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Abstract ‘
An improved statistical model is proposed in this paper for extracting compound words from a text

corpus. Traditional terminology extraction methods rely heavily on simple filtering-and-thresholding
methods, which are unable to minimize the error counts objectively. Therefore, a method for minimizing the
error counts is very desirable. In this paper, an improved statistical model is developed to integrate parts of
speech information as well as other frequently used word association metrics to jointly optimize the
extraction tasks. The features are modelled with a multivariate Gaussian mixture for handling the
inter-feature correlations properly. With a training (resp. testing) corpus of 20715 (resp. 2301) sentences, the
weighted precision & recall (WPR) can achieve about 84% for bigram compounds, and 86% for trigram

compounds. The F-measure performances are about 82% for bigrams and 84% for trigrams.

1. Compound Word Extraction Problems
1.1 Motivation

Compound words are very common in technical manuals. Including such technical terms in the system
dictionary beforehand normally improves the performance of an NLP system significantly. In a machine
translation system, for instance, the translation quality will be greatly improved if such unknown compounds
are identified and included before the translation process begins. On the other hand, if a compound is not in
the dictionary, it might be translated incorrectly [Chen 88]. For example, the Chinese translation of ‘green
house’ is not the composite of the Chinese translations of ‘green’ and ‘house’. Furthermore, the number of
parsing ambiguities will also increase due to the large number of possible parts of speech combinations for the
individual words if such new compounds are unregistered. It will then reduce the accuracy rate in
disambiguation, degrade the processing or translation quality and increase the brocessing time.

In addition, for some NLP tasks, such as machine translation, a computer-translated manual is usually
concurrently processed by several poéteditors in practical operations. Therefore, maintaining the consistency
of the translated terminologies among different post-editors is very important. If all the terminologies can be
entered into the dictionary beforehand, the consistency can be automatically maintained, the translation
quality can be greatly improved, and lots of post-editing time and consistency maintenance cost can be saved.

Since compounds are rather productive and new compounds are created from day to day, it is impossible
to exhaustively store all compounds in a dictionary. Furthermore, identifying the compounds by human

inspection is too costly and time-consuming for a large input text. Therefore, spotting and updating such
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terminologies before translation without much human effort is important; an automatic and quantitative tool
for extracting compounds from the text is thus seriously required.
1.2 Technical Problems in Previous Works

The extraction problem can be modeled as a two-class classification problem, in which potential
compound candidates are classified into either the compound class or the non-compound class. Many English
or Chinese extraction issues had been addressed in the literature [Church 90, Calzolari 90, Bourigault 92, Wu
93, Smadja 93, Su 94b, Tung 94, Chang 95, Wang 95, Smadja 96]. Our focus will be on statistical methods
for English compound word extraction, since statistical approaches have many advantages for large-scale
systems in automatic training, domain adaptation, systematic improvement, and low maintenance cost.

Most statistical approaches [Church 90, Smadja 93, Tung 94, Wang 95,. Smadja 96] for terminology
extraction rely on word association metrics, such as frequency [Wang 95, Smadja 96], mutual information
[Church 90], dice metrics [Smadja 93] and entropy [Tung 94] to identify whether a group of words is a
potential compound (or highly associated collocate). The mechanisms for applying such features are often
based on simple filtering-and-thresholding statistical tests; a compound candidate will be filtered out (or
classified as non-compound) if its association metric is below a threshold; when multiple features are
available, the features are usually applied one-by-one independently with different heuristically determined
thresholds. Such approaches can be implemented easily, and encouraging results were reported in various
works. However, there are several technical problems with such filtering approaches.

First of all, most simple word association features, such as frequency and mutual information, can only
indicate whether an n-gram (i.e., a group of n words) is highly associated; however, high association does not
always implies that it is a corﬁpound, since there are other syntactic (and even semantic) constraints which
will also produce highly associated n-grams. For instance, the word pair "is a" has sufficiently high frequency
of occurrence and high mutual information. Nevertheless, it is not a compound word since such a construct is
produced due to syntactic reasons. Many long collocates extractable by such filtering methods are also of this
category [Smadja 96]. Therefore, many highly associated non-compound n—,grams' might be mis-recognized
as compounds.

Although it is known that syntactic information is useful in resolving such problems, there are few works
for integrating high level syntactic or semantic features, such as parts of speech, with known word association
metrics in a simple and effective way. A part of speech related metric is therefore proposed in this paper to
formulate the syntactic constraints among the constituents of potential compound candidates. Such
integration between word association metrics and syhtactic constraints in a uniform formulation is important,
since syntactic constraints are closely related to the generation of the compounds, and it is desirable to apply
simple statistical tests based on such features, instead of using complicated syntactic processing.

Second, since the association features are often applied independently for filtering even with multiple
features available, it is impossible to jointly use all discrimination information to acquire the best system
performance. For instance, by filtering out low frequency candidates and then filtering out candidates with
low mutual information, we may filter out low frequency candidates which actually have high mutual
information. If the filtering mechanism is based on both frequency and mutual information, the system per-
formance is expected to be better. In fact, it is well known that the performance is usually improved if

multiple features are jointly considered, instead of using a single feature or applying multiple features
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independently. Therefore, what is really important is an automatic approach which could combine all
available features for acquiring the best performance in the extraction task.

However, several factors must be carefully considered in order to enjoy the discrimination information
provided by multiple association features. For instance, many features proposed in the literatures are highly
correlated. Therefore, the correlations among the association features must be included into the statistical
model in order to acquire the best achievable performance. In this work, we will therefore use (a mixture of)
multivariate Gaussian density functions to incorporate the effects of the inter-feature correlation.
Furthermore, it is desirable to use only the most discriminative features and reject features that are either
non-discriminative or redundant with respect to other more discriminative features when combining the
features. In this paper we therefore propose an integrated method, which select the most appropriate features
automatically, for combining a set of useful features. In particular, optimization based on frequency, mutual
information, dice metric, contextual entropy and parts of speech information will be surveyed.

To sum up, current terminology extraction researches do not fully exploit techniques for (1) integrating'
high level syntactic information in a simple and effective way, (2) éombining useful features jointly for
discrimination. To attack such problems, the parts of speech information, which encodes syntactic
constraints, is integrated with several known word association metrics in one unified scoring mechanism. The
correlations among the features are taken into consideration in designing the classifier. A feature selection
mechanism is used for incorporating as many discriminative and non-redundant features as possible so that
the terminology extraction task is based on the joint observations of the most discriminative features. A

-minimum error classifier, based on likelihood ratio test, is used as the basis for minimizing the classification
error in the extraction task.

