A Level-synchronous Approach to Ill-formed
Sentence Parsing

Yi-Chung Lin* and Keh-Yih Sut

* Advanced Technology Center, Computer and Communication Research Lab.,.
- Industrial Technology Research Institute, Hsinchu, Taiwan 310, R.O.C.
' lyc®eOsun3.ccl.irti.org.tw

t Department of Electrical Engineering, National Tsing-Hua University
Hsinchu, Taiwan 300, R.O.C.
kysu@bdc.com.tw

Abstract

In this pa,per, a Phrase-Level-Building (PLB) mechanism is proposed to parse ill-formed
sentences. - By decomposing a syntactic tree into phrase-levels, this mechanism regards the task
of parsing a sentence as a task of building the phrase-levels for the senf;ence. During parsing,
a level-synchronous scoring function is used to remove less likely phrase-levels. As a resulf,
instead of enumerating all possible parses, the PLB parser only generates the more likely ¢ree
groups, each of which is a set of partial parses jointly deriving the input. Whenever all active
phrase-levels in the search beam cannot be further reduced by any grammar rules, the process
of building phrase-levels is stopped and a probabilistic scoring function is used to select the best
tree group. With this approach, the best tree group is selected within a wider scope (i.e., the
whole sentence), and thus generates better result. Compared with the baseline system using
the stochastic context-free grammar and the “leftmost longest phrase first” heuristics (wlﬁch
operates in a narrow scope), the proposed PLB approach improves the precision of brackets in
the tree group from 69.37% to 79.49%. The recall of brackets is also improved from 78.73% to
81.39%.

1 Introduction

Natura1 language parsing plays an important role in various applications of natural lan-
guage processing (NLP), such as machine translation (Hutchins, 1986; Su and Chang,
1990), speech recognition (Su, Chiang, and Lin, 1990; Seneff, 1992; Meteer and Gish,

89

1994), and information extraction (Hobbs et 51., 1992; McDonald, 1992). It constructs
the syntaetic relationship of the words in an input sentence according to a given grammar
which formally specifies the allowable syntactic structures in the language. In real ap-
plications, to correctly parse a sentence, a parser often encounters the problems resulted
from the ambiguities in syntactic structure and the ill-formedness of the inputs.

Ambiguous syntactic structures are generated due to the implied ambiguity from lan-
guage usage or due to the over-generation from the given grammar. The number of
syntactic ambiguities of a sentence depends on the grammar. In practical applications, -
a sentence usually has thousands of ambiguities, and, on some occasions, the number of
ambiguities may be greater than millions. To give a correct interpretation for the input
sentence, a natural language parser must be able to choose the correct syntactic structure
from such ambiguities. In the past, many algorithms have been proposed to resolve this
problem and significant improvements have been observed (Briscoe and Carroll, 1993;
Chiang, Lin, and Su, 1995).

The other problem in natural language parsing is the ill-formedness of inputs. An
ill-formed sentence is the sentence that cannot be fitted into any well-formed syntactic
structures generated by the grammar. The major sources of ill-formed inputs are (1)
incorrect sentences resulted from typographical errors, OCR scanning etc, (2) unknown
words which are not contained by the system dictionary and (3) the insufficient coverage
of the grammar. Compared with the topic of syntactic disambiguation, the problem of
ill-formed inputs is less investigated and is often ignored in experiment works. However,
ill-formed inputs are inevitable in real applications because the incorrect sentences always
exist in the real world and it is impossible to limit users using only the predefined artificial
grammar and built-in vocabulary. Therefore, we focus on the problem of handling ill-
formed sentences here. |

In this paper, the Phrase-Level-Building (PLB) parsing mechanism is proposed to at-
tack the ambiguity problem of ill-formed inputs by consulting the contextual information.
In this framework, a parse tree is modeled as a set of phrase-levels. By decomposing a
syntactic tree into phrase-levels, this. mechanism regards the task of parsing a sentence
as a task of building the phrase-levels for the sentence. A phrase-level here refers a set
of terminals and nonterminals constructed at a particular snap shot of the parsing pro-

cess. For example, the parser may construct a noun phrase “[N3 Printer buffers]” and

90

a verb phrase “[V2 are made by DRAM]” for the sentence “Printer buffers are made by
DRAM”. In this case, the phrase-level at this particular time consists of “[N3 Printer
buffers]” and “[V2 are made by DRAM]”. During parsing, a fast level-synchronous
search mechanism is used to remove less likely phrase-levels. As a result, only the tree
groups with large likelihood values are generated by the PLB parser. Whenever all active
phrase-levels in the search beam cannot be further reduced by any grammar rules, the
process of building phrase-levels is stopped and a probabilistic scoring function is used to
select the best tree group. With this approach, the best tree group is selected within a
wider scope (i.e., the whole sentence), and thus generates better result. Compared with
the baseline system using the stochastic context-free grammar and the “leftmost longest
phrase first” heuristics (which operates in a narrow scope), the proposed PLB approach
improves the precision of brackets in the tree group from 69.37% to 79.49%. The recall
of brackets is also improved from 78.73% to 81.39%.

