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Abstract

This paper investigates some issues on application of class-based Chinese language models, es-
pecially the SA-class bigram model in which the word classes are autbmatically clustered by
simulated annealing. The studied issues include (1) using test-set perplezity as a quality mea-
sure for evaluating performance of language models across domains, subdomains, and character
codings; (2) using the SA-class bigram model to different applications - OCR postprocessing,
syllable-to-character conversion, and linguistic decoding for speech recognition; (3) comparing
the model with other language models — least-word, word-fmduency, inter-word character bi-
gram, and word bigram; and ({) deciding appropriate number of classes based on corpus size.
The ezperimental results show that the test-set perplezity is indeed a good measure for per-
formance evaluation of language models, and the SA-class bigram language model is not only
theoretically plausible but also practically feasible — high performance with less resource require-

ment.

1 Introduction

Statistical language models have become mainstream in computational linguistic‘research
because rule-based models lack robustness and expandability. Figure 1 shows our proposed
taxonomy of statistical language models. On the left-hand side are the models without clas-
sification, including character n-gram and word n-gram. These models are simple and useful.
However, available text corpora are not large enough to estimate the huge number of param-
eters in these models. For example, in a 50,000-word system, the number of parameters for
word bigram is NV2? —1 ~ 2.5-10° (NV: number of words) and heuristically needs 2.5-10° to
estimate appropriately. Typical size of available text corpora is about 108 to 107. There is still

a difference of order 1000. Thus, class-based language models [1] have been proposed to deal
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Figure 1: Taxonomy of Statistical Language Models

with the data sparseness problem. In other words, the words in the vocabulary are classified
into word groups. The number of parameters for class bigra.m is reduced to NC2*—~NC+NV -1
(NC: number of classes) [1]. If NC = 500, it would be about 3-10° and needs 3 - 10® words to
estimate. The classification can be either supervised (linguistic) or unsupervised (statistical).
Superviéed classification is usually based on linguistic categories, such as morphological fea-
tures [15], grammatical pa,rts;of-speech [6,10,11], and semantic categories [19]. Unsupervised
classification is corpus-based according to statistical characteristics, such as perplexity [5,13]
or mutual information [1]. In Chang and Chen [5], we proposed an unsupervised classification
based on perplexity by simulated annealing clustering and suggested applications of the results
to Chinese language models. We call the proposed model SA-class n-gram model. The practical
value of the model needs to be proved by real-world applications. In this paper, we will show
the experimental results of applying the model to various tasks and investigate the following

issues:

1. test-set perplexity as quality measure for evaluating performance of language models

across domains, subdomains, and character codings (Big-5 or GB);

2. using the SA-class bigra.m‘ model to different applications — OCR postprocessing [4],

syllable-to-character conversion, and linguistic decoding for speech recognition;
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3. comparing the model with other language models — least-word, word-frequency, inter-

word character bigram, and word bigram; and

4. deciding appropriate number of classes based on corpus size.

2 SA-Class Bigram Language Models

In this section, we give a brief review of automatic word clustering by simulated annealing and

the SA-class bigram language model. For more detail, see Chang and Chen [5].

2.1 Automatic word clustering by simulated annealing

Given a text corpus § = wj,ws,...,wz, with NV word types and L word tokens, the word
clustering problem is, thus, to seek the best partitioning of the NV word types into a predefined
number NC of word classes maximizing the probability of the word sequence according to the
language model. In other words, it is a partitional clustering problem [1] with (1) NV words
as objects to be clustered, (2) NC as the desired number of clusters, and (3) the estimated
probability p(S) of the given word sequence as the clustering criterion. Typical values for NV
and NC are 50,000 and 200. A partitioning can be considered as a mapping ¢ of NV elements

in which each element is the class label the corresponding word belongs to.
For a class bigram model, find a partitioning ¢ to maximize p(S)

It is straightforward to apply simulated annealing algorithms [14] to the word clustering
problem: (1) a feasible partitioning or class assignment ¢ specifies the configuration, A, (2)
to rearrange the elements in a configuration, simply randomly choose a word and assign it to
a randomly chosen cluster, (3) use a probabilistic measure, such as perplexity, as the objective
function (described below), and (4) follow the Metropolis algorithm [17] to specify the annealing

schedule.