In the following sections, we will therefore focus on the general issues to design a good minimum error
classifier, which jointly considers a set of association features for achieving minimum classification error.
The simulation result shows that the proposed approach gives promising results. The tool is also observed to
be useful in cooperating with a machine translation system [Chen 91].

2. Optimal Classifier Design
2.1 Optimization Criteria in Compound Extraction

In a compound retrieval task, it is desirable to recover from the corpus as many real candidates as
possible; in addition, the extracted compound word list should contains as little ‘false alarm’ (i.e., incorrect
candidates) as possible. The ability to extract real candidates in the corpus is defined in terms of the recall
rate, which is the percentage of real compounds that are extracted to the compound list by the classifier; on the

other hand, the ability to exclude false alarm from the extracted compound list is defined in terms of the
precision rate, which is the percentage of real compounds in the extracted compound list. Let 7,5 be the
number of class-o. input tokens which are classified as class-B (o, B = 1 for compound, and 2 for
non-compound, respectively), and, let 7, represent the number of real compounds in the corpus. The

precision p and recall r are defined as follows:

Ry
ny+ Ry
Ry atl
nyptngp ny
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The precision and recall rates are, in many cases, two contradictory performance indices especially for
simple filtering approaches. When one of the performance index is raised, another index might degrade. To
make fair comparison in performance, a joint performance indice or criterion function O(p,r) of the precision
(p) and recall (r) rates is usually used to evaluate the system performance, instead of evaluating precision or
recall alone. In the following sections, the weighted precision & recall (WPR) and the F-measure (FM) will
be adopted as the optimization criteria. The weighted precision and recall (WPR), which reflects the average
of these two indices, is proposed here as the weighting sum of the precision and recall rates:

WPR(w,iw,) = w,*p+w, *r (w,+w, = 1)
where W ,, W, are weighting factors for precision and recall, respectively. The F-measure (FM) [Appelt 93,

Hirschman 95, Hobbs 96], defined as follows, is another joint performance metric whicﬁ allows
lexicographers to weight precision and recall differently: )
(B*+1)pr

where B encodes user preference on precision or recall. When B is close to 0 (i.e., FM is close to p), the

FM@B) =

lexicographer prefers the system with higher precision; when P is large, the lexicographer prefers the system

with higher recall. We will use Wp=Wr=0.5 and P=1, throughout this work, which means that no particular

preference over precision or recall is imposed. If B=1, FM reduces to

2‘3_ rr , which appreciates the balance

between precision and recall in the sense that equal precision and recall is most preferred if p + r is identical.

With the optimization criteria defined, our goal is to design an optimal classifier which could maximize the
WPR and FM.
2.2 Task Definition for Optimal Classifier Design

Conventional extraction methods tend to use a list of word association related constraints for filtering
out candidates of low likelihood based on certain word association metrics and empirical thresholds for the
metrics. Unfortunately, there are no simple rules, other than trial-and-error, for such methods to acquire the
optimal thresholds for acquiring the required precision or recall performance. In general, when the precision
is raised by using high thresholds the recall degrades, and vice versa. The lexicographers could only use such
tools by guessing. It is very difficult to automatically fit the lexicographers’ preference on the
precision-vs-recall performance. Such difficulty can be resolved if we can design an optimal classifier for
automatically maximizing the performance criterion, such as WPR or FM, which encode user preference in
the pre-specified weights.

The extraction problem can be regarded as a two-class classification problem in which each n-gram
candidate is assigned either the compound label or the non-compound label based on the feature vector x
associated with the candidate. To design a compound extractor is therefore equivalent to designing a
discrimination function g(x;A) (which is capable of scoring how likely a candidate comes from the compound
class), and using a set of decision rules to decide which n-gram candidate is a compound. (The symbol A
refers to the parameters of the discrimination function, such as distributional means or variances of the
‘probability density functions used in a statistical model.)

Different discrimination functions and decision rules will classify the input candidates differently, and
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thus have different performance in terms of a performance criterion. Designing an optimal classifier for a
particular criterion function is therefore equivalent to finding a partition of the feature space into the decision
regions for the compound class and non-compound class; feature vectors belonging to the compound decision
regions are classified as compound, otherwise, they are classified as non-compound. Our main task is
therefore to design an optimal classifier (or equivalently the corresponding discrimination function g*o(p’r)
(x;A)) which could maximize an objective criterion function O(p,r) of the precision (p) and recall (r) rates.
2.3 Optimal Classifier for Precision and Recall Optimization

Given the underlying distributions, f(xIC) and f(xIC), of the feature vectors x in the compound class
(C) and non-compound class (C), itis possible to estimate the error probabilities associated with any decision
region (or equivalently, any threshold, decision rules or statistical tests which could be used to define such a
region) fora class. Therefore, it is possible to design the optimal classifier for some simple criterion functions
if the feature distribution is very simple. In fact, procedures for designing optimal classifiers, such as the
minimum error classifier, had been well studied in the speech, communication and pattern recognition
communities [Devijver 82, Juang 92]. For example, the decision rule that minimizes the expected probability
of classification error turns out to be a likelihood ratio test in the 2-class classification case [Devijver 82].

However, since WPR and FM are non-linear functions of classification errors (i.e., a non-linear function
of ny, and n,y), it is hard to find a simple analytical discrimination function g*O(P r)(X;A) for testing whether

an n-gram is a compound, such that the joint performance O(p,r) is maximum. Therefore, a two stage
_optimization scheme is proposed here in order to optimize a user specified criterion function of precision and

recall, while retaining a small error rate. In the first stage, a minimum error classifier, g* (x;A), (which

satisfies the minimum error criterion) is used as the base classifier to minimize the error rate (e) of
classificati_on. In the second stage, a learning method is applied, starting from the minimum error status, to
optimize a user-specified criterion function of the recall and precision rates by adjusting the parameters of the
classifier according to mis-classified instances. o

Figure 1 shows the block diagram for training such a classifier. In the training flow, the n-grams in the
training text corpus are extracted and manually inspected; those real compounds within the text corpus are
used to construct a compound dictionary. The feature vectors associated with the n-grams are divided into the

compound and non-compound classes according to the compound dictionary. The parameters for the
compound class (A ) and non-compound class (Az) are estimated from the distributions of the two classes.

