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. Abstract

This paper describes a new approach to constructing a class-based language model and
reports an estimation of the upper bound of the entropy of Chinese using the model. A class-
based n-gram model built on an existing machine readable thesaurus is shown to lower cross
entropy between the language model and a balanced corpus of 300,000 words. The cross-
entfopy of the corpus and the proposed language model is 12.66 bits per word or 3.88 bits per
byte, which is better than another class-based language model the inter-word character bigram
model by 0.6 bit per word. In the process of estimating the entropy, we found that unknown
words take up disproportionately large amount of entropy and are the major bottleneck: for
obtaining lower entropy or better language models for tasks such as OCR and speech
recognition. -

1 Introduction

In the 1940s, Shannon (1951) defined entropy as a measure of the information content
of a probabilistic source, and used it to quantify such concepts as noise, redundancy, the
capacity of a communication channel, and the efficiency of a code. Cross entropy is a useful
yardstick for measuring the ability of a language model to predict a probabilistic source of data.
If the language model is good at prediCting the future output of the source, then the cross
entropy will be small. Lower cross-entropy for language models leads directly to better
performance for a number of natural language processing tasks such as speech recognition

e

machine translation, handwriting recognition, stenotype transcription, and spelling correction, .

No matter how good the language model is, though, the cross entropy cannot be
reduced below a lower bound, known as the entropy of the source, the cross entropy of the
source with itself. That's to say, the cross-entropy measured by any language model is an
upper bound on the entropy of the language, and the difference between entropy and cross-
entropy is a measure of the inaccuracy of the language model.

Cross-entropy is estimated by a sampling prbcedure. Two independent samples of the
language are collected: S1 and S2. The first sample, S1, is used to train the parameters of the
language model, and the second one, 5, is used to estimate the cross-entropy. That is to say, a
language model must be constructed without the knowledge of the test sample, Sa.
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Perplexity is a commonly used measure of average branching of the text as seen from the
point of view of the language model. The cross-entropy is just the base two logarithm of the
perplexity with respect to a language model.

When using a language model to predict the future outcome of a probabilistic source,
one can directly predict the word that come out next. Or, one can partition the vocabulary into
classes and predict the class of the next outcome and subsequently predict a word in the class.
The purpose of a class-based language model of cause is to reduce the size of the parameter
space so that the model can be trained sufficiently using available data. There have different
ways of classification being proposed in the literature. Brown et al. (1993) provides the
optimality conditions for a class-based bigram model and reports the result of using a greedy
algorithm on a large corpus for obtaining approximation to the optimum classification. Chang
(1993) have done a similar experiment on a smaller corpus of Chinese newspaper articles
using a simulated annealing algorithm. Automatic methods derive classes with mixed quality.
Unambiguous words with relatively high frequency are usually assigned to meaningful classes,
provided that sufficient data are used. However, the ambiguous words tend to be assigned
according to one of the word senses. Thus in the context when another sense is intended, the
class model has much poor prediction power. Lee et al. (1993) suggests a scheme that
classifies words according to both the first character and the last character (inter-word
character bigram, IWCB). Tong (1994) suggests to use the least ambiguous character in a
word for classification.

One would think that a class taxonomy with linguistics basis can save the enormous
effort of automatic classification. The classification may be more reasonable and complete than
automatic derived classes or classes of words having a certain character in common. We have
constructed a language model based primarily on a Chinese thesaurus, [F]Z& 54K (Mei 1993;
CILIN henceforth), which is compiled manually by lexicographers. Experiments have
confirmed the intuition that a model with linguistics background perform better.

There were many reports on the estimation of the entropy of English [Shannon 1951,
Barnard 1955, Brown 1992], but we have little knowledge about that of Chinese. Using the
class-based language model, we have estimated the upper bound of entropy of Chinese. The
class-based bigram model built on existing machine readable thesaurus is shown to have lower
cross entropy for a balanced corpus of 30,000 words. The cross-entropy of the corpus and the
proposed language model is 12.66 bits per word or 3.88 bits per byte, which is better than
another class-based language model the IWCB model by 0.6 bit per word.

