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Abstract

Research on Chinese part-of-speech tagging has been very active recently. However, there are
several problems the research must confront before a successful tagger can be realized. Among
them are word definition, segmentation, lezicon, tag set, tagging guideline, and tagged corpora.
We propose machine-clustered word classes as an alternative for part-of-speech to be used in
class n-gram models. Chinese characters and words are automatically clustered into a predefined
number of classes using a simulated annealing approach. The 1991 United Daily tezt corpus of
approzimately 10 million characters is used to collect the statistics of character and word collo-
cation. We will show and discuss some preliminary ezperimental results, which are considered

promising and interesting.

1 Introduction

Word n-gram models are useful in many NLP applications. However, they have a lot of param-
eters, which need huge training data to estimate and take very much memory and disk space to
store. Thus, class n-gram models [1] have been proposed to reduce the number of parameters.
One of well-known class n-gram models is the Tri-POS model [6], which defines word classes
based on syntactic categories, i.e., parts-of-speech. It has been successfully used in many western
languages [5]. However, Chinese language models using part-of-speech information have only a

very limited success [4,11] due to the following difficulties encountered in Chinese part-of-speech

tagging [2]:

1. To define an appropriate Chinese part-of-speech tag set [10,15,16];
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2. To find a Chinese lexicon with complete part-of-speech informations;

3. To solve the word segmentation problems [3], e.g., word definition, unregistered words,

and compounds;

4. For human to do Chinese part-of-speech tagging; the parts-of-speech of numerous words

are either arguable or difficult to decide.
5. To find manually tagged Chinese corpora, counterparts of the Brown and LOB corpora in

Chinese.

In the paper, machine-generated disjoint word classes are proposed as an alternative for

parts-of-speech. The five problems listed above are solved at the same time.

1. Automatic clustering of Chinese words is used to generate the disjoint word classes. Thus,

the size of the tag set and the definition of classes are decided automatically.
2. Each word in the lexicon is assigned to one of the machine-generated disjoint word classes.

3. Any raw output of a word segmentation program can be used to train the automatic

clustering system. Words are defined as any segmented character strings.
4. There is no need for human to tag the disjoint word classes.

5. Any unsegmented, untagged text corpus can be used for training and/or testing.

The main concept is: Let machines do things in their own way. Chinese words, parts-of-
speech are not well-defined concepts even for human, not to mention machines. We consider that

this is why machines can not do word segmentation and part-of-speech tagging satisfactorily.

The other advantages include: (1) scalable: The number of classes (i.e., granularity) can be
adjusted easily according to applications; (2) adaptable: The word classes can be retrained on

corpora of different domains.
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2 Automatic Clustering of Words

2.1 The Problem

Let
T = wy,ws, ..., wr, be a text corpus with L words;
V = vy, vq,..., uNv be the vocabulary composed of the NV distinct words in T’
C = C4,Cy,...,Cnc be the set of classes, where NC is a predefined number of classes.
The word clustering problem can be formulated as follows:

Given V and C (with a fixed NC), find a class assignment ¢ from V to C which maximizes
the estimated probability of T, p(T"), according to a specific probabilistic language model.

For a bigram class model, find
¢:V->C
to maximize
5 :
H(T) = T] p(wil¢(wi))p($(wi)|$(wi-1))))
=1

Alternatively, perplezity [7] or average mutual information [1] can be used as the characteristic

value to optimize.

Perplexity, PP, is a well-known quality metric for language models in speech recognition. It

is also called the average word branching factor of the model.
PP =j(T)°t

In a sense, the language model reduces the difficulty of recognition task from distinguishing
NV words to distinguishing PP words. The perplexities PP for the word and class bigram

models are:
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1 L
PP = ezp(_f > In(p(wilwi—1)))

i=1

and
1 L
PP = eap(-7 2; ln(P(wi|¢(wi))P(¢(wi)|¢(?{)i—1))))

respectively, where wj is the j-th word in the text and ¢(wj;) is the class that w; is assigned

to.

For class N-gram models with fixed NC, lower perplexity indicates better class assignment
of the words. The word classification problem is thus defined: Find the class assignment of the

words to minimize the perplexity of the training text.

2.2 Disjoint Word Classes

Linguistic objects in natural languages can be classified into four categories (Table 1): (I)
linguistically defined, ambiguous; (II) linguistically defined, disjoint; (III) artificially defined,
ambiguous; and (IV) artiﬁcially defined, disjoint.

ambiguous disjoint

linguistic | Chinese word, | Chinese character,
part-of-speech | English word -

artificial | - machine-generated word cluster,
word equivalence class

Table 1: Taxonomy of Linguistic Objects

Most of Chinese NLP researchers have dealt with the problems from the linguistic point of
view. We have been trying to identify Chinese words from text, to tag the part-of-speech for
the words. However, these concepts (Chinese words, part-of-speech) are often poorly defined
or highly ambiguous (Type I). The computer is not good at resolving ambiguity according to
linguistic criteria. Thus, Type II objects are much easier to process than Type I objects. The
concept of word classes has been proposed to reduce the number of parameters in statistical
language models. Lee et al. [12] approximates Chinese word bigram by the idea of word-lattice-

based character bigram, because Chinese characters are disjoint, i.e., unambiguous (Type II)
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while Chinese words are boundary ambiguous (Type I). We can not find examples of Type III
objects. Kupiec[9] defined unambiguous word equivalence class (Type IV) based on possible

tags of a word for the part-of-speech tagging problem.

We propose the following directions for Chinese class n-gram models:

1. Using disjoint classes instead of ambiguous (overlapping) classes;

2. Using artificial (machine-generated) classes rather than linguistically defined classes.
In other words, Type IV objects are preferred over Type-I and Type-II objects.

2.3 A Simulated Annealing Approach

The word classification problem can be considered as a combinatorial optimization problem to be
solved with a simulated annealing algorithm. Jardino and Adda [7] used a simulated annealing
approach to automatically classify words in a French corpus of 40,000 words and a German

corpus of 100,000 words. A simulated annealing algorithm needs four components [8]:

(1) a specification of configuration, (2) a random move generator for rearrangements
of the elements in a configuration, (3) a cost function or objective function to evaluate a
configuration, (4) an annealing schedule that specifies time and duration to decrease the

control parameter (or temperature).

For the word classification problem, the configuration is clearly the class assignment ¢.
The move generator is also straightforward — randomly choosing a word to be reassigned to
a randomly chosen class. Perplexity can serve as the cost function to evaluate the quality of
word classification[7]. The annealing schedule follows that of Metropolis algorithm. Thus, the

clustering procedure is:

1. Initialize: Assign the words randomly to the predefined number of classes to have an initial

configuration;

2. Move: Reassign a randomly selected word to a randomly selected class (Monte Carlo

principle);
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3. Accept or Backtrack: If the perplexity is changed within a controlled limit (decreases or
increases within limit), the new configuration is accepted; otherwise, undo the reassignment

(Metropolis algorithm, see below);

4. Loop: Tterate the above two steps until the perplexity converges.

Metropolis algorithm [7]: The original Monte Carlo optimization accepts a new configu-
ration only if the perplexity decreases, suffers from the local minimum problem. Metropolis et
al. (1953) proposed that a worse configuration can be accepted according to the control param-
eter ¢p. The new configuration is accepted if exp(APP/cp) is greater than a random number
between 0 andyl, where APP is the difference of perplexities for two consecutive steps. ¢p is

decreased logarithmically after a fixed number of iterations.

In the following two sections, we use similar simulated annealing techniques to automatically

cluster Chinese characters and words in the 1991 United Daily corpus.

3 Clustering Chinese Characters

3.1 The Corpus and Character Bigrams

The statistics of Chinese character bigram is based on the 1991 UD corpus (1991ud) of approxi-
mately 10,000,000 characters. There are totally 5,403 character types: the 5401 commonly used
characters in the Big-5 character set, a type for all 7,650 (13,051-5,401) other Chinese char-
acters in Big-5, and another type for special symbols, such as punctuation marks and foreign
characters (Arabics, English). There are 723,681 nonzero entries in the full 5403x5403 bigram
and 9,529,107 (= L) occurrences of character types.

To keep the clustering experiments running within reasonable time, using the whole UD cor-
pus for full character or word bigrams is not satisfactory. A smaller subcorpus, day7, containing
one day of news, was extracted from the 1991 UD corpus. There are 147,976 nonzero entries in

the full 5403x5403 bigram and 540,561 (= L) occurrences of character types.
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3.2 Experimental Results: Clustering 100 Simple Characters

To illustrate the clustering process, the first 100 Big-5 characters are chosen as objects to classify

(Table 2).

—ZTEIATZAILANLI A7 X
=X EYANALZTF IO FX AL
THIXRLFFLTIEFUIITEEETFH
NEAREAFTERZFTFaHEATUAT
AMATES ST IRTE AR S 2 TTRIZ TNV T 277

Table 2: The 100 Characters to be Classified
The statistics for these 100 characters are extracted from the full 5403-character bigram for
1991ud. That is, a 100x100 submatrix is extracted from the 5403x5403 matrix. This is an

approximation of a text composed of these 100 characters. There are 1,968 nonzero entries in

the 100x100 bigram and 144,261 (= L) occurrences of them.
The control parameter ¢p is initialized to 0.1 and divided by two after every 1,000 iterations.

First, we tried to cluster the 100 characters into 10 classes (see Figure 1 for the converging
process). Omne of the classes, Class-0, is used to represent unknown characters and characters

with zero frequency (i.e., never occurs in the training text). We observe that:

¢ Initial configuration: Class-0 contains tle zero-frequency characters; all other characters
are assigned to Class-1. This practice follows the suggestion made by Jardino and Adda

[7]. Initial perplexity is 32.950.

o Perplexity decreases quickly at first several runs (each run corresponds to a fixed ¢p and

1,000 iterations), from 32.950, 22.052, 19.396, to 18.608 after the third run (cp = 0.025).

o If the classical Monte Carlo method is used — a new conﬁguration is accepted only if the

perplexity decreases, it will get stuck at a much worse local minimum.
o After only 12 runs (cp = 4.88 - 1073), the perplexity converges to its final value 17.719.

o The clustering result is very encouraging. The final configuration is shown in Table 3.

— Class-3 consists of six digits.
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Figure 1: Clustering 100 Chinese characters: different NCs

— Class-9 consists of two characters + and ':F, which are quite similar syntactically

and semantically.

— Class-1 contains several first characters of measure words, I, ﬂ', 7T, lz}, 53, etc;
Note that the classification is based on character bigram, so 4>can be considered as
a part of measures such as ’2}5_} .

— Class-0 is artificially made for unseen characters.

— Class-6 has a large family; somehow, members in the meaningful groups (1) BT
QRPN LF LT (5) LI)1] are together.

— The other classes are less meaningful.

— Two digits —, /L are not assigned to Class-3.

Figure 1 also compares the converging processes for different values of NC and Table 4 shows
the converged perplexities. As expected, the perplexity decreases when the number of classes

increases. The perplexity of the character bigiam model, i.e., NC = 100, is 11.250. If we
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Class

Members

Class-0 :
Class-1 :
Class-2 :
Class-3 :
Class-4 :
Class-5 :
Class-6 :

Class-7 :
Class-8 :
Class-9 :

JLABITCE P EHATIRTA
XYFTEETRASS

—FIx

TZAZENR

AXWZIIX EFHEN

THZA

TNV T EY ANATERLF
AN ITBEFHATFEZACS S
X :

2 FOLAHEAF G

+F

Table 3: 10 Output Character Clusters for the 100 Characters

classify the 100 characters into 30 (VC') classes, the perplexity is just 12.556. There is not much

difference. This shows the feasibility of class n-gram models: reducing the number of parameters

significantly, having competitive performance, requiring much less resources, and robust.

NC | Perplexity
1 32.959

2 28.442

5 21.947
10 17.719
20 14.760
30 12.556
50 11.472
100 11.250

Table 4: Perplexities for different NCs

3.3 Experimental Results: Clustering 5401 Chinese Characters

Running the full 5401-character bigram for a large corpus (L > 1,000, 000) takes 1'1uge amount
of time. Note that Jardino and Adda [7] used much smaller corpora (40,000 and 100,000 words,

respectively). However, the algorithm has a time complexity proportional to L. They reported

that it took 7 hours on a 486-33 PC to classify 14,000'words into 120 classes using a 75,000-word

training set. We have designed an incremental version of the system which is much faster than

the original version which recomputes all probabilities in each trial. In our experience, it took

20.06 CPU hours on a DEC 3000/500 AXP workstation to classify 5403 characters into 200
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classes (with 50,000 trials in each of 64 iterations) using 540,000-character day7 corpus.

We have conducted three experiments on the day7 corpus.

650 . —r . —_—

550 \— .

L NC=50

perplexity

300 L NC=200,lter=10000

NC= 200,Iter=50000

0 2 4 6 8 10 12 14 16 18 20
-log cp (control parameter)

Figure 2: Clustering 5,401 Chinese characters: the converging process

Experiment 1:

Number of Classes: 50

¢ Initial cp: 0.1

o Initial perplexity: 675

¢ Characters with frequency less than 3 are assigned to Class-0

o Number of iterations in each run: 10000

o The perplexity converging process (Figure 2): 675, 628, 626, 619, 610, 589, 562, 541, 522,
..... , 430 (cp too small, less than 10~20)

o The final configuration:
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Class-0 contains 2,293 characters.

Class-1 contains human-related characters, AFRLUFLEERESILEX R TAF
s eHe, .. |

Class-14: —5 7RI ETFE T HORIE R IR AR

Class-18 contains: (numbers) tﬂ:/\EﬁﬁE?E%aﬁﬁﬁﬂ%ﬁié%

Class-20 : FLASA/ESR EL T EE Hhiz M R ERGU MM (s R PR T oL
BE Many of them are conjunctions.

Class-21 consists of I fli'E &R M AHRIAT HABWRE S 1B F B R U=
MVSEH R AR RLEEENEFEEEIE. Almost all pronouns are in-
cluded in this class.

Class-22 and Class-24 are composed of measure words among others:

(Class-22) To43SHIHIR SR RO IR EAFE S R SR RIS

(Class-24) K H HF EIKINAERE AU E R AR S MR PR 1 R A e
ikl RE ‘

Class-26 contains several function words, X&Z‘%%R%Hﬁﬂﬁﬂi’ﬂﬁ—ﬁjﬁf&ﬁ)ﬁ
RIANER By 1 0 & S ED St B R R A i

Class-28 contains several surnames: T3¢ 1.0 &5 2 Lak 3= B R H BuAk Eb i
I ZERRERR PR HEEE RGN EHIE S MRS
EFE AL i%?E, among others.

Class-37 consists of orders of ten, +:F‘7LH ﬁ’f‘?é‘%%%%fﬁﬁﬂ

Somehow, we consider that 50 is not enough for character class discrimination.

Experiments 2 and 3:

Number of Classes: 200

Initial cp: 0.1

Initial perplexity: 675

Characters with frequency less than 3 are assigned to Class-0
Number of iterations in each run: 10000 and 50000

The perplexity converged to 274 and 258, respectively (see Figure 2).
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11
19
23
25

26
51
52
57
63
69
70
72
73
78
81
87
94
106
114
124
128
135
138
139
140
141
144
160
173
189
190
196

WS REHERS EIRFRiEiE RIS EEEHEE...

Z T FUERE I B e ?&?%EEL

Rt EE R B T TE R R R

TOIR FRETA sk SR A 855

AT HFI I BRI R Rk B R I EE R AL

F BRI RS B5 BZETIK B Bbt S Bk AR R I Z A i 2t YE AR
BRERRIERIEE REI AR BE RGP EE MR e
U AR IR S R R R B R R R

X H i

Rﬁ?é@%F

@ﬁ%ﬁé%Eﬁ%ﬁ
FHEAD

T L&

S

G HEBPHE

X EFE R

FHEE%k

e R IR R R R E IR R
tAN

BB ERHS
S

JKEIE

FAREMRE

7 R EfRERL R
BRI YRR R EIR SR R
FE

& FEFFIERUE

—Wi R

E7EY2 IR S E O RZ ER 1R
SRR REREEE
A B R IR
TS B et B2
ZERAVEER

XARATS PRSI M AR S Rt
2R RSIEE

Table 5: Part of Output Character Clusters
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¢ See Table 5 for part of the final configuration with Iter = 50000.

The listed classes have obvious meanings, the others are less clear. However, we observe

that function-word and content-word characters are usually grouped separately.

Test Set Perplexity

To evaluate the performance of classification, we use another subcorpus day5 (544,606 charac-
ters) to compute a test set perplexity. For character clustering, smoothing is not necessary since
the character set is mapped to a fixed set of 5403 character types. Table 6 shows the test set
perplexities for different NC and number of trials per iteration (Iter). In general, classifications
with higher NC have lower test set perplexity because the character set is closed. Clustering

with higher Iter also reduces test set perplexity but with limit.

| NC | Iter | Train PP | Test PP—|
50 | 10000 430.266 | 461.355
200 | 10000 274.916 | 290.208
200 | 50000 258.124 | 274.470

Table 6: Test Set Perplexities

4 Clustering Chinese Words

4.1 The Corpus and Word Bigrams

The statistics of Chinese word bigram is based on tﬂe above-mentioned (day7) corpus. The
corpus is segmented automatically into clauses, then into words by our Viterbi-based word
identification program VSG. There are totally 42,537 clauses, 355,347 (= L) words (189,838 1-
character, 150,267 2-character, 10,783 3-character, 4,460 4-character), belonging to 23,977 word
types (3,377 1-character, 16,004 2-character, 2,461 3-character, 2,135 4-character). There are

203,304 nonzero entries in the full 23,977x23,977 bigram, which is stored in compressed form.

4.2 Experimental Results: Clustering Chinese words
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Figure 3: Clustering Chinese words: the converging process

Initial Configuration

Words with frequency less than m (default value: 5) are assigned to Class-0, the unseen word
class [7]. Punctuation marks are assigned to a special class Class-1. 1-4 character number
words are assigned to Classes 2-5, respectively. (Note that the numbers are composed by lexical
rules in our word segmentation program VSG.) All other words are assigned to Class-6. Initial

perplexity is 2,048.

Word Clustering: Changing NC and Iter

Numbers of experiments have conducted on the day7 corpus with different parameters. The

following table shows the converged training set perplexity.

As expected, classifications with higher NC or higher Iter have lower training set perplexities.

However, it is not the case for test set perplexity. Figure 3 shows the perplexity converging
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| NC | 10,000 iter. | 20,000 iter. | 50,000 iter. |

50 1305 1234 1203
100 1212 1140 1099
200 1068 1019 960
500 723 699 667

Table 7: Training Set Perplexities

processes for iter = 50000.

Testing Set Perplexities

For the problem of unseen words and bigrams, we adopt a similar linear smoothing scheme to
that of Jardino and Adda [7]. (For details, see the original paper.) The interpolation parameters

o and S are set to 1 — 107% and 0.1, respectively.

Four subcorpora are used: day7 for training, day5, day8, day9 for testing. Simple statistics

are summarized in Table 8.

| COTpus ]iclau&?‘ #vocabularﬂ #words \

day7 42,539 | 23,977 | 355,347
day5 44,334 24,706 | 360,464
day8 27,946 18,948 | 232,818
day9 26,579 19,111 | 221,105 |

Table 8: Four Subcorpora: day5, day7, day8, day9

The test set perplexities are summarized in Table 9 (for Iter = 50,000).

It appears that the most appropriate number of classes is about 150 to 200 for the size of

training corpus. The clustering with NC' = 500 is apparently overtrained (Figure 4).

‘Word Classification Results

As we all know, the smallest meaningful unit in Chinese is words rather than characters. The

classification results for words are also more meaningful, if the clustering is well trained. When
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| NC | day5 | day8 | day9 |
50 | 1543 [ 1548 [ 1489
100 | 1491 [ 1495 | 1437
150 | 1482 | 1487 [ 1427
200 | 1478 | 1489 | 1436
500 | 1655 | 1637 | 1594

Table 9: Test Set Perplexities: day5, day8, day9

we set Iter to 10,000, the result did not have clear meaning. However. we now set Iter to 50,000,

the classification results are encouraging.

For NC = 200, 15,900 words are assigned to the six special classes (15070, 5, 17, 131, 266, and
411 words, respectively). The other words are assigned to the other 194 classes, approximately
according to part-of-speech. Part of the output clusters are shown in Table 10. The following

are some observations:

o Title nouns: Class-7

¢ Place nouns: Class-10 (counties, cities, towns), Class-25 (nations, capitals, etc.), Class-79

(organizations)
¢ Time nouns: Class-12 (seasons), Class-44 (weekdays), Class-196
¢ Personal Names: Class-14, Class-42 (including some foreign names)
¢ Common Nouns: Class-6, Class-9, Class-11, Class-13, Class-27, Class-33

e Verbs: Class-8, Class-22 (%-related), Class-37 (ﬁ-related), Class-38 (count-related),
Class-45 (1-character verbs)

¢ Adverbs: Class-15

o Prepositions: Class-16, Class-26,

e Adjectives: Class-17

¢ Conjunctions: Class-23, Class-29, Class-34

o Modals: Class-67

e Number nouns: Class-2, Class-3, Class-4, Class-5, Class-91

o Measure nouns: Class-36, Class-70, Class-74

72



6 FRESE/ RS/ ANE/BEHE/ DT/ S/ KE/ AN KER ..
T oW/ BER/ EE/ R/ EHAN/EE/BEAN/RE/RR/WE/RE /18/RE/ B/ 52/
BIE/BRL /B B/ BBAN/WE/MER/BE/RIER/BR/AR/BEER/ BR/ER/BESA/
BE/ER/BER/BER/ER/BET/HE/HEH/HR/E8R
8 M/ KE/FH/REEG/ER /L RS B /(L /1t8 /fer /g /183T /...
9 DE/AN/ANE/ERRE/AHE/ G/ MR/ EO SRR/ S/ E ..
10 /3N /Z8/ KR/ am/am/ e/ 6 /B /icE /Hes /x5 /5% mik/ms/aR/hE/HE/
Hili /BB BE /AT ER/F B8/ A0/ B/ S 55 B
11 {9 /6L /iR / &ITI /218
12 Z/XK/8/%#/%/dE/ R/ B/ 8/ %8/ /%8 BE/%] ...
13 AW/ W%/ T/ FE/XE/ A8 /LhE/ AR/ L8/ £8/RER BN/ ...
14 #6/38/F/&/R/F/ &[T/ 2/ BB/ Z /% /G /W55 E/
B /55018 0B TR B 3R & 8
15 FIA/+5/KRB/KRIG/ D&/ Em/ a2/ R /Z /8B RE/RA ...
16  Ft&/KE/CR/EEE/B /R FE/ MR/ H4/EE/ ...
17 K/ua/& /B AN/ 58 /W) BT/ B/ v L/ B/ HE /B 8/ e/ FEzz
22 FRER/AR/ER/AR/%/Z/2E /G2 /H2/5E
23 RME/ L&/ R /IF /B /REERR bk /R 8 /8 /4R [ Bk [ R 5T/ VR s 7e | G 2
25 e/ RE/AVE/EE/ .../ B4/ L/ AT A/ A/ S/ 2%/ 25/
Hugk /O /S KRS/ Bt % [ BB R /AR R/ R R
EE/ Bk /e / BN/ BRE /R /5% SERR /R [Fnk /it
B BRSE /B Rk BETE 1EM 1EE /BT /W / SR B /B BREE/ ...
26 SIA/KBE/FRE/N/E/ER/ENRHR/ZR /)RR RE 1%/ 618/ Bi&k/ FE/ ...
27 WHE/FE/XE/BF/KR/FR)ANE/OR/ O/ £k [ 3E/HE/ ...
29 R/ AH/RZ/tE2/Rel/ B/ L/ B—HE /SHE/ME /Mt /ER /{8 /82 / Rt/ 8/ X/ / ¢/ ...
33 EKFE/HI/ T/ B/ HEBL/ L EGEE /BN FE /RSB [ W/ BE/BA /BT ...
34 XRHZ/—B/TR/B/UR/PG/LME/LME/ LIS/ B0/ /e B/ &t/ m/EE /B /HEHE/ & /30E/ ...
36 ~FH/A/oNERE/ R/ B/ E/ e/ B ‘
37 RE/RE/FW/E/AR/EE/BRE R/ A/ SRR/ EE /AT R R/ %5 /& ...
38 ../HEE/HE/ZE/E/BE//BRE/BYE/BR/EE/ s/ FE/ BB/ E/R/ ...
42 F/R/KR/R] BB/ TR/ BREE/ L8 B/ S B |58 Motk /7R [ BRE B T  d oh R RR R R B R
44 SK/B#I/N/RE/RE/WB AR/ BN/ M—/§FK/¥E/RER /RER /BrY | BE/E—/E8/...
45 YI/5|/E/E/ S5/ 1B/ /A /E/R /R IEE 0/ /R /R ...
67 R/ AROTRE/FEE/RBR/ B/ —E/CR/NE/FE kR /KY /m/mLL/AIE/EERE/dk/BE/...
0 WNF/5E/FF B AR/ TFE N/ S/ E Erh [ ER ) Ek E e/ BIR
T4 T/ AT AR AT [N B NE A ) 275/ AR L AR ..
79 AF/AAFR/NE MO/ hnidss/ R/ B/ E /AR B/ RE R e BB BB B
91 FE/FH/ER/R/E/ G/ HEE /5% E
196 W&/ /R H B/ T4 BE /2 /0 91| & B R [ RE /0 L /R / 55/ 1

Table 10: Part of Qutput Word Clusters
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Figure 4: Training vs. Test Set Perplexity

o Equi-length words are usually grouped together. For example, one-character verbs, two-

character verbs, one-character nouns, two-character nouns are grouped separately.

