of templates at different levels for Chinese language.
Since some templates can model Chinese language at phrase or sentence level, GOING system
has been one of the systems that successfully handle the long-distance dependent relations in
Chinese language. Instead of deriving costly templates and rules, here we propose a completely
statistical approach to the integration of long-distance language modeling. We first apply the
- current language processing technology of Golden Mandarin (III) (Wang 1997) speech
recognizer to solve the phonetic Chinese input problem as our baseline system, and then

integrate long-distance Markov language model to enhance the accuracy.

Markov source language model has been widely adopted and proven very effective in
mahy language processing tasks, such as speech recognition and machine translation. Given a
word sequence W, , =w;,w;,,..,w,, the language model probability for this sentence is

Pr(W, ) = fIIPr(WI.IWM_I) (1)

To robustly estimate the probabilities and reduce the number of parameters, n-gram language

model assume the probability for the current word w, depends only on its previous n-1 words

/4

I-n+l,1-1"

Equation (1) thus becomes
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In Golden Mandarin (III), we use n equals to 2, namely bigram, which turns out to be a good
tradeoff between model complexity and performance. However, bigram fails to model the
dependency for words with distance longer than 2, and this kind of dependent relations can be
found quite frequently in many cases. Some examples are listed below. In these example , each
sentence has been segmented properly into the correspc_)nding word sequence, and words
underlined are assumed mutually dependent. _

Example 1: ¢ T — {8 47k &) % (takea comfortable bath)

Example 2: 4k &8 &#& }E,_S‘i (according to this regulation)

Example3: — & % & /v jt %4 (alovely little spotted cat)

Given the phoneme sequences of these examples, n-gram with small » fails to convert them to
their corresponding Chinese characters correctly. In the first example, Golden Mandarin (IIT)
will convert the last word to another homonym “# (morning)”, since it has higher probability
than the correct one “/%& (bath)”. It will never be correctly converted unless the system takes
into consideration the verb at the begin of the sentence “7 (take)”. Similarly in example 2 and
3, “4& (according to)” will be converted to “— (one)” and “#& (indefinite article for animal)”
replaced by “ % (indefinite article for equipment)” if only bigram is applied.

To remedy these errors, our approach first use extended bigrams of window size d to
capture the long-distance dependency. Unlike bigram language model that can be integrated
efficiently by dynamic programming algorithm, long-distance model can only be integrated at
sentence level by using algorithms such as N-_best search. In this task, large N is necessary to.
avoid missing the global optimum. We use N=200 in our experiments, and the integration of
extended bigrams reduces the error rate by about 11% as compared with word bigram language
model only. Secondly, we merge these extended bigram tables from distance 2 to d to reduce
the number of parameters, ‘and derive a very efficient stack decoder to integrate this augmented
long-distance model. Experiments show that the performance is significantly improved without
degrading the accuracy. On a Pentium-Pro 200 MHz machine, the processing speed can be as
" high as 60 characters per second after fully optimizing the implementation.

The rest of this paper is organized as follows. Next section describes our baseline system :

language processing module of Golden Mandarin (IIT) using word bigram. Section 3 describes
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the training and estimation procedure of the extended bigrams adopted in our system, and also
briefly describes the N-best search algorithm for the integration of these bigram tables. In
Section 4, we smooth the long-distance information by merging the extended bigram tables
from distance 2 to d, and derive a stack decoder for the integration of the merged long-distance
model. In section 5 we show our experimental results for the algorithms and models described -

in previous sections, and conclude our remarks in section 6.