Some researches [Chang 1991, Su 1992] have pointed out that unknown words and
proper nouns were bottlenecks in Chinese segmentation. In the process of estimating the
entropy, we found that unknown words take up disproportionately large amount of entropy
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and are indeed the major bottleneck for obtaining lower entropy or better language models for
tasks such as OCR and speech recognition.

2 The Language Model and Smoothing Strategies

In short, our language model is basically a first order class-based Markov model with
additional sub-models. Words are assigned to different classes according to the thesaurus,
CILIN, with some modifications. In this chapter, we first define the class taxonomy that will
be adopted, and then introduce our language model and the correspondent smoothing
strategies used in different sub-models.

2.1 The Classes Taxonomy

The classes used in our model are assigned primarily according to the thesaurus, CILIN.
Words in the thesaurus are classified mainly according to their meaning. Many words have
more than one senses. Ambiguous words belong to more than one class, so the taxonomy is
not disjointed. Disjointed classes are usually used in the class-based language models because
no disambiguation of the training data is required. Thus, we make some modifications to the
original classes so that each word is assigned to just one class. ‘

In addition to making the class taxonomy disjointed, we also have to keep each formed
class with abundant samples in the corpus, which is essential for the training of the language
model. Under such a consideration, we propose the following strategies for assigning a unique
class for each word in CILIN.

Strategies for assigning a unique class

1.- Each unambiguous word remains in the original class.

2. Each two-way ambiguous word is assigned to a new combined class consisting of
words with the same ambiguity (on the level of the first two layers of the taxonomy).

3. Each three-way or more-than-three-way ambiguous word itself forms a new class.
4. Each Chinese punctuation mark itself forms a class.

5. ‘A special NP_class is introduced to generate those words in our NP dictionary.

6. A special Number _class is introduced to generate those digit words .

7. A special Name_class is introduced to generate Chinese names.

e ]

. A special Unknown_class accounts for all the other words beyond the former seven
policies.

Examples of class assignment.
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1: 56 » 3R > ZXEE (Bp07) -> cBp07
2: HwtE (Ael6, Hgl7) -> cAeHg

#5E (Ae01, Hf04) -> cAeHf

sk > w5 (Af10, Ho09) 488 ( Af10, Ho02) -> cAfHc
3: {&5#@ (Da05, Hf06, Kb06) -> Wikl

The more ambiguous a word is, the more frequently the word appears in both training
and testing data. To obtain sufficient appearance counts for unambiguous words such as ZXFE,
B, 2555, we choose to keep them all in the class that they are listed under in CILIN. This
way, we can accumulate enough appearance counts for the classes. Each highly ambiguous
words are assigned to a newly created class consisting of the ambiguous word itself. There are
two reasons for these singleton-word classes. Firstly, since they are all high-frequency words,
each class will have enough appearance counts. Secondly, the ambiguous word is most
idiosyncratic in appearance patterns, therefore assigning it to a class shared by other words

would certainly lower the predictive power of the class-based model. The two-way ambiguous
~ words are classified together as a compromise between keeping the class homogeneous for
more precise prediction and keeping appearance counts of each class high for sufficient

training.

To make the model more robust in handling non-dictionary entries in the text, we add
some special classes to the original classes from our past experience with processing Chinese
text. These special classes include NP_class, Number_class, Name_class, and Unknown_class.
Except for the NP_class, all the other three classes are open classes. More powerful models
are indispensable for these open classes to generate all the possible members of the class. If we
pay no attention to this issue, we will fare badly in entropy for these tokens. So, we add these
classes into the classes built based on CILIN. By this systematic assignment process, we have
4,238 classes as shown in Table 1.