4.3 How to Use the Classification Results

The classification results of words (or characters) can be used in language models for speech
recognition or OCR postprocessing. The class-ids for the words can be stored in the system
dictionary. Words in a new input sentence are just automatically mapped to the classes through
dictionary look-up. Thus, a class n-gram language model can be easily built up based on the
machine-generated classes. As we mentioned, the number of classes can be adjusted according
to the size of training corpus and application needs. As a common rule of thumb, the size of
training data should be at least 10 times the number of parameters. Thus, if we have a corpus
of size L for an N-gram model, the appropriate number of classes NC can be computed using

the equation:
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L=10-NCN

For example, if bigram (N = 2) models are used, NC is 100 for L = 100,000 and 1000 for
L = 10,000, 000.

For evaluating the performance of such language models, the test set perplexity can be
used. In a sense, the language model using the day7-trained character clustering reduces the
difficulty of recognition task from 5403 (character types) to 461 (NC = 50) and 274 (NC =
200). Similarly, the day7-trained word clustering reduces task difficulty from 24,706 to 1,543
(NC = 50) and 1,478 (NC = 200).

5 Other Approaches for Automatic Word Clustering

5.1 Brown et al. (1992)

Brown et al. [1] presented several statistical algorithms for automatic word classification. They
use the average mutual information I(C;, C;) as the characteristic value to maximize for a class

bigram model:

P(C;|C:)

I(C;, Cy) = Z P(C;C;)log P(C))

C;Cj

They proposed two word clustering algorithms [1]:

Greedy-style Merging (1) Assign each word to a unique class and compute I(C;, C;); (2)
Merge two classes if the loss in I(Cj, C;) is least; (3) C classes remains after V — C' times
of merging; (4) For each word in vocabulary, move it to a ciass to maximize the average
mutual information. The merging steps prbduce a binary tree according to statistical
similarity. However, they reported that this algorithm is not practical for a vocabulary

with more than 5,000 words.

Add-One Merging For a larger vocabulary, (1) Assign each of the NC most frequently used

words to a unique class; (2) Assign the next unclassified word with largest frequency to

75



a new class C(ycy41), and merge two classes if the loss in I(C;, C;) is least; (3) After
V — C steps, the NV words in the vocabulary are assigned to NC classes. A 260,741-word

vocabulary had been classified into 1,000 classes this way.

Using a 1001-word window and the concept of semantic stickiness, they had classified English

words semantically and had interesting results [1].

5.2 'Ney and Essen (1991)

Ney and Essen [13] proposed a decision-directed, iterative unsupervised learning procedure: (1)
Choose an initial mapping ¢ : V; — C; = ¢(V;) (2) Update the bigram and word counts N(C;W)
and N(C;); (3) Compute the probability estimates P(W|C;) = N(C;W)/N(C;); (4) Find the
optimal class ¢(V;) for each predecessor word V;

#(V;) = argmazc, Z N(ViW)log P(W|C};)
- .

A German corpus of 95,671 words (NV = 14080) and a English corpus of 1,157,260 words
(NV = 49615) have been classified into 128 classes this way.

5.3 Schutze (1993)

Schutze [14] proposed the idea of category space. A category of each word is represented by a
vector in a multidimensional real-valued space. The category space is built by collecting various
word distributional information. Four bigram matrices are built with distances -2, -1, 1, 2.- A
sparse matrix algorithm SVDPACK is then used to compute fifteen singular values for each
word. A word is represented as a 15-dimensional vector in the category space. Close neighbors
in the space are grouped into a word class (part-of-speech). A linear-time clustering algorithm
called Buckshot was used to cluster the category space. The experiment was conducted on a
5000-word vocabulary. 278 high-frequency closed-class words such as prepositions are assigned
distinct classes. The other 4,722 words were clustered into 222 classes. A second singular value
decomposition was then performed on 22,771 words from New York Times based on the resulting

500 classes. Finally, a second Buckshot was used to classify the words into 200 output clusters.
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6 Cohcluding Remarks

We have proposed using machine-generated disjoint word classes as an alternative for the popular
word class — part-of-speech in Chinese class n-gram models. A simulated annealing approach is
used to cluster Chinese characters and words into a predefined number of classes. Encouraging
and interesting experiment results on the 1991 UD corpus have been shown and discussed.
Future works include (1) more experiments on word clustering with different parameters; (2)
studying more efficient algorithm for simulated annealing; (3) using windows to study semantic
clustering; (4) applying to language models for speech recognition or OCR; and (5) studying

and applying different clustering approaches.
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Abstract
There are many progresses in corpus-based language models receﬂtly. However, the
storage issue is still one of the major problems in practical applications. This is because the
size of the training tables is in difect proportion to the parémeters of the language models
and the number of the parameters is in direct proportion to the power of these language
models. In this paper, we will propose a storage reduction method to solve the problem
that results from the large training tables. We use mathematical functions to simulate the
distributidn of the frequency value of the pairs in the training tables. For the good
approximation, the pairs are grouping by their frequency. The experimental results show
that although there is a little error rate introduced by the curve function, this scheme is still -
satisfactory because it performs the closed performance and no extra storage is required in
pure curve-fitting model. Besides, we also propose a neural network approach to deal with
the pairs classification which is a problem for all class-based approaches. The e)gperimental
results show that the neural network approach is suitable to deal with this problem in our

storage reduction method.

1. Introduction

o~

There are many progresses in corpus-based language models recently. However, the

storage issue is still one of the major problems. The conventional corpus-based language
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models record the statistical information extracted from the corpora iﬁ the training tables.
The size of the training tables is in direct proportion to the parameters of the language
models and the number of the parameters is in direct proportion to the power of these
language models. Thus, the size of disk space becomes one of the major factors to limit the
power of the language models. For example, assume the vocabulary size is about 103, If
we want to reduce the error rates of applications with word bigram Markov language
model, then the possible way to achieve this goal is to enlarge the window size. However,
it is difficult to do that from word bigram (the number of parameters is about 1019) to
trigram (the number of parameters is about 1013), or more high degreevMarkov language

models in practice because of the tremendous number of parameters.

To overcome this difficulty, class-based approaches and neural network approaéhes
are proposed in recent years. The basic concept of class-based approaches is to use classes
instead of words. Because the number of classes is less than the number of words, the
class-based approaches will need less disk space than the word-based approaches. In order
to group or classify the words into classes, some criteria such as lexical, syntactic and

semantic relationships between words are presented.

If two words appear in the same or closed context, then these words have some lexical
relationship and belong to the same class. Jelinek, et al. [1] used a very large number of
classes on the order of the vocabulary size, and- set up an adaptive language model to
incorporate unknown words to suitable classes on the basis of the lexical relationships.
This method does not touch on how to determine the initial vocabularies, i.e., initial
classes, and it takes much time to find the synonym classes for the unknown words.
Martelli [2] and Brown, et al. [3] proposed equivalent criteria and co-occurrence

relationships respectively to assign words into classes. These methods are able to extract

some classes that have the flavor of either syntactically based groupings or semantically
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based groupings, depending on the nature of the underlying statistics. However, their

experiments are still very small and do not have satisfactory results.

Classes that correspond to the grammatical part-of-speech (or semantic tag) are called’
syntactic (or semantic) relationship classes. That is, if there are two words in the same
class, then these words will have ihc same part-of-speech (or serﬁantic tag). There are
some applications [4-6] using these approaches to reduce the number of parameters.
However, these approaches have some drawba(;ks shown below: |

(1) The original performance of the word-based language models may be decreased

very much. These may also limit thé range of the applications.

(2) These methods need the syntactic (or the semantic) corpus tagged by hﬁman.

(3) Because the practice system using these approaches has to do automaﬁc syntactic

(or semantic) tagging, it will introduce some extra error results.

Nakamura, et al. [7] proposed a neural network approach, i.e., NET-gram, to
overcome the large parameters problem. Training results show that the performance of the
NET-gram is comparable to that of the statistical model. However, it still has the problems

of the limited network size and the longer training time.

Generally speaking, the goal of these two approaches is to reduce the number of
parameters in order to reduce the usage of storage. But these two approaches have suffered
from some problems respectively. This paper will propose a storage reduction' method to
solve the problem that results from the large training table. This method should satisfy the
following four conditions:

(1) The original performance of the word-based language models can not be

decreased too much by applying this storage reduction method.

| (2) This method need not be interfered by human.
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(3) The range of the applications will not be limited by applying this method.
(4) The processing speed of the language models must be faster than the original

word-based language models by applying this method.

2. The Storage Reduction Method

Our basic idea in the storage reduction is to use a mathematical function to simulate the
distribution of the frequency value of the pairs in the training table. This idea comes from
theoretical models of natural distributions [8]. If there is a function F that can simulate the
distribution of the frequency value of the Markov word bigram pairs, then we can use this
function F to evaluate the approximate frequency value for all bigram pairs, that is,
F(wordi, wordy) = frequency vaiue. Similarly, given a function G that simulates- the
distribution of the frequency value of the Markov word trigram pairs, the approximate

value for all trigram pairs can be computed by the function G(wordj, wordy, words).

If such a function can be found, then this funqtion can be used instead of training

table. However, two major problems will be introduced and should be considered.

(1) The distribution of the frequency value of the pairs is usually Very random. Itis
difficult to find a function that is very closed to the distribution of the value of the
pairs.

(2) The dimension of the pairs is too high. Assume that the vocabulary size is V and
Markov word bigram language model is used. The dimension of the pairs is
about V2. The computation time to find this function is very long because of the

large dimension.

2.1 Grouping the Pairs
To overcome the difficulties, grouping the pairs is needed. The grouping criterion is that
the pairs are grouped to the same class if the frequency values of the pairs are the same.
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We use BDC segmented Corpus as our training corpus and word association language
models as our language model. BDC corpus includes 7010 sentences about 50000 words.
With word association model, 156080 different pairs are generated from this corpus.
Tables 1 and 2 show two different groupings. Basically, the grouping result of the 100
classes is extended from that of the 76 classes. Its purpose is: we try to disperse the risk
caused by the mathematical function. Assume ten pairs are grouped in the same class C. If
the curve (mathematical function) F returns the wrong frequency for the class C, then these
ten pairs will have the wrong frequency under this curve. Thus, we extend some of the last

classes in the first grouping and generate the second grouping.

Table 1. The 76-Class Grouping
Class | Frequency | # Of Pairs || Class | Frequency | # Of Pairs || Class | Frequency | # Of Pairs
1 1 137644 27 27 9 53 58 1
2 2 12206 28 28 6 54 62 1
3 3 2840 || 29 29 8 s5s | o4 1
4 4 1220 30 30 5 56 67 1
5 5 603 || 31 31 7 57 69 1
6 6 398 32 32 4 58 71 1
7 7 236 33 33 3 59 73 1
8 8 168 34 34 6 60 75 1
9 9 136 35 35 11 61 77 2
10 10 97 36 36 "2 62 79 1
11 11 70 37 37 5 63 82 1
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Table 1. The 76-Class Grouping (continued)

Class

Frequency | # Of Pairs || Class | Frequency | # Of Pairs|| Class | Frequency | # Of Pairs
12 12 56 38 39 4 64 84 1
13 13 44 39 40 5 | es 87 1
14 14 37 40 41 2 66 93 1
15 15 27 41 42 3 67 94 1
16 16 30 42 43 3 68 95 2
17 17 25 43 44 2 69 97 1
18 18 22 44 45 2 70 108 2
19 19 18 45 46 1 71 127 1
20 20 13 46 47 1 72 130 1
21 21 13 47 48 1 73 135 1
22 22 14 48 49 3 74 220 1
23 23 12 49 52 2 75 237 1
24 24 15 50 53 1 76 280 1
25 25 6 51 54 1
26 26 5 52 55 1
Table 2. The 100-Class Grouping
Class | Frequency | # Of Pairs|| Class | Frequency | # Of Pairs || Class | Frequency | # Of Pairs

1 1 137644 35 35 11 69 52 1
2 2 12206 36 36 2 70 52 1
3 3 2840 37 37 1 1 53 1
4 4 1220 38 37 1 72 54 1
5 5 603 -39 37 1 73 55 1
6 6 398 40 37 1 74 58 1
7 7 236 41 37 1 75 62 1
8 8 168 42 39 1 76 64 1
9 9 136 43 39 1 71 67 1
10 10 97 44 39 1 78 69 1
11 11 70 45 39 1 79 71 1
12 12 56 46 40 1 | 80 73 1
13 13 44 47 40 1 81 75 1
14 14 37 48 40 1 82 77 1
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Table 2. The 100-Class Grouping (continued)

Class | Frequency | # Of Pairs|| Class | Frequency | # Of Pairs || Class | Frequency | # Of Pairs
15 15 27 49 40 1 83 77 1
16 16 30 50 | 40 1 84 79 1
17 17 25 51 41 1 85 82 1
18 18 2 52 41 1 86 84 1
19 19 18 53 42 1 87 87 1
20 20 13 54 42 1 88 93 1
21 21 13 55 42 1 89 94 1
2 2 14 56 03 1 90 95 1
23 23 12 57 03 1 91 95 1
% % 15 58 43 1 92 97 1
25 25 6 59 | 44 1 03 | 108 1
2 2 5 60 44 1 o4 | 108 1
27 27 9 61 45 1 95 | 127 1
28 28 6 62 | 45 1 9% | 130 1
29 29 8 63 46 1 97 | 135 1
30 30 5 64 47 1 98 | 220 1
31 31 7 65 48 1 99 | 237 1
32 32 4 66 49 1 100 | 280 1
33 33 3 67 49 1

34 34 6 68 49 1

2.2 Curve Fitting
At this step, a tool Cricket Graph 1.3.2 in Macintosh is used to find a suitable mathematical
function. Some possible curve fitting results for the 76-class grouping are shown in Figure

1 - Figure 7.
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Y = - 70.183 + 83.567*LOG(X)

R”2 =0.423
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Figure 1. The 76-Class Grouping and the Log Function Are Used
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Figure 2. The 76-Class Grouping and the Exponential Function Are Used
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= .21.215 + 1.9061X
RA2 = 0.680
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Figure 3. The 76-Class Grouping and the 1st Degree Polynomial Function Are Used
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Figure 4. The 76-Class Grouping and the 2nd Degree Polynomial Function Are Used
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Figure 5. The 76-Class Grouping and the 3rd Degree Polynomial Function Are Used
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Figure 6. The 76-Class Grouping and the 4th Degree Polynomial Function Are Used
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Y = -16.315 + 7.8156X - 0.70176X"2
+2.7705e-2X"3 - 4.6165e-4X*4
+ 2.7468e-6X"5
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Figure 7. The 76-Class Grouping and the 5th Degree Polynomial Function Are Used

RA2 in these figures denotes the degree of the similarity between the training table and
the curve function. The function

Y=-16.315+7.8156X-0.70176X"2+2.7705e-2X"3-4.6165e-4X*4+2.7468e-6X"5
has the highest RA2. Thus, it is selected as our testing function for 76-class case in the
following experiment. Note that if the function returns a negative value then the value will
be reset to 1. Similarly, we can find the curve function to fit the training table for 100-class
grouping. The function

Y=-12.619+4.9581X-0.30176X"2+ 8.9514e-3X"3-1.1579¢-4X"4+5.3913e-7X"5
is selected as our testing function for 100-class case in the following experiment (R"2:

0.941). The negative function value is treated in the same way, i.e., it will also be reset to

1.~
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2.3 Experimental Results

In the experiments, we use word association language model (called MM language model
later) and forward training model to generate Chinese sentences described in Lee [9]. The
forward training model means that the direction of word association is forward in training.
For example, given a sentence S=wi, w2, w3. Only word association pairs (w1,w2),
(w1,w3) and (w2,w3) in forward direction will be generated. Consider a word sequence
S=wi, w2, ..., wy as one of the arrangement of the words. The probability of the word
sequence is measured as follows:

P(S)=P(W1, W2, ..y Wn)

n-1 n
EH H Pf(Wi,Wj)

i=1 j=i+1
where Pr(Wi,Wj) is the probability of the word association between word wj and w;j

under forward training model.

Ps(w;,w;j) is defined as follows:

Fe(w;,w:)
Pe(wi,wj)= =

Fr(wi,wj)

n n
=1 j=1
where F(w;,wj) is the frequency of words wj and wj that appear in the same sentence

under forward training model.

Besides, there are two constraints used in our experiments to improve the system
performance:
(1) Word/Word Linear Relation.

(2) POS/POS Linear Relation, where POS denotes part of speech.
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Type (1) constraint is a set of constraint pairs (w1,w2). The pair (w1,w2) means word

w2 follows by word w in the training corpus. Sifnilarly, type (2) constraint is a set of

constraint pairs (POS1,PQS2). In this case, POS1 and POS2 appear in succession in the

training corpus. Type (1) and type (2) constraints are enforced on the language models to

eliminate the illegal combinations. Consider type (1) constraint and an arrangement of the

words S=wi, wa, ..., Wn.

This arrangement will be discarded if there exists any

(wj,Wit1) (1 £1<n-1) pair in the arrangement such that it does not satisfy the constraint.

In order to use POS as constraints, the BDC corpus is tagged with BDC tag set. The

experimental results are shown in Table 3.

Table 3. Experiment Results

Experiment # of Sentence Original Curve Fitting Decrease
Test Sentences Length Language Model Model (Correct Rate)
1 1000 1~6 82.8% 79.5% 3.3%
2 633 7~9 72.5% 68.8% 3.7%
3 1000 1~6 99.8% 99.7% 0.1%
4 633 7~9 99.5% 99.4% 0.1%
5 1000 1~6 83.2% 80.0% 3.2%
6 1000 1~6 -82.8% 77.4% 5.4%
7 633 7~9 72.5% . 66.3% 6.2%
8 1000 1~6 99.8% 99.5% 0.3%
9 633 7~9 99.5% 99.2% 0.3%
10 1000 1~6 83.2% 77.9% 5.3%

The experiments adopt different grouping and different language models shown as

follows:

(1) Experiments 1 and 2

The 76-class grouping and MM language model are used.

-

(2) Experiments 3 and 4
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The 76-class grouping and MM Language Model with type (1) constraint are
used.
(3) Experiment 5
The 76-class grouping and MM language model with type (2) constraint are
used.

.(4) Experiments 6 and 7
The 100-class grouping and MM language model are used.

(5) Experiments 8 and 9
The 100-class grouping and MM language model with type (1) constraint are
used.

(6) Experiment 10

The 100-class grouping and MM language model with type (2) constraint are

used. . |
The curve fitting model is the original word association language model, but it uses the
function instead of the training table. The experimental results show that there is a little
error rate’introduced by the curve function. The second grouping (100 classes) has a
worse performance than the first grouping (76 classes) in our experiments because the latter
has higher R"2. Wé évaluate this storage reduction method by the four conditions
mentioned in Section 1: ‘

(1) The result seems satisfactory because the method performs the closed
performance and it just uses a little disk space. The training table, the index table, and the
type (1) constraint tab'le’in the original language model occupy 2.23 M, 0.16 M and 0.61 M
bytes respectively. In the pure curve fitting model, i.e., no type (1) constraints, no extra
disk storage is required.

) (2) The grouping is done with the frequency values of the word pairs so that no

human interference is required.
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(3) The approach can be applied to different language models such as Markov model,
word association model, hybrid model, and so on.

(4) The frequency value is computed by function application, not by table look up.
In the conventional storage management approach, it may take much time in disk I/O when

the frequency value is retrieved.

3. The Classification Problem

The result seems satisfactory, but a classification problem is introduced, that is, how to
know what class a given word pair (wordy,wordy) belong to. It is a problem for all class-
based approaches. The next subsections will propose a neural network approach to deal

with this problem.

3.1 Neural Network Approach

The overall neural network architecture is shown in Figure 8.

Classes

Output Layer
(1 Unit)

Hidden Layer
(18 Units)

Input Layer
(32 Units)

Word 1 Encoded Index Word 2 Encoded Index

Figure 8. The Overall Neural Network Architecture
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This neural network is a 3-layer feed-forward network with one hidden léyer. In the
input‘ layer, word 1 and word 2 are all encoded into 16 bit vectors. For example, if the
indices of words 1 and 2 are 8 and 15 respectively, then word 1 will be encoded into
(0000000000001000) and word 2 will be encoded into (0000000000001111). The
training adopts the back-propagation algorithm [10, 11], which uses the gradient descent to
change link weights to reduce the difference between the network output and the desired
output. In this algorithm, sigmoid function is used as nonlinear activation function. The
sigmoid function is shown below: |

F(y)=(1+e®)"
This function is continuous and varies monotonically from 0 to 1 as y varies from -eo to oo,
The gain of the sigmoid function, B, determines the stepness of the transition region. In
our experiment, 3 is set to 1.0. This task is a many-to-one mapping problem. Thus, it is
easy to train. In the output layer, there is only one unit. Because this unit will output a
value whose range is from O to 1, we define the classes over this range. That is, if there
are five classes, then the ranges of these classes are assigned to the five open intervals,
(0.0,0.2), (0.2,0.4), (0.4,0.6), (0.6,0.8) and (0.8,1.0) respectively. After convergence,
the training process confirms that the critical values such as 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

cannot appear.

3.2 Experimental Results
Four experiments are conéidercd. Each selects different set of test data.
Experiment 1:  Group or classify the last 50~classcs in 76 classes, i.e. 125 pairs.
Experiment2:  Group or classify the first 5 classes in 76 or 100 classes, but
only use (1/10000) of the pairs, i.e., 17 pairs.
Experiment 3:  Group or classify the first 5 classes in 76 or 100 classes, but

only use (1/1000) of the pairs, i.e. 154 pairs.
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Experiment4:  Group or classify the first 5 classes in 76 or 100 classes, but
| only use (1/100) of the pairs, i.e. 1545 pairs.
In these experiments, each pair is identified correctly. The results show that the neural
network approach is suitable to deal with the classification problem, but it still has the

longer training time problem.

4. Zero Frequency Problem

Last section proposes a neural network approach to deal with the pair classification
problem. It can correctly identify the pairs with nonzero frequency. However, there still
exists a serious problem called zero frequency problem. That is, we cannot tell out the
word pairs that do not appear in the training table completely. In our experiments, 99.88%
of the total belong to this kind of pairs, i.e., 132646496: 132802576. For the treatment of
this problem, a preprocess procedure is taken. If the training data is stored in a 2-
dimensional matrix (11524x11524 in our experiment), then it must be a sparse matrix. We
reassign the word indices to move the zero pairs to the left-upper of the matrix. Figures 9
and 10 demonstrate the distribution of the word pairs of the training table before and after

the preprocessing. Points in these figures denote the word pairs with nonzero frequency.

Figure 9. The Distribution of Word Pairs before Preprocessing
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Figure 10. The Distribution of Word Pairs after Preprocessing

The experimental results show 72.5% of zero points can be rearranged to the left-upper
corner. We can only record their indices (row number, column number), which occupy
little space. However, the number of the remainder zero points is still very large
(36477786). A sampling method is proposed to reduce the quantity in the neural network
training. Given a continuous zero points P1, P2, ..., Pn, only P1 and Pn are taken as
samples. At this step, 5862 samples (0.016%) are selected. The integration of this method

to the large training data management can refer to [12].