2 Baseline System

In many frameworks (Jensen, Miller, and Ravin, 1983; Mellish, 1989; Seneff, 1992; Hobbs
et al., 1992),‘ the heuristics of preferring the longest phrase is used alone or with other
system-dependent heuristics to further constraint the possible partial parses while parsing
the ill-formed sentences. On the other hand, in some systems, natural language sentences
are parsed by a left-corner parser (such as the LR parser), which uses the left context to
limit the search space. If the input sentence is ungrammatical, only the part@a.l parses
beginning at the left are Aavailable in these systems. Thus, these systems usually parse
the ill-formed input with the heuristics of selecting the leftmost longest phrase and then
starting to parse from the subsequent word again; To make a comparative study, a baseline
system is built to evaluate the performances of these two heuristic rules, lefimost longest
phrase first (LLF) and longest phrase first (LF), on handling ill-formed sen;ﬁences.

The baseline system consists of two components: a Cocke-Younger-Kasami (CYK)
parser and a partial parse assembler. According to the Chomsky normal form (CNF)
grammar (Chomsky, 1959), which is converted from a normal context-free grammar
(CFG), the CYK parser efficiently parse the ill-formed sentence to all its possible partial

parses; and every combination of the partial parses which covers all terminals will form a

91

tree group for the ill-formed sentence. Then, according to the adopted heuristic rule (LF
or LLF),‘the partial parses are assembled by the partial parse assembler, in which the
partial parses cover the same input words are ranked by the stochastic context-free gram-
mar (SCFQG) (Fujisaki et al., 1989; Ng and Tomita, 1991) with the probability parameters
smoothed by the Good-Turing method (Good, 1953; Katz, 1987).

2.1 Evaluation Method

The performances of different approaches are measured by three factors: bracket precision,
bracket recall and tree group accuracy. The parse tree in Figure 1 is used as an example

to explain how to calculate the precision and recall for brackets. This parse tree has nine

] /{\m

N* AUX Vi P* N3

n n be v

g =)
=]

Printer buffers are made by DRAM

Figure 1: An example of the parse tree.

brackets shown below,

[N* Printer], [N3 Printer buffers], [AUX are],
[Vi madel, [P byl, [N3 DRAM], [ADTC by DRAM],
[V2 are made by DRAM], [S Printer buffers are made by DRAM] .

Each of the brackets corresponds to the application of a production (shown in a left-to-

right depth-first traversal sequence).

The precision rate and the recall rate are computed as follows.

number of exactly matched brackets

bracket precision =
P number of brackets generated by parser

and
number of exactly matched brackets

bracket recall = .
number of brackets in correct parse trees

It should be noticed that in many applications the grammar of a system to be measured
may differ from the one used to parse the treebank (i.e. the database of correct parse
tree). Therefore, the labels of the brackets are not taken into account in combuting the
precision or recall of brackets in most cases. However, in this task, both the system and
the treebank use the same grammar. Thus, the labels of brackets are also taken into
account while computing the precision and recall for brackets. In other words, we will

regard two brackets as being “matched” only when they have the same label.

N AUX P N3
n . n be P n
Printer buffers are by DRAM

Figure 2: An example of the tree group.

Since the performance of a robust parser strongly depends on whether the parser can
accurately partition the inputs or not, the factors “fragment precision” and “fragment
recall” are also measured to reflect the performance of a robusf parser on partitioning
the ill-formed sentences. Here, fragments are the brackets which are not enclosed by
any other brackets, i.e. the outmost brackets. For example, for the ill-formed sentence

“Printer buffers are by DRAM” with the tree group in Figure 2, its three fragments are

[N3 Printer buffers], [AUX arel, [ADTC by DRAM].

