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ABSTRACT

In designing grammar-checking systems, the pattern matching algorithm, although failing to
handle complex errors, is still widely adopted today. This is because when compared with the
method of employing full scale parsing, pattern matching is efficient in detecting local errors with
much less computer time and memory. However, the patterns used in the pattern matching approach
are usually hand-tuned, and thus suffer from inadequacy in handling correlations among patterns.
These error pattems may conflict or overlap with each other. Therefore, an automatic rule selection
method, called Sequential Forward Selection (SFS), is proposed in this paper to tackle these
problems. SEFS uses objective performance measures to automatically search the suboptimal rule-
set from all the possible combinations of rules. With SFS, the effectiveness of each rule can be
measured, and problematic pattemns can be identified systematically and efficiently for the linguist
to fine-tune. Thereforc, the error patterns can be revised efficiently. In our tests based on a corpus
of 1956 sentences, the false rate decreases by 11.8% (from 26.4% to 14.8%) if the suboptimal rule
set (81) selected by SFS is adopted, instead of the whole rule set (127). With this suboptimal rule
set, the recognition rate decreases only by 3.9% (from 38.9% to 35%).

1. Introduction

The research of grammar checking has long been an attractive area in computational linguistics.
Its main function is to detect grammatical mistakes. To detect grammatical errors, various algorithms

have been proposed in the past decade, such as pattern matching (e.g., Kay, 1987), partial match
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(Pfaltz et al., 1980), short range grammar verifications, syntactic parsing (cf. Vergne et al., 1986),
etc. All these approaches can be generally classified into (1) pattern matching and (2) syntactic
parsing. Although the parsing method can solve the problem of long distance dependency at the
syntactic level, it is time-consuming and occupies too much disk space. Moreover, parsing does not
always yield the correct results. False alarms and missing error rates still exist in parsing. On the
other hand, pattern matching is used to detect the grammatical errors without parsing (cf. Atwell,
1987). It can search the “desired shape” with local distance dependency. Although it usually fails
to catch complex errors, many local grammatical errors still can be detected effectively. It can also
save time and operating costs. Therefore, this approach is still largely adopted and currently used
in our system, i.e., Behavior Design Corporation-Grammar Checker (hereafter, BDC-GC).
However, the patterns used in the pattern matching approach are usually hand-tuned, which

 suffer the following problems:

(1) It is not easy to manage the correlation among a bunch of rules. That is, we are not sure
whether rules conflict or overlap with each other or not.

(2) As different applications might have various requirements and characteristics, the best rule
sets for different applications are usually different. For example, grammatical errors made by
Chinese are different from those by native speakers of English. However, there is no systematic
approach to revise the patterns for various implementations.

(3) It is difficult to identify the effectiveness of each rule and to pinpoint the problematic rules
systematically and effectively.

Therefore, an automatic rule selection method, i.e., Sequential Forward Selection (SFS), is
proposed in this paper to tackle those problems. Given this SFS, we can (i) automatically find the
suboptimal rule sets for different applications, (ii) objectively measure the effectiveness of each
rule and (iii) systematically identify the problematic rules to let linguists revise them. Thus, the
goal of a smaller set of patterns but better performance can be achieved. As a result, it takes 195
seconds (originally 269 seconds) to check 1956 sentences. If the suboptimal rule set (81) selected
by SFS is adopted, not the whole rule set (127), the false rate decreases by 11.8% (from 26.4% to
14.8%) . However, the recognition rate decreases only by 3.9% (from 38.9% to 35%).

II. The Framework of BDC-Grammar Checker

A. The Construction of Error Patterns

Our error patterns of current version consist of 127 rules/patterns which are constructed by
a linguist. They are based on common mistakes found from Chinese students’ compositions and

references (cf. C-L Su, 1991, Strunk et al,, 1979, among others). These patterns have been
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encoded in terms of Arabic numerals (about 600 code numbers). An example of such a pattern is

represented in the second line of Table 1.