The training n-grams are then classified by the minimum error classifier. The result is compared with the
compound dictionary afterward. Those misclassified n-grams are then used to adjust the parameters
iteratively so that the criterion function is maximized. _

The first optimization stage serves to determine the appropriate thresholds (or, more precisely, the
decision boundaries) in the feature space so that as little miscldssification is attained as possible. In this way,
the precision and recall are expected to be improved indirectly. The second stage, on the other hand, adjusts
the parameters of the classifier to achieve a local optimum of the joint precision-recall performance, starting
from the minimum error status, instead of optimizing the precision and recall from arbitrary decision
boundary. In other words, we are not trying to find some simple analytical discrimination function which are

capable of identifying the optimal decision boundaries for precision-recall optimization. Instead, we first
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establish reasonably optimized decision boundaries by using the simple discrimination function for the
minimum error classifier, and then modify the decision boundaries by changing the parameters of the

distribution functions of the minimum error classifier to maximize the joint precision-recall performance.

{ Text Corpus > Feature Value ,ﬁ
‘ n-grams Estimation .
X ( Compound |
’ Feature Vector for ‘ Dictionary . 1

| Compounds/non-Compounds

v

Parameter |
Minimum|Error Estimator (VQ)
1 . l . v T
Classifiery  + T Peecion
go(x:A) 207 |[e—— A = {AAz} | Recall |
: | Optimization ||

Classifier Parameters for

- Compound/non-Compound Classes

word list ‘

|

Figure 1 Supervised Training of Classifier Parameters for Precision-Recall Maximization.

The minimum error classifier is adopted at the first optimization stage since reducing classification
error, in general, will improve precision and recall. In addition, it is relatively easy to implement a minimum
error classifier [Devijver 82, Juang 92], and it is believed that a better local optimum could be found near the

minimum error status. To see the relationship between the error rate and the precision/recall rates, first note

that p = (1 + n21/n“)_1 and r = (1 + nlz/n“)_l. The precision and recall can thus be improved by

reducing ", and 7j,, respectively. Since, the error rate is propotional to 7, + 1, , the minimum error rate

(i.e., minimum 7,5+ n,; ) status is a good initial point for further optimizing the precision, recall of WPR
performance. As far as F-measure is concerned, it is easy to prove that maximizing the F-measure is equi-
valent to minimizing (n12+ ”21)/ ny; ([Chang 97b].) Therefore, it is also appropriate for using minimum
error as the criterion of the first optimization stage. In fact, if we plot the WPR (or FM) graph as a function
of ny; and 7, moving toward minimum error tends to have higher WPR (or FM) in general. ‘

There are several issues related to the design of the minimum error classifier. As mentioned pr;ei}iously,
it is desirable to use features that encode syntactic information, such as parts of speech, in the feature set to
reject highly associated non-compound candidates; it is also desirable to use multiple features jointly to enjoy

all the information contained in the features. However, the feature correlation among the features must be

c_arefully handled in order to model the distributions of the features properly. Redundant or
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non-discriminative features should be removed when combining the features. Furthermore, the parameters
must be estimated in a way as to minimize the classification errors. These issues will be addressed in the
following sections. Due to the length limitation, we will focus ourselves on the designing issues of the
minimum error classifier in this paper. Interested readers on the precision-recall optimization techniques at
the second learning stage are referred to [Chang 97b].
3. The Minimum Error Classifier for Compound Extraction

A likelihood ratio test method, which was proved to be the most powerful test [Papoulis 90], can be used
as the baseline classifier to achieve minimum classification error if the distributions of the feature vectors of
the two classes are known. In fact, it implicitly implies the use of the optimal thresholds (or decision
boundaries) which minimizes the misclassification costs in Bayesian decision points of view [Devijver 82] if
the cost for each misclassification is unity. In other words, it minimizes the probability of errors for two
classes of known distributions.

To identify whether an n-gram is a compound or a non-compound, each n-gram is associated with a

feature vector x , it is then judged to see whether it is more likely to be generated from the compound class

C or the non-compound class ‘C based on the following (log-)likelihood ratio:
_ f(RIC)P(C)
fIC)P(C)
g(x) 2log A = log f(x|C)—log f(x|C)+logP(C)—logP(C),
where P(C) and P(C) are the prior probabilities of the two classes and f(x|C) (resp. f(x|C)) is the

probability density function of the feature vector x in the compc;und (resp. non-compound) class. If the
likelihood ratio A =1 (i.e., the discrimination function g(x), or the log-likelihood ratio, log A>0 ) for an
n-gram, then it is classified as a compound; otherwise, it is classified as a non-compound. The model
parameters for the two classes are referred to as A, and Az. They correspond to the means, variances, prior

probabilities, etc. (depending how the density functions are formulated), in the above formula.
‘4. Features for Compound Extraction
 The performance upper bound of the classifier depends on the distribution of the input feature vector
X . Many statistical features are used in various applications. In particular, the normalized frequency (NF)
[Wu 93, Su 94b] of an n-gram, the mutual information (MI) [Church 90, Su 91, Chang 95] among the words
within an n-gram, the dice metric (D) [Smadja 96, Chang 97b] among the words of the n-gram, the contextual
entropy (H) [Tung 94, Chang 95, Chang 97a] of the neighboring words of the n-grams, are used in the
classification task. (The definitions of such association features and their extension are given in the
Appendix.) In addition, we will introduce a part of speech discrimination metric (Dpos) in this paper; it is
proposed in this paper to encode syntactic information so that syntactic information could be integrated with
other simple word association metrics in a simple and effective way, without resorting to complicated

syntactic processing. When all such features are used, we will have the following discrimination function:

f(NF.MI,D,H,D
f(NF,MI,D,H,D

IC)P(C)
IC)P(C)

pos

g(x) = log

pos’

Since such features might contain redundant information, only a subset of the features will be automatically
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~ selected with a feature selection mechanism for classification.
4.1 POS Discrimination (Dpos)

Part of speech (POS) is an important syntactic feature for éxtracting compounds. For instance, many
compound words are associated with the part of speech patterns: {noun, noun}, {adjective, noun} (for
bigrams) or {noun, noun, noun}, {adjective, noun, noun} (for trigrams). Previous frameworks [Wu 93, Su
94b] show that simple word association metrics are useful for extracting highly associated compound words.
However, many non-compound n-grams, like ‘is a’, which have high association and high frequency of
occurrence are also recognized as compounds. Such n-grams could be rejected if syntactic information is
available.