An annealing schedule specifies time and duration to decrease the control parameter (or
temperature) 7. Initially, T is set to Ty, and multiplied by an annealing factor a after a fixed
number of trials ¢,,,,. The algorithm stops when the temperature 7" is lower than the final
temperature Ty. The original Monte Carlo optimization accepts a new configuration only if
the objective function value improves, suffers from the local minimum problem. Metropolis et
al. [17] proposed in 1953 that a worse configuration can be accepted according to the control
parameter T. The new configuration is accepted if exp(APP/T) is greater than a random

number between 0 and 1, where A PP is the difference of perplexities for two consecutive steps.

173



The simulated annealing word clustering algorithm is summarized as follows:

Definition of variables:
A:  current class assignment 'Anew: pérturbed class assignment

T: temperature (control parameter) Tp:  initial temperature

Ty: final temperature o: . ‘annealing factor

i number of trials in T tmer: Max. tin T

r: . number of rejected trials Tmaz: convergence threshold
P:  perplexity of A : Piew: perplexity of A,cy

AP: difference of P and Pieq

begin
1. initialize the class assignment A to be Ag;
T :=To; i:=0; r:=0; P := perplexity-of (4g);
2. repeat {
21i:=i41;
2.2 randomly reassign a word to form A,y ;
2.3 Pyew := perplexity-of (Apew);
24 AP := Py, - P;
2.5 if AP < 0 or e"2P/T > a random number in [0..1] then /* accept */
A= Apew; P i= Ppew; 1:=0;
else /* reject */
r:=r+1;
endif
2.6 if i > i,,.; then
T:=Txa; i:=0;
endif
Yuntil r > 70, or T < T,

end.

clustering by simulated annealing and For more detail, see Chang and Chen [5].

2.2 The SA-class bigram language model

The classification results of words (or characters) can be used in language models for speech

recognition or OCR postprocessing. The procedure for building an SA-class bigram language
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model includes the following steps:

1. For a given text corpus, use a word-segmentation program to divide the character stream

into a word stream; =
2. Build a word list and word bigrams based on the word stream;
3. Decide the number of classes you want;

4. Run the simulated annealing clustering until converging or terminating conditions are

met;
5. Store the SA-class-ids for the words in the system dictionary;

6. Map words in a new input sentence automatically to the SA-classes through dictionary

look-up;

7. Complete the SA-class bigram model using a smoothing scheme for unseen word problem.

3 Applications of SA-class Bigramm Model

We describe here experimental results of applying the SA-class bigram model to three tasks:
OCR postprocessing, syllable-to-character conversion, and linguistic decoding for speech recog-

nition.

3.1 The model and three competing models

The language models for these problems can be usually summarized as seeking the optimal
path in a word-lattice formed by candidate characters. The path probability of a word-lattice
path is the product of lexical probabilities and contextual SA-class bigram probabilities. For a
path of F words H = Wy, W, ..., WF, the path-probability estimated by the language model is

F F
Pou(H) = O P(Wilp(W:))) = (O P($(Wi)|$(Wi—1)))

=1 =2

We will compare our model with three other models: Least-word model (LW), Word-

frequency model (WF), and Inter-word character bigram model (IWCB).
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Least-word model (LW)

A simple language model is based on a dictionary (actually a wordlist). The cost function of
the model is the number of words in the word-lattice path. The best path is simply one with
the least number of words, Praps(H) = (—1) * F. This is similar to the principle of Maximum

Matching for Chinese word segmentation.

Word-frequency model (WF)

Another simple model is based on the word frequencies of the words in the word-lattice path.
This can be considered as a word unigram language model. The path probability is the product

of word probabilities of the words in the path.