2. Baseline System : Language Processor of Golden Mandarin (I1I)

Our baseline system is the language processor of Golden Mandarin (III) speech recognizer. The
input to this module is a syllable lattice, with which many confusing syllable candidates are
included for each speech segment. For the phoneme-to-text conversion task, only one syllable is
present at each segment. The architecture for the phoneme-to-text conversion baseline system
is shown in Figure 1. Given the input phoneme sequence, a word lattice is first constructed by
exhaustively looking up the lexicon for all possible word hypotheses, in which all possible
transcriptions for this input phoneme sequence are encompassed. Figure 2 gives an éxample of

the partial word lattice for the input phoneme sequence
“T—V HhEe —/ KEs PATA, HEs TLV”

A word lattice is a Direct Acyclic -Graph (DAG) in which each node represents a word, and
each arc represents a possible word transition. Each arc is associated with a bigram transition
probability which can be estimated automatically from the training data. Word lattice is a very
compact representation for all possible sentence hypotheses. Each path from the sentence start
to the sentencé end is a possible transcription. In this example, the best transcription for this

syllable sequence is “%& T — 18 SRR R (take a comfortable bath), corresponding to

the path connected by the thick lines in Figure 2.

: Word
Lexicon Bigram

v

- Phoneme sequence | Word Lattice | Word lattice Dynamic Word sequence
Construction Programming -

Figure 1. The architecture of the baseline system
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TV HEe —s (Es PA TA/ HEe PyV

T 18 Fli B ¥
] % / \ EoAA P2 =
/ Sentence
Sentence % # 47 AR i % end
start '
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Figure 2. An example of a partial word lattice and corresponding the best path

The language model of the baseline system is word bigram. Given a path in the lattice with

word sequence W, , =wj,W;,..,w,, the word bigram probability for this word seqauence is
Pr(W} ) = Pr(wy )x Pr(wy lwy )x ... Pr(w, 1w, ) (3)

The bigram probability can be estimated using Maximal Likelihood Approach to maximize the
total probability of the training data. Howev:er, for testing data, it may result in zero probability
for word pairs not present in the training data, hence unreasonable zero probability for the
whole testing data. This happens when the available training data is sparse, and can be solved by
back-off to unigrams for unseen bigrams. Our back-off scheme is adopted from BBN’s

approach (Placeway 1993). The bigram probability for word pair w;w; is
Pr(w;lw ;) = Pr(w;lw ; )+ Pr(w; 1w ;) )
and

Count (w ;w; )
Count (w ; )+ Branch(w g )

Pr( wilw;)= for Count(ww;) > 0 (5

Branch(w ;)
Count (w ; )+ Branch(w ;)

Pr(w;lw;)= xPr(w;)  otherwise (6)

where Branch(w) is the branch factor, number of distinct succeeding words, of w found in the
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training data. In equation (5), denominator is enlarged by its branch factor, resulting in a smaller
probability for the trained word pairs. This lost probability is then distributed to all possible
word pairs as their back-off bigram probabilities, and the distribution is proportional to their

unigram probabilities Pr(w,) of the current words, as described in equation (6). The back-off
coefficient at equation (6) is roughly proportional to the branch factor Branch(w ;) of the
previous word w,.There is a physical meaning for this back-off coefficient. If the branch factor
of the previous word v, is large, then the probability that word w, can transit to w, should be

large, too, even though this transition was not found in the training data. If this branch factor is
small, then the untrained transition probability should be small as well, since it is quite

determined to transit to some specific words only.

After constructing the word lattice, the search engine will extract the best path maximize
equation (3). The search engine of the baseline system contains a forward dynamic
programming pass and a backtrace pass. In the forward pass, for each node w the system will

compute the best partial path score from sentence start to w, «,, using the following equation.
@, =max{a, +logPr(wlu)} (7
u

where u are all words in the lattice immediately preceding w. For each word w, the best
preceding word 7 is recorded. In this way, the best path can be obtained by tracing 7 from the

sentence end all the way to sentence start in the backward pass.