5. Concluding Remarks

In this paper, we propose a storage reduction method to solve the problem that the training
table is too large. Mathematical function is used to simulate the distribution of the
frequency value of the pairs in the training table. The experimental results show that
although there is a little error rate introduced by the curve function, this approach has the
advantages of little space requirement, no human interference, no application limitation and
faster processing speed. The neural network approach is also proposed to deal with the

pairs classification problem. The experimental results show its feasibility.
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Abstract
This paper proposes a probabilistic partial parser, which we call chunker. The
chunker partitions the input sentence into segments. This idea is motivated by the fact
that when we read a sentence, we read it chunk by chunk. We train the chunker from
Susanne Corpus, which is a modified but shrinked version of Brown Corpus,
underlying bi-gram language model. The experiment is evaluated by outside test and
inside test. The preliminary results show the chunker has more than 98% chunk
correct rate and 94% sentence correct rate in outside test, and 99% chunk correct rate
and 97% sentence correct rate in inside test. The simple but effective chunker design
has shown to be promising and can be extended to complete parsing and many

applications.

1. Introduction

A probabilistic approach to natural language processing is not new [1]. Recently, many parscrs‘
based on this line have been proposed [2-9]. Garside and Leech [2] apply the constituent-
likehood grammar of Atwell [10] to probabilistic parsing. Magerman and Marcus [3] adopt the
chart-based probabilistic parsing. Zuijlen [4] tells out three probabilistic applications in parsing
task. He also claims the probabilistic method should be controlled, otherwise it is not-useful to us.
Some papers [5-9] employ probabilistic context-free grammar to parsing task. The probabilistic

context-free grammar is a modified version context-free grammar, which associates each grammar
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rule with a probability. The fact that these papers [11, 12, 13] use probabilistic approach to
process speech also shows this approach has wide applications. Although these parsers apply
different approaches, they all try to completely parse an input sentence into an annotated tree.
~ Abney [14] proposes a two-level architecture to tackle with the parsing task. The firsi level
is a chunker, which is responsible for segmenting the input sentence into chunks. The second is
an attacher, which is accountable for uniting the chunks to a parsing tree. This idea is motivated
by the intuition:
(1) When we are about to read a sentence, we usually read it chunk by chunk.
We examplify the intuition by (2).
(2) [When we] [are about to] [read a éentence,] [we usually read it] [chunk by chunk].
The words between the left square bracket and the right square bracket form a chunk. Between
chunks, we pause a while, when we read it. Abney further applies the context-free grammar to
forming the backbone of chunker and attacher. Therefore, Abney's chunker and attacher are
special LR-style parsers.
In this paper, we will propose a probabilistic chunker underlying bi-gram language model as
‘a partial parser. The reason to call it partial parser is the fact that the chunker only segments the
sentence into chunks. Instead of producing the hierarchical annotated tree, the chunker only
produces the linear chunk sequence. The I;arametcrs of underlying bi-gram language model are
_trained from Susanne corpus [15, 16], which contains one ‘tenth of Brown Corpus [17] and adopts
the LOB corpus [18] tagging style. The Susanne corpus has more syntactic information and
~ semantic information than Brown corpus, including parsing trees and trace marks.

This kind of partial parsers has many applications [19-22]. Church [19] applies the idea of
partially parsing to designing a probabilistic NP detector. Church et al. [20] use Fidditch parser to
extract typical arguments of verbs. Hindle [21] also employs Fidditch parser to extract arguments
of verb for noun classification. Smadja [22] applies partial parser to collocation extraction. Our

-

partial parser, chunker, not only provides the linear chunk sequence, but also the head of each
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»chunk. This information can be applied to extracting the argument structure of verb and
co]locati(;n. In addition, the chunker may be extended to a complete parser.

Section 2 will give a brief introduction to Susanne Corpus. Section 3 will describe the task
and the language model. We will present the experiment procedure in Section 4 and show the
preliminary results of the experiment in Section 5. In Section 6, we will describe the applications

of chunker and future developments. Finally, we will give a brief conclusion.

2. Susanne Corpus

The Susanne Corpus is the modified and the condensed version of Brown Corpus. It only
contains the 1/10 of Brown Corpus, but involves more information than Brown Corpus. The
Corpus consists of four kinds of texts: 1) A: press reportage; 2) G: belles letters, biography,
memoirs; 3) J: learned writing; and 4) N: adventure and Western fiction. The Categories of A, G,
J, and N are named from each of the Brown Corpus. Each Category consists of 16 files and each
file contains about 2000 words.

The following shows a snapshot of Susanne Corpus.

(3) no1:0u10a - ¥B <minbrk> - [Oh.Oh]
A01:0010b - AT The the [O[S[Nns:s.
A01:0010c - NP1ls Fulton Fulton [Nns.
A01:00104 - NNLlcb County county .Nns]
A01:0010e - JJ Grand grand .

A01:0010f - NNlc Jury jury .Nns:s]
201:0010g - VVDv said say [vd.vd]
A01:0010h - NPD1 Friday Friday [Nns:t.Nns:t])
A01:00101 - AT1 an an [Fn:o[Ns:s.
A01:00103 - NN1n invéstigation investigation
A01:0020a - I0 of of [Po.

A01:0020b - NP1t Atlanta Atlanta [Ns[G[Nns.Nns]
A01:0020c - GG +<apos>s - .G]
A01:00204d = JJ recent recent

A01:0020e - JJ primary primary .

A01:0020fF - NN1n election election .Ns]Po]Ns:s]
201:0020g - VVDv produced produce [Vd.vd]
A01:0020h - YIL <ldquo> - .

A01:00201 - ATn +no no [Ns:o.
A01:00207 - NN1lu evidence evidence
A01:0020k - YIR +<rdquo> -

A01:0020m - CsT that that [Fn.

A01:0030a - DDy any any [Np:s.
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A01:0030b - NN2 irregularities irregularity .Np:s]

A01:0030c - VVDv took take [vd.vd]
"A01:00304 - NNL1c place place [Ns:0.Ns:0]Fn]Ns:0]Fn:0]8S]
AQ01:0030e - YF +. - .0}

The snapshot shows each line of the corpus includes six fields: 1) reference; 2) status; 3) wordtag;
4) word; 5) lemma; and 6) parse. Reference field shows the information of file name, the original
line number in the Brown Corpus and word index in the Corpus (indexed with lower-case letter).
Status field denotes the "abbreviation” or "symbol" information. Wordtag field points out what
part of speech of the word should be. The tagging set, which is an extension and a modiﬁcation
of the tagging set of LOB Corpus, consists of 358 tags. Lemma field shows the base form of the
word. Parse field is the core of the corpus, which shows the grammatical structure of the text and

the current word is represented by "." symbol. Table 1 gives an overview of the Susanne Corpus.

The details can refer to [15, 16].

Table 1. The Overview of Susanne Corpus

Categories Files Paragraphs Sentences Words
A 16 767 1445 37180

G 16 280 1554 37583

J 16 197 1353 36554

N 16 723 2568 38736
Total 64 1967 6920 150053

3. Task Description and Langnage Model

Parsing can be viewed as optimizing. Suppose a n-word sentence, w;, Ww,, ..., w, (including
pucntuation marks) , the parsing task is to find a parsing tree 7, such that P(Tlw,, w,, ..., w,) has

the maximal probability. The annotated form of parsing tree T is changeable freely according to

the task demand. We define T here to be a sequence of chunks, ¢, ¢, .., and each ¢,

m?

(0 <k <m) contains one or more words w; (0 < j <n). For example, the sentence "parsing can be

viewed as optimizing ." consists of 7 words. Its one possible parsing result under our guideline is:
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(4) [Parsing] [can be viewed] [as optimization] [.]
¢ C, Cy Cy

Now, the parsing task is to find the best chunk sequence, C*, such that
5) C*= arggnaxP(Cin{')
The C; is one possible chunk sequence, ¢, ¢, ..., C,,, Where the m; is the number of chunks of the

possible chunk sequence. To resolve the optimization problem, we may adopt various language

models. Here bi-gram language model is applied. Therefore, we further reduce P(C;lw]') as (6),

(6)

P(Clw!)=P(c]"Iw])
=T P.(c,lc,_y,wy )X P.(c,Iwy)
k=1

3

TACAIADI AN

k=1

in

where P,( - )! denotes the probability for the i'th chunk sequence. Once a probability P,( - ) is
zero, the formula (6) will be zero. We then transform (5) to (7). In addition, when P,( - ) is zero,

we define log(P,( - )) to be zero.
(7)

arg max P(C,Iw})
= argénaxn F(cle ) X F(e)
i k=1

= argmax Y [log(P,(c, e, ,)) +10g(P,(c, )]
! k=1

In order to make the expression (7) match the intuition of human being, namely, 1) the scoring
metrics are all positive, 2) large value means high score, and 3) the scores are between 0 and 1,
we define a score function S( - )F shown as (8).
8 Sw(-)»=0 when P( - ) =0;
S(P( - ) =1.0/(1.0+ABS(og(P( - )))) otherwise.

We then rewrite (7) as (9).

1 In general, P( - ) repesents the probabilities of some events.
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®

' argglaxP(C,.le")
= argglaxﬁf}(cklck_l)xf’i(ck)
= arggaxg[log(f’i (cple,)) +log(Pe, )]
- arggax:z;[s<e<cklck._l>>+ SCBe))]

The final language model 1s to find a chunk sequence C*, which satisfies the expression (9).

4. Experiment Procedure

There are three parts in the experiment: the first part is training; the second is testing; the third is
evaluating. Training process is to extract bi-gram data from Susanne corpus; testing process is 1)
to tag the input raw data from the Susanne corpus, and then output tagged data; 2) to chunk the
input data and produce the chunked data. Evaluating process is to compare the chunked data to

Susanne corpus, and reports the correct rate. These are shown in the Figure 1.

RAW DATA TAGGED DATA CHUNKED DATA
TAGGER CHUNKER
EVALUATION [ RESULTS
ﬁ TAG-MAPPER '—)ﬁ PROGRAM | 7
SUSANNE é r
LOB CORPUS CORPUS

Figure 1. Experiment Procedure

The tagger is trained from LOB corpus [18]. This corpus contains 1 million words of English
texts. Since the tag set of LOB corpus is different from that of the Susanne corpus, we first write
a mapping program, TAG-MAPPER, to recover the LOB tags from the Susanne tags. The

program maps 358 tags which Susanne corpus defines to 134 tags LOB corpus defines?. Then,

2 . Susanne corpus tags genitive case noun as [John_NP 's_GG], but LOB corpus tags it as [John's_PN$]. Two

tags of Susanne corpus may be mapped to one tag of LOB corpus.
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according to the criteria of (10), we extract the bi-gram chunk data from 3/4 of Susanne corpus

(the rest is for outside test).

(10) a.  The chunk is similiar to the phrase with content word as its head.
b.  The considered content words are noun, verb, adjective, and preposition.

c.  When a considered phrase is complex, a chunk contains at most two level sub-tree.

When we extract the bi-gram chunk data, we map them to the LOB tags and store them in datafile.
Then, we sort this chunk data and build the "chunk grammar”. As the results, the number of
chunk grammar rules is 8675.

The second part is to test the Susanne corpus. The original 3/4 of Susanne corpus is used
for inside testing; the rest of it for outside testing. The chunker runs on Sun SPARC-I
workstation. The processing time is shown in Table 2. In Table 2, Time/W means the time taken
to process a word; Time/C means the time taken to process a chunk; and Time/S means the time

taken to process a sentence.

Table 2. The Processing Time

OUTSIDE TEST INSIDE TEST
Time/W Time/C Time/S Time/W Time/C Time/S

A 0.00944 | 00182 0.2268 0.01006 0.0264 0.2653
G 0.00889 0.0172 0.2174 0.00933 0.0252 0.2249
I 0.00902 0.0181 0.2738 0.00888 0.0263 0.2316
N 0.00988 0.0180 0.1634 0.00972 0.0220 0.1426

Average 0.00931 0.0179 0.2204 0.00950 0.0250 |~ 0.2161

According to Table 2, to process a word needs 0.00931 seconds for outside test, 0.00950 seconds
for inside test, and 0.00941 on average. To process all Susanne corpus needs about 1412 seconds,

or 23.6.minutes. Figure 2 depicts this results.
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Figure 2. The Processing Time for Sentence and Chunk

The evaluating part is to compare the parsing results of our chunker with the denotation made by
the Susanne corpus. The criterion is that the content of each chunk should be dominated by one

non-terminal node in Susanne parse field.

/E\ [ACD] right
A B [A][CD] right
/\ [AC]I[D] wrong
C D [AI[C][D] right

Figure 3. The Evaluation Criterion

Figure 3 further explains this criterion. For a parsing tree [E [A] [B [C D]]], as shown in the left
part of Figure 3, there are four possible chunk sequences. The third chunk sequence violates the

criterion, since the contents of the first chunk are dominated by the different non-terminal nodes.

5. Preliminary Results
As the Section 4 points out, we begin the inside test by using the 3/4 of Susanne corpus and
outside- test by using the rest of the corpus. Evaluating the results by the criterion mentioned

previously, we have the preliminary results shown in Table 3.
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Table 3. Experimental Results

TEST OUTSIDE TEST INSIDE TEST
Category Chunks Sentences Chunks Sentences
# of correct 4866 380 10480 1022
A # of incorrect 40 14 84 29
# 4906 394 10564 1051
correct rate 0.99 0.96 0.99 0.97
# of correct 4748 355 10293 1130
G # of incorrect 153 32 133 37
# 4901 387 10426 1167
correct rate 0.97 0.92 0.99 0.97
# of correct 4335 283 9193 1032
3 # of incorrect 170 15 88 23
# 4505 298 9281 1055
correct rate 0.96 0.95 0.99 0.98
# of correct 5163 536 12717 1906
N # of incorrect 79 42 172 84
# 5242 578 12889 1990
correct rate 0.98 0.93 0.99 0.96
# of correct 19112 1554 42683 5090
Average # of incorrect 442 103 477 173
# 19554 1657 43160 5263
correct rate 0.98 0.94 0.99 0.97

There are two kinds of correct rates. The first is chunk correct rate, which is measured by the
correct segmented chunks over the total segmented chunks. The second is sentence correct rate,
which is measured by the correct segmented sentences over the total sentences. A wrong
segmented chunk means the whole sentence is not chunked properly. From Table 3, we know the
overall sentence correct rate is over 94% and the chunk correct rate is over 98%. The difference
between the inside test and outside test is not trivial. We compare the training data extracted
from all Susanne corpus and the 3/4 of corpus, and find that the data from the latter cover the
80% of data from the former. The rest 20% data capture the gap of correct rate between inside
test and outside test. But the 94% chunk correct rate have shown the work is promising. Figure

4 shows the correct rates of these experiments and gives an overview of these experiments.
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Figure 4. The Correct Rate of Experiments
For further analyzing the experiment, we define the chunk length.
(11) Chunk length is the number of the words in a chunk.

We analyze the distribution of chunk length and list it in Table 4.

Table 4. The Distribution of Chunk Length

Chunk OUTSIDE TEST INSIDE TEST

Length A G J N A G J N
1 2427 | 2411 | 2054 | 2823 | 3540 | 3380 | 2602 | 5390
2 1385 | 1420 | 1355 | 1511 | 3109 | 3070 | 2439 | 3999
3 721 688 659 635 1730 | 1630 | 1711 | 1873
4 276 260 283 208 959 952 997 854
5 67 83 95 46 509 590 587 378
6 24 31 43 11 302 363 368 186
7 3 7 13 7 169 210 253 117
8 3 1 3 1 143 115 151 55
9 52 74 85 20
10 28 28 52 13
11 23 14 36 4

The number of one-word chunks covers 43% of all kinds of chunks. This can be viewed in Figure
5. At the first glance, this result seems to challenge our probabilistic chunker. We further analyze

what grammatic component constitutes the one-word chunks. The analysis is listed in Table 5.
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Figﬁre 5. The Distribution of Chunk Length

In Table 5, WH-PN means wh-pronoun. OTHERS includes interjection, punctuation marks,
letters, formulas, and foreign words. QU/Qn represents the qualifiers and quantifiers. The rest

types of one-word chunk are easy to understand.

Table 5. The Types of One-Word Chunks

Chunk OUTSIDE TEST INSIDE TEST

Type A G ] N A G ] N
Noun 851 | 698 | 481 | 934 [ 1399 [ 1082 [ 746 | 2224
Verb 672 | 674 | 549 | 957 | 1532 | 1639 | 1314 | 2390
Coni. 172 | 167 | 162 [ 151 | 98 [ 135 | 62 | 99
Prep. 145 | 169 | 227 [ 109 | 106 | 92 | o1 64
Adjective || 113 | 169 | 164 | 95 | 125 | 158 | 145 | 174
Adverb 143 | 145 | 117 [ 288 | 90 81 88 | 274
QUQL 96 94 | 87 | 70 | 43 62 | 64 | 41
WH-PN 46 | 46 18 | 24 [ 16 59 2 43
OTHERS | 189 | 249 [ 249 [ 195 | 69 72 89 | 176

We then scrutinize the table and know the most of the one-word chunks consist of noun, verb,
and verbial adjective. This is because pronoun and proper name form the bare subject or object;
verb is*presented in the form of third person and singular, past tense, or base form; adjective

forms the verbial adjective phrase, like beautiful in the sentence "Mary is beautiful". Figure 6
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gives a clear view ori the distribution. Noun and verb consist of 72% of one-word chunks. This

shows our approach is useful to segment the sentence into the suitable chunks.
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Outside Test Inside Test

Figure 6. The Distribution of Noun and Verb Chunk

In Appendix, we list a sample output of the partial parsing.

6. Applications

Recently, the partial parsers have been applied to many problems as a preprocessor [19-22]. The
applications include extracting argument structure of verbs [19, 20], grouping words [21],
gathering collocations [22], and so on. Our probabi]jstic chunker is also capable of resolving
these problems. We may modify the current version of chunker. The modified chunker not only
partitions the input text, but also associates each chunk with a phrase mark (or a chunk mark). If
it is a one-word chunk, the word itself is the chunk mark. For other chunks, the chunker finds the
most manifest word in this chunk as the chunk mark. Generally speaking, the word is the head of
this chunk. (12) is a possible chunked sentence.

(12) [We_PP1AS] [saw_VBD] [NN(2): a_AT woman_NN] [IN(1): with_IN a_AT telescope_NN] [._.]

In (12), every chunk is associated with a mark and its position in the chunk (it is unnecessary to

associate one-word chunk with this information). According to the information, we may extract
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argument structure of verb with SVO and other heuristic rules. Furthermore, we can group noun

or verb according to the extracted argument structure.

In addition to these applications, we may construct a recursive probabilistic chunker to be a

complete parser. We may reorganize the parsing task as a sequence of actions, chunking and

raising interleavingly. The parsing task is finished, when no more chunking is needed. This idea

is shown in Figure 7.

4 | N

Mary_PN saw_VBD the_ATI man_NN in_IN the_ATI park NN._. ——>|Chunking

r 6 [PN] [VBD] [ATI NNj [IN ATINN] [.] e—l

PN VBD NN PP . —> | Chunking [PN] [VBD] [NN PP] []| —>

!

|Raising <<— [PN][VBDNN][] ==— Chunking |«e=— PN VBDNN.

PN VP . —> |Chunking [—> [PN VP] [] —)——) s.—

. /

Figure 7. A Recursive Chunker as a Parser

We formally define parsing as (13)-(16) based on the idea.

(13)
(14)
(15)
(16)

Parsing is a sequence of actions consisting of chunking and raising interleavingly.
Chunking is an action of segmenting input components into a sequence of chunks.
Raising is an action of lifting the head from input chunks.

Parsing is finished, when no chunking can be operated on.

7. Concluding Remarks

To progess real text is indispensable for a practical natural language system. Probabilistic method

provides a robust way to tackle with the unrestricted text. This is why probabilistic method
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dominates the recent research directions of natural language processing. In the field of parsing
techm'qués, many parsers based on this line are proposed. Some of them are LR-style [5-9]; some
of them are chart-based [3]; some adopt constituent-likehood grammar [2]. These approaches are
more complexive. For example, it is necessary for the probabilistic LR parsing to extract
hierarchical context-free grammar rules from corpus and to calculate the probability associated
with each rule. Once there are left-recursive rules, we must transform them or use equations to
solve these intermixing probabilities [7]. In this paper, we report a probabilistic chunker to
execute the partial parsing. Comparing to these approaches mentioned above, ours is simple and
easy to extend to construct a complete parser.y In training process, the mere work we do is to
extract bi-gram (according to the language model; maybe tri-gram) linear data from a parsed
corpus. Through the evaluation procedure, the correct rate is promising. The preliminary
experimental results show the chunker has the 98% correct rate for chunk and 94% for sentence
in outside test. It depicts our finding is worthy looking forward to. In addition, we also provide

the future development and the possible applications of the finding.
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Appendix
Five examples are demonstrated in the appendix. In each example, the first part is the sentence
extracted from Susanne Corpus but tagged with the LOB tagging set; the second part is the

corresponding chunked results by our Chunker.

1. The_ATI Fulton NP County_NPL Grand_JJ Jury NN said_VBD Friday_NR an_AT investigation_NN of_IN
Atlanta_NP recent_JJ primary_JJ election_NN produced_VBD <ldquo>_*' +no_ATI evidence NN +<rdquo>_**'
that_CS any_DTI irregularities_NNS took_VBD place_NPL +._.

[ The_ATI Fulton_NP County_NPL ]

[ Grand_JJ Jury_NN ]

[ said_VBD ]

| Friday_NR ]

[ an_AT investigation_NN ]

[ of_IN Atlanta NP ]

[ recent_JJ primary_JJ election_NN ]

[ produced_VBD ]

[ <ldquo>_*" +no_ATI evidence_NN +<rdquo>_**' ]

[ that_CS any_DTI irregularities_ NNS ]

[ took_VBD ]

[ place_NPL ]
1] |

2. The_ATI jury NN further RBR said_VBD in_IN term_NR +<hyphen>_*- +end_NN presentments_NNS
that_CS the_ATI City_NPL Executive_JJB Committee NN +,_, which_WDTR had_HVD over<hyphen>all_JJB
charge NN of IN the ATI election_ NN +,_, <ldquo>_* +deserves_VBZ the ATI praise NN and_CC
thanks_NNS of IN the_ ATI City NPL of IN Atlanta_NP +<;dquo>_**‘ for_IN the ATI manner NN in_IN
which_WDTR the_ATI election_NN was_BEDZ conducted_VBN +._.

[ The_ATI jury_NN ]

[ further RBR said_VBD ]

[ in_IN term_NR +<hyphen>_*- +end_NN ]

[ presentments_ NNS ]

[ that_CS the_ATI City_NPL Executive_JJB Committee_NN +,_, ]

[ which_WDTR had_HVD ]

[ over<h§vphen>all_]IB charge_NN of_IN the_ATI election_NN +,_, ]

[ <ldquo>_*" +deserves_VBZ ]
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[ the_ATI praise NN and_CC thanks_NNS ]

[ of_IN the: ATI City_NPL of IN Atlanta_NP +<rdquo>_**']

[ for_IN the_ ATI manner_NN ]

[ in_IN which_WDTR ]

[ the_ATI election_NN ]

[ was_BEDZ conducted_VBN ]

[-]

3. The_ATI September_NR +<hyphen>_*- +October_NR vterm_NR jury_NN had_HVD been_BEN charged_VBN
by_IN Fulton_NP Superior_JJ Court_NN Judge_ NPT Durwood_NP Pye_NP to_TO investigate VB reports NNS .
of IN possible_JJ <ldquo>_*' +irregularities. NNS +<rdquo>_**' in_IN the ATI hard_RB +<hyphen>_*-
+fought. VBN primary NN which WDTR was_BEDZ won_VBN by_IN Mayor_NPT +<hyphen>_*-
+nominate_RB Ivan_NP Allen_NP Jr_NPT +._.