93

On the other hand, since an ill-formed sentence cannot be parsed to a full parse tree,
the conventional parse tree accuracy is replaced with the tree group accuracy, which is

computed as

number ‘of exactly matched tree groups
number of sentences

tree group accuracy =

’

where “exactly matched tree groups” means that all the tree groups consist of the same

partial par_ses.

2.2 Simulation Results and Discussions

In the baseline system, 8,727 well-formed sentences, collected from computer manuals,
and their correct parse trees are used as the training data. The average length of these
sentences is about 13 words. All the training sentences are parsed by a context-free
grammar provided by the Behavior Design Corporation. This grammar consists of 29
terminals, 140 nonterminals and 1,013 production rules. To test the performance of the
baseline system, 200 ill-formed sentences and their tree groups are used as the testing

data. The average length of the testing sentences is about 13 words.

Bracket and its label Tree group Parsing
Precision Recall accuracy time
(%) (%) (%) (sec./sent.)
LF 67.98 77.54 16.5 2.16
LLF 69.37 78.73 16.5 2.16

Table 1: The performances of the baseline system with “longest phrase
first” (LF) and “leftmost longest phrase first” (LLF) heuristics.

Table 1 lists the simulation results with different heuristic rules. The precision and
recall of the labeled brackets are given in the first and second columns. T hé third column
shows the accuracy rate of tree group and the last column gives the average processing
time for parsing a sentence with a “SUN SPARC station ELC”. The experiment results
show that LLF slightly outperforms LF. This is because the LF, compared with the LLF
heuﬁstics, is more likely to grab the words belonging to the neighboring phrases. In

fact, due to preferring a larger partial parse than a smaller one, the LF heuristics always

94

Number of fragments

Precision Recall
Total Matched (%) (%)
Treebank 605 — — —
LF 331 160 48.3 26.5
LLF 355 179 50.4 29.6

Table 2: The performances of LLF and LF on fragments.

- partitions a sentence into as few fragments as possible. As shown in Table 2, the number
of fragments generated by using the LLF heuristics is only 355, which is much smaller
than that of the correct ‘fragments. But, the number of fragments generated by using
the LF heuristics is even smal}er. In other words, assembling partial parses with the LF
heuristics produces more inadequate partitions than with the LLF heuristics.

In fact, both the LLF and LF heuristic rules use rather coarse knowledge to assemble
partial parses. They always append the largest partial parses, either the leftmost one or
a global one, to the tree group, regardless of the context of the partial parse. Therefore,
the performance is not really satisfactory. In the next section, a Phrase-Level-Building
parsing algorithm is proposed to parse the ill-formed inputs by consulting more contextual

information.

3 PLB Parsing

In this section, a Phrase-Level-Building (PLB) parsing algorithm is proposed to parse an
ill-formed sentence using contextual information in wider scope. This algorithm treats
the parsing process as the procedure of building a set of phrase-levels. During parsing, a
fast level-synchronous search mechanism is used to cut down the search space.. Instead of
using heuristics, the final parse trees are ranked by a probabilistic scoring function which
makes use of the contextual information in the phrase-levels. The details of this algorithm

is described in the following sections.

95

3.1 Phrase-Levels of a Parse Tree

The basic idea of PLB parsing is to model a syntactic tree as a set of phrase-levels. Figure
3 is an example to show the relations between a syntactic tree and its phrase-levels. As
shown in this figure, the syntactic tree for the sentence “Printer buffers are made by

DRAM?” is decomposed into six phrase—levéls.' The lowest one, L;, corresponds to the input

Le— S
Ls—i V2
L4f>§ N3 _ ADTC
AN
CLy—i N¥ AUX Vi Px N3
L,—{ n n be v P n
L,—i Printer buffers “are made by DRAM |

Figure 3: A syntactic tree and its phrase-levels.

words. The second phrase-level consists of the parts-of-speech of the input words. The
other phrase-levels are sequences of grammar symbols (i.e. terminals and nonterminals)
which are obtained by applying some grammar ruleé on the grammar symbols of the
previous phrase-level. As a result, the parsing process can be considered as the procedure
of building the phrase-levels from L; to Lg in a bottom-_up manner.