3. Extended Bigrams and N-best Search Algorithm

In a traditional stochastic language model, the current word is predicted based on the preceding
word (bigram) or the preceding n-1 words (n-gram). This is because most of the relevant
syntactic information can reasohably be expected to lie in the immediate past. But some
information, syntactic as well as semantic, may still exist in the more distant past, though use of
n-gram with large n will increase the number of free parameters exponentially. To reduce the
number of free parameters and maintain the modeling capacity, we use a set of extended
bigrams (Huang 1993) for different distances to approximate the Markov source language

model probability, as shown in the following equation :
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d
Pr(w; W, ) = 20 A Pry(w; 1w, ) ®)

=1

where Pr,(w, lw,_, ) is the probability that predicts word w, based on the word w,_, . In our

system, we use d=5, assuming the long-distance dependency can be ignored for distance

greater than 5. In equation (8), each distance is associated with a mixture weight A, , which can

be optimized based on the held-out data using deleted interpolation algorithm (Ney 1994) as

described in the following equation.

1& A Pr(wlw, )
N 7=] 4 )
2 A Pr(wlw,_ )

k=1

) _
A =

©)

where  is the size of the held-out data. The above equation re-estimate the next set of mixture

weights A{™ based on the current one A{’. The iteration continues until the change of all the
AL can be neglected. Also, to fully utilize the available training data, we subdivide them into 5 |

parts, and re-estimate A, in a leave-one-out manner (Duda 1973).

The search algorithm follows the tree-trellis N-best search paradigm (Soong 1991) which
contains 2 stages. In the first stage, the system éfﬁciently generates N-best sentence hypotheses
using word bigram only, and in the second stage re-scores these hypotheses using more
complex models such as extended bigrams, as shown in Figure 3. The one with the highest
sentence probability is then hypothesized as the conversion result. The search algorithm for
generating N-best sentence hypotheses using word bigram from the word lattice is briefly

summarized in the following steps :

1. Perform forward dynamic programming algorithm and compute ¢, using equation
(7) for every word w in the word lattice '

Push initial hypothesis which contains sentence end node only into the stack
Pop the best hypothesis /# from the stack. Hypothesis 4 is started with word w
Go To 9 if & 1s a complete sentence and N-best sentences have been generated

Go To 3 if 4 a complete sentence and N-best sentences have not been generated

AN

For each word v precedes w, extend hypothesis / to word v, create a new hypothesis
h’, and compute the score for 4’

B(a") = pB(h)+]ogPr(wly) (10)
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score(B')=a,+p(4") (11)
7. Push all the new hypotheses 4’ into the stack
8. Gotostep 3
9. Return the N-best sentence hypotheses
To ensure the giobal optimum is included in the N-best sentence hypotheses, large N is usually
required. In our experiments , we observe N=200 is sufficient enough for our test data, and N
larger than 200 does not yield higher accuracy. The final system with extended bigram results in |

95.3% conversion accuracy, representing a 11% error reduction as compared with word bigram

only.
Word Bigram : Extended Bigram
Syllable v ) N-Best l
sequence N-Best Search hypotheses Re-Scoring Best sotteice
S

Figure 3. N-Best Search paradigm for the phoneme-to-text conversion using extended bigrams

4. Merged Long-distance Bigram and Stack Decoder

In the pfevious section we su'cbessfully- integrate t_he extended bigra-ms._ into our phoneme-to-

. text conversion sjstem. HoWex}er, the proposed model and algoﬁthm are not practicai for real .‘
applications. The drawbacks are twofold. Firstly, it requires d bigram tablés to store the long-
distance information for extended bi‘granis with window size d. In our case d equals 'tb 5, which
means the storage requirement is increased by 400% but only achieves 11% error reduction.
Secondly, for the N-best search algorith'm,' it takes a lot of efforts to geﬁerate many hypotheses
and re-scores them, resulting a very inefficient system. On a Pentium-Pro 200 MHz machine,

the system can only convert 22 Chinese characters per second.