Inter-word character bigram model (IWCB)

This model is a variation of the word-lattice-based Chinese character bigramproposed by Lee
et al. [15]. The path probability is computed as the product of word probabilities and inter-
word character bigram probabilities of the words in the path. For path H: W; = W,,;,, ....,
Wr = Wigjp,

F F
Pom(H) = (3 P(Wi))) * (3 P(Ci,|Cj )
k=1 k=2
where C;, and C;, are the first and last characters of the k-th word, respectively.

This model is one of the best among the existing Chinese language models, and has been

successfully applied to Chinese homophone disambiguation and linguistic decoding [3,15].

3.2 The corpora and word bigrams

Three large corpora are involved in the experiments: the 1991 UD newspaper corpus (1991ud),
the seventh-day subcorpus (d7), and an electronic politic news message corpus (poli2). These
corpora have been preprocessed to clear up irrelevant materials, such as sentences containing
Arabics, English alphabets, and typesetting commands. Simple statistics for the corpora are

summarized in Table 1.

The 1991 UD newspaper corpus (1991ud) of more than seven million characters has been

used for collecting word frequencies in the WF model, the character bigrams in the IWCB
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| Corpus | #sentences | #characters | #word-tokens | #word-types |

1991ud 579,123 7,312,979 4,761,120 60,585
da7 42,273 540,454 353,876 25,346
poli2 6,930 92,710 62,433 7,622

Table 1: Statistics for the Three Corpora

model, and the word bigrams used in simulated annealing word clustering. The d7 subcorpus,
a part of 1991ud, was used for studying the effect of training data size and number of word

classes.

An independent set of electronic news messages, poli2, were collected for evaluating the
performance of language models. poli2 is different from the other two corpora in both publisher

and time period. poli2 contains 6,930 sentences or 92,710 Chinese characters.

The two corpora for word clustering, 1991ud and d7, are first segmented automatically into
sentences, then into words by our Viterbi-based word identification program VSG [7]. The

same lexicon and word hypothesizer are used in the language models.

3.3 Task 1: OCR postprocessing

Recognition of Chinese texts is usually performed in two steps: (1) recognition of printed or
handwritten Chinese characters; and (2) contextual postprocessing of the multiple-candidate
recognition results. The latter uses contextual linguistic constraints to improve the recognition

accuracy of the former and is the focus of this section.

The problem of contextual postprocessing can be described as follows: the character rec-
ognizer produces top K candidates Cj, ..., Cik (with similarity score) for each character I; in
the input text of N characters I = I, I,...In ; the postprocessor then decides which of the K
candidates is correct based on the context and a language model. Thus, the recognizer produce
the candidate matrix Myx = {Cij,i = 1,...,N,andj = 1,..., K} for the input text I. The
postprocessor is to find the combination with highest probability according to the language

model: O = 01,0,,...0N = argmaz P(O|M) among the K feasible combinations.

The overall probability can be divided into two parts: pattern recognition probability and
linguistic probability, P(O|M) = Ppr(O|M) * Ppp(O|M). The former is produced by the

recognizer, while the latter is defined by thr language model. -
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3.3.1 Handwriting recognition

We have used a state-of-the-art Chinese handwriting recognizer [16] developed by ATC, CCL,
ITRI, Taiwan as the basis of our experiments. The CCL/HCCR1 handwritten character
database (5401 character categories, 200 samples each category) [18] was first automatically
sorted according to character quality [9], then was divided into two parts: the odd-rank samples

for training the recognizer, the even-rank samples as held-out test data.

We have used for our experiments twenty sets of even-rank character samples, which are
the samples with quality ranks 10, 20, ..., and 200. These samples are classified into four sets:
(A-1) best-quality samples ranked 10, 20, ..., 60, with ATC recognizer’s accuracy around 95%;
(A-2) good-quality ones ranked 70 — 110, with accuracy around 90%; (B-1) fair-quality ones
ranked 120 — 160, with accuracy around 85%; and (B-2) bad-quality ones ranked 170 — 200,
with accuracy below 80%. This classification is helpful for performance analysis of contextual

postprocessors for different quality of recognizers and input texts.