2.2 Our Language Model

In short, our language model is a four-stage serial Markov model, and can be depicted
as Figure 1. Each Chinese word is generated by this model in four steps:

Class ) o Wember +={ Ctn A variant V=
Figurel. Our langauge model

1. It generates the class, which the Chinese word belongs to.

2. It generates the consisting characters of the word.
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~Tablel. The classes used in our model

Classes Type Number of classes
Unambiguous class 1 35 1
Two-way ambiguous class 1427
Singleton word class 1446
punctuaﬁon marké 9
NP 1
Number 1
Name I
Unknownl 1
Unknown2 _ 1
Total 4238

3. It generates "HY" (ctm) or "" to attach to the word.
4. It generates variant characters for each consisting character.
The probability thus consists of four parts as the following formula:

Pr(word string) = Prjas (€lasses) X Prpember (IMember|classes) x
Prom (ctm|classes, member) X Pryp.n (WOrd|classes, member, ctim)

Example: 377 ABIHIZE
HETT | NETRY | BT
cIg03 | cUR2 | cGbHg
Pr( NETRY | #E1T)
= Pretass( CURO2 | cIg03 )
X Prmember( NET | cU02 )
X Pre( H | BT )
X Prvarian( NET | BT )
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2.2.1 The Class Bigram Model

The class-based bigram model is a first order Markov model, which predicts the class of
the next word by giving the class of the former word in a sequence of Chinese words. The
model could be specifically expressed as the following formula: |

Prolass (€1 €2 - Cio1) = Pr(cy) % ﬁ Pr(cilci.y)

The major reasons why we make use of class-based model instead of word-based model
are the deficiency of training data and the sparseness of the word-based bigram table. Even if
we collect enormous size of text to tackle the deficiency of training data, we still have to face
the inevitable sparseness problem. The sparseness problem can be greatly improved by
adopting the class-based paradigm.

The smoothing issue is extremely essential in the class model, which contains a large
proportion of the entropy. We have modified Katz's solution to accommodate our case. The
main idea of Katz's solution is to reduce unreliable probability estimates by reducing the
observed frequencies and redistribute them among n-grams which never occur in the training

corpus.

2.2.2 Member Meodel

After predicting the next class, we should calculate the probability of the word in the
class it belongs; That is to say, we have to estimate the conditional probability Prmember( Wj

C;), where word Wj belongs to Class C;. For our class taxonomy is disjoint, each word will

uniquely belong to one class, which greatly reduces the difficulty of parameter estimation.

N\

1. Thesaurus model
2.NP model

—— 3.Number model ——

4 .Name model

\5 .Unknown model

Figure 2. The submodels of Member model

There are five kinds of sub-models in the spelling model. They are Thesaurus model,
NP_model, Number _model, Name model, and Unknown_model. Each kind of sub-model is
responsible for calculating the conditional probability when the sub-model is capable of
generating the word. Unknown_model is responsible for calculating the conditional probability
of those words, which are not assigned to any class.
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Table 2. Summary of design issues in each sub-model

Submodel Set Attribute Model type  Smoothing methods Comments
Thesaurus close count/Total ~ Good-Turing T

NP close count/Total  Good-Turing

Number open trigram Katz |

Name (family) close count/Total ~ Good-Turing

Name (given) open unigram Good-Turing Independent -
Unknownl * close ~count/Total  Good-Turing

Unknown2 op'en- urﬁgram Good-Turing Ihdepender_nt :

Each sub-model has its own limitations and considerations for its construction. The
major design issues are set attribute, model type, and smoothing methods. They are closely
related with each other. For example, close sets are modeled by counting, while open sets are
modeled by more delicate structure. We summarize their relation in the Table 2, and detail

each sub-models in following sections.

Thesaurus model

Thesaurus model is responsible for calculating words which appear in CILIN . For the
taxonomy is disjointed, the probability Prenesaurus ( Wj | C; ) can be roughly estimated by the

formula:

c(Wi)

D (W)

vYW;ieCi

Prthesaurus (WllC)) =
where c(W}) is the count of Wi in the training text.