To reduce the storage requirement, we merge the extended bigram tables from distance 2
to d to form a single long-distance bigram, diminishing the influence brought by different

distances. More precisely, we assume the current word w,, in addition to the its immediate

previous word w,_, can also be predicted by any wordin W, ; , =w, ,w, 5..w, , with equal
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possibility. In our model, the probability of word w, given its past word sequence

Witicg SWiWig W g4 18
Pr(w W, 4) = (1= )Pr(w, iw,_ )+ Ay Pry(w, IV, i) (12)

where Pr(ele) is the word bigram probability, Pr,(ele) the long-distance bigram probability.
The long-distance model weight A, can, again, be optimized using equation (9). For simplicity
in the search algorithm, Pr,(ele) is approximated by

1-d
Pry(w; W, ;-4 ) = max Pr,,(w; Iw; ) (13)
J=i-

Here we assume the long-distance dependency relies-on the relations of word pairs. To avoid
over-smoothing the parameters by merging many bigram tables, we select only those word pairs
having high mutual information within a window based on the approaches proposed by Church
and Hanks in (Church 1988). This concept is similar to that of Trigger Pair language model
using Maximal Entropy Approach (Rosenfeld 1996). The differences are that we _ére dealing
with long-distance relations at sentence level instead of document level in (Rosenfeld 1996) for
adaptation, and using conventional Maximum Likelihood Approach to estimate our long-

distance model parameters.

To integrated thisv merged model, we employ a stack decoder which contains a forward
dynamic programming pass and a backward stack decoding pass. Unlike N-best search in the
previous section, the long-distance probability are integrated earlier in the forward pass, so as
to provide a ‘m'_ore accurate heuristics for the backward stack decoder. When performing the
forward dynamic programming, each‘node will examine all ité, preceding, but not adjacent,
nodes in the lattice for long-distance bigram pairs, pick the maximal one, and integrate it into

the computation of «. The corresponding equation for computing ¢, for word w is as

follows :

a, =(1-A,)xmaq a, +log(wlu)]+ A, x maxlog Pr (wlv) (14)

where u are words preceding and adjacent to w and v are words preceding but not adjacent to w
in the lattice. This step seems very time-consuming, since for every node we need to examine all

its preceding nodes in the lattice. Fortunately, because the number of long-distance bigram pairs
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are quite limited after the selection based on mutual information, we can use a very simple
bookkeeping technique to efficiently identify all possible pairs having long-distance relations in

the lattice.

In the backward pass, the stack decoder use these « in each nodes for heuristic functions.
Since the computation of « in equation (14) are always over-estimated, the stack decoder is
A* admissible, and the first decoded sentence is guaranteed to be the global optimum. The

search algorithm is summarized in the following steps :

Perform dynamic programming algorithm and compute « using equation (14)

Push initial hypothesis containing only sentence end into the stack

1
2
3. Pop the best hypothesis 4 from stack. Hypothesis 4 is started with word w
4. If his a complete path, go to step 8

5

For each word v immediately precedes w, extend hypothesis » to word v, create a
new hypothesis /2’ , and compute S(/4’) using equation (1), (12) and (13)

score(h')=a,+B(h") (15)
6. Push all the new hypotheses 4’ into the stack
7. Gotostep 3 '

8. Return the decoded sentence

In our system, we use DEAP data structure (Horowitz 1991) to implement the stack, which
gives O(logN) complexity for the push aﬁd pop operations. The stack size is limited, and
hypotheses ranked lower than this limit is truncated permanently. Experiments show that the
accuracy is almost the same as that of extended bigram and N-best search, while both storage
requirement and performance are significantly improved. On a Pentium-Pro 200 MHz machine,

this system can convert about 60 Chinese characters per second in average.