/*2.1.2.1 Fragment*/ (error code & error type)
% (#) (,) although (!-1 % (#) (,) * [v]lbe * , * [v]ibe (error pattern/condition)
/* [Advice]: This sentence needs a main clause. */ (advice)

/* [Example]: Although the weather was bad. */ (example)

/* [Correction]: Although the weather was bad, he went (correction)

hunting, */

Table 1 An Example of ERROR PATTERN

A close look at the error pattern shows that our pattern also includes the part of speech (Lin et al.,
1992; cf. Church, 1988). With the aid of the part of speech, many different words can be clustered
into various equivalent classes to formulate more concise rules. The number of rules/pattems,
thus, can be significantly reduced to save time and space. Therefore, when compared with other
systems such as RightWriter’s large (+6,500) rule base (Brace, 1992), our rule size seems small.
waever, in our pilot test, it performs even better than several other tools (please see Section III).
Additionally, it is allowable for linguists to write patterns which include some special symbols such
as {#, %, *, (), I, [ 1} C#: one token;’%’: syntactic boundary; "*’: zero to many tokens; '()’:

optional; ’I’: or; ’[ 1’: categorical brackets).

B. The Construction of Finite State Automata & the Operating Flow

To put these error patterns to real use, they must be converted into Finite State Automata (FSA,
cf. Hopcroft et al., 1979). First, patterns with special symbols are converted into regular expressions
which are then converted into FSA (Karttunen, L. et al,, 1992 among others). This FSA includes a

finite set of both states and transitions from state to state at input symbols, as shown in Figure la.

a. FSA Construction

Error pattern Symbol Regular expression FSA FSA
special written conversion machine-readable construction
forms forms

b. Operating Flow

English Mo'rpho- Stem Lexical Word- Gram.mar Error
— »| logical “orm | tagging | checking ———* report
Text analysis orm cat.pai (FSA)

Figure 1 The flowchart of BDC-GC
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A close look at the top flow in Figure 1a reveals that the special written forms such as {#, %, *,
0, I, [ 1} are first converted to regular expressions. They are then transferred into machine-readable
forms for the realization of FSA, which is the kemel of BDC-GC.

To illustrate the basic concept of our method, the operating flow of GC is shown in Figure

1b. Three stages of operation used to operate grammar-checking are stipulated as follows: (i)

morphological analysis, (ii) lexical tagging and (iii) grammar checking. Let’s take the sentence in

Table 2 as an example. The surface form of a singular verb influenced is decomposed to the stem

form ’influence’ with suffix ed through the morphological analysis. After the categorical tagging,

it becomes a word-category pair with category v. Afterwards, it turns out to be v/ed which is

needed for grammar-checking.

1) Science has influenced our life Surface form
) science have influence our life Stem form
3) n /- v /es v/ed poss/- n /- Category/Suffix

Table 2 The morphological analysis & lexical tagging of BDC-GC

Currently, this system operates on Sun Sparc & IBM RS 6000. It takes about 269 seconds.to
check 1956 sentences (= 24069 words) on Sparc station ELC.

III. The Baseline System & Comparison with Other GC-Systems

To show the superiority of the proposed method, the original 127 rule set as a baseline system
is used for comparison. Additionally, to give readers a general feeling about the performance
of our baseline system, it is also compared with several other popular commercial products, e.g.,
Grammatik IV, RightWriter, The Writer’s Toolkit, PowerEdit, etc. The comparison of performance
evaluation for five different writer’s tools is based on five pieces of student essays related to
SCIENCE. There are 72 sentences (R69 words) in total. Fifty-two errors are checked and hand-
labeled by a linguist.

Table 3.1 illustrates the performance of different systems, where the recognition rate is calcu-
lated by the formula recognition rate = (number of detected errors/ number of total errors)%; and the false rate
is computed by faise rate = (number of false errors/number of total detected errors) %. The best récognition
rate is 65%, which is performed by BDC-GC. Likewise, the highest false rate (33%) also goes to
our system. On the other hand, Writer’s Toolkit performs at a high recognition rate (53%), but

hits the lowest false rate (15%).

Unfortunately, PowerEdit, for example, does not perform as well here as it did in two previous
tests listed in Table 3.2 & Table 3.3, where the recognition rate was approximately 51% (Rabinovitz,
1991) or 72% (Smith 1992),
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% | Tools BDC-GC Writer’s RightWriter | PowerEdit Grammatik
Toolkit v
Recognition _ 65% 53% 30% 38% 449
False 33% 16% 15% 31% 24%

Table 3.1 Performance evaluation for five GC-tools (52 mistakes made by Chinese student)

The large performance variation among different tests might suggest that a large testing corpus

is required for the sake of fair comparison. However, this kind of test is very time-consuming

without modifying the error reporting program of other products. Besides, the great decrease of

performance for PowerEdit (recognition rate: only 38%) in our test might suggest that it is not

suitable for correcting essays written by Chinese students. This phenomenon also implies that

different rule sets might be required for various applications.