Smoothing is essential here for those word c(W;) = 0 in Training data. We apply

Turing's formula to estimate our parameters as follows:
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c*(Wi)
D c*(Wy)

YW e Ci
7
c*(Wi) = (c(wi) +1) &N e

Pr*(Wi|Ci) =

c(Wi)

where ]\]c = ZC(Wi)

Ye(Wi)=c
NP_model

The NP class is a close set defined by extracting those words tagged as NP in the BDC

dictionary (BDC 1990). For the close set attribute, we adopt the same strategy as In_class
model to estimate the needed conditional probability Pr,( W, | C.).

Number model

In our model, we regard a string of Chinese number characters as a word. The
Number_model is responsible for generating all the possible number words that are likely to
appear in Chinese text. ’

Chinese number characters comprise Z( 0 ),=(—) - FA(GL).F (1), B(E),F(T), &,
{&,Jk and Arabic digits. The model generate a Chinese number word like "— & _T A H =
—++=" in a trigram model as the following formula:

A

Pr(QiQ2..Qn) = e o

x Pr(Qu) x Pr(Q2|Q) x | [ Pr(QilQi-1Qi-2)

1=3
where A is the average length of a word, 2.74 in the training text.

Trigram model is more capable than bigram model to capture the features in Chinese
number system. For example, T frequently appears after & to form the pattern "8 Q T, B
frequently appears after T to form the pattern " Q H", where Qe{%&,—, —.. JL}.

Name model

In our model, we regard a Chinese name as a word. A Chinese name may be a
combination of a surname and a given name, or only a surname, or only a given name. To
cover all cases, we have constructed a model which is capable of generating all the possible
forms of Chinese names in text.
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Prore (Name _ string) = Pr(SG1Gz|Name)
~ Pr(S|sn) x Pr(G1Gz2|gn)

where Name_string=SG1Gz, sn=surname, and gn= given name.

Pr(S|sn) ~ <5

z e(S)

where s € { &, all single surname all double surname }

For the surname set is a close set, we could smooth as in the thesaurus sub-model.

Pr(GiGalgn) ~ ) Pr(GiGlgn) x )" Pr(G'Galgn)
G G' ‘
G1,G: € { &, all Chinese characters}

Unknown model

Unknown model is added to cover words beyond the first four spelling models. Because
all dictionary are incomplete, there are many daily vocabularies not included in the dictionary.
If all unknown words are generated by a brute-force random model, the entropy must

increase as a result.

We divide the unknown words into two classes. The first one, unknownl, is for words
listed in other dictionaries but not in CILIN. The second one, unknown2, accounts for all the
other unknown words. Those words in class unknownl can be assigned class codes according
to CILIN only with substantial effort. We have not done that. Our strategy to tackle this
problem is to compile a special class for these high frequencies words.

Because the unknown1 class is a close set, we use the same strategy as thesaurus model
to estimate the parameters in Prusknowni( W | unknownl ). On the other hand, the unknown2
class is an open set. That's to say, a word in this category may comprise any Chinese character
and may be of any length. We use a model like that of number sub-model by first choosing a
length k according to a Possion distribution, and then choose k Chinese characters according
to their distribution in Training corpus. So,

Prunknownl(W) = Pl'(W'unknown 1)
c(w)

- D c(w)

W Eunknown]
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Prunkaom2( W) = Pr(CiCz2.. Cxjunknown2)

k X
= %e*x [T Pre=cci)
) =1

where W = Ci1Ca2.. Cx. Prar (Ci) is the character distributionand A
is the average length of a unknown word, 2.4 in training text

2.2.3 Ctm Model

The Chinese character " "(ctm) is likely to appear after almost any Chinese word. If we
regard the smgle character as a word welll lose a little predicting power in the class-based
bigram model. Under this consideration, our model treats the character Ctm as a suffix of the

previous word and we construct Ctm model as the following way.