[ The_ATI September_NR +<hyphen>_*- +October_NR ]

[ term_NR ]

[jury_NN]

[ had_HVD been_BEN charged VBN ]

[ by_IN Fulton_NP Superior_JJ Court_NN ]

[ Tudge_ NPT Durwood_NP Pye NP ]

[ to_TO investigate_VB ]

[ reports_NNS of_IN possible_JJ ]

[ <ldquo>_*' +irregularities. NNS +<rdquo>_**"]

[in_IN the_ATI]

[ hard_RB +<hyphen>_*- +fought_VBN ]

[ primary_NN ]

[ which_ WDTR was_BEDZ won_VBN ]

[ by_IN Mayor_NPT +<hyphen>_*- +nominate_RB ]

[ Ivan_NP Allen_NP Jr_NPT ]

[-]

4. <ldquo>_** +Only RB a_AT relative_JJ handful NN of IN such_ABL reports_ NNS was_BEDZ
received_VBN +<rdquo>_**' +,_, the_ATI jury_NN said_VBD +,_, <ldquo>_*' +considering_IN the ATI
widespread_JJ interest_ NN in_IN the_ATI election_NN +,_, the_ATI number_NN of _IN voters_NNS and_CC
the_ATI size_NN of_IN this_DT city_NPL +<rdquo>_**' +._.

[ <ldquo>_*' +Only_RB a_AT relative_JJ handful NN of_IN such_ABL reports_NNS ]

[ was_BEDZ received_ VBN +<rdquo>_**'+,_, ]

[ the ATI jury_NN ]

[ said_VBD +,_, ]
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[ <ldquo>_*' +considering_IN the_ATI widespread_JJ interest NN in_IN the_ATI eléction_NN + ]
[ the_ATI number_NN of_IN voters_NNS ]

[ and_CC the_ATI size_NN of_IN this_DT city_NPL +<rdquo>_**']

[-] :

5. The_ATI jury NN said_VBD it PP3 did_DOD find_VB that CS many AP of IN Georgia NP
registration_NN and_CC election_NN laws_NNS <ldquo>_*' +are_BER outmoded_JJ or_CC inadequate JJ
and_CC often_RB ambiguous_JJ +<rdquo>_**' +._.

[ The_ATI jury_NN]

[ said_VBD ]

[it_PP3]

[ did_DOD find_VB ]

[ that_CS]

[ many_AP ]

[ of_IN Georgia_NP ]

[ registration_NN ]

[ and_CC election_NN ]

[ laws_NNS ]

[ <ldquo>_*' +are_BER ]

[ outmoded_JJ or_CC inadequate_JJ ]

[ and_CC often_RB ambiguous_JJ +<rdquo>_**" ]

[-]
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Abstract

Unknown word, in general, is the main factor that causes the performance of word segmen-
tation to be unsatisfied. To recognize the words which are derived from highly productive
morphemes, a set of 17 morphological rules is proposed in this paper to recognize those
regular unknown words. In addition, an unknown word model is further proposed to deal
with the unknown words of irregular forms such as proper name etc. With the unknown word
résolution procedures, the error reduction rate of 78.34% in word and 81.87% in sentence
are obtained in the task of smoothing technical manuals. To examine the procedures in more
| general task, a corpus of newspaper is also tested and the error reduction rate of 40.15% in
word and 34.78% in sentence are observed.

1. Introduction

“Word” is the basic unit used in most Chinese information processing tasks, such as machine
translation or spoken language processing. However, there is no obvious delimiter marker,
except for some punctuation markers, to specify the boundaries of words. Therefore, word
segmentation is essential in almost all Chinese language processing systems.

Several models for word segmentation were proposed in our previous work [Chia 92a],
in which the comparisons between rule-based and statistics-based approaches were made.
From that work, over 99% word segmentation accuracy rate was observed when there is not
any unknown word in the corpus; while only 95-96% could be obtained in case unknown
words existed. Unfortunately, in Chinese, many morphemes have high derivative abilities
such that they can combine with other words or morphemes to form compounds or complex
words. To enumerate all such kinds of words in the dictionary is impossible and impractical.
What is more, many new words are generated every day, so it is very difficult to keep
the dictionary up-to-date. Thus, the problems caused by unknown words are inevitable in
processing Chinese information. Hence, how to identify unknown words is the most important
issue in real Chinese language processing systems. Motivated by that, the focus is shifted to
the study of unknown words in this paper.
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There are two kinds of unknown words: one is regular, such as time, date, reduplication,
etc.; while the other is irregular, such as proper names, compound nouns, of which the
unknown words must be determined by their context instead of simple rules. Regular
unknown words are likely to be predicted according to some morphological rules. However,
the words of irregular forms are usually difficult to be identified from rules. They must
be examined through the analysis with more high level knowledge sources, such as syntax

and semantics.

In this paper, a set of 17 morphological rules are first introduced to tackle the problem
caused by the regular unknown words. After applying the morphological rules, 1.81% error
rate in word is observed. Compared with the error rate of 7.48% in the baseline system, it
corresponds to 75.8% error reduction rate. Afterwards, an irregular unknown word model is
proposed to recognize the irregular unknown words, with which 78.34% in error reduction

is obtained.

This paper is organized as follows. The system architecture, the databases including the
lexicon, the morphological rules, and the tasks are described in Section 2. In Section 3, the
overview of the baseline models, which were derived in our previous works [Chia 92a], are
given. Then, the effects of the morphological rules are investigated in Section 4. In addition,
we incorporate part of speech information into the system to explore the performance both
in word and lexical tag in Section 5. Furthermore, an unknown word model is proposed
in Section 6 to resolve some problems caused by the unknown words in irregular forms.

Finally, a summary is addressed in the last section.

2. System Architecture

The flow of the word segmentation in our system is shown in Figure 1. The system consists of
four phases of processes, including the baseline word segmentation, morphological analysis,
tagging, and unknown words identification. The input character string is first processed by
the baseline segmentation model, in which all possible segmentation patterns are generated
by looking up the dictionary and assigned the corresponding preference scores depending
on the model used. Then the best N (N is set to 10 in the current implementation) word
hypothesis sequences are passed to the morphological analyzer. The morphological rules
are then employed to detect some particular forms of unknown words in this phase. Again,
the top N candidates are output for being tagged with their lexical tags. Afterwards, the
best tagged result is dispatched into the unknown word module to examine other types of
unknown words. Finally, the best hypothesis is piéked up as the final output.
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FIGURE 1
The block diagram of the system architecture.

Lexicon

The electronic dictionary used in our system is provided by Behavior Design Corporation
(BDC) [BDC 92], in which there are 89,590 entries of definition. For each word, the possible
lexical tags that can be attached to it are encoded in the dictionary. Currently, there are 49
different categories of tags used in the dictionary. The statistics of the dictionéry are listed
in Table 1.

# of characters / word # of entries

1 1,734

2 35,492

3 19,650

4 24,054

5 6,140

6 2,020
>=17 500
Total 89,590

TABLE 1
The statistics of the dictionary.
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Morphological Rules

There are 17 morphological rules [Lin 93] available in the system which are written by
linguistic experts according to a large corpus. Two of these morphological rules are only
related to some particular affixes. The rest 15 rules, on the contrary, must refer to the lexical
tags. All these morphological rules are listed in appendix A.

Corpus .

To evaluate the performance of different segmentation models, a corpus of 9,677 sentences
extracted from technical manuals are collected. This corpus is further divided into a training
corpus of 7,742 sentences, i.e., 4/5 of the original set, and a testing corpus of the remaining
1,935 sentences in the following simulations. Along with the simulations performed in [Chia
92a], an ideal cbrpus is formed by extracting the sentences which contain unknown words
out of the original corpus. Therefore, the original corpus is also called the real corpus in
contrast. The effect of using the proposed models both in the ideal and the real corpora are
investigated and compared in the paper. The statistics of the corpora are listed in Table 2.

Ideal Corpus Real Corpus
Training Set | Testing Set | Training Set | Testing Set
# of sentences 3,711 911 7,742 1,935
# of words 37,720 9,238 87,715 21,964
# of characters 62,423 15,374 148,221 37,261
Ave. # of words /sentence 10.16 10.14 11.33 11.35
Ave. # of characters /sentence 16.82 16.88 19.15 19.26

TABLE 2
The statistics of the corpora.

3. Overview of the Baseline Model

Sincé the baseline models have been derived in our previous work [Chia 92a], instead of
repeating the detail derivations of those models, only the final forms of the computational
models are listed in this paper.

Let ¢} denote the input character sequence of n Chinese characters and W, =
w; 1, W; 9, -, w; M, be the :-th word segmentation pattern, where M; denotes the total num-
ber of words in W;, the model derived in [Chia 92a] is summarized as follows:

M;
- argmax { I1P(wi | li,k—l)}a )

w;:l : k=1
where [; ;_1 denotes the length, i.e., the number of characters, of w; ;_;. In other words, the
correlation of the word and the length of its left contextual word is considered in the model.
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To compare the common rule-based approach with the baseline models, the approach
using the rule that the longest word is most preferred is also implemented in this simulation.
The results for these approaches both in the real and ideal corpora are shown in Table 3.

Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
Max. Match 2.15 9.84 2.63 11.09
P(wy, | l—1) 0.12 0.62 0.69 2.63
(a)
Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
Max. Match 8.74 56.74 9.47 58.14
P(wy | l-1) 6.91 52.34 7.48 54.16
(b)

TABLE 3
The results of various word segmentation models in (a) the ideal corpus and (b) the real corpus.

Comparing the results in Table 3(a) and 3(b), it is apparent that the existence of unknown
words is the main issue which causes the performance to degrade evidently. The results
performed in the real corpus are 6.79% worse in word accuracy, and 51.53% degradation in
sentence accuracy compared with those in the ideal case. After analyzing the errors caused
by these models, two kinds of error patterns are founded. The first one is the mis-combined
error, denoted by s_ns, such as |— [/ |A |—» |— |{f8A |, where two or more words
which should be separated are regarded as a word. The other pattern, denoted by ns_s, is
the over-segmentation error, where a word is mis-segmented apart into several morphemes
or words, such as |i&# % |— |43 | |, The statistics of these two error patterns for
the baseline models in the real corpus are listed in the following table.

Errors in the training set Errors in the testing set
Models $_ns ns_s s_ns ns_s
P(wy | Ix—1) 260 5,904 109 1,533

TABLE 4
The statistics of the error patterns for the baseline model in the real corpus.

In Table 4, it is obvious that the error is caused mainly from over-segmentation of words.
Therefore, to combine those over-segmented words into a word will improve the performance
effectively. To do this, the approaches with the morphological rules and an unknown word
model are introduced later in this paper.
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4. The Morphological Analysis

As mentioned above, many morphemes in Chinese have high derivative capability so that
they can combine with other words or morphemes to form new words, such as & » 1t .
Therefore, the words formed in such a way are unable and impractical to be enumerated
in the lexicon. Since the word formation processes associated with those morphemes are
quite regular, they are, therefore, predictable according to a few rules. Motivated by this
concern, a set of morphologicul rules are introduced in our system. Currently, there are 17
morphological rules in the system. They are divided into two parts according to whether part
of speech is applied or not. The first part consists of two morphological rules which only
relate to some particular affixes. On the other hand, the remaining 15 rules in the second part
are applied with the lexical tags. Interested readers for the morphological rules are referred
to appendix A or [Lin 93].

Like most rule-based approaches, the use of the morphological rules will results in the
problem of redundancy, and inconsistency. Those redundant and, especially, the inconsistent
rules have to be withdrawn from the rule-base to improve the performance of the system both
in terms of the accuracy and efficiency. In this paper, a sequential forward selection method

is used in rule ordering, which will be described in the following subsection.

4.1. Rule Ordering

To examine the effectiveness of the morphological rules, the sequential forward selection
(SES) procedure [Devi 82, Liu 93] is applied to determine the ordering of morphological
rules. SES is a simple bottom up search procedure where one rule at a time is added to the
current rule set. At each stage, the rule to be included in the rule set is selected from the
remaining available rules, so that the new enlarged set of the rules yields a maximum value

of the criterion function used. The rule ordering procedure with the SES is shown as follows.

Assume that G1 is the original rule set and G2 is the set including the rules which are
ordered through the SES algorithm. Initially, G1 consists of all morphological rules and G2

is an empty set.

SFS(n rules) {
G1= {n rules}; I* initialization for GI set */
G2= {}; /%
initialization for G2 set */
I* the loop of moving the best rule in GI to G2 */
Toop( while there is any rule in G1) {
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mincost=minimum_value; . /* initialize the variable
for minimum cost */ .
I* the loop of computing the cost of embodying each of rules in GI to G2 */
loop ( for each rule_i in G1) {
cost=WordSegmentation(corpus, {rule_i}+G2);
I* computing the cost returned by word segmentation procedure for using
the new rule set which is composed of rule_i and those rules in G2 */
/* find the rule with minimum cost */
if (cost<mincost) then
swap(costmincost); I* swap the minimum cost with the
current one */
best_rule=rule_i; I* current rule is assigned to be
the best one */
endif
}
move_rule(G1,G2,best_rule) /* move the best
rule from G1 to G2 */

ILLUSTRATION 1
The rule ordering procedure with.the sequential forward selection algorithm.

Note that the cost function returned by the WordSegmentation() function is computed

according to the following formula:

cost = wy X(l—Pr)+pr(1_Pp), (2)

No.of words identified correctly
No.of wordsin the corpus

where P, = , named as the recall rate, is the percent-

age of the words in the corpus which are identified correctly by the system; P, =

No.of wordsidentified correctly
No.of words identified by the system’

identified by the system being correct; w,,w, are defined as the weights to the error rate of

known as the precision rate, is the percentage of the words

recall and precision respectively and they are both defined to be 0.5 in the following test.
Thus, the performance of both the recall rate and the precision rate are taken into account

through the cost function defined above.

Through the SES procedure, the results of cost versus number of rules is illustrated in
Figure 2. From this figure, it is noted that the cost is decreasing as the number of rules is
increasing up to 11; however, the cost remains a constant as the rule number is in the range
from 11 to 16. Finally, it increases slightly when the last rule is incorporated. After checking
the results, we find that it is the rule n— q+ % (8¢ ®&) which results in the increment in
cost. Therefore, it should be modified or withdrawn from the rule base. In addition, those
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rules that rank from 11-th to 16-th are never applied in the training corpus; however, they
are remained in the rule base because they may be useful in the testing set.

Cost
20

1 3 5 7 9 11 13 15 17
Number of Rules

FIGURE 2
Hlustration of the cost versus the number of rules through the rule ordering mechanism.

4.2. Summary of the Morphological Analysis

The results of various word segmentation models with the morphological analysis in the ideal
corpus as well as the real corpus are shown in Table 5, where the values in the parentheses
are the corresponding results of the baseline models.

Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
0.80 4.04 1.44 6.26
P(wg | lg-1)
(0.12) (0.62) (0.69) (2.63)
(a)
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’7 Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
1.32 8.86 1.81 10.70
Plw | li-1) (6.91) (52.34) (7.48) (54.16)
(b)
TABLE 5

The results of the baseline word segmentation model with the morphological analysis
in (a) the ideal corpus and (b) the real corpus.

It is observed that the performance in the ideal corpus degrades slightly. After applying
the morphological rules, the possibility of mis-combining the words or morphemes which
should be separated will inevitably increase. Therefore, the performance of the ideal corpus
degrade. On the contrary, the situation of mis-combination is not so serious in the real corpus.
In fact, the results are greatly improved with the morphological analysis, where it corresponds
to the error reduction rate of 75.8% in word and 80.43% in sentence. The statistics of the
error pattern for morphological analysis are listed in Table 6, where the corresponding results

with the baseline models are tabulated in parentheses.

Errors in the training set Errors in the testing set ‘
Models s_ns ns_s s_ns ns_s
Plwk | le_y) 429 370 168 110
(260) (5,904) (109) (1,533)

TABLE 6
The statistics of the error patterns in the real corpus after morphological analysis.

The result shows that the morphological analysis significantly reduces the errors caused
by the over-segmentation, which is over 90%. Therefore, the performance is improved
dramatically with the morphologicél rule approach. On the other hand, checking up the s_ns
type of error in Table 6, it is observed that this approach has slight side-effect for increasing
the mis-combination errors. Those mis-combinations are caused by unconditionally applying
the morphological rules without regarding their contexts. For example, the mis-combination
of |#¢ |Bt% % |#& | is caused by applying the rule “ v — v(H £)+ #| 7.

To further decrease the error of mis-combination, those morphological rules should be
accomplished with a context-sensitive framework, which is similar to the formulae for phrase
structure rules in [Chia 92b]. It will be our future work and will not be discussed in this
paper. Instead, we will pay attention to the unknown words which are formed irregularly
and cannot be recognized through the morphological rules. Because lexical tags will be used
as the parameters in the unknown word model, we will describe the tagging process in the

next section before starting the unknown word modeling.
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5. Tagging Part Of Speech

In the previous study [Chia 92a], we have shown that the incorporation of lexical information
is useful in word segmentation. However, the morphological rules are applied before the
tagging process. The introduction of the morphological analysis may result in changes of
the formation of words or the lexical tags. Accordingly, the effect of the combination of the
morphological and lexical knowledge sources is investigated in this section. To do this, we
derive the word segmentation model which incorporates the lexical information as follows:
W = argmax IZP(W}, T;i|ch), 3)
FE
where T; ; stands for the j-th lexical sequence corresponding to the :-th word segmentation
pattern W,. To save the time for computation in the above equation, we approximate it in
the following form:
W= argmax {I%a;k P(W;,T; j | CT)} 4)
The term P(W;,T; ; | ¢}) in Eq.(4) is further derived as follows.
PWi, T | 1)
= P(Ti; | Wi, cf) x P(Wi | c])

~ P(T,; | Wi) x P(W; | c}) (5)
_ P(Wi|Ti;) x P(Th;)  P(ct | Wi) x P(W;)
- P(W) * P(ct) |

Note that the approximation in the above derivation is based on the fact that the lexical
tags are attached only to words; therefore, it is assumed that tagging the part-of-speech is
independent of the character string if the word sequence is given. In addition, since the
character sequence can be determined uniquely if a word sequence is given, it causes that
P(c? | W;) = 1 holds for all word segmentation patterns. Besides, the term P(c7)is the
same constant to each segmentation ambiguity and it does not affect the result in Eq.(4) if
being neglected. Hence, the criterion in Eq.(4) is rewritten in the following form:

W = argmax {11}&}{ P(W; | T; ;) x P(Ti,j)}. (6)
i 1,7
Concerning the :-th word segmentation pattern W; = w; 1, w; 2, -+, w; p; of M; words,

let ¢; ; denote the part-of-speech that is attached to w;; in the j-th lexical sequence
T;; = tij1,ti52 ,tij M. To make the computation in Eq.(6) feasible, P(W; | T} ;) and
P(T; ;) are approximated as follows.

P(Wi | Ti;) = P(whlh | 21%)

1,7,1
M; (7)
~ |1 P,'(wk ’ tj,k).
k=1
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M,
P(T.;) = P; (t§,1 )
~ 1Pt | ta-1)-
k=1

It is noted that P;(-), which denotes the probability function that relates to the :-th word seg-
mentation pattern, is introduced in the above equations to prevent from notational confusion.
Therefore, the word segmentation model with lexical knowledge incorporated is represented
as the following formula:

M;
arg max ¢ max [H Pwk | tije) x P(tijx | ti,j,k—l)} : 9
wiy g k=1 '

The results with the morphological and lexical analysis in the ideal corpus as well as the
real corpus are shown in Table 7, where the values in the parentheses are the results with the

model P(wy, | [z—1) before incorporating the lexical information.

Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
Pluwy | t) % Plte | tes) 0.69 3.48 1.45 7.14
(0.80) - (4.04) (1.44) (6.26)
(a)
Error rate in the training set Error rate in the testing set
Model word (%) sentence (%) word (%) sentence (%)
P(wy | ) % Pte | te_1) 1.24 8.58 1.74 11.16
(1.32) (8.86) (1.81) (10.70)
(b)

TABLE 7
The word and sentence error rate of various word segmentation models with the morphological
analysis in (a) the ideal corpus and (b) the real corpus.

From Table 7, it is observed that the results are improved slightly, except for the testing
set in the ideal corpus. However, the improvement is not significant enough to show the
superiority to incorporate the lexical information. Since the morphological rules are applied
in a context-free manner, the errors of mis-combination resulting from the morphological
analysis cannot be recovered even with a tagger. Besides, by using this tagging model, the
number of parameters is much larger than those of the baseline models so that the over-tuning
phenomena is more apparent. Hence, the results in the training set can be improved more
significant than those in the testing set.
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To couple the tagger into the system is, however, essential because the lexical information
is required in the following unknown word model. To examine the effectiveness of the tagger,
the error of the tagging process is also listed in Table 8. Note that in this paper, a correct
tagging to a word is defined when both the word segmentation and the lexical tag are correct

simultaneously.
Error rate in the training set Error rate in the testing set
Model tag (%) sentence (%) tag (%) sentence (%)
P(wy, | tg) x P(tg | tr—1) 7.56 46.86 8.92 51.70
(a)
| Error rate in the training set Error rate in the testing set
Model tag (%) sentence (%) tag (%) sentence (%)
“Plwy | tr) X P(tg | th—1) 7.77 51.52 9.50 58.40
(b)
TABLE 8

The tag error of the morphological analysis in (a) the ideal corpus and (b) the real corpus.

6. Unknown Word Modeling
The unknown words in the corpus can be categorized into the following classes.

1. The words should be contained in the dictionary, such as #& » 4 > $#% > EHhAZ .

~ For the corpus of technical manuals, there are 263 words in the training set and 72 words
in the testing set of this class; while in the newspaper corpus, 141 and 40 words in the
training set and the testing set are categorized to this class respectively.

2. The words should be combined through the morphological rules, such as 4Af » 4% |
For the technical manuals, there are 35 words in the training set and 7 words in the
testing set of this class. In the newspaper corpus, 12 and 2 words in the training set and
the testing set belong to this class respectively.

3. Abbreviations, suchas BX » s£% » €% . No word in the corpus of technical manuals
are classified to this class. However, for the newspaper corpus, there are 6 words in the
training set and 2 words in the testing set of this class.

4. Proper nouns, biographical names, and geographical names, such as HABAASE >

X4 » 333 . There are 2 words in the training set and none in the testing set of this class.

As to the newspaper corpus, 39 and 6 words in the training set and testing set belong

to this class respectively.

w

Others: this class includes the words of typographical errors in the corpus, such as
=M (») and missing lexical tags in the dictionary, such as B . In addition,

several words in the dictionary are in conflict with the principals of word formation
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announced by Computational Linguistics Society R.O.C., which should be withdrawn
from the dictionary.

Due to the incompleteness of the dictionary and the morphological rules, the words in class
1 and 2 are regarded as unknown words. They should be restored by renewing the dictionary
or modifying the morphological rules. In this paper, the words in class 3 and 4 are what we
are really interested in. Nevertheless, the words of class 1 and 2 will always appear unless

a dictionary in unlimited size is available.

Since the morphological rules are written for detecting unknown words which are formed
regularly, they cannot identify those words which are neither formed regularly nor able to be
enumerated entirely in the dictionary. Therefore, a statistical model is further proposed in
this paper to tackle the problems caused by these kinds of unknown words. In viewing the
word segmentation results, several unknown words are. segmented into a series of separate
characters, such as| B | X [¥ |38 |&&E |& % |H &

of the irregular type of unknown words belong to this case. Therefore, we will attack this

.In the current task, over 72%

kind of error in this paper. To deal with this kind of unknown words, only the region in
which all words are of single character is considered to have the possibility of possessing a
unknown word in our model. It means that the unknown words of length over than 2, such
as £4&F and HEMHFAXAE | are not taken into account currently.

To consider the region of interest R, as shown below, which is composed of N, sep-
arate characters, wy, w2, ---,wy,, with their corresponding tags t1,t1,- -, ty,, the contexts
associated with this region are wy, we, and their tags are t;, t, respectively. Here, we further
assume that there is only one unknown word resides in the suspected region in the unknown
word model. Accordingly, two decisions relating to this suspected region have to be made by
the unknown word fixing strategy: (1) to decide whether there is any unknown word in R,;

(2) to determine the way of combination of the unknown word if the previous answer is “yes.”

Ry

FIGURE 3
The suspected unknown word region.