Experimental results show that the recognition accuracies, in terms of character categories,
would be 95.53%, 90.79%, 84.66%, and 73.77% for the A-1, A-2, B-1, B-2 sets, respectively.

The poli2 corpus of 92,710 Chinese characters was used for evaluating the performance
of contextual postprocessing. The recognition results for the twenty sets of character samples
were used as the basis of evaluation. (The corpus contains 52 uncommon characters which do
not belong to any of the 5401 character categories.) Therefore, we recompute the recognition
accuracies by the ATC recognizer for the four quality classes of samples. Without postprocessQ
ing, the accuracies are 96.11%, 90.45%, 84.57%, and 71.77%, for A-1, A-2, B-1, B-2 classes,
respectively. To ease comparison, we have set the number of candidates K to 6 in all the exper-
iments. Thus, the characters ranked after 6 and the 52 uncommon characters are impossible
to recover using the postprocessor. The upper bounds for performance of language models
are thus with accuracies 99.69%, 98.78%, 96.39%, and 90.87%, for A-1, A-2, B-1, B-2 classes,

respectively.

3.3.2 Postprocessing with SA-class bigrams

Table 2 summarizes the experimental results of postprocessing for the four classes of character
samples. The NoGram (No Grammar) column lists the accuracies without postprocessing;
the UpBound column shows the upper bounds with K = 6; and the rest four columns list
the accuracies after postprocessing with the LW (Least-Word), WF (Word-Frequency), IWCB
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| Quality | NoGram | UpBound | LW | WF | IWCB | 300/ud |

A-1 (best, 6 sets) 96.11 99.69 | 96.03 | 97.19 | 98.88 | 99.31
A-2 (good, 5 sets) 90.45 98.78 | 94.03 | 95.08 | 97.62 | 98.00
B-1 (fair, 5 sets) 84.57 96.39 | 90.01 | 90.86 | 94.55 | 94.87
B-2 (bad, 4 sets) 71.77 |« 90.87 | 81.71 | 82.35 | 87.66 86.95
[Ave. (20 sets) | 8694  96.87 91.16 | 92.11 | 95.24| 95.40 |

Table 2: Comparison of four models: accuracies (%)

(Inter-word Character Bigram), and 300/ud (SA-class bigram, NC = 300, trained with 1991ud)
models, respectively. We can observe that the SA-class bigram model out-performed the other
three models in general. The order of performance is: 300/ud > IWCB > WF > LW. The
average error rates are — Recognizer: 13.06%, LW:8.84%, WF:7.89%,IWCB:4.76%, and ud/300:
4.60%. However, in case of class B-2, IWCB is better than SA-class. When the recognizer’s
accuracy becomes too low, words are not easy to compose. The word lattice is, thus, mostly
composed of single-character words. Word cooccurrences become character cooccurrences.
That is why the IWCB model (using character bigram) performs better than our model (using
word class bigram) for the bad-quality samples. Besides, the storage requirement of our model
is much less than that of IWCB model.

3.3.3 Analysis and comparison of correction results

| change types | LW | WF | IWCB | 300/ud |

X0 6.91 | 8.13 9.27 8.76
10).¢ 2.69 | 2.96 0.97 0.30
XX 0.97 | 2.12 2.42 1.79
Gain 4.22 | 5.17 8.30 8.46

Table 3: Analysis of correction results (%)

The changes the postpfocessor makes can be classified into three types: wrong-to-correct
(X0), correct-to-wrong (OX), and wrong-to-wrong (XX). In the XO type, a wrong character
(i.e., a recognition error) is corrected; in the OX type, a correct character is changed to a wrong
one; and in the XX type, a wrong character is changed to another different wrong one. The
performance of the postprocessor can be evaluated as the net gain, #X0s — #0Xs. Table 3
summarizes the experimental results by types of change. The rows X0, OX, XX, and Gain list
the percentages of characters in types X0, OX, XX, and XO-0X, respectively. The percentages
are based on the whole samples, i.e., 92,710 - 20 characters. For example, the X0, 0X, XX
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types of change for our 300/ud model are 8.76%, 0.30%, and 1.79% of the whole samples,
respectively. The IWCB model usually corrects more errors than ours, while it also commits

much more OX mistakes.