Pr(Wctm)
Pr(W)

N c(Wctm)

~ ¢(Wetm) +c(Wetm)

Prun(ctm|W) =

Prem(ctm|/W) =1 - Pram(ctm|W)

~ where Pras(ctm/W) is the conditional probability that W is suffixed with Ctm(#Y) and
Prs(ctm|W) is the probability that W is not followed with Ctm.

For the cases ¢(Wctm)=0 and c(W)>0, we perform smoothing in the way Prom(ctm|W)
= 1/exp(c(W)).This smoothing is also applied to the case c¢(Wctm)> 0 and c¢(Wctm')=0 in
similar way. For the case ¢(Wctm)=c(W)= 0, we estimate Prctm(ctm|W) by the average of the

other words.
2.2.4 Variant Model:

In Chinese, there are many groups of Chinese characters, which could replace with any
other word in the same group2.They are almost commonly used Chinese characters. If we
regard words of the same group as identical, the number of words will decrease and the
bigram table will shrink by size. By the way, it quite agrees with our intuition about natural

language understanding. We formulate this model as:

1 This model will not be integrated into the estimation of the entropy of Chinese.

2 For example, &5 and 2 are almost interchangable, so are # and E. Although 2 is not in the the big-5 code
set, it is included in many extended big-5 sets such as the Eten special character extension and the code set

used in MicroSoft Chinese Window 3.1.
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Pr e (VW) = Pr vaien (V1. Va| W1.. Wa)

n
~ l_[ Pr(vilwi)
1=1

c(vi)

Pr(vi|wi) =
rviw) D cvi)

VieEwi

where V is one variant of W, V=v,..v_, and W=w,. . w_.

2.3 The Entropy Bound

We can estimate an upper bound on the entropy of Chinese by calculating the‘language
model probability Pru(testing text) of a long string of testing text of Chinese text. Thus,

H(Chinese) < _—110g Prm(word string)
n
where Pru(word string) = Pr class(classes) x Pr member (member|classes)
x Pretm(ctm|classes, member)

Consequently, the upper bound estimate is the sum of three parts‘ of entropy,

H (Chinese) < Helass(word string) + Hmember (word string)
+ Hotm (word string)

3 Training data and Test data
3.1 Training Data

The training text is mainly from 10,000,000 characters of Free Daily News. The corpus
is tagged and segmented into words by TagSeg [Peng 1993]. From this 10,000,000 tagged
and segmented news material, we estimate most of the parameters of our language model.
However, we need additional data to capture delicate features in some sub-models such as

Name sub-model, and NP sub model.

In the Name sub-model, we use another 1,000,000 Chinese names to train the needed
parameters of this model. In NP model, we use a tailor-made lexicon by extracting words
tagged as NP in the BDC dictionary and train the needed parameters from the frequencies
provided by the same dictionary.
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Table 3. Some members of unknownl dictionary and

their frequencies in the training text.

word frequency word frequency
= 5596 3= 1432
= 4094 LIty 1386
e 1818 Wk 1141
7=l 1623 RR 1076
e 1599 HE | 908
SRk 1588 ER A 602
R 1543 K& ' 600

In the unknown sub-model, we use another lexicon for unknownl class by extracting
words that occur more than 100 times in the training text. The reason why we do so is that
these words are mostly daily vocabularies and consequently have a strdng presentation in the
testing data. We list part of them as Table 3.

3.2 Testing Data

We have used the NTHU corpus as our testing data, which are 269,724 words or
879760 bytes as a total. It's designed by NLSLAB in NTHU to represent text with a wide
range of styles and varieties in Chinese. In other words, it's a balanced corpus. The corpus is
tagged and segmented into words by TagSeg [Peng 1993], which is an automatic
tagger/segmentator. The syntactic tags used here is helpful for identification of NP, Number,
Name in the member model. Their distributions in the member model are listed in table 4.