To answer the first question, a likelihood ratio ~ is defined as follows:
P(Euw =11 (ws,ts), (w{vl‘,t{v“)(we,teﬂ
Y= e , (10)
P(-Euw =0 ( (wb,tb), (wl “y tl u) ) (wea te))

131



where E,. 1S an indicator; F,, = 1 denotes the existence of unknown words, otherwise
E.w = 0. The number of parameters associated with the Eq.(10) are too many to be handled

in practice. Hence, it is approximated as the following equation:

P<Euw =1 i tb»tivuate>

")/ _
P(Buw =0 | 80, 1)
Ny+1
[ H P(ti l ti-1, Buw = 1)} X P(te>Euw = ]_)
A;:Jrol ; (where tg = tp, tN,+1 = te)-

=1

P(t; | ti—1, Byw = 0)} X P(te, Eyw = 0)

(1D
Currently, it 1s regarded that there is an unknown word in the region if v > 1; otherwise, ihe
suspected region is considered without any unknown word.

If the suspected region is considered with an unknown word, each possible way of
combination associated with the unknown word shown below is given a preference score
according to a scoring function. To clearly describe this function, we take the second case
(UW 2.2) for example. The score of the case (UW 2.2), where the unknown word is combined
by we and w3, is defined as follows:

P(UT-’V = wows | (wp.tp), (wivuatﬁvu}(we,te)y Eyw = 1>a (12)

where UW = w9ws represents the event that the unknown word is composed of w9 and wj3.

wNu w, (UW 2.1)
w w (UW 2.2)
Ny | e

FIGURE 4
The possible types of combination with an unknown word existing in suspected region, the
shaded regions indicate the possible positions and formations of the unknown word.

Again, Eq.(12) is too complex to make the computation feasible. In implementation, it
is simplified as the following formula:

P<LT = 1y, UT = (t27t3)>RT = t‘hLuw =2 | tbat{\ruvteyEuw = 1)7 (13)
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where Ly, is the random variable expressing the length (number of words to be combined)
of the unknown word. In such a way, this model will only take into consideration the
information related to the length of the unknown word, the lexical tags of its elementary
word and its left and right contexts. Furthermore, Eq.(13) is derived as follows:

P(LT =11, UT = (t2,13), RT = t4, Lyw = 2 l tbut{\fu’teaEuw - 1>

- P(RT =ty | UT = (ta,t5), LT = t1, Ly = 2ty t1*, e, By = 1)
x P(UT = (ta,t3) | LT = t1, Lyw = 2, 15, 7% te, Buw = 1)

x P(LT =t - N =
=11 | Luw - 27tb)tl ateaEuw =1

14
X P(Luw =2 | ty, 12" te, Byw = 1) (14)

~ P(RT = t4 | UT = (t2,%3), Luw = 2, By = 1)
x P(UT = (t5,t3) | LT = t1, Lyw = 2, Eyw = 1)
x P(LT = t1 | Lyw = 2, Byw = 1)
X P(Lyw =2| Eyw = 1)

In a similar way, the scores corresponding to the other types of the unknown word in Figure
4 can be computed by analogy.

Experimental Results and Discussions

In the training corpus, there are 336 irregular unknown words, in which there are 247 double-
character words, 69 tri-character words, and the rest 20 words are composed of over 3
characters. That is, at most 247 unknown words can be possibly identified through the
model described above, for only the case of double-character words being considered in the
simulation. Meanwhile, there are 89 irregular unknown words in the testing set, where there
are 71 double-character words. The examination of the unknown word model is illustrated
as follows.
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7287 (suspected regions)

Ho > without unknown word

{ H P with unknown word

7043 (without unknown word)

244 (with unknown word)

(accept Ho) (rejecrHo) (rejectHI) (accept HI)
7023 20 67 177
(mis-classified in the 1st stage) 3 174

(mis-recogized in the 2nd stage)

(a) Training Set.

1803 (suspected regions)

Ho : without unknown word

{ H ] : with unknown word

1735 (without unknown word)

68 (with unknown word)

(accept Ho) (rejectHo) (rejectHI) (accept HZ)
1731 4 31 37
(mis-classified in the 1st stage) 1 36

v

(mis-recognized in the 2nd stage)

(b) Testing Set.

ILLUSTRATION 2

The illustration of the error types in the unknown word modeling.

In the above illustration, the null hypothesis Hy is defined as follows:

Hy: There is no unknown word in the suspected region.

Hj: There is at least one unknown word in the suspected region.

Note that there are 247 double-character words in the training set, but only 244 single word

regions containing unknown words, it implies that at most three of the suspected region

include more than one unknown word. Nevertheless, it is reasonable for us to assume that

there is only one unknown word in a single word region.
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From the above illustration, it is observed that 87 errors arise from the first stage by
using Eq.(11) to inspect the suspected region; that is, 1.19% (87/7,287) error rate is for the
first stage. Aside from that, there are additional 3 identification errors imposed using Eq.(14)
in the second stage; it means that there is 1.69% (3/177) error rate introduced by the second
stage. Thus, there are total 90 errors, which correspond to 1.23% (90/7,287) error rate,
resulting from using the current model to identify the unknown words in the training set.

With the taxonomy described above, the unknown words of class 3 and class 4 are
what you are really interested in. But there are only 2 words belonging to class 4, i.e.,
geographical names, none for class 3 in the training set; what is more, none of unknown
words in the testing set belongs to class 3 or class 4. In view of the recognition of unknown
words in the training set, 174 of the total 247 unknown words, i.e., 70.44%, are identified
correctly. However, the rest 70 ones are missed, and another 20 mis-combined errors are
imposed through the unknown word model. In the testing set, 36 of the 71 unknown words
are recognized correctly; it corresponds to 50.7% recognition rate. According to the above
analysis, it is apparent that the errors are mainly introduced from the first stage. Therefore,
to improve the performance of the model in the future, Eq.(11) should be modified.

The progressive results of the unknown word recognition procedure are summarized in
Table 9. Compared with the baseline model, the error reduction rate of 78.34% in word and

81.87% in sentence are obtained with the unknown word recognition procedure.

Error rate in the testing set
Computational Model word (%) sentence (%)
BS P(wy, | l—1) 7.48 44.16
BS+MA P(wg | lg-1) 1.81 10.70
BS+MA+TG Plwg | tg) x P(ty | ti—1) 1.74 11.16
BS+MA+TG+UW unknown word model 1.62 10.70

Note: BS: (baseline); MA: (morphological analysis); TG: (tagging); UW: (unknown word model).

TABLE 9
The progressive resulls in our approaches on unknown word recognition.

To examine our approaches in a more general task, we also test a corpus of newspaper
(Free Times), which consists of 400 training sentences and 100 testing sentences; the results
are shown in Table 10. From this table, the error reduction rate of 40.15% in word and

3478% 1in sentence can be observed.
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Error rate in the testing set
Computational Model word (%) sentence (%)
BS P(wg | lg-1) 15.00 69.0
BS+MA Plwy | lz—1) 13.06 50.0
BS+MA+TG P(wy | tr) x P(ty | tp=1) 12.21 52.0
BS+MA+TG+UW unknown word model 11.37 45.0

Note: BS: (bascline); MA: (morphological analysis); TG: (tagging); UW: (unknown word model).

TABLE 10
The results on newspaper task.

Looking into the errors in more detail, 3 unknown words of class 3 and 22 ones of class
4 are identified correctly in the training set, where originally, there are 6 and 39 unknown
words of class 3 and class 4 respectively. It means that 55.56% unknown words in these two
classes are recovered. Actually, the 17 mis-recognized class 4 unknown words are all caused
by the missing of the first stage. Hence, how to select more discriminative features in the
first stage is a key issue to improve the model in our next work. On the other hand, 1 of 2
unknown words for class 3, and 5 of 6 unknown words for class 4 are recognized correctly
in the testing set; it corresponds to 75% recognition rate for these two classes. Both these
two errors are tri-character words that are not considered in the current models. Although the
promising results have shown the superiority of the resolution procedure, the model proposed
in this paper, however, only tackles a very restrictive form of unknown words. We will
extend and modify the model to more general cases in the future.

7. Summary

Since we have shown in our previous work that the existence of unknown words is the
main factor that causes the performance of word segmentation task to be unsatisfied, we,
therefore, shift the focus to this issue in the paper. Unknown words are generally formed in
terms of regular or irregular ways. First, in this paper, a set of 17 morphological rules are
applied to recognize those regular unknown words. In addition, an unknown word model is
further proposed to deal with the unknown words of irregular forms. With the unknown word
resolution procedures, the error reduction rate of 78.34% in word and 81.87% in sentence
are obtained in a task of technical manuals. To examine the procedures in more general task,
a corpus of newspaper is also tested and the error reduction rate of 40.15% in word and
34.78% in sentence are observed.
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Appéndix A Morphological Rules

(1) WEAEK —FAMHFNE. £330 o
1 & T8 16,
2 £ TE BEE,
3

1 Tal R&k

Bo

(2) AT —FFabwdEg . #3134 o
" K
"IA
"R % 1,
A 3
"H®k B
K X -
= S
"te 4
TEE X

"£ BT
11 37: ™% %71,
12 e 0 T4 e
13 434 @ T B4

\OOO\IO\LIII-P-U.)[\)}—A
mk%&ﬁﬁm%%:iﬁ?
o

—_
o

(3) FREZFAMEKFF T &
Bl —EME > —
A X FiE D n—qicltd
a —q-+cl4cl
(n: &3 ;a: MEHF ;q: &% ;cl: &3 )
RAHE | R R IE N TH A — L E KXY R o

(4) B #3858
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W;A+;$,£ﬂ’+Aaa%&’%%%’ﬁh@
CHRRAEATE nogqgt &
n—q+ A
n—q+ B
n—q+ %
n—>qt 4

n—qt+ #

(5) =8 & (@45 npfx)
#l: T A&, o T4a& WwHl R
$ Al & 7 E | n— npfx+n
S HOAE e Rk E o R3S o

(6) &5 e & (45 nsfx)
Bl THEEF M, 0 Tk
B8 &7 % 1 no nnsfx
T—EA LM~ R Bk #3348 o0

(7) &894 & (8% vsfx)
. TH& 4, o T
MR & Tk D vontvstx (v $37)
T-egE A o db > HH1ME e
(8) & R & (4% rsfx)
#w o Tw /0 TR
F Al & FE v vtrsfx
B—RAA A £t 1E o
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(9) & EX (4% vdir) ‘
#l TH =i, TE mA, - "H Fx,o "%
k, 0 TE T
BAK Tk v vtvdin
E-RWEA I LN TF BB BESBRS RS E S
E~TFTE~FR SR -~-"FEFE ~FR-~-8BE~BR i
A B EC AR RR> HiH2ME o

(10) % A8 4E 3 ( f§ 4% phase)
#lo "8 ok, o TR Oxm, o0 e 8w, THE O, o
e 2, o TH %, 0 TR oA, s TE A
$, Bl % & 5% v v-+phase ? |
iii"i‘ﬁéﬁf‘g]%‘Z&*A*ﬁ'}‘i”ﬁ‘#‘%‘i@‘iﬁ‘@‘
BN R B G % 3HI4E o

(11) ~(13) BHFAGEz 4 T

(11) #z#aE (—)
B TEE K, 0 T &, 0 TEE OF
BAEFTE vovivt &
W ERETAE, TN REREILARLS % o
(12) #s @ (=)

#lTEHEBRREE, > THEBREE, > "T2E

O

Y

e
i
ct
L

# B &K Tk . vovatvatvb+vb
B vaRBHE MRS VD EEHFNE - RS o
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(13) #HzdE (=)
ol Tardr %, > Twmm ¥y, THE
®o oo TaAE, > TRE®E, > TEE,
R KT E v —v+vin

vV > v+v

A RBEHFIALATLES o

(14) ## A4 ( f % vpix)

o Te 2%, »TR %24, Tk &%,

HA FXTiE v o vpfxtv
B-RHMAA IR~k e A3H3Eo

(15) ® ZF A& ( 1§ 4% apfx)
o T A, o T AHK,
B A & Tk a o apfx+n
B—ReEA D #3118 e

(16) &34 @ ( # #advsfx)
Bl TR W, o THBBR
A & % i adv — advtadvsfx
T —MEA Ko EH 18 o

(17) #3 F & (i fivitx) & T &4

Bl T4 X kg, > TH X BE,

A EZETE . vHvifx+v S vHvifx+v

BT-HHFEA LR E3H1ME
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—El: % ﬁ¥}¥ nlb\l:ij
s Ar R ERE S Y El’]ﬁfpﬁ%ﬁ/f
A Word- Class Blgram Approach

to ngulstlc Decodmg

in Man‘darln Speech R’ecogmtlon"

ORRAEERT HEITIE* BRIt ESBRL
Y ST & A B A TR B AT
* o S LB SRR BB R

=S

TEREE SNBSS ﬁ@ﬁ%?’i?’f (lmguxstxc decoding approach) = F e
#ERE & 18 BY (character bigram) I e EE A (word bigram) 72 W i 5 %
WAE R - Heb o S EHRARRE SRS D AR EEE
SHBESMEE /] AT S ARERARE  CHRBEMAINSBARERT
LHEESHUD - HILEZEERNFR - SR XAOMEEES AR
Eo T EEEHRBEAHERRA] - A TIHRE - ERFEEESEL
(word-class bigram) E,jm:! mﬁgﬁ%ftni L@ﬁ?ﬁm%ﬁﬂﬁﬁ%ﬁ'ﬁmgﬁﬁ
BHERAR/] RE H2 3T 3F B 3 3B S AHBUAY PESBRLR ﬁﬁfi?ﬁn—:fﬁ
JEEE ﬁﬂiﬂﬁfgﬂﬁ fij@ﬁﬁ b 5HE 2L £t 76 S 2% {65 P Ak 8 35 7£(syntactlcal)
_E“Eﬁuﬂé(semantlcal information) E’]ﬁﬁ?‘i(ﬁ?fﬁ stEEE  BRIZRSR
STEERIRCA - Tfﬁﬁﬂﬁ]ﬁTZ/E$?EJI|2¢_‘ZT&J§ET;‘FuE(partof-speech
tagging) BN AT iR 2 - Wﬁll:l:(f%]‘%ﬁi'gﬂ&ﬁ*ﬁzgmﬂ‘tﬁ%%@ﬁlﬁﬂ’]?
& (smoothing) HE /7 - LLINEERCENEFH AV TR - TMETHAEF RARR
SIS TR Y T IE BN SR AR S P B S @ A e B R e A AE
@nmnp%¥}¥ 2L E@Aﬁi%nﬁﬁ}_ﬂ]ﬁﬁm*ﬁﬁ'?ﬁﬁﬁﬁﬁm
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F—H8  taEw

EEEESRBNERAS > FIEES = % 5 (linguistic decoding) & 3 T2
7= 5 75 — {8 E1 &5 67 #% 3% (syllable recognition) £ FT %% 18 B 4& AR 57 #H (word
lattice) B% A% HA = #H (character lattice) IR HH S A fERI X 4] - B £ - #H &
#HEE = B (word bigram) BT &8 355 = 5 BY (character bigram) #R 2 & HRI 7T
1£[1,234]) - BEAMS - EMEHESHERIR2) A EFESHEEER
MESHR LABRRBIGES] - RS FIRBRANE - EFTFEEMAETEY
RWHRRFEFEESMHEE - EEZRERFR - ERXAMESH
RIEALE > EWBETIEEEATTES - Al - —ESRBELFESERS
EEAUVNMRE - (BAILE 8 335 S E B AT 38 5 18 BY R AR ERARRS F A
EIEEFTER -

AR ERAT A I R A BE AR AR B R i B VR U 2 —@
RIATHIFTIE[5,6] SR ML AT VE R 2 2K IR BRI EBIEREB AR R K Y
B - EBA 5 22180 5R B A 50 (part-of-speech tagging) [5] B2 BT EF A
A 2R e B A B B 7R BRE AU OB 41 BE R RTRER[6) - FTUASYIREY
KATEE S - %5|\L§§ﬁ¥£ﬁ@ﬁ¥i¥ﬁi§ BRI K B B R AT e 26 SR B HT S BV
R o A SCRIE TP X AR R A MR RIRR S TR SR
& 1R B (word-class bigram) . FIHEETINEE m*ﬁg: ° |

~ EEMBAREAEERE *ﬁﬁﬁ*ﬁﬂiﬁé%_ﬁ?ﬂ%%mﬂﬁﬁ%ﬁ
HIREE - iZEI—-‘”:‘?E FIERFERFOESEAE @%ﬂ@ L2 -
FHEE . 85~ K - - —fE - 6~ B3 ,ﬁ%b?ﬁ‘t%bﬂiﬁu;@;%f%ﬁ
SRR ORETE ISR  RITHRE - FTIE - ST - FTHRR - FTE RS - EH
AT A/ XE ?if?q—f[//\%}%*ﬁ’dﬁiﬁéiﬁﬁ}%%ﬂ%&WﬁﬁﬁﬁE:Fga*—°
ﬁﬁﬁ@ﬁ(ﬁm¥1ﬁﬁ*ﬁﬂiﬁ_ﬁé‘?mﬁjﬁﬁﬁﬁ‘ﬁkl—] B - BUZORIE @ FTRY ~
TR ~ FTRSE BB AR R — —BES(HT) - [EIARHET %Eﬁ#ﬁﬂﬁi}%%mﬂ i
ik B~ KE - %E%%ﬁﬁaﬁiﬂ—ﬂﬁ) A Ik - ¥Tﬁ’\§—~‘7$(word
sequence) ﬁ’%z’?ﬁfﬁﬁfiﬁi T[%Eﬁl%*jﬁﬁfﬂﬁggﬂzlfﬁ E R RE
E?i@i[ﬁ"ﬁ*ﬁgfﬁ’\ﬁj‘{@fmfﬁﬁ (f_f?. %nﬂg(syntactlcal or semamtical
information) BYJ4TBEF7% - AEEIEE M - A SRS EEREY
SRENAT e 2 A BE - b H & FrigEmAsde: » BT AEAERE - E28K
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WeEfET N —eEEEEEE R ET RN E—R - o R -
BRE ~ BEREF » HILES Z@HERMEHEESRIITE - IRIEKMH
@ZE.-:—E%W‘”E’JE%%E EEVRRFEESHERAALR - KA E

RIFIBE B E R X FME % - FILEFRRNSKRERIFSEES
R (BRI SRR SR/ - [FIEF - &tﬁﬁviﬁl@%%%% 8L/
R b TR S AR BT -

ST &R B 6 3 SRRV RE S MRS 7 AR RSB IR -
BREGEE - EHEMCENEAE S - Jik - M5z —miEsh
R B R MR AN AT REAL SIS MR » aitk—2R > AR T ERRLE
HIFIBRIEE - ERMEFEREEMRIRS - SR MREBERES - HIfEE
TR 3707 72 5 T BE 0 — I 3R BB ch % B 3 » th /R T B HY B 1 AT 8 e 3B
EF’ o Itk BREMF A KB RGABEL - W ILE B 2 093 T %

s —IRIER AN TAEIE : :ZEHEEET?JU)\ BILBGERBR AR EERERE
Tuﬂﬁ%i&}@v@#ﬁﬁ'—mm BRI A - RAMES BT BRFBMEE
WE ) 381 BE HH IR A [R16F - ETTWWDEW%W?%H’JE# FMHEAR
EERFEIAN G R LM KL o FbA SARBR TR H FHR EERE S 8
A HR — A% AR B £E NER BE 758 $8 T 17X (tree-trellis N-best paths searching)[7] &4
ARG & A E A —E IS F A A 1R A B &S 2 R E LA E IR EIE
B SRR EIEEE - RBERMERAGER - EANGEREARESLE
BE—RFE UL ZEH T 10%07F - BT ZR40%09F - 3 HAEET

C AHER -

EERE mﬁﬁﬁ%ﬁ&E%Bﬂﬁﬁﬁﬁﬁlm EEPRE - IS T IRIFAY
fER o BN RBRBMERENASNERBEmEELFHHIER
o &t?ﬁi‘]‘%%ﬁéu*—l$Wl%ﬂ%ﬂﬂ’?ﬁﬁﬂ%r@[‘%mQ”nu Y32
(natural language processing) * #1355 & B % (speech understanding) ~ 75 & # 25 ¥ 3%
(speech machine translation) iED B #A K% 7R (information retrieval) 55 & A H AR E KX
I BhEs -

W SRR A
 EEEEEESRRARTNEEG BT % —F % # (syllable recognition

subsystem) 3B = AR S 7 % H(linguistic decoding subsystem) WRER5T » HAEHE
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NE—ATR[1,3,4] - TRMIFTIREFABSEEESHUME—EESHE
17595 - EETE T MEMRTE | H s (word formation) FI4& AR 58] 4H 2 F (word
lattice searching) ° P 3 78 28 2 H& — 138 b & &0 F¥ 5% BT 21 48 AR & 61 48 (syllable
lattice) E 3] B2 f#{{ VT B2 (matching) M FZRX —EA&AREEIAE « mAsARFHESE
A FRIRRE S 12 B (language model) 7ERTIR S ARFIMA F T — ~§§1%—J‘ﬁb
FOFGEEER =3 fan it .

mmkEmE| ﬁ*mﬁ%%m: ‘

| M

| ‘ : s :
iﬁﬁﬂ‘{%ﬁﬁm%%%% J___ |
| Iy wamm | |
N |/
[E— FEREE I A MAEE

HAEFANERFAERSHEICEEE Z0EE - TEREEFARE
FEHEARE » BEERERE - HERMATRENFESHETETRAIA
—LEB AR MR EMPEE » BLHEE T —HiPaaFAEnSE
BH o LhEfi R AT R R AR R AR K MIATIRE SAH A — AR S :.*ﬁgzl«/\
FRERINEAFIE -

R E
S W, o Wo VB TP ). W)+ B

Pr(W,...W,)= Pr(W, ) x Pr(W,|W,)x...x Pr(W|W,..., H{,_l)m(l‘)

HR EXAIBSBMEBRERERN  AIARRARET —ESAIRE
FF (Markov Process) HIfR2% » BRI ARNEERZ—MB BT KEE
(first-order Markov model) F1 84872 ¥ (random process) * 7F Bl 45— @ 3 A £
REeRIR—EFEA R/ - K

-
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Pr(W,,...W,) = Pr(W, )< | | Pr(WIW,.)
i=2 .(2)

EEEEPH(W; | Wi )ER— 181370 0 S 3 B AR A B OR (B - %945 —EiEAR

AORER - 0BT AT AREARVE FE P M S A DEBERAR - KL RS Sr 1
27 - FxAFIEER e FT DA A A AT -— s8] 0 45 B <7 B 165 144 = (conditional probability)
SRALIT

Pr(WIW,, )= Pr(W|E(W,.)) (3
HBREW, 1) ST S, o 710 5 Py I 60 WA T o

= i — @ FEW R & S(W) RIR(W) R BB 7 1L EK » Lt EES(Wy) & 88w
RBIGFER Sy ¢+ TR(W;) BRI FWER T ABIAaF Y ERSr - Al H K 2 ¥ (Bayes'
Theorem) - IAIFTCATRE] :

Pr(W|W.,)= Pr(W|E(W._,))
= Pr(S(W,)R(W, \E(W,_,))
= Pr(S(W)E(W_,))x Pr(ROGLE(W_)S(W)) _(4)

B RER(W) ) ZE L LRI — W, BY#E B FEW, ) IERI - T XX & 5
FES(WHR(W)) ZE ZE B SR B 58 (w9 i SR 48R » FTLA ¢

Pr(W|W_,) = Pr(S(W ) E(W,.,))x Pr(ROW)S(W,))
= Pr(S(W ) E(W_,)) x 2ol
= Pr(S(W)E(W.,))x Pr(WIS(W)) (s

L IR(S)TERG A B A AE AR A SR (A o FEMLR P - BT —TEERA
AR 45 R P O 31 F A B 3B & LR IR 2 R 33 B A ) AR 1 2 1) 21T A )
AR ISR ¢ i —TE & 37E B B U AR AR IR A ST A R A
FAgE R AR o

SR S

St RGPSy | EW )BT E - 3 P15 B I BREE BT 55
(word segmentation) * HEF T HIFEW, )R I R EW,_)S(W)HI BRATSRR
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Pr(E(W,,)S(W;))
Pr(E(W.))