3.4 Task 2: Syllable-to-character conversion (intelligent phonetic input)

We use the concepts of bidirectional conversion and automatic evaluation [2] to conduct the
syllable-to-character conversion experiments. The same corpus poli2 and the SA-class model
ud/300 are used. The conversion accuracy is 95.07%. This can be compared with our previous
results — POS bigram: < 89%, WF model: 91%, IWCB model: 93.46%, and IWCB with
adaptation: 94.8%. ‘

3.5 Task 3: Linguistic decoding for speech recognition

Our speech recognition systems is still under development. Using intermediate results from
versions of a speaker-dependent, isolated-syllable prototype, we have the following results (Ta-
ble 4). For example, Sample A has accumulated syllable accuracies— top-1: 88%, top-2: 96%,
top-3: 98%, and the character accuracy from language model is 91.25%.

[ Sample | top-1 | top-2 | top-3 | accuracy |
A 88% | 96% | 98% 91.25%
B 63% | 78% | 84% 80.04%

Table 4: SA-class bigram for linguistic decoding

4 Perplexity and Performance

In this section, we will study the relationship between test-set perplexity and performance of
language models. To ease comparison and discussion, the annealing schedule (Ty, T, @, tmaz, "maz)
is empirically set to (0.1,1072°,0.9,20000,5000) in all the experiments.

4.1 Different number of classes

In the context of OCR postprocessing, Table 5 shows the perplexities and accuracies after

correction for our models with different numbers of class (NC) and different training corpora.
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model testPP | A-1| A-2| B-1| B-2| Average
50/d7 1,690 | 99.20 | 97.69 | 94.41 | 86.27 95.04
100/d7 1,553 | 99.21 | 97.76 | 94.48 | 86.42 95.11
150/d7 1,524 | 99.19 | 97.75 | 94.49 | 86.51 95.12
200/d7 1,522 | 99.20 | 97.77 | 94.53 | 86.44 95.12
250/d7 1,543 | 99.18 | 97.71 | 94.50 | 86.44 95.10
300/d7 1,560 [ 99.17 | 97.73 | 94.47 | 86.49 95.10
500/d7 » 1,689 | 99.13 | 97.63 | 94.37 | 86.26 94.99
50/ud 1,464 | 99.26 | 97.88 | 94.64 | 86.71 95.25
100/ud 1,301 | 99.28 | 97.95 | 94.79 | 86.82 95.33
150/ud 1,219 | 99.29 | 97.93 | 94.77 | 86.86 95.34
200/ud 1,188 [ 99.29 | 97.96 | 94.78 | 86.90 95.35
250/ud 1,152 | 99.30 | 97.97 | 94.88 | 86.89 95.38
300/ud 1,112 | 99.32 | 98.01 | 94.88 | 87.03 95.42
500/ud 1,036 | 99.33 | 97.99 | 94.91 | 87.09 95.44
600/ud 1,013 | 99.32 | 98.00 | 94.97 | 87.09 95.46
900/ud 991 | 99.34 | 98.04 | 94.98 | 87.10 95.47
1000/ud 988 | 99.33 | 98.06 | 94.96 | 87.11 95.48

Table 5: Comparison of our models with different NC/corpus

We can see that there is a clear relationship between test-set perplexity and correction per-
formance: the lower the perplexity, the higher the correction performance. In other words,
perplexity is indeed a good measure for evaluating performance of language models, for speech

recognition or for text recognition.