Every phrase-level in a parse tree is obtained by applying some production rules on
the phrase-level immediately preceding the current phrase-level. In Figure 3 L3 has six
grammar symbols and is denoted as L3 = { N* n AUX V1 P* N3 }. By applying the
productions “N3 — N* n” and “ADTC — P* N3” on the leftmost two and the rightmost

two grammar symbols respectively, L3 is built up to L4, which has four grammar symbols

96

and is denoted as Ly = { N3 AUX V1 ADTC }. As a result, the parse tree in Figure 3 can
be represented as T = {L;,R;,Ly, Ry, ---,Ls,R5,Lg}, where R; denotes a sequence of
actions which are applied to build L; up to L;;;. For example, to build L4 from L3 in
Figure 3, R; contains two actions, which corresponds to applying the productions “N3
— N* n” and “ADTC — P* N3” on fhe leftmost two and the rightmost two grammar

symbols in Lj. The detailed definition of action will be described in the following section.

3.2 Scoring a Parse Tree

The likelihood of the parse tree of N phrase-levels can be derived as follows.

P(T=Ly,Ry, -+, Ly_1, Ry—1, Ly|ul) = HP (Ln R,_1|L,._1, 2, +, 1)
=2

(1)
~ z_=I]v12P(Li,R1--1|Li_1) =20 I P (Res L L),
In the above equation, the prior probability P (Ly) is introduced by applying the Bayesian
formula because P (L) is regarded as useful information to assemble partié.l parses to a
tree group. For example, the likelihood of the tree group in Figure 2 is considered related
to the likelihood of a nonterminal sequence “N3 AUX ADTC”.
Note that P (R;_1,L;—1|L;) = P (R;_1|L;) because L;_; is uniquely determined by
R;_; and L;. Therefore, the Equation 1 can be written as

P (Tjuf) = TP ®Ri-1|L:). (2)

Since P (L) is the prior probability of the input sentence, it is the same for all competing
parse trees and can be ignored without changing the ranking order of the likelihood values
of the competing parse trees. Suppose there are n symbols {4;,---, A,} in the phrase-
level Ly, the probability P (Ly) can be approximated by a trigréxh model as follows.

P(Ly=Ay,--,An) = [I P(AjlAy - 4-) =~ JI P(Ajl45-2,4i1) (3)

Aj€LN AjELy

97

The probability term P (R;_;|L;) in Equation (2) accounts for the actions which are
applied to build L; from L;_;. Alternatively, it could be regarded as the probability of
applying the rewriting rules in R;_; at the phrase-level L; from a top-down point of view.
Before deriving P (R;_;|L;), the notations for the actions of R;_; will be defined first.
Let {p1, -, pm} denote the m actions of R;_;. The j-th action p; will be denoted as
p;j = (r;t), where the rule argument r denotes the rule applied by p;; and the position
argument ¢t is the index of the reduced symbol in L;. For example, to build L4 from L;
in Figure 3, the production rules “ N3 — N* n ” and “ ADTC — P* N3 ” are applied
respectively. In this case, the corresponding actions are p; = (r = N3 — N* n;¢t = 1) '
and p; = (r = ADTC — P* N3;¢{ = 4). The reduced symbols are N3 and ADTC, which
are the 1st and 4th symbols in L4 respectively. Therefore, the position arguments ¢ of
these two actions are 1 and 4 respectively. Figure 4 gives a more clear illustration for the

relationship of those phrase-levels and actions.

i‘{‘ =E23 AUX V1 gTC % p=(N3 —Nxmn ;1)
SR = (ADTC — Px N3 ;
L, —{Nn AXVL pPsnz} P2 (ADICPxN3;4)

Figure 4: Two phrase-levels and their corresponding actions.

With these notations, the conditional probability P (R;_1|L;) can be derived as follows.
Let AT = {Ay,---, A,} denote the n symbols in L; and p* = {p1,- - -, p} denote the m
actions in R;_;. Then, the conditional probability P (R;_1|L;) can be approximated as

m .
P®RiafLi) = P(pAD) = [T P (pilel A7)~ T P(rl4t), (1)
i=1 : p=(rit) € Ri_y
where we assume that the action p; = (r;t) depends on the its local context A;_1,---, Agy1.
According to Equations (2)-(4), the likelihood of a parse tree is approximated as

follows.

N-1
P(le?)ﬁp(lLl) x II P(AjlAj2, 4-)x IT TI P(rlAi).)

Aj€Ly i=1 p=(r;it) € R;

98

Note that, in the above equation, the notation Ajf1’t'] denotes the sequence “A;i1s 1

A;ir14 Aip1441”, which represents the (¢ — 1)-th symbol, the ¢-th symbol and the (¢ + 1)-
th symbol in L;,; respectively. These three symbols are the local context of an action
p = (r;t) in R;. As mentioned before, the probability P (L;) can be ignored while
ranking the likelihoods of parse trees because it is the same for all competing parse trees.
Therefore, the parse tree scoring function Spr (-) is defined as follows.