One way to use the POS inforination is to measure how similarly the candidate and the compound class
are tagged with different POS patterns. For instance, if the compound words are tagged as {noun, noun} in
80% of the cases and as {adjective, noun} in 20% of cases, then a candidate which was tagged as {noun,
noun} and {adjective, noun} in most of the cases is very likely to be a compound. In this paper, we thus

suggest the following POS Discrimination metric for measuring the similarity or distance between a

compound word candidate x; and the compound word class, in terms of their tagged POS patterns. The
discrimination metric [Blahut 87] is defined as follows in terms of the distribution P ij of the POS‘ patterns

of the candidate and the distribution P; of the POS patterns of the compound class:

-
Dpas(xi;{Pij}’{ Pl}) = %‘Pulog——i);j—
P, = P(jlw;), P; = P(j)

tj ]

where P;; is the probability for the ith.compound word candidate (or n-gram) to be tagged with the part of
speech pattern j (such as a {noun, noun} tag pair) and P; isthe prbbability for any compound word to be
tagged as j.

Intuitively, the log-likelihood ratio of P;; over P‘,-' indicates how close or similar (in terms of
probability of occurrence) the particular POS pattern j is, in comparison with the probability for the whole

class. If the two probabilities are nearly identical, thatis, P, = Pj , the log-likelihood ratio will be close

ij
to zero. Otherwise, the ‘distance’ will be large. The probability P j preceding the log-likelihood ratio is a
weighting factor indicating how often such a ‘distance’ is observed; the discrimination metric is thus the

expected distance between the two probability distributions of POS tagging patterns. When a compound word
candidate has exactly the same distribution as the distribution for the compound class (P;; = P; forall j

), the ‘distance’ will be exactly zero. Therefore, we can gather the POS distributions of the n-grams, and use
the distributions of such a distance measure in the two classes to see whether the candidate comes from the
compound class.

Since this metric assumes continuous values, the distribution of this metric can be expressed in a
parametric form and the parameters of the probability density functions can be estimated from a training

corpus. We can thus easily incorporate such POS information for identifying compound terminologies with
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a few such parameters in a very simple and effective way.
5. Experiment Environments

To investigate the various models, a corpus of 23,016 sentences (188,267 words) is prepared. The corpus
is collected from a technical manual for cars. It is first processed by a morphological analyzer to normalize
every word into its stem form, instead of its surface form, to reduce the number of possible variants. Since
parts of speech are used as a comﬁound extraction feature, the text is tagged by a discrimination oriented
probabilistic lexical tagger [Lin 92, Lin 95] in advance. The corpus is then divided into two parts; 90% of the
sentences (i.e., 20,715 sentences, 169,237 words) are used as the training corpus, and the remaining 10%
(2,301 sentences, 19,030 words) are used as the testing set.

According to our experience in machine translation, most interested compounds are of length 2 or 3.
Longer compounds only constitute a small fraction of interested compounds; and such long compounds can
be extended by slightly modifying the definition for some association metrics. Hence, only bigrams and
trigrams compounds are invgstigated in the current work. The corpus is therefore scanned from left to right
with the window sizes 2 and 3. The lists of bigrams and trigrams thus acquired then form the lists of
compound candidates of interest. ’

All bigrams and trigrams are submitted to three independent lexicographers of a local MT-based service
translation center. The lexicographers inspect all n-grams and decide which n-grams should be considered as
compounds and entered into the compound dictionary for the MT system. When there is inconsistency among
their choices, the lexicographers will negotiate for a compromise. The final candidates are then used as the
standard for evaluating the performance of the proposed compound extraction method. Since all the bigrams
and trigrams are scanned for qualification before any experiment is conducted, the performance will
reasonably reflect the performance against human judgement, the criterion for including an n-gram or not will

thus not be biased by the algorithm designer’s intention to have high performance.
The parameters for the compound model A, and non-compound model Az are evaluated from the

above-mentioned training corpus, which is tagged with parts of speech and normalized into stem forms. The

-n-grams in the training corpus are further divided into two classes. The compound class comprises the
n-grams in the compound dictionary, which was constructed by the lexicographers as described above; and
the non-compound class consists of the remaining n-grams which are not in the compound dictionary.
However, n-grams that occur only once or twice are excluded from consideration because such n-grams rarely
introduce inconsistency and the estimated feature values are highly unreliable.

For each class, the means and standard deviations of the mutual information, normalized frequency, dice
metric, contextual entropy and POS discrimination are estimated. The outlier entries (outside the range of 3
standard deviations from the mean) are discarded before estimating the model parameters so that the
estimated parameters are more robust.

6. Baseline Models

To achieve minimum error classification, several factors must be carefully considered, including the
features to be used, the model for formulating the underlying probability density functions of the two-classes,
and the estimation to the parameters of the density functions. In the simplest form, only one feature is used
for classification, and the probability density function is assumed to be a normal distribution. We then have

the following baseline models:
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_ A(xIC)P(C)
A(x,C)P(C)
where X ; refers to any of the features among normalized frequency (NF), mutual information (MI), dice

metric (D), contextual entropy (H) and POS discrimination (Dpos). Such baseline models are used to evaluate
the performance for the individual feature; they will also be compared with other more complicated models
to justify our proposals.

The following table gives the performance using only one feature. The shaded areas highlight the error
rate performance, which is the optimization criterion. at the current stage. The features are arranged in

increasing order of error rates for bigrams.