_ J(EW.)SOW))

T EL) s

Pr(S(W)EW.))=

[F - PrW; IS(W,))sz;zulkt 152 B3 BB 1 wiS(wW;) T B 1wy
BEIEERAER] » FTCA © ‘

Pr(S(W,)W,) __Pr(W,)
Pr(S(W,)) ~ Pr(S(W,))

(%) .
f(S(W,)) NG

Pr(W\S(W,))=

n

B ErE AR IR MR G et SR SR S A 2 BE - E—E8HEH
EHER GRS HEK - HR(EO)ME » REMER AN/ ECFEHETE
SHEA . HRHRIERNES —EFXFEAMBE AN RIEFRERT - A
LEFN(6) I £ Wi i bh = B H AR S AR BN D — L8 ¢ M aX(7) Ry SR B R ER 5R
PRNAEM - EAERRR (OIS BB RIREMARE - Bt - S ERE
f SR g B o AR F A R SR E R A - B3R/ #*T%ﬁmmffﬁi{mé&
BE o

HL Ath ] B Y 5 5

AR R SR E R AERMBERE—Pein - B —EMER
EFASEESHF HREMLITSBERK - FILEHFZ2BIESEH
FEH IR A H RS R FRARERAKE - MEATETRIE SRR « ¢t
32 {18 P R E P S0 0 B S AR B AT T A5 ST A SR MR L SR 3R S R
RZ& - MESHERA FEEZE - K IIa DU B s @ R -

HRIEERE S B2 2 DL SRR RE 1A 5 F0 45 B = (805 77 BERUAKER -
ANFBMEFAFF R ENE T HMEGEARERALS » A RNMEESR
8 B (R BN SR AR R TR - RIBFE B2 HHTHEFEH IR - EEB"TME?M%E*
I T E T BEIIBR - ~
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tesNEERE SR B R B SEE S HERERA R S R R fie
71 HINERIRE SEENERERIERS @ 2 —BE S UE P AgLEERZR
s o (BEEHIE (A3E S M A L B et ﬁf%b?“%ﬁ’]ﬁf’%b@i
% HIksE= ﬁ'?ﬁzﬁﬁ%%tﬂaﬁuﬁﬂ’]ﬁ%°

=81 rEsAEAR RS

FHRIENATIR Z 38 ST AR BIFEE SR - EMIREEHA
EANFBEREFRARZEE—)  aAFEAEAREF2EE — @8
FERIFSHRERAE - ZBRIRFIEREEFRIESESRFARTRISHE T
BAIBERIFI R B - R EMEREFEZECEAAE IR - FTCAtHE
R TR RO R ER - IR E T R R IR R I FIPT R BV EE SRS TR R
BT -

TR 2R 57A  (fast word formation)

L SRR S E RS R I 0 A B IR SOM e B0 AR R A - B
RN o FTIEREFSARRE EIH S 5 — T HERY F i 5 (syllable sequence) TE
AR HMEE ENE c F—-S B E2REAR S EEE RIE MRS
FTAE AR B #8545 (link) SRHEHEZR - (HHNEARREEHEFT EHTREZ A6
KFEIFEHS (LHEESHBRARE  mgaERMEERE) &
RIRZNLERGFRES - SEREESETNUNEEFTHRE - &EHEH
A nggEAN > o

TEEE - R FFIES AR BITR R X 7 R AT ek 5RA) #4
%5 ¢ E{E Bk ZE B —# 5T A& (binary vector) fHAX @ H—E _JTE&
REXEESHEMERENHASTAIGEHEAENNVE | MENE GRS
(component) {RFKEME S Al G HIRIEEF5 > 38 MRS RS ES 6

AIGHRAESFFENE —EF » F =[BT ALERA SHREE S
FISE M@= - DItk EIE (B =) - EZER—-BEREKRISHBES, -

Sk » DA B ) BB EE S-Sy, -8, | 18 » B T — S S, 7E AL
S 3 B BB 0 T (R AR ST B0 » BTtk B B N BE R AEK
FMEiET - Rl Z S008I EE R TR -
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BHIMES > WE _@ZBREHHE > mal' A FHREIFROE
— @ == » AT LA f%mau3-shi:ue2-jrlfshr4, mau3-shiue2-jrl-chr4, mau3-shiue2-jrl-
4 .. EBEEEEHRARHEK o FEREEEBERZE - KOS T 0% /Y
FIHAET - IR EAKG A EE - |

V. v
)'@{6){
Qe KAX 2 A7

)

BT —EAS S A R A IR AR - RS EIA - ()i
: HRERIEH -

| A FRA SRR RE T+ AR EE S RRE R -
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baud3 [ 1 1 ... | SORRRPR
paud (11 ... Lo
mawl g Orereeeeeeeerereneen
jrl
/ jr2
= HiHR St ‘

B = bR SRVA R B Ek R B E]

R AR AR BRI RH 55 B @Eﬁ?ﬁ(fast word lattice multiple
path searching)

@%&m%qm#@&MMMwmmWEEEEW%%%m%EM
WEF %4 & T &0 R BSOS » @5 iYs &RTEen
XA] - TEBES TR ¢ TP %&ZﬁﬂﬁﬁmgaﬁmA¢i%X%E
{8 35 M 88 8 — 18 %4 8 F B /K 2 (user-friendly) 87 % % PR X E i /> 6F F 8 i
FASEAREIEAIFEE » FTULR S RS S e A B AR FAE RS
7 o AR (ERERI RS T S IR FTRE SRR A 770E » B T ATDLIR AL 4G 1 F B
T {ERVIRIE SN - SRR IE A R th o BT DL T R S M S AR VA BEE
BRI B B AT BERI 3 BB o [RIBF7E A SRRV BT 05 30 %T&mwﬁ%%
R A SR ST IER B - BTN R REITHEE -

MEBEMB AR LT -G XANER I ELEHRRE —@E
R ~ EHRE DM A M ZHEEEER - 71k > THMEFE TAE -
TG B A 8 5B & ¥ % (continuous speech recognition) FIT 2 i 8745 AR — 4& AR

B FENR IS 1R 42 TV (tree-trellis N-best search) [7] » A8 —EE &0 1% » A% H
FHTE A& AR SR H B S AENTR AT BEAY R BB AU IR T £ - EEEETE 2 — BN FE
ER R AR Tk - B B R IF (A 0 £5 8 1% 2L B9 4 7 bb 1 55 (forward
modified Viterbi's search) » 2% — B B 2 — {@ [ 8] 7 A* 51 B 7X (backward A*
algorithm) -+ M LE[E] [AJA* B B 1A HL H AL A+ TR B VR e R AU AN R A2 A A*
WEITEREEE—ETAIE - mE—EE BAxEBEIEESEE R
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TF £33 PG 80 25 0 (B [k Se Ak BE RV R A 4P B > AU A EEE S
A*—TT 25 #F B (A*-admissible)[8] * &I k2 0 52 1% A% AT 8 0 AT 16 2 (1) B R 466
EERSER - M ERF IR -  SHERGARERVES - ATEALER
HH—IEFAB S E10% AUF - MATREZIR40% BIF > S EEKMAE
SKEY » BEZ MR — L IERERF - 2R KRB F XA ER R KRBT+
ﬁ% °

FUUE HEIR Eﬁmoﬁgﬁ%é

BEERFATIR DB S TR ER » MR T —4FEREES
PR O FE FHAV BT BR - REE B e BB R AT £ AR F 8 3B SR B T IETE P 3%
XX F BRI o [EIF > IRMEREE T L8 smrE R - ﬁii’\%aféﬁﬂ
RIS E o BERAE FEE R IR & #E 7E 5 B9 [B] 0 3R (recall rate) BB HE R
(precision rate) | &R EL AR 55 FIR) S BE SHRIKEBE - # TKRAER
FAREBRIE R Z A - WAS/Ma R AR EEIRE - G SHMNE T A%
5R] B DL B IR A0 J s RE ) -

AR S — WA
ﬁi§E%%%*

SRR T A5
Pl sE HEESZEH T BHME
ﬁu—fl,%a% 93.87% 98.04%
Bl _{E&E 5 99.51% 99.35%
Rij — {E &5 5= 100.00% 100.00%
Al VO {E &% 5= 100.00% N.A.
i T {E 5 SR 100.00% NA.

T 2T %00 T PR NA L NonAvailable

WORIATE - :Eéﬁwﬁ%%%%fiéﬁﬁf%}%‘- BF RAAUSHERE ?@1’52’—"&
WA - SRR IR FT RSO AR Y - BEERCR - TR B H PSRRI
&t%ﬁﬁ%ﬁﬁ%%%ﬁ‘fﬁﬁﬁ%ﬁ |

— @ A S HAES > BESHMNTEE4EREERSH S B ERA R
AEE’]T@(}ﬁ%ﬁﬁ 110 38 9% 52 482 5 (lexical tone) T 1 {1 3% 2% § (neutral tone)

S M ) TR BT 4]

(base syllable recognition) % & 3 ## 5% (tone recognitioh) o ¥}
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SRR - A% - IFEMBRERMUES - ZREDTTRERTE
REMMNZRESE  XEBSHEFRRGEWA - FHEZI PR
RITRIFTR -

ar) S Js2 )11 AR R0 I s B R AR

A< B By b T 58 A B #A] 81 2 E H S AT SR BRI AR B /N S RT RIERE (9] 1B
B GETHBLIITE - AT —2&&2 > 818 @ LR KXREH
EHEEFEFROEH - BT IS A5 UL ERTFEMER - 2 HRTHE =
IR R EE R — B R T R - A I A BT SR A E 5
o BeEMEraedHREREZHEZY - B TEHK - AT AR+
XFEHMNEREFTH - HBERRIERZE » MRS EE/\E
ZEF X » BHARRE S XFAREBRNFRATR

A B
i RS 8- 14052
- EESEE] 48339
=5 11559
V0 = 58] 10433

Fake 2| 583
0 84966

2 FEHEAARHRELN G AR E

AT NERIAMIFTIREAIRE SRR FREBEFREMNREFT XX
TR G AINBREE T o PRER IRMIAT AR BT & o S A SR B SR A Rl = /N FEL AT
FERE[10] + HEFE = T EAIHA - BIPERER - BBk BHEER
K400 A o XX ARISEH TR S0 DR, A RE & 3R S DAY
AFRARER R F9RY -

K EFTE B BARE K - ATUAE AT RET S#REE - NMEE %K
AITAE - MBEICERAAE SHEER - Kitk » B0 EHAHABBETSRE AL -
TEHRMATEERAE - FFAKERR - 8 ZIRATIRE I R AVET 3 & 511 °
s BT 3 % &R AR 2 — 1B 88 VT AC 158 B V2 (string matching algorithm) /il -
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TN R B B — BB B3 AT DA T R — T DA b A S R A 1 e A S BRVA AN o
BRI TR AT E99.77% - L 2 SR JI Bk EE %I‘Mj{)}ﬁ"‘#m%&aﬂ(nmse)

MERFTAMNAIRAXEANZR = %Tﬂiﬁﬂm%ﬁqj%%%%%tﬂ
B HFIOENRA T BEA I E (FH2309F) ~ —FBE B R NS
3‘{(1548—7—) LAE& BB/ THHE, (970F) (EH " AT, F%?I%
% . gitw - tHl#i/\_JHj)#i) 35 e ER 2 AN B1E JI SR RE AR R
JE#ﬂ%%%?H&HMﬂEE’J =EXRBAEEESaS THHEAEES E AR
Foa Bl JTEEZTLAE%%%{FWT?%&HE’J%‘&B’J%K%°

(5] PLJ 52 % ik B o4 ) S

 TEAEERT - FPRERTRCR 2 A U 3R (recall rate) B A B (precision
rate) KEH(E - HERKO R -

REX G WE S AR SR fE
H &5 RS 4R T 18 SR 10R P AE 5] B E’J%;ﬂi]—?—

RUTEIR S I ml BER BB 1% @DHZ‘F{RiB"Ji%R :

(Uts)nie)

k=1

2.,

Jor all sentences

> oY

R __ Jor all sentences j=1

x 100%

m%wpim% :

(Utmd)nte)
Ui, ]

k=

>

P __ Jor all sentences j=1

| > 3

jbrallsnrnc Jj=1

&t@ nsi%zﬂﬂ‘iﬁl‘{",lﬁ’]%!% ﬁﬁ|A|2'%,\ ARITTR EE -

-

x 100%
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FEERRG » FFHoERXERE - ANE -FREFIME—
R B B 5B IR SR R FT PR R R A BB SR » SRR B IERERYF 3R 4E - (I -
SEEMNFAHRERRERYFEES » RIREES - FHIESTT
FEBR  RZITEMMEBG - ARBFENBEXE - RFITEHEME
NEMRE  pRIBEMEEEEIRFE - FTOARWERENREIE
R FEBUEEE X EALLR - MBEREEENFEEEREREFEH
EER - 372 28T BA & i (isolated syllable) HI R FERE ZF P8 » ATUAAEH
A (insertion) MR (deletion) FHITEILFEAE » R ULE —IGREFHAIFIRES
B F BT A XA FHEE - BB ERSE —GHBI%E - BHE
OL=RR | fEZSF R A FERP -

CEGIWE  MRERBNATE CENRALE, - mEEEEeE

FIE—GANE IGEES AR TEFEARSE, N TENFEAE R,
R e EI DU SR AE RN T E LT ¢ 7R itkng=6 » T % — 165 35 5 $4 85 W 1@
3 Ut i) B> (Vrs)
& ATBA = EJ, s —4ri=1-WAND =6 i=1 EiLE
AR = 4/6*%100% = 66.67% * FEFEIRP| =R = 66.67% + M5 _FEH 2 3
S (Ut nie] 3 (Uta))
s - o R
(R 1tk [B] AU #ER, = 6/6*100% = 100% * F&EFEZRP,) = 6/8*100% =75% ©

=89i=2s

EERESHTERZY  BEEERERRFE GOraEHASAEY
&R o {HIE 0%E = Fi AT$E 89 I M1 3808 — B 5 B & K & (user-friendly) HY

k% EEEMEFAEZRAORANRE B TEEE S AN S >

Sh o TP HRERFATREMERFEROZRFMATENFAGERL
WK% - 52 R TEHIWURZI - BERDE - IHEZTER
o K TNAVE RS RER - WAPTREATIEERFSRMAEKR -

HIEA 5 R

IEMFIEATIREIE - HE-RIFHBET@A - SEHHREBFRHER
HARERESEH RS =EAREEFAERESHEFRAEMA - It
Shs BHE—MAXRIRES - sBE BT R AT H A FE Y E A A AR
AR E BRI HE S A - Fitk - FTUAERIR Z AR ERE|E - K
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THMAARE P —EHBESTNIRE » HEREBENERIERK X+ H

& T REARIR) S H RS R N TEE S AR = A AR

RIS X ZATEEIAY A 0 SR SR -

¥ ek R
FEAY [EI AL | FERESR | A0 | AFRESR | B | ERER

FTEEEEESAE | 83.61% | 83.61% | 83.20% | 83.20% | 77.73% | 77.73%

il .
SRIBFEEEHE S | 87.93% | 87.93% | 87.92% | 87.92% | 77.73% | 771.73%
FHA :

)3 WREA[FAIFE S AR 77 1A HIE = REAN R SRS R S 39 [E 0l S A4S
WS BB SR BN HY— I8 1E A Y B8 JA R T 1] {5 238 R JER T B SR — Mgk AT

AERYRAIER -

i A

#HE FESS
R [EIALE | FERER | [N | mERER | BIA0S ) HRE
TREETE S | 90.08% | 64.38% | 92.25% | 64.50% | 86.39% | 59.18%

pid
IRFEEEGE S | 93.40% | 66.85% | 95.16% | 67.72% | 86.29% | 60.65%

R

)4 MREANFIHIRE S BEITANR= %Tﬂ??%?ﬁ@ﬂuzﬁﬁﬂfﬁ
HESR - BB 22 BN HY— {13 1 W A B R R T 1] 6% 238 5 JER 5 B B R T BR PT B

(I -

¥ sk 5EE/NER
y =Kt [EOUR | FERESR | [BIASE | B | B | R
FEEEIE = | 82.75% | 82.75% | 83.07% | 83.07% | 77.42% | 77.42%
Et
SAIEFEEEIE = | 87.11% | 87.11% | 87.73% | 87.73% | 77.32% | 77.32%
FE R ‘

S WA RIHIRE S AR 77 AR =R AN R SRS A - +59 [|] 0L R R0 #E
HER - HERS WA = AR E TN O MR EE RS R Rk — AT Aeay

A
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7 sk ¥ /N
FERY EIAY S | AR | B3 | BER | B | B
FEEEESAE | 89.31% | 63.82% | 92.12% | 64.41% | 86.19% | 59.08%
i .
R BFEEEHIE S | 92.67% | 66.18% | 95.03% | 67.57% | 87.01% | 61.20%
FE A ' :

Fo6 FIRE VR [FI A5 2 AR AS 7T VA S, = R 7] S A0 244 1] 0L SR AN
B B 58 WU = {1228 B U T I8 38 5 e 2 4 52 £k ) 406 T ik
S

peELeRy - AT AR AT A EE SR S ST
IERTREIMRRERRERAFEEEFE SR EBEIT - [ - 7
ARFE=FEARXEZS » L "REEDH ., FIREEREE - HEE
mﬁ%%ﬁﬁﬁﬂﬁ%ﬁlﬁf‘ﬁ?&aﬂlzﬁ Bk MEERER /DR XA FREE
HHEEENGE > ERJIHEN T REEESEXE  BMREZITEX
3 o

IE R A R B EE

EIEE > WMBE T RS EESHEESHENRBLE
S ELEMAIA BT F RN S EESHREINRE - S5
R EEFREREEHEAEIEAEISER P EEE A REE D -
1535 WA (5] 38— B HH IR A R IR K

% IR RRE SITE SR AT SRR AR S #E » Wiial rud & #HFR
A THE{E, B9RE - Z2ERE "L ESOINHRIEESRRARK -

EIEERERGEZEESE - 0 he2 I3RHIRK "EE, MA
B OTE M, > Mish2jlanl BEHREAK TR, WARE "+ M, - EHA&
RO AT - REFEILEAE R T AR TEE R - TR SFERIERLEE
REZKES -

HIUMEE R A EEE LFANGRE  c DR ERSe S LHE LAE
R - FRLAT (IS BT BE 018 1 L EHEFT A A B & SR A g .
B E AT MIAT ISR R G138 T $TRIERI SRR  FTUASE SR B & S f 8
MOVARTBE AR E R E -
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mIE—HHIERER S HEREEERIE - flan @ T, ~ Tt
TP, - ERIEETESER > RESEENSKITARESNHE  BEMAE
= EBFEEAE > 1055 B (semantic) M58 A (pragmatic)?F - HLEEER AR S
BRI - 0 "Fhr, o~ TFEML N OTRE, ~ TR, -~ THR
W, & - L@ﬁ’*%{ﬁ?{’f&%"ﬂjﬁz‘ AEEEER  HEBEE LEEFRAKRSE

"E
I

3

¥ 4
%ﬁr

/

Il

%ﬁgﬁ = ;Hﬂ

TEEFRE S HBIIES I A » FEEESHENNFRSEES
;*E&”E‘%ﬁ@%%?&ﬁﬂ?ﬂ’]ﬁ& Hep » FISEEBSHEMRRBAES

SHIBET] » ATCASRSERARERLT - RMATEANREBERAK - HRE) > F
SHEESHUNSBER /] » MPARRRARZE - £ XK - ERXA]
MIEFERR S PAEA L - EMESGEES HEAH AR - KX
H—EFRR S EESHUNESHBENIE - EMESEEEEHNES
TR B —FRAEF SRR S AR B N B iR HH W SRR SR s Al B RS @ DA—
B B 5 B AR A B RERY R FRIA Z B ER » ERESRIRY B iR mBA
—{EIRT FE B =N AS AR BR M 2 IR R IR SVA AR S BRI R B N A R F &
ERINTRFI RESR B R -

MR AR SHEAE—RBUUHEFEER AL - AERKER D
IRy EE » BRI ASEEESHEHIEMME - BB IEER
TS EE R RO I - IR A A B R AR 4 BERAK IR L%i;
RIBP X HERABRHAENMERFE RO B AEEHE LRSS
B EHRZART R P LR EEL - [FIeFstE EARE 75 E 2&'%@%8}%%%
RAMIREIE -

HE A RER - 7£/\E 2 EF 3N 400 5 B = 77 IR B R & 5
o SRR R AN Y B = AR B B SO R A PR SR A5 SRR bL S R S AR Al
9F - Rk - AIFTIRE AT ESEE T A A AT - kb - EiGiEERE
= BESF R eV AR SRR InDAMEDR - SEE SRS S AERE A
PEAMIRCAYEA - AESWAERNFET FIEARAAE P T EEAE
1REEHE o
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Topic Area: Grammar Checker; Key Words: Corpus & Sequential Forward Selection (SFS)
ABSTRACT

In designing grammar-checking systems, the pattern matching algorithm, although failing to
handle complex errors, is still widely adopted today. This is because when compared with the
method of employing full scale parsing, pattern matching is efficient in detecting local errors with
much less computer time and memory. However, the patterns used in the pattern matching approach
are usually hand-tuned, and thus suffer from inadequacy in handling correlations among patterns.
These error patterns may conflict or overlap with each other. Therefore, an automatic rule selection
method, called Sequential Forward Selection (SFS), is proposed in this paper to tackle these
problems. SFS uses objective performance measures to automatically search the suboptimal rule-
set from all the possible combinations of rules. With SFS, the effectiveness of each rule can be
measured, and problematic patterns can be identified systematically and efficiently for the linguist
to fine-tune. Therefore, the error patterns can be revised efficiently. In our tests based on a corpus
of 1956 sentences, the false rate decreases by 11.8% (from 26.4% to 14.8%) if the suboptimal rule
set (81) selected by SFS is adopted, instead of the whole rule set (127). With this suboptimal rule
set, the recognition rate decreases only by 3.9% (from 38.9% to 35%).

I. Introduction

The research of grammar checking has long been an attractive area in computational linguistics.
Its main function is to detect grammatical mistakes. To detect grammatical errors, various algorithms

have been proposed in the past decade, such as pattern matching (e.g., Kay, 1987), partial match
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(Pfaltz et al., 1980), short range grammar verifications, syntactic parsing (cf. Vergne et al., 1986),
etc. All these approaches can be generally classified into (1) pattern matching and (2) syntactic
parsing. Although the parsing method can solve the problem of long distance dependency at the
syntactic level, it is time-consuming and occupies too much disk space. Moreover, parsing does not
always yield the correct results. False alarms and missing error rates still exist in parsing. On the
other hand, pattern matching is used to detect the grammatical errors without parsing (cf. Atwell,
1987). It can search the “desired shape” with local distance dependency. Although it usually fails
to catch complex errors, many local grammatical errors still can be detected effectively. It can also
save time and operating costs. Therefore, this approach is still largely adopted and currently used
in our system, i.e., Behavior Design Corporation-Grammar Checker (hereafter, BDC-GC).
However, the pattemns used in the pattern matching approach are usually hand-tuned, which

suffer the following problems:
(1) It is not easy to manage the correlation among a bunch of rules. That is, we are not sure
whether rules conflict or overlap with each other or not.
(2) As different applications might have various requirements and characteristics, the best rule
sets for different applications are usually different. For example, grammatical errors made by
Chinese are different from those by native speakers of English. However, there is no systematic
approach to revise the patterns for various implementations.
(3) It is difficult to identify the effectiveness of each rule and to pinpoint the problematic rules
systematically and effectively.

Therefore, an automatic rule selection method, i.e., Sequential Forward Selection (SFS), is
proposed in this paper to tackle those problems. Given this SFS, we can (i) automatically find the
suboptimal rule sets for different applications, (ii) objectively measure the effectiveness of eacﬁ
rule and (iii) systematically identify the problematic rules to let linguists revise them. Thus, the
goal of a smaller set of patterns but better performance can be achieved. As a result, it takes 195
seconds (originally 269 seconds) to check 1956 sentences. If the suboptimal rule set (81) selected
by SFS is adopted, not the whole rule set (127), the false rate decreases by 11.8% (from 26.4% to
14.8%) . However, the recognition rate decreases only by 3.9% (from 38.9% to 35%).

II. The Framework of BDC-Grammar Checker

A. The Construction of Error Patterns

Our error patterns of current version consist of 127 rules/patterns which are constructed by
a linguist. They are based on common mistakes found from Chinese students’ compositions and

references (cf. C-L Su, 1991, Strunk et al, 1979, among others). These pattemns have been
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encoded in terms of Arabic numerals (about 600 code numbers). An example of such a pattern is

represented in the second line of Table 1.