N-1 ‘ :
Ser(Tlwf) = [P(Ajldin4)x TT TT P (rlAEd) (6)
Aj€ELN i=1 p=(r;it) € R;
The parameters in this scoring function are smoothed by the Good-Turing smoothing

method.

3.3 The PLB Parsing Mechanism

The PLB parser parses an input sentence as building the phrase-levels for the sentence.
The building process is illustrated in Figure 5, where we assume there are only two
ambiguities for every phrase-level candidate while expanding it up to a higher level. As
shown in Figure 5, up to the 4th phrase-level, there are eight different partial trees (i.e.
tree groups), each of which consists of four phrase-levels and is represented by one of
the eight paths. Since the number of paths increases exponentially, it is infeasible to
exhaustively travel all possible paths during parsing. Thus, the beam search is adopted
to find the most likely paths.

Candidates for L,—
Candidates for L3—
Candidates for L,—

Candidates for L; —

Figure 5: An illustration of building the phrase-levels up.

99

To efficiently carry out the beam search, we require a scoring function which can rank
the candidates of every phrase-level in very short time. However, the scoring function
in Equation (6) will spend too much computation time in ranking the candidates of a
phrase-level because all possible candidates of the phrase-level must be expanded and
scored. Thus, a time-saving scoring function is proposed in this section to rapidly find
the potential candidates of a phrase-level, and Equation (6) will be used only after the
final level is reached. In other words, two different scoring functions are used during the
parsing process and during the final best tree selection process, respectively.

To make the derivation of the scoring funcfion more clear, another representation form
of parse trees is introduced in the following. From another point of view, the process of
building a phrase-level L; up to a higher phrase-level L;; can be considered as segmenting
L; into segments and then transforming these segments into L;;;. For example, as shown
in Figure 3, building L3 = { N* n AUX V1 P* N3 } up to L, = { N3 AUX V1 ADTC }
is equivalent to segmenting Lj to four segments as { [N* n| [AUX] [V1] [P* N3] } and
then transforming these four segments to Ly = { N3 AUX V1 ADTC }. Figure 6 gives an
illustration of such segmentation and transformation, where the notation C3 denotes the
segmented phrase-level obtain by segmenting L3. Therefore, during parsing, a partial
tree of i phrase-levels can be represented by a sequence of _unsegme_nted and segmented

phrase-levels as {L1, C1, L3, Cz, - - -, Li—1, Ci—1, Li}.

L, N3 AUX V1 ADTC

‘ﬂ‘ transformation

Cs; [N* n] [AUX] [V1i] [P* N3]

ﬂ segmentation

L3 N*n AUX V1 P* N3

Figure 6: Parsing by 'segmentat‘ion and transformation.

Based on the above representation, the likelihood of a partial tree of 7 phrase-levels is

computed as

100

P (Ll, Cl, e aLi—l’ Ci—h L,'l'll)f')

; ; (7)
2 (]
= I P (Lj, Cj-1|Lj-1, Cjms, - -+, Ln) = [] P (L, Cj-1|Lj-s).
j=2 j=2
The approximation in the above equation is based on the assumption that the segmenta-
tion and transformation results (i.e. L; and C;_;) only depend on the previous phrase-
level (i.e. Lj—1). According to the above equation, the scoring function Sgs (-) is defined

as follows to evaluate the score of a partial tree of i-th phrase-levels, where the subscript

BS in Sgg () denotes “beam search”.

i
Sns (L1, Cr, - -+, Li1, Ci1, L) = Siex (L2, C1|L1) X [Soyn (L, Cj1|Lj1), (8)
Jj=3
where Siey (L, C1|L;) = P (L, Cq|L;) denotes the lexical score of the part-of-speech
sequence of Ly; Sgym (Lj, Cj—1|Lj—1) = P (Lj, Cj-1|Lj—1) denotes the syntactic score cor-
responding to the j-th phrase-level L;. The lexical and syntactic scores are provided by
“the lexical and syntactic modules respectively. The following sections give the details of

these two modules.

3.3.1 Lexical Module

The lexical module is basically a statistical taggér (Church, 1989) which finds the most
likely part-of-speech sequence for the input sentence. The likelihood of a part-of-speech
sequence L, for the input word setiuence L, is computed accqrding to the widely-used

trigram model (Church, 1989; Lin, Chiang, and Su, 1995) as follows.