4 Result and Comparison
4.1 Result

The cross-entropy of the NTHU corpus and our language model is 12.66 bits per word
or 3.88 bits per byte. Table 5 shows the contributions of the entropy from each component.
The main contribution is, of course, from the class model, which amounts to 71% of the total
cross-entropy. The second significant part is Member model, which is 27% of the total cross-
entropy. And the last part, Ctm (#9) occupies about 2% of the total cross-entropy.

The Class model, on the average, predicts 526 classes for the next word among the total
4238 classes in our language model. In the Member model, it predicts 10 members among the
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list of words in each class. They both predict significantly better than random choices. As for
the Ctm model, we know the probability a Chinese word suffixed with a ctm(#Y) is 0.0453 by

consulting the entropy table.

Table 4. The class distribution in the testing data

Classes Type Number of:words Percentage (%)
Unambiguous class 67022 2485
2-way ambiguous class 37944 14.07
Singleton word class 84859 31.46
punctuation marks 46624 17.29
NP 3455 1.28
Number 6530 2.42
Name 932 0.35
Unknownl 4401 \ 1.63
Unknown2 17951 6.66
Total 269724 100.00

Table 5. Component contributions to the cross-entropy

component cross-entropy (bits/word) perplexity
Class 9.04 (71.40%) 526
Member 3.36 (26.54%) 10
Ctm 0.26 (2.05%) 1.19
Total 12.66 (100%) 4904

In Table 6, we list sub-model contributions to the total cross-entropy and their
proportions in the testing data. The most significant contributor is the unknown2 class, which

3 The probability 0.045 basically agrees with the proportion in the testing text, which comprises 12,735 (4.7%)
ctms (1Y) out of the total 269,724 words.
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accounts for words that are generated character by character. In spite that unknown2 classes
contain only 6.66% of the testing text, it contributes almost half of the member entropy. The
singleton word classes, each word a class, contain 31% of the testing text but contribute no

cross entropy to the member entropy. The singleton word classes play key roles in the entropy

reduction.
- Table 6. Shb;mbdel contributidns to Member model.
Sub_model Words of the classes Cross Entropy (bits)
in the testing text | |
Unambiguous classes 67022 (24.85%) 0.98 (29.16%)
2-way ambiguous classes 37944 (14.07%) 0.15 ( 4.46%)
Singleton word class 84859 (31.46%) 0.00 ‘( 0.00%)
Punctuation marks 46624 (17.29%) 0.00 ( 0.00%)
NP 3455 ( 1.28%) 0.11 ( 3.27%)
Number 6530 ( 2.42%) 0.09 ( 2.67%)
Person Name 932 (0.35%) 0.12 (3.57%)
Unknownlk 4401 (1.63%) 0.28 (8.33%)
Unknown2 17951 ( 6.66%) 1.63 (48.51%)

Total 269724 ( 100%) 3.36 ( 100%)

4.2 Comparison

In this section, we compare the result of our model with that of IWCB, which we have
introduced in section 2.2. We emphasize the predicting power of the next word in Class and
Member models, so we compare entropy of Class model and that of Member model. If we
want to make a completely fair comparison, we have to smooth for IWCB model. That would
be too much work. So we choose to make a comparison on the training data. Thus, we have

no trouble of smoothing and could compare these two models on the same basis.
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Table 7. The comparison of class entropy

Model - perplexity Class entropy
Our Model - 83 6.38 bits/word
IWCB : 331 8.37 bits/word

In Table 7, we make a comparison of class entropy of IWCB, and that of our model.
Our model totally uses 4,328 classes, while the IWCB uses 4,887 in the training corpus.
According to Table 7, our model predicts about one forth (1/4) classes of IWCB. This shows
our model is more powerful at least in predicting the next class. That's to say, the average
mutual information, I(C1,Cz), of our class model is higher than that of IWCB.