/*2.1.2.1 Fragment*/ (error code & error type)
% (#) (,) although (1-1 % (#) (,) * [v]be * , * [v]lbe (error pattern/condition)
/* [Advice]: This sentence needs a main clause. */ (advice)

/* [Example]: Although the weather was bad. */ (example)

/* [Correction]: Although the weather was bad, he went (correction)

huriting. */

Table 1 An Example of ERROR PATTERN

A close look at the error pattern shows that our pattern also includes the part of speech (Lin et al.,
1992; cf. Church, 1988). With the aid of the part of speech, many different words can be clustered
into various equivalent classes to formulate more concise rules. The number of rules/pattems,
thus, can be significantly reduced to save time and space. Therefore, when compared with other
systems such as RightWriter’s large (+6,500) rule base (Brace, 1992), our rule size seems small.
waever, in our pilot test, it performs even better than several other tools (please see Section III).
Additionally, it is allowable for linguists to write patterns which include some special symbols such
as {#, %, *, O, I, [ 1} C#’: one token;’%’: syntactic boundary; ’*’: zero to many tokens; '()’:

optional; ’I’: or; ’[ ]': categorical brackets).

B. The Construction of Finite State Automata & the Operating Flow

To put these error patterns to real use, they must be converted into Finite State Automata (FSA,
cf. Hopcroft et al., 1979). First, pattemns with special symbols are converted into regular expressions
which are then converted into FSA (Karttunen, L. et al., 1992 among others). This FSA includes a

finite set of both states and transitions from state to state at input symbols, as shown in Figure 1a.

a. FSA Construction

Error pattern Symbol Regular expression FSA FSA

e ——— . & —_—

special written conversion machine-readable construction

forms forms

b. Operating Flow
English Morpho- Stem Lexical Word- | Grammar Error
— 5| logical f4> tagging | checking ———* report
Text analysis orm cat.pai (FSA)

Figure 1 The flowchart of BDC-GC
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A close look at the top flow in Figure 1a reveals that the special written forms such as {#, %, *,
0, 1, [ 1} are first converted to regular expressions. They are then transferred into machine-readable
forms for the realization of FSA, which is the kernel of BDC-GC.

To illustrate the basic concept of our method, the operating flow of GC is shown in Figure
1b. Three stages of operation used to operate grammar-checking are stipulated as follows: (i)
morphological analysis, (ii) lexical tagging and (iii) grammar checking. Let’s take the sentence in
Table 2 as an example. The surface form of a singular verb influenced is decomposed to the stem
form ’influence’ with suffix ed through the morphological analysis. After the categorical tagging,
it becomes a word-category pair with category v. Afterwards, it turns out to be v/ed which is

needed for grammar-checking.

¢)) Science has influenced our life Surface form
2) science have influence our life Stem form
3) n /- v [es v/ed poss/- n /- Category/Suffix

Table 2 The morphological analysis & lexical tagging of BDC-GC

Currently, this system operates on Sun Sparc & IBM RS 6000. It takes about 269 seconds.to
check 1956 sentences (= 24069 words) on Sparc station ELC.

ITI.. The Baseline System & Comparison with Other GC-Systems

To show the superiority of the proposed method, the original 127 rule set as a baseline system
is used for comparison. Additionally, to give readers a general feeling about the performance
of our baseline system, it is also compared with several other popular commercial products, e.g.,
Grammatik IV, RightWriter, The Writer’s Toolkit, PowerEdit, etc. The comparison of performance
evaluation for five different writer’s tools is based on five pieces of student essays related to
SCIENCE. There are 72 sentences (R69 words) in total. Fifty-two errors are checked and hand-
labeled by a linguist.

Table 3.1 illustrates the performance of different systems, where the recognition rate is calcu-
lated by the formula recognition rate = (number of detected errors/ number of total errors)%; and the false rate
is computed by false rate = (number of false errors/number of total detected errors) %. The best recognition
rate is 65%, which is performed by BDC-GC. Likewise, the highest false rate (33%) also goes to
our system, On the other hand, Writer’s Toolkit performs at a high recognition rate (53%), but
hits the lowest false rate (15%).

Unfortunately, PowerEdit, for example, does not perform as well here as it did in two previous
tests listed in Table 3.2 & Table 3.3, where the recognition rate was approximately 51% (Rabinovitz,
1991) or 72% (Smith 1992),
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% | Tools BDC-GC Writer’s RightWriter | PowerEdit Grammatik
Toolkit v
Recognition | 65% 53% 30% 38% 44%
False 33% 16% 15% 31% 24%

Table 3.1 Performance evaluation for five GC-tools (52 mistakes made by Chinese student)

The large performance variation among different tests might suggest that a large testing corpus

is required for the sake of fair comparison. However, this kind of test is very time-consuming

without modifying the error reporting program of other products. Besides, the great decrease of

performance for PowerEdit (recognition rate: only 38%) in our test might suggest that it is not

suitable for correcting essays written by Chinese students. This phenomenon also implies that

different rule sets might be required for various applications.

% [ Tools RighrWriter PowerEdit Grammatik IV
Recognition 13% 51% 30%
False 8% 11% 3%

Table 3.2 Performance evaluation (grammar & style) based on Rabinovitz’s report (150 test

sentences) (Rabinovitz, 1991)

% | Tools Writer’s Toolkit RightWriter PowerEdit Grammatik V
Recognition 56% 54% 72% 48%
False 2% 2% 2% 26%

Table 3.3 Performance evaluation based on Smith’s report (50 errors) (Smith, 1992)

IV. How To Select Better Rules Based on Corpus

A. The Construction of Corpus Annotated with Error Patterns

To select rules automatically, an annotated corpus is required. Various archives of written tests

and compositions from 2 universities and high schools were first collected. To make the students’

essays easy to deal with, the raw material was first hand-labeled with the corresponding error codes,

and then put together to form the corpus. For instance, the following case in Table 4 is an example

of our training set. The double question mark “??” (e.g., in “?? can not —> 7.3”) represents error

mark (where an error is stipulated). After the question mark, the string “can not” indicates error

scope and “7.3” illustrate error code (or error type).
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”n

Sentence "For example, people can travel around ... that can not be seen ...
| Hand-labled 7 can not - 7.3

eani ITor symbo or scope - error code
Meanin e symbol erT > d

Table 4 An example of hand-labeled correction

There are 30 grammatical categories employed in the system. (Examples are shown in Table
5.) Each code number represents a specific error type. The error scope as shown in the given

example is indicated by a pair of brackets.

Code Type Example Explanation
1.1 Dangling Seeing her teacher, [her face] turns red. | Logical subjects in two
participle clauses should be
consistent.
2.1.1.1 Fragment [Although the weather is bad.] Missing main clause
18.1.2.1 Agreement | [He get] up early every day. Subject-verb agreement

Table 5 Examples of 30 grammatical types to detect errors in GC-system

B. Automatic Rule Selection with Sequential Forward Selection (SFS)

To find the best rule set, it is necessary to check all the possible subsets of the original rule
set. Different search algorithms (optimal & suboptimal) have been proposed (cf. Devijver et al.,
1982) to do so. Among those, Sequential Forward Selection (SFS, also cf. Devijver) is adopted
in our grammar checker. SFS is a simple bottom up search procedure which can be used to take:
care of the correlation among rules. Compared with other approaches, the SFS algorithm is faster
and less complex. Thus, it is preferable in our system.

To implement the SFS algorithm, we first initialize two groups of rules (i.e., error patterns):

i). Group 1 (G1_rule) with all the rules (127); (original rule set)

ii). Group 2 (G2_rule) used to include the selected rules. (It is empty in the very beginning.)

The basic concept of SFS is to activate grammar-checking and to take the best rule of
performance from G1_rule to G2_rule. Then, we choose the best one again from the remaining

rules in G1_rule until it is empty. This algorithm is shown as follows.

The Sequential Forward Selection (SFS) Algorithm
SFS (n rules) {
Gl _rule n rules; /*initialization*/

G2_rule = empty;

loop (while there are still rules in Gl _rule)({
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max_score = -9999; /*initialize the maximum score as -9999 here*/
loop (for each rulei in Gl _rule) do { )
build fsa (rulei + G2_rule); /*Combine rulei with those*/
/*already selected rules, then construct FSA*/
check grammar (input_text);
/*Operate grammar checker with new FSA.*/

score = W1l * number of detected error - W2 * number of false alarm
/*Evaluate the performance;*/
/*where W1l and W2 are reference weight.*/

if (score > max_score) then {

max_score = score; /*Replace the max_score */
/*with the current one.*/
best rule = ruledi; /*rulei as the best rule*/

}
} /* end of for-loop */
move the best_rule from Gl _rule to G2_rule
} /* end of while-loop */
output G2_rule;

}

The program includes two loops. The first one (while-loop) implies that while there are still
rules/patterns in the G1_rule, it keeps working. The second loop (for-loop) indicates that for
each remaining rule in the G1_rule, it builds up FSA for the rule set which is the union of the
original G2_rule and the rule just picked up. Because all the rules in G2_rule are applied jointly,
not disjunctively, the correlation among rules has been considered. Afterwards, it perforfns the

grammar-checking and evaluation in terms of the following formula:

Score = [WI * (number of detected errors)] — [W2 * (number of false alarms)], where W1 and W2 are
the weighting factors which give different degrees of preference for (number of detected errors)
and (number of false alarms). Different weighting factors may be used for different applications.
In summary, SFS uses the score function as the criteria for selecting the suboptimal rule set, which

is a subset of the original rule set in many cases.

If any new score is bigger than the current max_score, then this score replaces the current one
and becomes the max_score. Again, the best one is chosen and put into the G2_rule until the last

one is done. That is, the G1_rule becomes empty in the long run.

V. Performance Evaluation

After executing SFS and operating 127 rules on the corpus of 1965 sentences, the results in
Table 6 are generated. The rules are ranked according to their performance. For example, the
most powerful rule, which is ranked Rule 1 here, finds 56 errors with 13 false alarms. Thus, it
scores 43 for its performance by means of the formula (i.e., Score = (number of errors detected)
— (number of false alarms)). The total detected mistakes throughout these 127 rules are 450 errors

with 163 false alarms.
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Rule Detected False Accumulative Rule Detected False Accumulative

errors alarms score errors alarms score
56 13 43 115 418 80 338
91 13 78 116 435 98 337
81 409 71 338
82 416 78 338 126 448 129 319
127 450 163 287

Table 6 Statistical table with number of detected errors, false alarms & score

However, Table 6 shows that the rule set including the first 81 rules performs best. To capture

a clear picture, Figure 2 is provided below.

Score = (number of crror detected)- (number of falsc alarm)
Rule number: based on the scorcof a rule (L.e., rule-ordering)
(Total rule of number: 127)

error
~~ detected

Number of Errors Detected

Rule Number

© 20 «0 o 80 100 120 140

Figure 2 The Results of SFS with 127 Rules

The vertical axis shows the number of detected errors, 450 in total. The horizontal axis
represents the ordered rule number (i.e., Rules 1-127) based on their performance as indicated by
the given formula. The top curve shows the number of detected errors; the middle one illustrates
the score of their performance, and the bottom one represents the number of false alarms. (The
left Arabic numeral in each pair on the middle curve represents a rule number with its score at the

right side of this pair, e.g., (81,338).)
The results demonstrate the following:
(I). The first 81 rules (scoring 338) perform better than the others.
(II). The performance of rules from 81 to 115 (also scoring 338) remain unchanged. This
implies that these rules may be covered by the previous rules. Therefore, they can be deleted
without any effect in our experiments.

(XII). Afterwards, it goes down and finally degrades to 287. This suggests that Rules (116—127)
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should be revised or thrown away because they cause more false alarms than detected errors.

As mentioned above, our tests are based on a corpus of 1956 sentences. After the application
of SFS and the subsequent rule-revision, the false rate decreases by 11.8% (from 26.4% to 14.8%)
if the suboptimal rule set (81) selected by SFS is adopted, not the whole rule set (127). However,
the recognition rate decreases only by 3.9% (from 38.9% to 35%), without ruining the merit of its
better performance. That is, the best 81 rules (scoring 338) perform better than that of the total
127 rules (scoring 282).

VI. Conclusions

This paper stipulates that the pattern matching approach is still widely used in the area of
grammar checking. The reason is that when compared with the method of employing full scale
parsing, pattern matching is efficient in detecting local errors with much less computer time and
memory. However, the error patterns used in the pattern matching algorithm are usually hand-tuned,
and thus suffer problems such as the problem of correlation among patterns. These patterns may
conflict or overlap with other patterns. The purpose of this paper, therefore, provides an automatic
rule selection method, i.e., Sequential Forward Selection (SFS), to handle these problems. This
algorithm uses objective performance measures and then automatically searches the suboptimal
rule-set among all possible combinations. With the help of SES, the effectiveness of each rule can
be measured and the problematic patterhs can be identified systematically by linguists in order to
fine-tune them effectively. Moreover, the error patterns can be revised efficiently. The above tests
based on a corpus of 1956 sentences display that the false rate decreases by 11.8% (from 26.4%
to 14.8%) if the suboptimal rule set (81) selected by SFS is adopted, instead of the whole rule set
(127). However, the recognition rate decreases only by 3.9% (from 38.9% to 35%) by using this
proposed algorithm, The implementation of SES in BDC-GC, therefore, is strongly recommended

to improve the performance of grammar-checking.
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P(W.gn)= P(GN2)P(W|GN2)

= P(GN2)r(CC,IGN2)
~ P(GN2)P(LG = C,|LG)P(RG = C3|RG) (2.14)
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—E R TR R TR EERS  EERETHRGBE
B A8 0% o KM T RGER  E LSRG R
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ABSTRACT

In machine translation systems, a computer-translated manual is usually concurrently processed by
several posteditors; thus, to maintain the consistency of translated terminologies between different posteditors
is very important. If all the terminologies used in the manual can be entered into the dictionary before
machine translation, the consistency can be automatically maintained, which is a big advantage of machine
translation over human translation. However, since new compounds are created from day to day, it is
impossible to list them exhaustively in the dictionary being prepared long time ago. To guarantee subsequent
parsing and translation to be correct, new compounds must be extracted from the text every time a new
manual is to be translated and then entered into the dictionary. However, it is too costly and time-consuming
to let the human inspect the entire text to search for the compounds. Therefore, to extract compounds
automatically from the manual is an important problem. Traditional systems are to encode some sets of
rules to extract compounds from the corpus. However, the problem with the rule-based approach is that
not every compound obtained is desirable since it does not assign preferences to the candidates. It is not
clear whether one candidate is more likely to be a compound than the other. The human effort required is
still high because the lexicographer has to search for all the compound candidate list to find the preferred
compounds. A new method is thus proposed in this paper to automatically extract compounds using the
features of mutual information and relative frequency count. This method tests every n-gram (n is equal to 2
or 3 in this paper) formed in the manual to see whether it is a compound by checking those features. Those
n-grams that pass the test are then listed in the order of significance to let the lexicographers to build into

the dictionary. A significant cutdown in postediting time has been observed in our test.
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1. Introductioh

In technical manuals, technical compounds [Levi 78] are very common. Therefore, quality of their
translations greatly affects the performance of machine translation. If a compound is not built into the
dictionary before machine translation, in many cases, it would be translated incorrectly. One of the reasons
is that many compounds are not compositional, which means that the translation of a compound is not the
composite of the respective translations of the individual words [Chen 88]. For example, the translation of
green house into Chinese is not the composite of the Chinese translations of green and house, so is paper
document. Another advantage of building compounds into the dictionary before translation is to reduce
number of parsing ambiguities. If a compound is not listed in the dictionary, it will be regarded as a group
of single words. Since more than half of English words are of multi-categories, a group of words would
cause more ambiguities, which will, in turn, reduce the accuracy rate of disambiguation and also increase
translation time. In addition, as a manual is usually processed by several posteditors simultaneously, the
translation consistency of terminologies is very important. If the compound is not present in the dictionary
before machine translation, the posteditors have to spend a lot of time retrieving correct translation of the
compound and checking the consistency between different posteditors. Therefore, if all the compounds can

be built into the dictionary, quality of translation will be greatly improved, and lots of postediting time

- can be saved.

To solve the above problems, one might propose to build a huge dictionary which contains all
compounds. However, compounds are rather productive, particularly in rapidly updating fields, such as
information processing. New compounds are created from day to day. Hence, it is impossible to build a
huge dictionary to store all compounds. Another approach is to let the human inspect the manual before
machine translation to search for the compounds. Unfortunately, it is too costly and time-consuming because
he has to spend a lot of time inspecting the whole manual. Once the compounds are selected, he has to
check if the selected compounds are already in the dictionary. Moreover, he is not sure if it deserves the

effort to enter the relevant information of the compound into the dictionary if it only appears a few times.

For these reasons, it is important that the compounds be found and entered into the dictionary before
translation without much human effort. Hence, a tool to extract compounds automatically from the cbrpus
using some quantitative criteria is seriously required. Several approaches have been proposed to extract
compounds from corpus in the past [Bour 92, Calz 90]. Traditional rule-based systems are td encode some
sets of rules to find the likely candidates. In LEXTER, a corpus of language texts on any subject is fed
in, and the system proceeds in two stages (analysis and parsing) to produce a list of likely terminological
units to be submitted to an expert to be validated [Bour 92]. The advantage is that since the analysis
and parsing rules are simple and surface grammatical analysis instead of complete syntactic analysis is
performed, it is easy to perform very frequent tests. However, since the process is done on the syntactic
level without incorporating semantic information and domain knowledge, it might extract many noun phrases
which are not desirable terminologies, and thus causes high false alarm. Also, it is not clear whether the
terminology is a commonly used one. Since there is no performance evaluation reported, it is not clear how
this approach works. Another approach is to adopt statistical measures as the selection criteria. In [Calz
90], the association ratio of a word pair and the dispersion of the second word in the word pair are used to

decide if it is a fixed phrase (a compound). The drawback is that it does not take the number of occurrences
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of the word pair into account; therefore, it is not known if the word pair is commonly or rarely used. Also,
no performance evaluation is given for this method.

In this paper, a statistical approach to solve the compound finding problem is proposed. This method
extracts compounds using mutual information and relative frequency count as the features for selection. The
likelihood ratio test is then used to check whether an n-gram is a compound. As simulation results of the
initial run show, the corpus-based approach works well except that the precision rate is too low. The reason
is that there are many compound candidates, though passing the likelihood ratio test, are not suitable to
be regarded as compounds, such as a preposition followed by an article (such as “in the”) or an auxiliary
preceded by a pronoun (such as “you can”). The performance can be improved by augmenting contents of
the exception table, which stores scores of those entries. After involving the exception table, a significant

cutdown of postediting time has been observed in our test, and quality of translation is greatly improved.

2. How to Form the Candidate List for Compounds

The first step to extract compounds is to find the candidate list for compounds. According to our
operational experience on machine translation, most compounds are of length 2 or 3. Hence, only bigrams
and trigrams in the corpus are of interest to us in compound extraction.

To prepare the raw compound list, a corpus is first fed into the morphological analyzer so that every
word in the corpus is transformed into its stem form. The reason for storing the stem form (instead of
surface form) of the word is to save memory space. Then, the manual is scanned to find the possible
compound candidates. Each sentence is scanned from left to right with the window size 2 and 3. Each
group of words within the window of size 2 is put into the bigram list, and each group of words within
the window of size 3 is placed in the trigram list. Then, the mutual information and relative frequency

count for each entry are computed.

3. Compound Extraction Procedure

3.1. Feature Selection

To find compounds from the file of bigrams and trigrams, we manage to choose some features which can
discriminate compounds and non-compounds. Two quantitative features are adopted as selection features for
classification, namely mutual information and relative frequency count. These two features will be discussed

in more detail in the following subsections.

3.1.1 Mutual Information

Mutual information is a statistic measure of word associations. It compares the probability of a group
of words to occur together (joint probability) to their probabilities of occurring independently. The mutual

information in the bigram is computed by the formula [Chur 90]:

N P(z,y)
= T < rw

where x and y are two words in the corpus, and [ (z;y) is the mutual information of these two words x and

Y (in this order). P (z) is evaluated as the relative frequency of the number of occurrences of x with respect
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to the number of total instances of singletons. If there is a genuine association between x and y, i.e. x and
y are likely to form a compound, then the joint probability P (z,y) will be much larger than P (z) x P (y),
and consequently I (z,y) >> 0. If there is no interesting relationship between x and y, i.e. x and y are not
very likely to form a compound, then P (z,y) = P(z) X P (y), and thus I (z,y) = 0.

The mutual information of trigram is defined as follows [Su 91]:

PD (:B) Y, 2)

I(z,y,2)=logy ——"—=,

(2,9,2) = log, Pr(2.0,2)

where Pp (z,y, 2) is defined as the probability for x, y and z to occur jointly ("D’ependently), and P; (z, y, 2)
is defined as the probability for x, y and z to occur by chance ('I'ndependently). That is:

Pp(z,y,2) = P (z,y,2)
Pr(z,y,2)= P(z)x P(y) X P(2)
+ P (@)X P(y,2)+ P(2,9) X P(2).

3.1.2 Relative Frequency Count

The relative frequency count r; for the i-th bigram (trigram) is defined as:

_fi
K’

T;
where f; is the total number of occurrences of the i-t4 bigram (trigram), which is the number of occurrences
of the entry in the manual, and X is the average number of occurrences of all the entries. In other words,
fi is normalized with respect to K to get the relative frequency.

As the more often a group of words appear together in the corpus, the more likely it will be a compound,
the relative frequency count is used as a feature for selecting compounds. Since the cost of entering the
relevant information of a compound into the dictionary is not low, it may not worth to enter a compound into
the dictionary if it occurs only a few times. Moreover, for there is no inconsistency problem if a compound

occurs only once, there is no need to build this kind of compounds into the dictionary.

The reason of using both the mutual information and relative frequency count as the features for selection
is that using either of these two features alone can not provide enough information for compound finding.
The problem with using relative frequency count alone is that it is likely to choose the bigram (trigram)
with high relative frequency count but low mutual information among the words comprising the compound.
For example, let the relative frequency of word x be P (z), and the relative frequency of word y be P (y).
If P(z)and P (y) are very large, which may cause a large P (z,y) even they are not related. However,

ﬁ%would be small for this case.

On the other hand, the problem with using mutual information alone is that it is highly unreliable if
P (z) and P (y) are too small. The chosen compound has high mutual information not because the words
within it are highly correlated but due to a large estimation error. Furthermore, it may not worth the cost
of entering the compound into the dictionary if it occurs very few times. Actually, the relative frequency
count and mutual information supplement each other. A group of words of both high relative frequency
count and mutual information is most likely to be composed of words which are highly correlated, and very

commonly used. Hence, it is a preferred compound candidate.
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3.2. Establishing Statistics of Training Corpus
The corpus which has been processed before and checked by the human can be used as the knowledge

source, because all the real compounds in the corpus have already been built into the dictionary. The corpus
is divided into two parts, one as the training corpus, and the other the testing set. Every word in the corpus
is first converted into its stem form through morphological analysis. In this paper, the number of words
in the training corpus is 74,404.

The bigrams and trigrams in the training cdxpus are divided into two clusters. The compound cluster
comprises the bigrams and trigrams already in the dictionary, and non-compound cluster is composed of
the bigrams and trigrams which are not in the dictionary. After the distribution statistics of two clusters are
first estimated, we calculate the mean and standard deviation of mutual information and relative frequency
count. The entries with outlier values (outside the range of 3 standard deviations of the mean) are discarded
for the robustness of estimating statistic parameters. And, the entries of frequency count 1 are deleted for
it is of little importance because there is no inconsistency problem with the term which occurs only once.
Then, the statistics are estimated once again. The means and variances of mutual information and relative

frequency count in both clusters are then estimated using the following formulae [Papo 90]:

n

. 1 < 1 .
Hm = — mq, U.?n = Z(mi - :U“'m-)2

n 4 n—1:4
=1 =1
) 1< ; 1 Z" R
Hr = — Tiy 072~ = (7‘1' - /‘I‘T)2
n 4 n—14
1=1 =1

where m; is the mutual information of the i-th bigram (trigram), r; is the relative frequency count of the
i-th bigram (trigram), fi,, is the estimated mean of mutual information, f, is the estimated mean of relative
frequency count, a?n is the estimated variance of mutual information, a,? is the estimated variance of relative
frequency count, and # is the number of bigrams (trigrams). Since we regard the bigram and trigram models
as different models; the distribution statistics are estimated separately.