% | Tools RighrWriter PowerEdit Grammatik IV
Recognition 13% 51% 30%
False 8% 11% 3%

Table 3.2 Performance evaluation (grammar & style) based on Rabinovitz’s report (150 test

sentences) (Rabinovitz, 1991)

% /| Tools Writer’s Toolkit | RightWriter PowerEdit Grammatik V
Recognition 56% 54% 72% 48%
False 2% 2% 2% 26%

Table 3.3 Performance evaluation based on Smith’s report (50 errors) (Smith, 1992)

IV. How To Select Better Rules Based on Corpus

A. The Construction of Corpus Annotated with Error Patterns

To select rules automatically, an annotated corpus is required. Various archives of written tests

and compositions from 2 universities and high schools were first collected. To make the students’

essays easy to deal with, the raw material was first hand-labeled with the corresponding error codes,

and then put together to form the corpus. For instance, the following case in Table 4 is an example

of our training set. The double question mark “??” (e.g., in “?? can not —> 7.3”) represents error

mark (where an error is stipulated). After the question mark, the string “can not” indicates error

scope and “7.3” illustrate error code (or error type).
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Sentence "For example, people can travel around ... that can not be seen ... "

Hand-1abled 77 can not - 7.3

Meaning error symbol €rTor scope —> error code

Table 4 An example of hand-labeled correction

There are 30 grammatical categories employed in the system. (Examples are shown in Table
5.) Each code number represents a specific error type. The error scope as shown in the given

example is indicated by a pair of brackets.

Code Type Example Explanation
1.1 Dangling Seeing her teacher, [her face] turns red. | Logical subjects in two
participle clauses should be
consistent.
2.1.1.1 Fragment [Although the weather is bad.] Missing main clause
18.1.2.1 Agreement || [He get] up early every day. Subject-verb agreement

Table 5 Examples of 30 grammatical types to detect errors in GC-system

B. Automatic Rule Selection with Sequential Forward Selection (SFS)

To find the best rule set, it is necessary to check all the possible subsets of the original rule
set. Different search algorithms (optimal & suboptimal) have been proposed (cf. Devijver et al.,
1982) to do so. Among those, Sequential Forward Selection (SFS, also cf. Devijver) is adopted
in our grammar checker. SFS is a simple bottom up search procedure which can be used to take-
care of the correlation among rules. Compared with other approaches, the SFS algorithm is faster
and less complex. Thus, it is preferable in our system.

To implement the SFS algorithm, we first initialize two groups of rules (i.e., error pattems):

i). Group 1 (G1_rule) with all the rules (127); (on'ginal rule set)

ii). Group 2 (G2_rule) used to include the selected rules. (It is empty in the very beginning.)

The basic concept of SFS is to activate grammar-checking and to take the best rule of
performance from G1_rule to G2_rule. Then, we choose the best one again from the remaining

rules in G1_rule until it is empty. This algorithm is shown as follows.

The Sequential Forward Selection (SFS) Algorithm
SFS (n rules) {
Gl _rule = n rules; /*initialization*/

G2_rule empty;

loop (while there are still rules in G1_rule)({
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max_score = -9999; /*initialize the maximum score as -9999 here*/
loop (for each rulei in Gl rule) do {
build fsa (rulei + G2 _rule); /*Combine rulei with those*/
/*already selected rules, then construct FSA*/
check grammar (input text);
/*Operate grammar checker with new FSA.*/

score = W1l * number of detected error - W2 * number of false alarm
/*Evaluate the performance;*/
/*where Wl and W2 are reference weight.*/

if (score > max _score) then {

max score = score; /*Replace the max score */
/*with the current one.*/
best rule = rulei; /*rulei as the best rule*/

}
} /* end of for-loop */
move the best rule from Gl rule to G2 _rule
} /* end of while-loop */
output G2_rule;

}

The program includes two loops. The first one (while-loop) implies that while there are still
rules/patterns in the G1_rule, it keeps working. The second loop (for-loop) indicates that for
each remaining rule in the G1_rule, it builds up FSA for the rule set which is the union of the
original G2_rule and the rule just picked up. Because all the rules in G2_rule are applied jointly,
not disjunctively, the correlation among rules has been considered. Afterwards, it perforfns the

grammar-checking and evaluation in terms of the following formula:

Score = [WI * (number of detected errors)] — [W2 * (number of false alarms)], where W1 and W2 are
the weighting factors which give different degrees of preference for (number of detected errors)
and (number of false alarms). Different weighting factors may be used for different applications.
In summary, SFS uses the score function as the criteria for selecting the suboptimal rule set, which

is a subset of the original rule set in many cases.