4.2 Size of training corpus

The size of training corpus is important: all models trained with 1991ud (4.76 million words)
performed much better than those models trained with d7 (0.35 million words). The perplexities
for the d7 models are between 1,522 and 1,690, while those for the 1991ud models are between
988 and 1,464.

The optimal NC value for the d7 class bigram models is between 100 and 200: 100 for A-1,
200 for A-2 and B-1, and 150 for B-2. This is consistent to the common rule of thumb: the size
of training data should be at least ten times the number of parameters, which suggests an NC
value of approximately 100 for the size of the d7 corpus. The NC = 500 models are apparently
overtrained, which is consistent to the evaluation of test set perplexities we discussed in Chang -
and Chen [5]
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4.3 Test-set perplexity for a Kung-Fu novel

We tried a rather different domain of texts for comparison. Part of a Kung-Fu novel is collected
from an electronic newsgroup: 28,069 word-tokens, 4,274 word-types, 237 unseen, 920 low-freq.
words. The test-set perplexity is computed for both poli2 and the novel. As we can see from
-Table 6, the difference is quite significant: the perplexity is doubled. However, the perplexity

is almost consistent across domains with an exception (ud/250).

| 1991ud || Model || poli2 | Kung-Fu

1,247 || ud/100 || 1,301 2,524
1,177 || wd/150 | 1,219 | 2,489
1,148 [ ud/200 || 1,188 | 2,484
1,108 || ud/250 || 1,152 | 2,528
1,069 [[ud/300 || 1,115 | 2,441

962 || ud/500 || 1,036 | 2,402

917 [ ud/600 || 1,013 2,375

Table 6: Test-set Perplexity for a Kung-Fu novel

4.4 Test-set perplexity across subdomains

Table 7 shows the test-set perplexity across subdomains: subnewsgroups. The electronic news-
groups are close to the newspaper domain of our training corpus. Thus, we can see the range

of test-set perplexities for these subdomains is close: between 816 and 1074 for ud/600.

[ 1991ud || N D] @] @& @] & @] m] @]
1,247 100 [[ 1,253 1,231 1,293 [ 1,026 | 1,064 | 1,252 1,052 1,339
1,177 150 || 1,181 1,85 | 1,212 987 | 1,086 | 1,158 | 983 | 1,272
1,148 200 || 1,042 1,152 1,186 | 939 1,048 | 1,138 942 1,235
1,108 250 || 1,017 [ 1,128 | 1,047 922 1,025 | 1,134 | 922 1,204
1,069 300 [ 1,076 | 1,107 1,113 893 988 | 1,068 903 | 1,181

962 500 | 1,012 | 1,043| 1,029 829 917 | 1,015| 827| 1,081
917 600 990 | 993 1,008 819 889 967 816 1,074
word-tokens || 94,626 | 28,069 | 81,987 | 58,303 | 72,605 | 17,978 | 15,754 | 25,518
word-types | 8,294 | 4,274 | 8,778 | 5541 | 6,754 | 3,116 | 2,735 | 4,322
unseen 126 | 237 136 48 80 30 15 47

low-freq. 644 | 920 624 288 342 109 87| 210

Table 7: Test-set Perplexity across Subdomains
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4.5 Test-set perplexity across domains

To study the test-set perplexity across domains, we use the NTHU’s multi-domain corpus [8].
The preliminary results are shown in Table 8. Domains A and B are close to our training
domain and thus have lower perplexities. Other domains have perplexities ranging from 1,079
(domain F) to 2,497 (domain N). Domain N is Kung-Fu novels and its perplexity is close to
that for another collection of Kung-Fu novel. Therefore, test-set perplexity seems not only a

good measure for performance, but also a candidate indicator for text categorization.