Training Set Testing Set
Feature Dpos | MI H. | NF D | Dpos | MI H NF D
Recall 11.09| 00 | 4.87 | 6.01 |12.33| 8.07 | 0.0 | 1.35 | 2.69 | 36.77
Precision || 100.0 | * [30.92|30.69 |37.07| 1000 * [23.08
%‘fsrgﬁe ‘ErmorRate | 11.03 ] 12.41 | 13.15 | 13472120 23.06 [ 2378 [ 23.68 [ 2079
WPR(1:1) |[5554| * [17.90]18.35(24.70|54.03| * |12.22|18.01|47.26
F-measure | 19.97| * 8.41 |10.05|1850( 1493 | * 2.55 | 498 |44.93 |
Feature Dpos | MI H NF D | Dpos | MI H NF D
Recall 00 | 00 [1399|1020( 7.58 || 0.0 | 0.0 [12.07| 3.45 |39.66
Precision * * 142.11(22.58 (2549 * * 158.33]66.67|41.07
?];'ags‘;ri‘;e | Brror Rate || 495 | 495 | 521 | 6.18 | 567 | 11.51 11,51 | 11.11 | 11.31 [ 1349
WPR(1:1) * * 128.05]|16.39 [ 16.54| * * 13520 | 35.06 | 40.37
F-measure * * 21.00|14.05[11.69] * * 120.00 | 6.56 [40.35

Table 1 Error Rate Performance Using only One Feature
(*: undefined, i.e., all candidates are classified as non- compound ).

The error rates are in the ranges of 11.03%-13.47% and 20.79%-23.78% for bigrams in the training set
and the testing set respectively; for 3-grams the error rates are in the ranges of 4.95%-6.18% (training set) and
11.11%-13.49% (testing set); such performance corresponds to accuracy rates of 87-89% (76-79%) and
94-95% (87-89%) in classifying the bigram and trigram training (testing) set. Using the minimum error
classifier thus achieves moderately low error rates both for the training set and testing set, without resorting
to arbitrary thresholding.

Initially, however, the precision and recall are not sufficiently high except for the bigram POS
discrimination case since the classifier tends to recognize szt n-grams (or even all n-grams) as
non-compounds. The 0% recalls and undefined precisions (designated as ‘*’) in the table are the results of
classifying all entries as non-compound as suggested by the assumed normal distributions. Such initial
precisions and recalls are not a critical problem at the current stage where minimization of error counts is the
major goal. It will be shown in later sections that, by incorporating more features, the error rates will be
further reduced and the precision and recall will be indirectly improved toward high precision and moderate

recall.

There are several problems to achieve the minimum error criterion by using the above baseline models.
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First of all, various features are not used jointly to supplement each other so as to reduce the error rate.
Second, the distributions are not necessarily normal for some features. (For instance, the normalized
frequency is more likely to ‘have an exponential distribution. Fortunately, the comparison between the
baseline models and other more complicated models in the current work will not be affected significantly,
since we actually get almost the same error rates for such features by using the exponential distribution
assumption.) To resolve such problems, we will propose some methods in the following sections to improve
the error rate performance further so that the first optimization stage is better conducted.

7. Feature Integration and Optimal Feature Selection

7.1 Integration of the Features

While each of the above features provides moderately good initial error rate performance in the above
baseline models, it is known that jointly considering all the features would, in general, achieve better per-
formance. It is also known that step-by-step filtering approaches, which were commonly used in traditional
extraction tasks, tend to raise the precision rate at the cost of lowing the recall, since a filtering module may
filter out potential candidates without using all available information; it is then not likely to acquire the global
optimal precision and recall achievable by using such features. Using all features jointly in one step for
optimizing the extraction task is thus emphasized here, instead of using the multiple features step-by-step in
multiple filtering modules.

However, increasing the number of features may increase the modeling complexity of the classifier
[Devijver 82] without increasing much performance, since some of the features might be highly correlated,
and thus much redundant information will be contained in the whole set of features. Therefore, an automatic
mechanism for choosing the right features is proposed here, so that only a subset of the most discriminative
features are used for efficient computation without losing discrimination power.

Since our goal is to minimize the error rate performance, our strategy for finding the best feature set is
to combine the current feature set (which is initially empty) with each feature not in the current feature set for
conducting the likelihood ratio test. The feature which enable the classifier to minimize the error rate per-
formance, when jointly considered with the current set of optimal features, is then added to the optimal set of
features. This process starts from the baseline models and stopped when the inclusion of new feature do not
improve the training set performance further. This strategy can be characterized as a kind of sequential
forward selection (SFS) in the literature [Devijver 82].

7.2 Optimization Using Independent Normal Model

The performance of the classifier will also depend on how good the density function of the features fits
the real training data, in addition to the feature set being used. In the simplest model, the joint probability of
the features is approximated as the product of the probabilities for the individual features (by assuming that
they are mutually independent), and each feature is assumed to be normally distributed. The corresponding
log-likelihood ratio then becomes:

D
logh = E,Jlogf(x,-lC)—logf(x,lé)] +[logP(C) ~1ogP(C)]
where the summation is taken over all features being used, and D is the dimension of the feature vector. In
other words, all features are assumed to be independent in such a simplified model. With such assumptions,

uncorrelated (complementary) features are likely to be included earlier than highly correlated features since



features with smaller correlation coefficients tend to be closer to the independent assumption and are likely
to have better performance. The mechanism can thus select the most useful and complementary features
automatically and leave redundant features unused. Table 2 shows the performances for using different
numbers of features, which are selected, in sequence, by the automatic feature selection method déscribed in
the previous section, using independent normal assumption.

By applying the feature selection mechanism over all the features, the Dpos (discrimination), H
(entropy), MI (mutual information), NF (normalized frequenéy) and D (dice) features are selected in
sequence for bigrams; on the other hand, the best feature sequencé for trigrams, under the current model, is
Dpos, MI, H, D, NF. The SFS strategy results in the following error rate performance, where the features are
arranged in the same order as the sequence in the feature selection process. For instance, the second column
of the bigram performance table shows that the error rate is 8.07% when the entropy feature, H, is added to the

feature set with other preceding features (in this case, the discrimination feature, Dpos).

Training Set Testing Set

NF | D |[Dpos| H | MI | NF | D
35.34 8.07 | 3543 | 60.54 | 33.63 | 50.67
71.04 100.0 | 89.77 | 92.47 | 82.42 .