In order to measure the difference in predicting next word, we have to compare their
Member entropies. In Table 8, we have calculated the Member entropy of IWCB is 1.97 bits
per word in the training text, while that of our model is 3.36 bits per word in the testing text.
The main reason why we make such a biased comparison is that the unknown words make a
big breakdown in our model but there are no unknown words in IWCB .after smoothing. This
comparison shows that IWCB is better at predicting membership than our model. If we could
find ways to reduce the proportions of unknown words, the prediction power of our member
sub-model should be greatly improved because almost half of the member éntropy comes from
the unknown class. ’ '

In conclusion, we sum up, albeit biased in favor of IWCB, the Class entropy and
Member entropy, and show their difference in Table 9. Our model is better than IWCB by 0.6
bit per word. This result shows that our language model is more competent than IWCB, which
has been recommended as a good choice in tasks like speech recognition. The 0.6 bit
difference means our model on the average predicts 30% ((1.5-1)/1.5) less candidates than
IWCB. S

Table 8. The comparison of member entropy

Model Perplexity Member entropy
Our Model 10.26 3.36 bits/word
IWCB 3.92 1.97 bits/word
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Table 9. The comparison of two models

Model - ClasstMember entropy
Our Model | ' 9.74 bits/word
IWCB 10.34 bits/word
Difference | 0.6 bit/word

5. Analysis of the Result

Researches [Chang 1991, Su 1992] have pointed out that proper nouns and unknown
words were bottlenecks in Chinese processing. However, there are little quantitative

assessment of the seriousness of the problem.

In this section, we attempt to indicate the bottlenecks in Chinese processing by analyzing
the results of entropy estimation. The cross-entropy of each sub-model is calculated relatively
to the size of total testing text. To make the cross-entropy capable of showing the predictive
power of each sub-model, we calculate modified cross-entropy respect -to each sub-model by
the following formula, and then deductive the perplexity from the modified cross-entropy.

PP(perplexity)=2" (Modified Cross-entropy).
Modified Cfoss-entropy = Cross-entropy / Bx A4 ,
where
A= the size of the full testing text, and
B= the number of words belongs to the classes modeled by the sub-model

We divide Table 6 into Table 10 and Table 11, and add two new entries, modified cross-
entropy and perplexity. Table 10 is for those classes modeled by thesaurus sub-model, and
Table 11 is for the other classes modeled by their corresponding sub-models.
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Table 10. Perplexity of classes modeled by thesaurus submodel.

Submodel Proportion of  Cross Entropy Modified Perplexity
the classes entropy ‘
Unambiguous 24.85% 0.98 3.94 15.3
Two-way 14.07% 0.15 1.06 2.0
Singleton word 31.46% 0.00 0 1
Total 70.38% 1.13 1.60 3.03

From Table 10, we know the thesaurus sub-model on the average predicts about 3
candidates. There are about 60,000 words in CILIN, and about 4,000 classes after
modification. So, there are 15 words in a class in average. That's to say, our model reduces the
number of candidates from 15 to 3. Singleton word classes play key roles in entropy
reduction in that each word forms a class, and thus the entropy is zero in these classes. This

observation shows that the class taxonomy based on CILIN is a good choice.

Table 11. Perplexity of the special classes.

Submodel Proportion of  Cross Entropy Modified Perplexity
the classes entropy
Punctuation 17.29% 0.00 0 1
NP 1.28% 0.11 8.59 3853
Number 2.42% 0.09 | 3.71 13
Name 0.35% 0.12 34.28 2+E10
Unknownl1 1.63% 0.28 17.1 1.4+ES
Unknown2 6.66% 1.63 2447 2.3+E7

We will go on to examine special classes, which are not from CILIN. We define these
classes in that they have special language phenomena, which require more powerful models to
predict their behavior. The perplexity of NP class is about 385, which is far from good; that's
to say, we have to find a better way to model the NP class rather than seeing them as a big
class with so many members. The perplexity of Number class is 13, which seems inconceivably
small. How can one predict only 13 candidates among so many possible numbers? The answer

is that the most frequent used numbers forms a small set (1 to 10 plus a few others). So, it's
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not so hard to predict numbers. However, we have designed a trigram model to predict their

behavior. A simpler model may works just as well.