P (Ly, Cy|Ly) = P (c}|w}) = P (w}|c}) P(Ci;
P (uw?)
1 2 | ©)
~ P (wl) jl;IlP(wﬂcj)P (cjlej—2s €-1) 5

where 7 is the number of words in the input sentence, w; is the j-th input word and c;
denotes the part-of-speech for the j-th input word. Since the probability P (w}) is a con-
stant, it can be ignored without changing the ranking order of the likelihood probabilities

101

of those competing part-of-speech sequeﬁces. Therefore, the scoring function Sie (<) for

the lexical module is defined as

Siex (L2, Ca|Ly) = ﬁ {P (wjlc;) P (cjlej-2,¢i-1)} (10)

=1

where w; is the j-th input words in L; and ¢; is the j-th part-of-speech in Ly.

3.3.2 Syntactic Module

The syntactic module is responsible for ranking the phrase-level candidates which are one
level higher than the given phrase-level. The likelihood of a phrase-level candidate L; for

the given phrase-level L;_; is computed as follows.

P (L;,C;i_1|L;—1) = P (L;|Ci—1, Lj—1) P(C;_1|Li—1) = P(Lilci-—l)P(Ci-—llLi—-l) . (11)

Let Ay,---, Ap be the n symbolsin L;_; and oy, - - -, a,;, be the m segments in C;_;. Then,
the first probability term on the right-hand side of Equation (11) is approximated as

m . m
P(Ci-a[Li1) = P (| A7) = [I P (esled %, 47) = II P (eslaj—2, 1)

(12)
~] P (;[Tr2 (@j-20j-1)) ,
=1
where 'ga (j—202j—1) denotes the rightmost two'symbols of aj_20s_1.
The last probability term on the right-hand side of Equation (11) is derived as
m . m
P(Li|Ci.1) = P(ATla) =TI P (Aj|A{_l,aT) ~ [I P (Ajlaj-1, @), @jp1)
7=1 j=1
) (19)
~ I P (Aj|ITr1 (@-1) , @), Tra (241))
j=1

where I'g; (:::) and T'y; (z) denote the the rightmost symbol and the leftmost symbol in z

respectively.

102

According to Equations (11)-(13), the syntactic scoring function Sgm (Ls, Ci-1|Li-1)

is defined as follows.

m
Seyn (Li; Cic1|Lim1) = I P (a5|Tr2 (@j-24-1)) P (Aj|Tre (1) » 0, Tra (@541)) 5 (14)
j=1 :
where «; is the j-th segment in C;_; and A; is the j-th symbol in L;. The parameters
used in Equation (10) (the lexical scoring function) and Equation (14) (the syntactic
scoring funciion) are smoothed by the Good-Turing smoothing method. Using this scoring
function, the syntactic module can rapidly rank the possible candidates for a given phrase-

level.

3.4 Simulation Results and Discussions

The PLB parsing mechanism uses the scoring function Sgs (-), Equation (8), to rapidly
rank tne candidates of phrase-levels and remove the less likely ones during constructing
the tree groups. Therefore, only the tree groups with high probability are generated.
Ther, the scoring function Spr (-), Equation (6), is used to select the best one from the
generated tree gi‘oupé. The performances of the PLB parsing in the testing set with
various beam widths are listed in Table 3. In general, the accuracy rates and the parsing
time increases while the beam width increases. The accuracy rates almost saturate after
the beam width exceeds 20. On the other hand, the parsing time rapidly increases when
the beam width is greater than 20. Therefore, the beam width of 20 is recommended for
the PLB parsing in this task.

The results of the baseline system with LLF heuristics (selecting the leftmost longest
phrase first) are also listed in Table 3 for comparison. It is obvious that the PLB approach
significantly outperforms the baseline system. Even using a very small beam width, the
PLB approach achieves better results than the baseline system in terms of the precision
and recall of brackets as well as on the accuracy rate of the whole tree group. Since
the search space is cut down via a probabilistic scoring function during parsing, the
PLB approach can rapidly select the most possible combination of the partial parses for
ill-formed inputs. Therefore, the PLB approach with a small search beam width can

parse the inputs faster than the baseline system. However, current experiments still

103

cannot claim that the PLB approach is more time-saving than other systems with LLF
heuristics, because the LLF heuristics can be implemented by left-corner parsers which
are theoretically more efficient than the CYK parser used in the baseline system. But,
since the PLB approach can obtain better results than the LLF heuristics within one
second, the LLF heuristics is no more attractive even if it could be implemented by a

faster parser.