Feature Sequence Dpos| H
Recall 11.09 | 40.41
100.0 | 88.04

Precision

WPR(1:1) [55.54 | 64.23 | 66.00 | 53.19 | 40.49 | 54.04 | 62.60 | 76.51 | 58.03 | 58.57
F-measure | 19.97 | 55.39 | 64.03 | 47.20 | 38.40 || 14.93 | 50.81 | 73.17 | 47.77 | 57.50
Feature Sequence Dpos | MI H D NF | Dpos | MI H D NF
Recall 0.0 |14.29
Precision * 100.0
WPR(1:1) * 157.15|52.26(3822|30.04|| * |58.6265.75|53.08 |47.87
F-measure | * |25.01|45.55(36.20(29.56| * |29.41(59.09 |52.80 |47.86

Table 2 Error rate performances of the independent normal model.

The shaded areas highlight the error rate performance, which is the optimization criterion at the current
stage. The parts of speech discﬁrﬂination is selected first in the two feature sequences, since the parts of
speech information provide the best error rate performance among all using the normal assumptioh. For the
bigram case, the error rate is reduced by 26.8% (from 1 1.03% to 8.07) when the contextual entropy
information, H, is included. The inclusion of the the mutual information further reduces the error rate per-
formance to 7.61%, corresponding to a reduction of 5.7% of the remaining errors. For trigrams, the error rates
are improved slightly from 4.95% to 4.24% to 3.97 when the second and the third features (i.e., MI and H) are
included, corresponding to the error reduction rates of 14% and 6%, respectively.

In addition to the improvement in error rate performance, the extra features do improve the precision and
recall performance (WPR or FM, or both) as well. Although the error rate is only slightly improved (and the
system retains essentially the same low error rates), the precision and recall performance is shifted away from
the initial low precesion and recall status significantly. Such observations partially justify our two-stage
arguments to optimize the precision and recall performance starting from a minimum error status.

However, it fails to further improve the error rate performance as the feature dimension increases
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further, since the mutually independent assumption for the joint density function becomes harder and harder
to be true as the feature dimension increases. For instance, the dice metric (D) and mutual information (MI)
has a high correlation coefficient of about 0.6 in bigrams and 0.4 in trigrams. Another example would be the
NF (normalized frequency) and H (contextual entropy), which have correlation coefficients of about 0.4-0.5
in the bigram and trigram data. The problem is resolved by considering the feature correlation and using
better density functions to approximate the joint distribution as follows.
7.3 Model Refinement with Mixture of Gaussian Density Function

There are two sources of errors for including new features in the previous model, which assumes that
the features are mutually independent and normally distributed. First, the independent assumption might not
be true for some feature pairs. In fact, the correlation matrices for the features indicate that some of the
features are highly correlated. Therefore, it is desirable to use a multivariate normal (i.e., Gaussian)
distribution [Roussas 73, Rabiner 93], which encode feature correlations with a covariance matrix, to
consider the effects of the correlations among the features. Second, the distributions of some features are not
similar to a normal distribution. Therefore, using a mixture of the multivariate normal distribution would be
a better way to fit the density functions. By increasing the number of mixtures, it is possible, in theory, to fit
the shapes-of the real distributions better, and thus have better estimation on the likelihoods of the joint feature
vectors.

7.3.1 Using Multivariate Gaussian with Fixed Number of Mixtures

To fit the training data into a mixture of multivariate Gaussian distribution, we must estimate the means
and co-variances of each mixture or cluster. The clusters are acquired using a standard vector quantization
(VQ) technique [Duda 73]. For a K-mixture distribution, the feature vectors are clustered into K clusters; the
mean vectors, covariance matrices and prior probabilities of the clusters are then estimated from the
clustering results.

Since the number of mixtures for the underlying distributions of the joint features of various dimensions
are not known, we fixed the number of mixtures (K) throughout the whole feature selection process to find the
best performance. The cases for fixing K=1, 2, 3 are tried in order to find the best number of mixtures to use.
The best results for 2-grams and 3-grams are given in the Tables 3-4. The comparison ‘between the
independent normal model and the K-mixture multivariate normal model (using fixed K throughout the

feature selection process) is summarized in Table 5.

Training Set Testing Set

Feature Sequence Dpos | H MI NF D | Dpos| H Ml NF D
Recall 69.84 [ 71.50 | 71.61 | 50.67 [ 51.71 || 69.06 | 71.30 | 69.96 | 67.26

Precision | 100.0 | 97.87 | 88.93 | 62.93 | 45.53 | 100.0 | 95.78 | 93.41 | 80.65

2-gram | ErrorRate | 3.74 | 373 | 463 | 9.82 | 1367) 7.14 | 7.34 | 807 | 11.27

WPR(1:1) | 84.92 | 84.69 | 80.27 | 56.80 | 48.62 | 84.53 | 83.54 | 81.68 | 73.95

F-measure |82.24 | 82.63 | 79.34 | 56.14 | 48.42 || 81.70 | 81.75 | 80.00 | 73.34 | 49.53

Table 3 The Best Bigram Performance of the Minimum Error Rate Classifier
Using a 2-Mixture Multivariate Normal Density Function (K=2).



Feature Sequence Dpos | H MI D NF (Dpos| H MI D
Recall 63.27 | 68.22 | 67.06 | 51.90 | 54.23 || 75.86 | 74.14 | 74.14 | 36.21
Precision | 100.0 [ 95.12 | 90.91 | 80.91 | 39.08 || 100.0 | 97.73 | 95.56 | 95.45
3.gram | ErrorRate 1 : 299 ) S
WPR(1:1) | 81.63|81.67 | 78.98 | 66.40 | 46.65 || 87.93 | 85.93 | 84.85 | 65.83
F-measure | 77.50 | 79.45 | 77.18 | 63.24 | 45.43 || 86.27 | 84.32 | 83.50 | 52.50 | 39.64

Table 4 The Best Trigram Performance of the Minimum Error Rate Classifier
Using a 3-Mixture Multivariate Normal Density Function (K=3).

Training Set Testing Set

Model && Features P R | | WPR | FM P R | WPR | FM
|IN: Dpos+H
2 |IN: Dpos+H+MI

IN: Dpos+MI
3 |IN: Dpos+MI+H

100.0 {1429 | 4.
70.99 | 33.53 | 3.

Table 5 Comparison between Independent Normal (IN) Model and K-mixture Multivariate Normal (Mx)
Model. (2: 2-gram, 3: 3-gram, P: Precision, R: Recall, E: Error Rate, WPR: Weighted Preci_sion/Recall with
equal weights, FM: F-measure.)