The perplexity of Name model is very big. It means that our model works badly in this
class; that's to say, the class cannot be modeled by such a simple model as our design. Maybe
we need a more comprehensive understanding of this classes to design a more delicate model
to solve such a inherently difficult problem. The cases of Unknown classes are almost the

same as that of Name model.

The analysis has shown that proper names and unknowns are clearly the major
bottlenecks in Chinese processing. Observing from their surprisingly high perplexities, there
seems to be ample space in improving the models for proper name and unknowns.

6. Discussion and Concluding Remarks

Word definition

The words used in our model are longer than the other models. We regard a string of
Chinese number characters as a word, see a complete Chinese name consisting of a surname
and a given name, and consider ctm (f) as suffixed of the former word. These measures will,
of course, lead to a longer average word length, and thus reduce the number of words in the
testing data. For example, there are 12,735 instances of ctm (HY) in the 269,724 testing text.

So, the entropy per word will be lower if one uses a different segmentation criteria.

However, using longer words plays an important role in our language model because it
can capture more useful information in the bigram table and this basically agrees with our
intuition of word definition in natural language understanding.

Language Models and Linguistics

Our language model is principally based on CILIN, which is compiled by a group of
well-trained lexicographers. We think that a class taxonomy with linguistic basis should
perform better than other straightforward classification. As our result shows, our model is
indeed better than IWCB by 0.6 bit per word.

Straightforward methods may work well on some applications, but have little space for
improvement. We calculate the Member entropy using Liu's frequency counts of some 40,000
words (Liu 1975). The words are classified by the first Chinese character and the last Chinese
character respectively in two runs of Member entropy calculation. Both classifications yields
very close Member entropy, 1.62 bits per word. The result shows that words in Chinese do
not have a strong tendency to have the first character or the last character as their heads.

Simple models perform better than delicate models in garbled information. A
straightforward grouping method like IWCB may be suitable for the job of predicting
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unknown words, on which our language model performs badly. To include such a model as
IWCB in our original model may be a good way to walk out the swamp of unknown words.

Unknown words

Training is better than guessing, but the unknown words occupy 8.29% of the testing
text and are predicted in a way almost like guessing. Even if we divide them into two groups,
unkownl and unknown2, by extracting some high frequency words as another lexicon, the
unkownl dictionary, there are still 6.66% unkown2 words in the testing text. These unknown
words not only obscure the bigram relationship in the class model, but also increase the
difficulty in predicting members in the member model.

In the member model, we see clearly that the unknown2 class occupies 48.51% of the
total member entropy in spite that it only contains 6.6% of the testing text. There are two
possible ways to avoid this predicament. Firstly, one may found other smoothing techniques.
Secondly, one may classify the unknowns according to the principles of CILIN.

The second approach seems more feasible and effective in improving the model. CILIN
was compiled in Mainland China, so many words used specifically in Taiwan are missing. It
will make the language model more appropriate for the text gathered in.Taiwan, if we can add
words used locally and assign them into the original classes in CILIN. It's still an open
problem finding unknowns [Sproat 90, Tong 1994], and assigning them to pre-determined
classes.

Concluding Remarks

In this paper we have described a new approach to build class-based language model and
reported an estimation of the upper bound of entropy of Chinese using the model. A class-
based n-gram model built on an existing machine readable thesaurus is shown to have lower
cross entropy for a balanced corpus of 30,000 words. The cross-entropy of the corpus and
the proposed language model is 12.66 bits per word or 3.88 bits per byte, which is better than
another class-based model, the inter-word character bigram model by 0.6 bit per word. In the
process of estimating'the entropy, we found that unknown words take up disproportionately
large amount of entropy and are the major bottleneck for obtaining lower entropy or better
language models for tasks such as OCR and speech recognition.
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