Bracket and its label | Tree group Parsing
Beam | Precision Recall accuracy time
width (%) (%) (%) (sec. /sent.)
3 78.52 79.27 24.5 0.46
5 78.22 80.56 25.5 0.66
10 78.78 80.74 26.0 1.17
PLB 20 79.49 81.39 27.5 2.51
50 80.08 80.92 26.5 9.75
100 80.11 80.98 27.0 35.93
LLF 69.37 78.73 16.5 2.16

Table 3: The performances of PLB parsing in the testing set with various beam widths.

Table 3 shows that the improvement' on bracket precision rate achieved by the PLB
approach is better than the improvement on bracket recall rate. For instancé, compared
to the LLF heuristics, the PLB approach with beam width of 20 improves the bracket
precision rate by 10.12% (from 69.37% to 79.49%); while it only improves the bracket recall
rate by 2.66% (from 78.73% to 81.39%). To further explore the reason, more detailed data
are given in Table 4. It indicates that there are 3,343 brackets in the hand-parsed treebank
(i.e. the testing set of the 200 ill-formed sentences). The second row shows that there
are 3,794 brackets in the parse trees assembled by the LLF heuristics. However, among
these 3,794 brackets, only 2,632 brackets (i.e. 69.37%) are correct. Such a low precision
rate results from the fact that the heuristics of selecting the longest phrase, either the
leftmost one or the global one, usually selects undesirable partial parses. On the contrary,
the PLB approach assembles the partial parses according to the statistical information
and, consequently, selects the desirable configuration in more cases.

Selecting the longest phrase also causes the baseline system to inadequately partition

104

Number of brackets | precision | Recall
Total Matched (%) (%)

Treebank 3,343 — — —
LLF 3,794 2,632 69.37 78.73
PLB 3,423 2,721 79.49 81.39

Table 4: The detailed results of the baseline system and the PLB approach.

Number of fragments | p,, ecision | Recall
| Total Matched (%) (%)
Treebank 605 — — —
LLF 355 179 50.4 29.6
PLB 656 350 53.4 57.9

Table 5: The performances of LLF and PLB on fragments.

the ill-formed sentences. As shown in Table 5, there are 605 fragments in the 200 ill-
formed sentences. However, the baseline system partitions these ill-formed sentences into
only 355 fragments, which is much smaller than the number of that they should be.
This is due to the fact that, while assembling partial parses, the baseline system does
not consider the contextual information. It always prefers a larger partial parse than
a smaller one, and consequently partitions a sentence into as few fragments as possible.
Thus, the baseline system has a very low recall rate for fragments. On the other hand, due
to the use of statistical contextual information, the PLB approach can more accurately
partition the ill-formed sentences. It partitions the 200 ill-formed sentences into almost
the same number of fragments as that they should be. Besides, the number of matched
fragments generated by the PLB approach is much larger than that generated by the
" baseline system. Therefore, the PLB approach has a significantly higher recall rate for
fragments than the baseline system (57.9% v.s. 29.6%).

In summary, by using the statistical contextual information, the proposed PLB ap-
proach outperforms the baseline system to a great extent. With the beam width of 20,
the PLB approach significantly improves the precision of brackets in the tree group from

69.37% to 79.49%. The recall of brackets is also improved from 78.73% to 81.39%.

105

4 Conclusions

Parsing the ill-formed input usixa.lly suffers from the ambiguity problem more deeply than
parsing the grammatical sentences. The ambiguities of an ill-formed sentence include all
possible tree groups, each of which is a combination of the pértial parses jointly generating
the input sentence. Since the number of possible tree groups is very large, it is infeasible
to do disambiguation by enumerating all of them. In the past, the heuristics of preferring
a larger phrase is used (or with other heuristics) to limit the number of partial parses.
However, this heuristic rule, although simple to implement, fails to achieve satisfactory
performance because the longest phrase is not always the correct phrase.

This paper presents a Phrase-Level-Building (PLB) parsing mechanism to resolve the
ambiguity problem of ill-formed inputs. In this framework, a parse tree is modeled as
a set of phrase-levels for being explored in a wider scope. By decomposing a syntactic

“tree into phrase-levels, this mechanism regards the task of parsing a sentence as a task of
building the phrase-levels from the sentence. During parsing, a level-synchronous scoring
function is used to remove less likely phrase-levels. As a result, instead of enumerating
all possible tree groups, the PLB parser only generates the more likely ones. Whenever
all active phrase—levelé in the search beam cannot be further reduced by the grammar
rules, the process of building phrase-levels is stopped and a probabilistic scoring function
is used to select the best tree group. Compared with the baseline system using stochastic
context-free grammar and the “leftmost longest phrase first” heuristics, the proposed PLB
approach improves the precision rate of brackets in the tree group from 69.37% to 79.49%.
The recall rate of brackets is also improved from 78.73% to 81.39%.