For bigram compound word detection, the best (training set) error rate performance is found in Table 3
when Dpos (parts of speech discrimination) and H (contextual entropy) are used jointly using a 2-mixture
multivariate (bivariate) normal density function. The best feature sequence is identical to the normal
: iridependent model. In this case, the error rate, 3.73%, is only about 49% of the best normal independent
model (using Dpos, H and MI), whose eérror rate is 7.61%. The WPR is also sigriificantly improved from
66.00 to 84.69, and the FM from 64.03 to 82.63. The precision and recall for this case are 97.87% and
71.50%, respectively. : ‘

Trigram compound detection also acquires the best results by using Dpos and H, but with a 3-mixture
multivariate normal density function (Table 4). The error rate is 1.75% in this case, whicﬁ is only 44% of its
counterpart using the independent normal model, i.e., 3.97% (using' Dpos, MI and I). The results
demonstrates that using a mixture of multivariate normal density function to include the correlation and fit the
density function of the training data does reduce the error rate and improve the precision, recall, WPR and FM
significantly.

Again, the WPR and FM are, in general, improved whén the error rate is reduced. However, the tables
indicate that the error rates do not decrease monotonically as the number of features are increased for a given
K; the error rate decrease only for the first two or three features in the feature sequence. Besides, the error
rates do not decrease monotonically either when the number of mixtures increased when comparing the
performance for a specific number of features. There are several possibilities which make the fitting of the
training data to a K-mixture D-variate density function imperfect in the above process; the performance thus
is not monotonically increased with K or D [Chang 97b].

In particular, the number of mixtures for the underlying density function of the joint features may not
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be characterized by a small K when the number of features increases to some extent. In fact, it is known in
statistical pattern recognition community [Devijver 82] that when the number of features increases, the best
number of mixtures for modeling the joint distribution of the features, in general, will increase quickly. For
instance, two features, each having two normal mixtures, when considered jointly, may have as many as four
mixtures if they are independently distributed. The number of mixtures tends to grow exponentially with the
number of features in the worst cases. As a result, the real K may far exceed our searching range (K=1-3)
when new features are included.

7.3.2 Improvement by Searching for the Best Number of Mixtures ‘

The above identified problems in using a fixed number of mixtures throughout the whole feature
selection process indicates several ways to improve the error rate performance. The simplest way would be to
set an upper bound, Kmax, and tries all K <= Kmax during the feature selection process for each feature
dimension. We thus tries several Kmax and find the best K (K*) for such searching ranges. The following
table shows the results when Kmax=3.

The numbers in the parentheses indicate the best number of mixtures (K*) used. For instance, the
Dpos(.)-H(2) feature sequence means that a local optimal is found when Dpos and H are jointly considered

using 2-mixtures.

Training Set Testing Set
Feature Sequence Dpos(2) | H(2) | MI(3) (NF@3)| D(1) | Dpos | H MI NF D
Recall | 69.84 | 72.12 | 67.05 71,30 | 70.40 | 65.92 | 44.39

Precision 83.70
WPR(1:1) 75.37
F-measure 74.46

Feature Sequence
Recall

Precision

D(3)
51.90
80.91

3-gram ErrorRate 299 3 337 :
WPR(1:1) h 66.40 | 29.04 938485
F-measure | 77.51 | 7945 |77.19 | 63.24 | 28.34 32 | 83.50

Table 6 The Performance of the Minimum Error Rate Classifier
Using Multivariate Normal Density Function up to 3 Mixtures (Kmax=3).

Table 6 demonstrates that, by searching for the best K in [1, Kmax] for each feature difnension, the error
rate performance is always better than (or identical to) its counterpart in Tables 3-4 of the same number of
features. This justify our arguments that K must be searched for a local optimum instead of using a fixed
number of mixtures all the time.

Table 6, however, still do not show monotonic decreasing of the error rates when the number of features
are increased. In fact, the error rates no more decrease after the third feature is included, just like Tables 3-4.
The problem is that Kmax=3 is still too small to search for a better performance even with only 3 features. In
fact, we could further enlarge the searching range Kmax, and it is demonstrated in [Chang 97b] that the

training set error rates for any given number of features do decrease monotonically as the searching range [1,
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Kmax] is increased. We can thus expected that the error rate will decrease monotonically as the number of
features are increased if we allow a much larger searching ranges. In the current task, however, it is observed
that the best number of features even for 3 features are more than ten (i.e., K*>10). This would requires a very
lengthy time to converge. Furthermore, the features at the tail of the feature are highly correlated with features
at the front of the list, which means that they may provide little additional information once those features
selected earlier are used for classification. Impro{/ing the estimation of the density functions for including
such features thus would not likely to produce significant improvement. Therefore, compromise must be
taken between modeling complexity and computation costs.

With Kmax=3 and two features (in which the training set error rates are minimal), we actually have
testing set WPR performance of 84% (bigram) and 86% (trigram); the F-measures are about 82% and 84% for
bigram and trigram, respectively. _

Given the above error rate performance, it is still possible to further improve the error rate performance
and thus indirectly improve the precision and recall rate performance. However, such approaches do not
guarantee to get the best joint precision-recall performance, since the minimum error rate criterion,
eventually, is not equivalent to maximum precision-recall. Therefore, optimizing the precision and recall
performances by adjusting the parameters of the classifiers afterward is desirable. Such optimization issues
and the resultant improvement, however, is beyond the scope of the current paper. Interested readers are
referred to [Chang 97b].

8. Concluding Remarks

Most simple mechanisms for terminology extraction rely on trial-and-error to setup empifical thresholds
for cach available features, and use such features to filter out inappropriate candidates step-by-step using one
feature per step. Such simple filtering-and-thresholding approaches cannot automatically optimize a user
specified criterion function of precision and recall.  To resolve such optimization problems, a two-stage
optimization scheme is proposed. In the first stage, the system tries to reach minimum classification error to
optimize the precision and recall performance indirectly, by using a two-class classifier with a likelihood test
method. In the second stage, an adaptive learning method is then applied to directly optimize a criterion
function of precision and recall; such a criterion function can be pre-specified by a lexicographer based on the
preference over the precision and recall performance. Optimization through error rate minimization in the
first stage, in particular, is addressed in detail in this paper.