5. Experimental Results

In our experiments, the language model training data are ail newspapers provided by CKIP of
Academia Sinica, containing about 12 million words. The lexicon contains about 42K words in
which all Chinese characters are included as single-character words. Before training the
language model, sentences from the training data are first segmented into word sequences in a
data-driven, iterative manner. The algorithm is initialized by using a longest match strategy, and

at each iteration aligns sentences against word entries in the lexicon based on bigram criterion,
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aiming to reduce the perplexity for the training data. After several iterations , the iowest
perplexity we obtained for these training data is 156. The test data contains about 110K
Chinese characters, 80% of them are from newspaper, and the rest 20% are from other domains
including prose, tourism, sports, art and ecology, etc. The perplexity for the test data is 382.
Using our baseline system with word bigram only, we obtain 94.7% character accuracy for the

test data, and the conversion speed is about 126 Chinese characters per second.

For extended bigrams, we use d=5 and assume the effect of long-distance dependency can
be ignored for distance greater than 5. After optimized by deleted interpolation algorithm, the

mixture weight corresponding to each distance is shown in the following table :

;"l /12 /13 24 /?“S

068 | 0.16 0.08 0.03 0.05

Table 1. Mixture weight corresponding to different distances

In this table we can observe the weight for d=1 takes the lion’s share, indicating a large portion
of context dependency have been modeled by bigram. The mixture weight for d=2 is decent.
Modeling context dependency for distance longer than 1 should be beneficial. The experimental
results using extended bigrams and N-best search are shown in Table 2, where tne accuracy and
conversion speed with respect to different numbefs of hypotheses are listed. In this table, the
accuracy is saturated when the number of hypbtheses exceeds 200 The best result obtained is
95.3%, representing a ll%_'error reduction as compared with 94.7% of the baseline system.

The speed for this system is about 22 characters per second.

N 1 10 20 30 50 | 100 | 200 | 300 | 400

Accuracy (%) | 94.7 | 94.8.[95.1 [ 95.1 | 95.1 | 952 | 95.3 | 953 | 953

"Speed (char./sec) | 126 | 112 | 94 | 75 | 49 | 38 | 22 | 12 | 8

Table 2. Experimental results for the extended bigrams : Character accuracy and conversion
speed with respect to different N in N-best search

For the merged long-distance bigram, we truncate long-distance pairs based on mutual
information criterion. Using stack decoder with stack size 16K, the accuracy obtained given

different numbers of parameters are shown in Table 3.
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Numberof | 15x | 20K | 50K |100K | 200K | 400K | 800K
long-distance pairs

Accuracy (%) 949 1949 ] 951|953 ]953]952]948

Table 3. Experimental results for the merged long-distance bigram : Character accuracy with
respect to different numbers of long-distance bigram pairs

It can be found that the accuracy is increased as the number of long-distance pairs proceeds
from 10K to 100K, but is degraded when more than 200K long-distance pairs are included in
the language model. Merging these extended bigram tables can result in inaccurate parameter
estimation, and therefore introduce some noise information. However, truncation based on
mutual information helps to remove these noisy information, and turns out to be a good
industrial tradeoff for the consideration of efficiency. In this experiment, the best result obtained
is 95.3%, which is the same as that of extended bigram and N-best search. The search efficiency,
however, is significantly improved. We achieve 60 characters per second for the conversion

speed.

6. Conclusion

Modeling lohg-distance dependency reduces the error rate reasonably for the Chinese
phonenie—to-text conversion task. In this paper, we present two models for the long-distance
context dependency, extended bigrams and merged long-distance bigram. Two approaches are
also presented for the infegration of these long-distance models, N-best search and stack
decoder. Tree-trellis based N-best search can integrate extended bigram language models, but
need to generate many sentence hypotheses to cover the global optimum. Besides, huge storagé
is required for the extended bigram models. In order té reduce the storage requirement, we
merge all the extended bigram tables from distance 2 to d to form a single long-distance bigram :
table, and derive a very efficient stack decoder for the integfation of this merged long-distance
model. Expériments show that the'integration of long-distance information reduces error rate
by 11%. Using stack decoder and merged long-distance bigrams, the system can convert 60

Chinese characters per second.
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