Acknowledgement

This paper is a partial result of the project No. 3P11200 conducted by ITRI under
sponsorship of the Ministry of Economic Affairs, R.O.C.

References

Briséoe, Ted and John Carroll. 1993. Generalized probabilistic LR parsing of natu-

ral language (corpora) with unification-based grammars. Computational Linguistics,

19(1):25-59.

106

Chiang, Tung-Hui, Yi-Chung Lin, and Keh-Yih Su. 1995. Robust learning, smoothing,
and parameter tying on syntactic ambiguity resolution. Computational Linguistics,

21(3).

Chomsky, Noam. 1959. On certain formal properties of grammars. Information and

Control, 2:137-167.

Church, Kenneth Ward. 1989. A stochastic parts program and noun phrase parser for
unrestricted text. In Proc. of ICASSP, pages 695698, Glasgow, May 23-26.

Fujisaki, T., F. Jelinek, J. Cocke, E. Black, and T. Nishino. 1989. A probabilistic parsing
method for sentence disambiguation. In Proceedings of the International Workshop on

Parsing Technologies, pages 85-94, Pittsburgh, Pennsylvania, USA, 28-31 Aug.

Good, I. J. 1953. The population frequencies of species and the estimation of population
parameters. Biometrika, 40:237-264. |

Hobbs, Jerry R., Douglas E. Appelt, John Bear, and Mabry Tyson. 1992. Robust pro-
cessing of real-world natural-language texts. In Proceedings of the Third Conference

on Applied Natural Language Processing, pages 186-192, Trento, Italy, 31 Mar. — 3
Apr.

Hutchins, W. J. 1986. Machine Translation: Past, Present, Future. West Sussex, Eng-
land: Ellis Horwood Limited.

Jensen, K., G. E. Heidorn L. A. Miller, and Y. Ravin: 1983. Parse fitting and prose fixing:
Getting a hold on ill-formedness. American Journal of Computatz'qnal‘ Linguistics,

9(3-4):147-160, July—December.

Katz, S. M. 1987. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Trans. Acoustic, Speech, Signal Processing,

ASSP-34(3):400-401, March.

Lin, Y.-C., T.-H. Chiang, and K.-Y. Su. 1995. The effects of learning, parameter tying and
model refinement for improving probabilistic tagging. Computer Speech and Language,

9:37-61.

107

McDonald, David D. 1992. An efficient chart-based algorithm for partial-parsing of un-
restriéted texts. In Proceedings of the Third Conference on Applied Natural Language
Processing, pages 193-200, Trento, Italy, 31 Mar. — 3 Apr.

Mellish, Chris S. 1989. Some chart-based techniques for parsing ill-formed input. In Pro-
ceedings of the 27th Annual Meeting of the Association for Computational Linguistics,
pages 102-109, Vancouver, British Columbia, Canada, 26-29 June.

Meteer, Marie and Herbert Gish. 1994. Integrating symbolic and statistical approaches
in speech and natural language applications. In Proceedings of the Workshop on The
Balancing Act Combining Symbolic and Statistical Approaches to Language, pages 69—
75, Las Cruces, New Mexico, USA, 1 July.

Ng, See-Kiong and Masaru Tomita. 1991. Probabilistic LR parsing for general context-
free grammars. In Proceedings of the Second International Workshop on Parsing Tech-
nologies, pages 154-163, Cancun, Mexico, 13-15 Feb.

Seneff, Stephanie. 1992. Robust parsing for spoken language system. In Proceedings of
the 1992 International Conference on Acoustics, Speech and Signal Processing, pages

189-192, San Fransisco, California, USA, 23-26 Mar.

Su, K.-Y., T.-H. Chiang, and Y.-C. Lin. 1990. A unified probabilistic score function
for integrating speech and language information in spoken language processing. In
Proceedings of the 1990 International Conference on Acoustics, Speech and Signal
Processing, pages 901-904, Kobe, Japa.n; Nov. 19-22.

Su, Keh-Yih and Jing-Shin Chang. 1990. Some key issues in designing MT systems.
Machine Translation, 5(4):265-300. '

108