The method proposed in this paper integrates mutual information, normalized frequency, dice,
contextual entropy and part of speech information as the features for discriminating compounds and
non-compounds. The POS discrimination metric, in particular, is proposed in the current work for encoding
the syntactic constrains over possible compound candidate. Syntactic constraints can thus be easily
integrated quantitatively for jointly optimizing the system performance with other word association metrics.

To reach minimum error rate in the first optimization stage, all association features are jointly
considered so that all available information could be enjoyed by the system; an automatic feature selection
mechanism is applied so that only the most discriminative features are used to jointly qualify compound
candidates. Various models are used to fit the training data to various density functions so as to minimize the
system error rate. The correlations among the features are taken into account by including the correlation

matrices into the density functions, and the density functions are formulated using a mixture of multivariate
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Gaussian density functions so as to well characterize the distribution of the training data.

With a training (resp. testing) corpus of 20715 (resp. 2301) sentences sampled from technical manuals
about cars, the weighted precision & recall (WPR) using the proposed approach can achieve about 84% for
bigram compounds, and 86% for trigram compounds. The F-measure performances are about 82% for

bigrams and 84% for trigrams.

Appendix: Association Features for Two-Class Classification

1. Normalized Frequency (NF)

The normalized frequency for the j**

n-gram is defined as:
i=1
where f ; is the total number of occurrences of the ;*# n-gram in the corpus, and j_‘ is the average frequency

of all the entries. In other words, r; is the normalized frequency with respect to the average frequency ]_‘ .

2. Mutual Information (MI)
Mutual information is a measure of word association. It is the ratio between the joint probability for a

group of words to appear in the same n-gram window and the probabily for such words to occur in the same
window independently. The bigram mutual information /(x;y) is known as [Church 90]:

P s
I(x;y) = log, 7;%

where x and y are two words in the corpus. The mutual information of a trigram is defined as [Su 91]:

Pp(x,y,2) P(x,y,2)
[(xy.2) = logp sy = 108 B vy

P, = P(x)P(y)P(2)+ P(x)P(y,2) + P(x,y)P(2)
where Pp(x,y,z) = P(x,y,z) is the joint probability for x, y, z to appear jointly as a group of words in
a trigram window, and P ;(x,,z) is the probability for x, y, z to appear, independently, as a group by
chance. Note that the three product terms in P ;(X,y,z) correspond to three different ways in which the
constituents of the trigram appear in the same trigram window by chance; P ;( x,y,2) is the total probability

of the various possible combinations. In general, I(-) >>0 implies that the words in the n-gram are strongly
associated. Otherwise, their appearance as one group of words may be simply by chance.
3. Dice Metric (D)

The dice metric is commonly used in information retrieval tasks [Salton 83] for identifying closely -

related binary relations. The dice metric for a pair of words x, y is defined as follows [Smadja 96]
P(x=1,y=1)

[P(x=1)+P(y=1)]

DZ( x,)’) = 1
. 2
where x=1 and y=1 correspond to the events that x appears in the first place and y appears in the second place

of a bigram respectively. Intuitively, the dice metric is the likelihood ratio between the joint probability for
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two words (or events) to occur simultaneous and the average probability for each individual word (or event
to) occur in bigram pairs. Therefore, a high dice value tends to mean that x and y are highly associated.

We can also define the dice metric for triple relations following the same spirit in defining the 3-gram
mutual information. However, note that in defining the bigram dice metric, the joint probability
P(x=1,y=1) is normalized with respect to the average of the marginal probabilities, P(x =1) and
P(y =1), of the constituents instead of the product of the marginal probabilities (i.e., the probability of
indépendent occurrence). Therefore, we have three different ways to normalize the joint probability with
respect to the averages of the marginal constituent pfobabilities as follows:

P(x=1,yz=1) P(xy=1, z=1) P(x=1, y=1, z=1)

) , OF
SIP(x=1+Pyz=D] [P(xy=1)+P(z=D]  F[P(x=1)+P(y=1)+P(z=1)]

W)

where P(x=1,y=1,z=1) is the probability that x, y and z appear simultaneously in the first, second, and
third places of a trigram, P(xy=1) (ie., P(x=1,y=1)) is the probability that x and y appear

simultaneously in the first and second places of a trigram, and P(yz=1) (i.e,, P(y =1,z =1)) stands for the

pfobability that y and z appear in the second and third places of a trigram simultaneously. (Note that the first
two normalized metrics are simply the bigram dice metrics for [X, yz] and [xy, z], respectively.) If any of the
above three normalized association metrics is small, then the trigram is likely to belong to different words.
Therefore, we shall use the minimum of the three normalized likelihood ratios to indicate the association of

the trigram. The trigram dice metric is then defined as follows.

o T2P(x=ly=1lz=1) 2P(x=1y=1,z=1) 3P(x=1y=1,z=1) }
Dy(x.y,2) = mm[P(x=1)+P(yz=1)’P(xy=l)+P(z=1)’P(x=1)+P(y=1)+P(z=1)
L Plx=ly=1z=1)
= Pl,

P/ = max[%[P(x= D+ P(yz= 1)],%[P(xy= 1)+P(z=1)],%[ﬁ(x= D+ P(y =1)+P(z=1)]:|

The three terms in the bracket of the min operator indicate three different ways in which the three words
do not belong to the same lexical entry. The min operator means to choose the weakest evidence of
association for comparison with a threshold. If the weakest evidence of association is greater than a threshold,
then the trigram dice measure gives a strong indication that the three words belong to the same lexical entry.
Given the above definition, only those trigrams which appear simu'ltaneously with significantly higher
‘probability than the maximum probability of the various other combinations of the constituents are
considered compound candidates. ‘

4. Contextual Entropy (H)

The left and right contextual entropies [Tung 94] are defined respectively as follows:

H (x) = —ZPL(W,;x)logPL(W,;x)

HR(X)

—ZPR(X;W,;)IOgPR(X;Wi)

where W, is the left or right neighboring word of an n-gram x , and the probability that W ; appear as the left

or right neighbor of an n-gram x is represented as P L( w,-;x) and P R( x;w ,-), respectively. If the contextual
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entropy is large, which means that the neighbors of x are randomly distributed, then x tends to be a lexical
unit by itself; otherwise, x and W; are likely to appear simultaneously, which implies that x is unlikely to

be a lexical unit by itself. In the current work, we use the avérage of H; and Hpy as asingle feature instead

of using the two entropy metrics.
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