If any new score is bigger than the current max_score, then this score replaces the current one
and becomes the max_score. Again, the best one is chosen and put into the G2_rule until the last

one is done. That is, the G1_rule becomes empty in the long run.

V. Performance Evaluation

After executing SFES and operating 127 rules on the corpus of 1965 sentences, the results in
Table 6 are generated. The rules are ranked according to their performance. For example, the
most powerful rule, which is ranked Rule 1 here, finds 56 errors with 13 false alarms. Thus, it
scores 43 for its performance by means of the formula (i.e., Score = (number of errors detected)
— (number of false alarms)). The total detected mistakes throughout these 127 rules are 450 errors

with 163 false alarms.
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Rule Detected False Accumulative Rule Detected False Accumulative

errors alarms score errors alarms score
1 56 13 43 115 418 80 338
91 13 78 116 435 98 337
81 409 71 338
82 416 78 338 126 448 129 319
127 450 163 287

Table 6 Statistical table with number of detected errors, false alarms & score

However, Table 6 shows that the rule set including the first 81 rules performs best. To capture

a clear picture, Figure 2 is provided below.

Score = (number of error delecled)- (number of false alarm)
Rule number: based on the score of a rule (lLe., rule-ordering)
(Tolal rule of number: 127)

error
~ detected

430 -

Number of Errors Detecled

Rule Number

© 20 -0 “o 80 100 120 140

Figure 2 The Results of SFS with 127 Rules

The vertical axis shows the number of detected errors, 450 in total. The horizontal axis
represents the ordered rule number (i.e., Rules 1-127) based on their performance as indicated by
the given formula. The top curve shows the number of detected errors; the middle one illustrates
the score of their performance, and the bottom one represents the number of false alarms. (The
left Arabic numeral in each pair on the middle curve represents a rule number with its score at the
right side of this pair, e.g., (81,338).)

The results demonstrate the following:

(I). The first 81 rules (scoring 338) perform better than the others.

(II). The performance of rules from 81 to 115 (also scoring 338) remain unchanged. This
implies that these rules may be covered by the previous rules. Therefore, they can be deleted
without any effect in our experiments.

(II1). Afterwards, it goes down and finally degrades to 287. This suggests that Rules (116-127)
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should be revised or thrown away because they cause more false alarms than detected errors.

As mentioned above, our tests are based on a corpus of 1956 sentences. After the application
of SFS and the subsequent rule-revision, the false rate decreases by 11.8% (from 26.4% to 14.8%)
if the suboptimal rule set (81) selected by SES is adopted, not the whole rule set (127). However,
the recognition rate decreases only by 3.9% (from 38.9% to 35%), without ruining the merit of its
better performance. That is, the best 81 rules (scoring 338) perform better than that of the total
127 rules (scoring 282).

VIi. Conclusions

This paper stipulates that the pattern matching approach is still widely used in the area of
grammar checking. The reason is that when compared with the method of employing full scale
parsing, pattern matching is efficient in detecting local errors with much less computer time and
memory. However, the error patterns used in the pattern matching algorithm are usually hand-tuned,
and thus suffer problems such as the problem of correlation among patterns. These patterns may
conflict or overlap with other patterns. The purpose of this paper, therefore, provides an automatic
rule selection method, i.e., Sequential Forward Selection (SFS), to handle these problems. This
algorithm uses objective performance measures and then automatically searches the suboptimal
rule-set among all possible combinations. With the help of SES, the effectiveness of each rule can
be measured and the problematic patterhs can be identified systematically by linguists in order to
fine-tune them effectively. Moreover, the error patterns can be revised efficiently. The above tests
based on a corpus of 1956 sentences display that the false rate decreases by 11.8% (from 26.4%
to 14.8%) if the suboptimal rule set (81) selected by SFS is adopted, instead of the whole rule set
(127). However, the recognition rate decreases only by 3.9% (from 38.9% to 35%) by using this
proposed algorithm. The implementation of SFS in BDC-GC, therefore, is strongly recommended

to improve the performance of grammar-checking.
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