| domain | wtokens | wtypes | unseen | low-freq [ ud/300 | ud/500 [ ud/600 |

I 1991ud | 4,761,121 | 60,585 | 0 | 28,638 | 1,069 | 962 I 917—|
B: editorial 17,358 4,170 64 315 1,096 1,041 1,011
A news 11,068 | 3,077 30 43| 1,172] 1ii7] 1,073
F: com.sense 2,735 834 19 61 1,162 1,131 1,079
P: romance 22,334 4,664 255 845 1,315 1,270 1,251
L: sci-fi 16,856 3,736 80 436 1,323 1,287 1,266
K: novel 43,662 | 7,751 | 468 | 1,605| 1,658| 1,614| 1,604
C: review 2,097 970 8 72 1,736 1,725 1,633
G: literary 72,178 | 11,309 847 3,010 1,704 1,670 1,659
J: sci.tech 43,378 6,358 385 1,136 1,731 1,724 1,684
R: humor 22,084 | 52338 | 349 | 1,075| 1839 1,797| 1,790
D: religion 37,355 | 6,745 | 374] 1,300| 1,831] 1,804 1,801
H: gov. doc. | 13,945 | 2,834 44 174 | 2,038 | 1,028 1,012
E: hobby 19,080 | 3,770 | 119 478 | 1,064 | 1,953 | 1,027
N: kung-fu 25420 | 5272 | 321 | 1,65| 2,547 2489 2497

Table 8: Test-set Perplexity for a Multi-domain Corpus

4.6 Test-set perplexity for word bigram

Table 9 compares word bigram models with SA-class bigram models. Four subcorpora, day5,
day7, day8, day9 of 1991ud are used in the experiments. day7 is used for training and the
other three for testing. The word bigram and SA-class bigram models are trained and smoothed
under the same conditions. We can observe that the difference of perplexity between the two
models is approximately 1000. This proves that SA-class bigram models are indeed better

trained with the same corpus.

In fact, the test-set perplexity is dependent on the size of training corpﬁs. Table 10 shows
the perplexity of poli2 trained with the whole 1991ud corpus. We can observe that the

perplexity for word bigram is not necessarily higher than those for SA-class bigrams. However,
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| Model | NC(special) | day5| day8 | day9 |
No Model 24,706 | 18,948 | 19,111
word bigram day7/7,899(1) | 2,583 | 2,604 | 2,493
word bigram day7/7,074(6) | 2,400 | 2,435 | 2,331
SA-class bigram | day7/100(6) | 1,477 | 1,483 | 1,430
SA-class bigram | day7/150(6) 1,455 | 1,463 | 1,415
SA-class bigram | day7/200(6) 1,456 | 1,453 | 1,408

Table 9: Test-set Perplexity for Word Bigram

the perplexiy of SA-class bigram with appropriate number of classes is still much lower than

that for word bigram even when the size of training data is as high as 4.76 million words.

| Model | NC(special) | poli2 |
word bigram 1991ud/31,948(1) | 1,119
word bigram 1991ud/30,706(6) | 1,130
SA-class bigram | 1991ud/200(6) 1,188
SA-class bigram | 1991ud/300(6) 1,112
SA-class bigram | 1991ud/500(6) 1,036
SA-class bigram | 1991ud/600(6) 1,013
SA-class bigram | 1991ud/900(6) 991
SA-class bigram | 1991ud/1,000(6) 988

Table 10: Test-set Perplexity for Word Bigram: Larger Corpus

4.7 'Test-set perplexity across character codings

We have been working on automatic word clustering of the PH corpus [12] provided by ISS,
National University of Singapore. The character coding in the PH corpus is GB-code for

simplified Chinese characters used in the Chinese mainland. The result is yet to be seen.

5 Concluding Remarks

We have described our experience on applying SA-class bigram to various tasks and studied the
relationship between test-set perplexity and performance of language models. The experimental
results show that the SA-class bigram language model is not only theoretically plausible but
also practically feasible — high performance with less resource requirement. Besides, the test-set

perplexity is indeed a good measure for performance evaluation of language models.
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Future works include

¢ studying other practical issues such as alternative smoothing schemes of model parame-

ters, stopping criteria and efficiency 'of SA clustering.
/

e investigating further the performance of word clustering across different domains and/or

different applications.
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