The covariance ., and correlation coefficient 7, of the two clusters can be estimated as follows

[Papo 901:

n

. 1 . N
Hmr = n—1 _S_ (mi - /~Lm) ('ri - /"'7‘)
=1
X 13
Tmr =
OmOr

The distribution statistics of the training corpus is shown in Table 1 and 2. (MI: mutual information,

RFC: relative frequency count, cc: correlation coefficient, sd: standard deviation)
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number mean of sd of MI mean of | sd of RFC | covariance cc
MI RFC
bigrams 659 6.799 3.011 1.674 1.726 -0.139 -0.027
trigrams 169 6.955 2.635 2.950 2.747 -0.930 -0.128
Table 1: Distribution statistics of compounds
number mean of sd of MI mean of | sd of RFC | covariance cc
MI RFC
bigrams 8151 4.116 3.271 1.436 1473 -0.670 -0.139
trigrams 9392 4.859 2.763 1.627 0.706 -0.279 -0.143

Table 2: Distribution statistics of non-compounds

From Table 1 and 2, we can see that the means of mutual information and relative frequency count
of compound cluster are larger than those in non-compound cluster. And, mutual information and relative

frequency count are almost uncorrelated in both clusters since the correlation coefficients are close to 0.

Let M and R be the random variables which denote the mutual information and relative frequency count,
respectively. Assume M and R are of Gaussian distribution. Let y,, be the mean of mutual information
of compound cluster, and g, of non-compound cluster, x, be the mean of relative frequency count of
compound cluster, and y, of non-compound cluster, o, be the standard deviation of mutual information of
compound cluster, and o, of non-compound cluster, o, be the standard deviation of relative frequency count
of compound cluster, and o, of non-compound cluster,  be the correlation coefficient of mutual information
and relative frequency count in compound cluster, and »’ in non-compound cluster. The bivariate probability

density function of the compound and non-compound clusters can be expressed as [Papo 90]:

f(M,R | Compound)

1 1
C 2noma/1 — Tzexp{—2(1 —72)
f(M,R | Non — Compound)

2 2
oz Om0r ol

((M ) (= ) (R ) | (R m)i) }

_ (M - p,)*

1 1
= exp s — , ,
210, 0.V/1 — 1" p{ 2(1-r%) ( T

' ' 1\ 2
— 9y (M - u"t) (,R — /u‘r) + (R _Ifr) ) }
0,0, o,
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+.3. Two Cluster Classification

Given the joint distribution of mutual information and relative frequency count, the compound extraction
problem can be formulated as a two cluster classification problem; that is, to assign a group of words x into

either one of two clusters: compound cluster or non-compound cluster. If we form the ratio [Papo 90]

_ f(X]itis acompound)
"~ f(X | itis not a compound)’

A

then a test based on the statistic A is called the likelihood ratio test. If A > 1, it is more likely that x belongs

to the compound cluster. Otherwise, it is assigned to the non-compound cluster. Alternatively,

f(X | it is a compound)

If A=
/ f(X | it is not a compound)’
_ 1 (M = pr)® (M= pm)(R—pr)  (R— pir)?
then InA = “3( =) ( o2 2r P + o
1 (M = pi)® (M=) (R=ps) | (R=p)*
+ 2 2 —2r r + 12
2(1—-17) o oy o,

—1In (Qﬂ'UmUT Vv1- 1‘2) .

Therefore, if In A > 0, there are more chances that x is a compound than it is not. To take the a priori
probabilities of P (z is a compound) and P (z is not a compound) into consideration, the above equation
can be changed to if In A > £, then x is a compound, where £ is a function of P (z is a compound) and

P (z is not a compound). In our test, § is set to 0.

3.4. Extraction Procedure

After testing the above formula, we have found that there are some bigrams (trigrams) which have a
large A (greater than 1), but are not suitable to be regarded as compounds. For example, a preposition
followed by an article (like “in the”) has a very large A, but it is not reasonable to regard it as a compound.
Therefore, we use the exception table to store those entries. If a bigram (trigram) is found to be in the

exception table, it will no longer be considered as a compound candidate.
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To put it briefly, each bigram and trigram in the testing corpus is put into the following algorithm to

see if it is a compound.

For each bigram (trigram) =
if (Az <1) then
z s not a compound; exit
else
tf ¢ isin the dictionary then
ignore
else
if zisin the ezcéption table then
z 18 not a compound; ezt
else

place z into the compound list file

End

The entries in the compound list file are listed in the order of significance (in the descending order of X)

to be examined by lexicographers.

4. Simulation Results

The following experiment is conducted to investigate the performance of the compound extracting
method for the training corpus and the testing set. Each bigram (trigram) is put into the above algorithm for
testing. If it passes the test (i.e. A > 1 and not in the exception table), it will be recognized as a compound.
Otherwise, it will be regarded as a non-compound.

There are totally 6014 bigrams and 8620 trigrams in the testing set. The performance of compound

extraction for bigrams and trigrams is shown in Table 3 and 4. The simulation results are quite satisfactory

training corpus testing set
recall rate 68.736 60.218
precision rate 66.985 55.380
Table 3: Performance for bigrams (%)
training corpus testing set
recall rate 68.853 63.830
precision rate 62.687 39.474

Table 4: Performance for trigrams (%)
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Table 5 shows the first five bigrams and trigrams with the largest A and not in the exception table for
the testing set. Among them, four out of five bigrams (except select text) and three out of five trigrams
(except dialog box display and mouse pointer assume) are plausible compounds. Also, we can see if the part
of speech can be adopted as another feature in modeling, the recall rate and precision rate can be greatly

improved simultaneously.

bigram trigram
paragraph style dialog box display
insertion point paragraph style set
dialog box mouse pointer assume
select text unit of measurement
style sheet main document text

Table 5: The first five bigrams and trigrams with the
largest A and not in the exception table for the testing set

5. Conclusion

In machine translation systems, information of the words of source language should be available before
any translation process can begin. The new simple words can be found by spelling check, and they are
not as productive as compounds, so that the relevant information of simple words can be entered into the
dictionary before translation. However, the handling of compounds is more difficult. Since compounds are
very productive, new compounds are created from day to day in every domain. Obviously, it is impossible
to build a huge dictionary to contain all compounds. To guarantee correct parsing and translation, new
compounds must be extracted from the text to be translated and entered into the dictionary. However, it is
too costly and time-consuming for the human to inspect the entire text to find the compounds. Therefore, a

method to extract compounds from corpus automatically is required.

The method proposed in this paper uses mutual information and relative frequency count as two
features for selection to discriminate compounds and non-compounds. The compound extracting problem is
formulated as a two cluster classification problem in which a bigram (trigram) is assignéd to one of those
two clusters. If a bigram (trigram) is assigned to the compound cluster, it will be put into the list of potential
compound candidates. Otherwise, it is discarded. The entry already in the dictionary or in the exception table
will be discarded, too. With this method, the time for posteditors to retrieve the correct translation of missed

compounds can be greatly reduced, and the consistency between different posteditors is easier to maintain.

The recall rate and precision rate can be further improved if the part of speech of each word can be
-used as a feature in modeling. Therefore, in future research, the part of speech will be adopted as another

feature for selection besides mutual information and relative frequency count.
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XXM A B RZAR
A Study of Document Auto-Classification
in Mandarin Chinese
BT #HER +BHERE IBEREE

t P RFERER A BRI E
P PRFERRAMBRAEFHER
* IR AKSEEBEES

1 =3

AFR S, TR L F 8 F & (Bigram) %ﬁ@ﬁ%%ﬁﬂﬁf&,Kﬁ#iY
HEBSENER - HEN, EEFRBERE UMb XU, R AN &R

HMAETRRRRES0FTH 2814 1 H R U Hi 2R AT 2306 & B SR
W, UIEES - % B B FRARE £2U4/NE EUATHZS
B2 RAIBRE R (2095 58) REARAER 2L R) WEs MREXY - £HE -
BEERESG RIIRERESIEASEEENRER, DaEE - HRES
HAFENSEEEAXRBE2EER L HEAER - ERER ARE
BE TN EGHNIERR(BER), ENFT=LHF 0% WIERESR, ERJIERA]
HITDHIIERER -

X, RN T HRREFERUR BB BN T RAREEK
I, W3 3 T BREEMLBY T 5 RIRE , AT B B AN A THE S5 SR AR UM HE
FROTEMEBIEEOEREN R ZFRMATREIENER -

1 %%

- REBHE, BRI FHS  FEEL3E R EERENBEE N,
TiE L4 EHR B B R, R DUE BREGE B 0 of [Smis9,pl] - 2IRHEE
HEFEBGEEER, MR ERMERSHARNENR . e B8R0 EEM 6
25 o X BB, BUER U T B9 HRY |, BE M B AR B9 S B
HRIBRIFEE A # ST, MEEAMBERR S X T EHN B HFAFR . 7 RXR AR
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AR E -

BEHRENSETHEREFNARENAT EETEEREBELSRMEEH, A
THE—EFE—ENE, AR AGHEAENER, AERBERT IHEH
BRI EE, H—B A& [Sals6] - BER 20 a0 R IR B
EAMBGESFSE, MR EREE, BTGBk -

I FA B RS RO B B R E B, £E 1960 AR EBA%A [MarGl] [BoBe63],
Stz e o A T AE B B ST R L 20 [Kwo 75 [HaZa80), BT iE — ~ I B e T 8
ZHYBE T, 71 [Lary2)[BHMPY2][Jac92][Jac93][Lewy2]- - - 2L - —f@ TS, FIFH B
KRG BE S, AmBE A, ABEFE U TS R:

L 3BE S (Document ) 825, I 8858 XA H (Profile). BIZ1 AR AER
WESE MBI ERETR - WEEE, AU X2 R L8 -

eSS TR ARBETE R BRI AT AR A -

3. AR E , T LUBE F i B R (Vector Space Model) 5y £ # R 4 R, (Proba-
hility Model) 3242 -

mEEANMEE BRREFE L, Lo FEo . XS E CLC,
Ou gt BFEE X, = (v, 0, a,) RRERChL 8 —3UED, FM
LAY = (y,v2, ) o, BEE T & HBRAEER C, b, Blay > 0,58
=0, R LEEREXHED S By, > 0,58y = 0. KREY S 5HEAEE
XN EEE , FEERK BRI XHFEDBERHE -

JAMAT R SE v [H B — BT W & o B BAEE . v 20 S2E iy 1Y
BHETEMME (Weight),r,; [EEREMIEFH (Normalization) . v, FEEL T
BER (B2 ERIEO AN 1) B2 DA D B9 &R 5 (Profile) th R % b IR R BUS
##, - FELRA-MWME - %5 7 B AR A TR R S B (Seorves) 5948 10, Bl
BREAN AR TS ERR S22 BRAESE - B —BEXFDHERSL
(Profile) dn U ER v [E GRS EE ki1 ~ hiz ~ -~ ko RISXHE BRI C BBRE

S

P(C3 ki Razy s ki)

RBRKESE, EXATLER

P(C) x P(ka, kizy ooy ki |C))
P(kir, iz -y Kir)
= rx P(C;) x P(ka, kig, ... ki |C5)

= 7rX P((/Y,) X P(]i.‘n I(.’:VA,‘) X P(l\fiz!(_yj, ]\7.51 ) X o+ X }')(/‘7[7-‘(‘-7‘,\ ]\T,'1 . /x,‘,j-z‘ e k;d._] )

218



BE ki ~ ki~ -~ b, R AEAEEL (Independent) |, B _E 0] 8 gk
rx P(C5) x P(ka|C;) x P(ki|C5) x -+ x P(ki|C;)

Hor =1/P(ka, ki, ..., ki) B—H 8 [Mar61][HaZag0] -

A0SR 3B Lo RE RV B (Logarithm) 2 $ HACE ., AE IR B B AR D , AU ERT
Nl EREA R EEAEMER —EE -

DA_EFrER B8 , £ 52 T B3 ST R B SO i T R %, PSR A S
FHEANZER - [Che2| FEREF XN XHEBEH 8, E2H P ry—@E K #
2 BRSBTS - R ERAFIHR A S Ay 88 5 (Bigram ) 3REY
R TRHsEE ,  WHRBE FIASEFEUEEHEHANER -

AR MR AR BESBR, i EACR N

L BEEH (FEEN) MRERER - RARAH DA E R
SYMEEE  SEHOHF A - 240 -

2 TR RS MREETAESIEIR BRI —XK . HEXRE
17 32 X S [ A0 35 R AR R R R, SR 2300 58, 2 U 53 R AR R (2095
R)RARER(2IE) - \

3. ARERE - P ELREE= G, AIIRE R Pk LS S W E
SCEFERESHENIELE -

4. SYRIFIF IR R R AR R, R 6050 H A 2 7 e 1 B 58 3
St 4 ER A0 0 O — P RO R -

2 FEW ik

2.1 HHEIR &N EL

B B R P ST TR RS S0 42 7 A EI814F | A M5 4R, 49 8 KX
B RS L R « MERTAME A, 20 ROOH 88 () BIlsEs
Bt —1E A, $5 2 KA R R - 35S (FTR ) B
WS PT, LLBIG-5 B 77 -
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TEE—mAER T RS R
SHERE YIS ATUE RS IR e BR
Y —R  BEEHHFTHED - Nt E
LEREEATT T BRRE - ST AT
K A TR - RRFERAT AR
» RS TEERESIER °
BENREEENTEE R ESREATTGE - BEX
SIS ISR RIS » ATEk
NEEEEE o KPFERToF B LAEAEEN
» RITESM R SFTITSREA R ER AT
SRR SRERNEL - HALFPERARR
IR BREIR » KU BEaE o

B 2-1 BB T

A B R, ther H — R (noise) B LM FERE RN AH 55—
=RE EEEAEEUREEZEA EAIRET - EEHER aRS gy
F| B R EEANENTE - ERFRERFTOFTEHER, Z220F 17, BEBR
%, FY—REREA 311317, 1At 2095 IR E R o, —3F 943961 fE TR 30 F
(3569 {E A4S B B9 3L ),852387 {iF o 3Z Bigram (40085 {& A~ [B] #y 51 32 Bigram) o

ERER L BKMRABARERFTEN S E AN, RANREEE 2 [Ched2,
p30] « B EEREILS 22 K8~ 150/ - RFTENH A A RMER, fiE AKX
Brh , XHEGBO/NE, B FTEHEEE A I0ERNEHE RREEXRD
e, RE A MEAEERENHHNEGE, SR TR T 24/MNE - 1k AEBTRE
BRI BN I 24 38, JIR B R 425 2095 BB R I 24 E T R AR E R Al
Bl EsE -

2.2 M4 (BT S )RR

R & (Bigram), AR T = EEA (1) RB Q) EFEG) EE -
LKA ETS MXEMARFARSE TERER TIREEE:
| AegEraRELRIE;

2. gt ECR AR DR E R B ATRY B S SR T RE R Ot R R
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3. $R38 (Chet?], RATRE , FIFH S8 F 2% R RA THhRMATA B
BB R, ERER (BE%) HETE -

AR BB, A TSR R BHBEF e ML B EAEE (BL
ARBRTS ) AW, AR KEEAT —EME RETRANASHETHE
RIER, TRREBTEFR, 54 ARCGHE S EEENFHR  FTREHNERESE
EENFR  RAFERBABITZEEL -

RAOBRHEME, —ERE S REENVREH EEWE T =4

I REYEH - SEFEWIFTE —EEEEOH BRI/ E G > EH
Bl —EEEFE B, —ErAREENEEFEHROREAE S, 1
RE—EFRE, Hjiﬁﬂﬁﬁﬁ’\lﬂsﬁlﬁﬁ%stfﬁ RIFF R R EEHY
BRI EHIRFRAESNT -

2. &P E: —ERSOEEENEET S BREETHRERE —FEESESD
ARG ST -

3. R AR -FHARRNSEY S NMRENREERPIF SR XGH,
AIemERSEAEE R, EThEEF S SRERERUH S (HR2E
REPEESR X4, EESEFRONER AR TERE —RBEH,
jm?ﬁ%‘%%%%ﬂ@ﬁf’ﬁﬂ%ﬁﬁﬁ TS E T &, o SR EEHEY L3l
N - '

BT, EREBESEEE, FRERESERRAREN ST S -

BT RNE R, E—F, MHERE B RAERE -

1 [ XCYCO2 BB b, EMAAEN S EEER B 1,2,3,5,10,15, 20 H
FARE MAREER -, BERFOER, KIS RBEFEERE - 740085
B E T, G185 (S ET RS HEETME TR -

B4, FIH Entropy AR ME R, UFERTPENEK - B —E%E
=& T, T, 8y Entropy (HE :

24 1
~ Z Pij ]Og —

et —sz o BEIC, BT, 693

H 83 {ES b‘"U(ﬁf'étP)Eﬁlvg ’4(5%‘5&)2%5 WRT AERAER—E Al
HiB{ER 0, B R o A S8, Blpy = ﬂ, Hi B9 {E 5 log 24 - 3AFEHY Entropy
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RIRE R Ion2 (= —3 log | — £ log 1), KBS FIRMEZ SHF BT LUSTE » log?

WEER: —EFARFYIHERET  ABELEEFEEST 9N, ey
T -

FE=4 BF—EAAREBREHE TS UFTEENER - H—EgEy
ELTHEREER:

. Zii (11'7'
Value(T;) = UT?X(%?; X -—?iTTZ;

Hoop o dy BRI C; BB T eS8 B T BRI O (R E - AR
EERO2 /NEFRRE2ATFTLUEE -

REE =D BRNVER KGR T O EEEFEF ST ERBENERE
579 (8 S T e B < R B S -

)

23 HERFTERINSFH

BB T —EEE RS EFE PR EETE (N-gram) - T Z, 38
HH NS FE A A Ay  HPAA KAV AV L ERRANRERE . WS
FHEPHVEEFFEIRN—E2MEH - MEMEN-gram, i R E2—EMFH
(M =2 N)BFFE - FHEFENERN ERMES GRS ET S - DIBRE
KA ERE, EEREN T, AL EHER ST LAEK L (Independent ) T #

T RE, B —EFERABCD#YIRAB ~ BC ~ CD ={E R, HIE =1H
3 O] fE B AEAK AT (Dependent) o FI 2657 B8 0] 6 B 3 50 JE 4 [Yan 93] -

MR B AIE RS 7 R R, B B = & (Trigram), 15 &
(4gram), ..., —EH B+ NFEH  FEO]HE R E B IR N-gram F Bk 5k #F H LA
REBENRRL REBXRE - £HE - BEE=GHNER RREIIESE
B (2 < N < 14)[YaZ(93] «
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AFHEEE ()

INFERREE

ABRRE
kE{r&E
FIHEEF
FIHREMER
SR2LEYY.
IR b
GIE=4:%S:
G315k
AANARE
KEHHEE

EEFE Rk
REREK
REBZEWE
B R
1518 5% i R
ERERER
R
E XS
ErH®RE
Bl T R &

B B R E
R B < R
1= R
REFIFT
BREZGE
B R
ERHEERT
KLIHEE
r R iR 2~
B+ B4

BHBHEETS

Bl e A3
B NER E R
BREBEFNFAHER
PR R ETET
R R E g £
72 R i i {2 3 A
BRI ER
BRABAREE
HRESONFBRER

K2l HoWAFRERBER/N\FRERE

HRBELBERIL R U FRIEHEFRRBEHRURBBRALS
BISEE VBE - ER T REFER STV ESE T RS TREIF4TIESF
RS -

N-gram e | RS | N-gram BRE | HEEH

HE | BE BE | HBE
+rEE |1 I LFEEs 11 6
+=F# |1 1 Van=A-: 25 15
+E# |2 0 fate= 50 30
+—zH |2 1 P97 S 216 152
+F &5 2 1 =FH# 711 443
pak=2-:] 4 1 | e | 5579 | 4053
NF& 10 7

F2-2 N-gram fR2EE KRBT HE

2.4 ﬁﬂ%@%i%%

HHEARRBE D, R XEEE U — BRI EEAE
(Term Vector) RAAE M —3C 4, Rt ARFE @ &, th o] LA RE S FrE X
TR RBFANFERSRRE , RS BE, FEZRLRRAEFE | XTF
1 — B S -
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ERREAS  ARARGSELE  ERAEE R T RAELEEL
BRI REEREAN AN -

LEMBAELE: Ko HENGE, B4 LR AR I B8 3 1 R r i
B o I BRE TR C; PHSEEER ;) Al

iij
len;

24 tij
J3=1 len;

Hep ot R T AR O P HRAXE, len; RBIRE R R EH
C; T SR AR -

2.5 —EERL ERASBELEN AT, AR X, KEXRERC, EF—HE
B, UagU; = (Um_lf,-z‘j,---’umj)T RFERER O, Fh || U5]] = 1.00,
BQU, B8N EE, Hu; = m
ﬂt@@ﬁﬁﬂ‘]ﬁﬁm,%ﬁiﬁ%%ﬁ%ﬁﬁﬁumi DE—Eesm T
NREFES | -

3.8 —HAE L EE_EERAD, UEEY, = (vij,v- - vn) T REREH
C; o B\l = /DN, Hrp DN; SREERE R P B O B B

Tij =

RS —EREN T, RMAFRIFT —EREENHE, FIE—EKN
XHBEAT 8, R, MRBEMAEFARE—ERIN AR FR
RE . HXHHESHEHIERAT - ARUENHEREG R XA
SEInTTRE , MM AER YR BHR, EEERARTERREHM&R,. 1B
A ARBEECGEL -

BMFFAE=ERESBELEN ARG BT EER -

3 BHAaBEEBRER

A, BATTRE T, 53 3R A 1 B A RS, B BB R -
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3.1 MERAMBMERATRER

ElE - SEAE R bEIER W= SREA R

Bl (X | Fha | F—8 E£28 | XH| Rbs | 58 -8

B EHE | Bl | E¥i B FieE | EX¥ | E¥il
J0201 56 | 92.45% | 92.45% | 92.45% 6| 50.00% | 66.67% | 50.00%
J0202 11 | 100.00% | 100.00% | 100.00% 2 0.00% 0.00% 0.00%
J0203 64 | 100.00% | 100.00% | 100.00% 8 62.50% | 87.50% | 75.00%
J0204 59| 96.61% | 98.31% | 96.61% 51 40.00% | 60.00% | 40.00%
J0205 40 | 100.00% | 100.00% | 100.00% 51 40.00% | 40.00% | 40.00%
J0206 || 285 | 93.68% | 84.91% | 95.44% 24 | 83.33% | 58.33% | 87.50%
J0207 || 699 | 96.71% | 82.69% | 95.42% 61 | 90.16% | 70.49% | 86.89%
J0208 33 | 100.00% | 100.00% | 100.00% 81 100.00% | 100.00% | 100.00%
J0209 24 | 100.00% | 100.00% | 100.00% 0 7.1% 7.77% 7.7%
J0211 116 | 87.83% | 87.83% | 89.57% 14 | 21.45% | 28.57% | 21.43%
JO301 || 112 | 84.91% | 82.08% | 93.40% 6 16.67% | 16.67% | 16.67%
J0302 321 93.10% | 96.55% | 93.10% 2 0.00% | 50.00% 0.00%
J0303 || 211 | 94.29% | 94.76% | 94.76% 14 | 71.43% | 85.71% | 71.43%
J0305 36 | 97.06% | 97.06% | 94.12% 25 1 60.00% | 64.00% | 76.00%
J1008 40 | 100.00% | 94.74% | 100.00% 6| 33.33% | 33.33% | 33.33%
J1009 24 | 90.00% | 90.00% | 85.00% 0 7% 7.07% 7%
J1012 44 1100.00% | 97.73% | 97.73% 51 80.00% | 80.00% | 80.00%
J1103 20 | 90.00% | 95.00% | 95.00% | 0.00% 0.00% 0.00%
J1105 12 1 100.00% | 100.00% | 100.00% 0 7.77% 7.77% 7.7°%
J1201 30 | 93.33% | 96.67% | 93.33% 51 60.00% | 60.00% | 60.00%
J1202 58 | 85.96% | 84.21% | 87.72% 41 25.00% | 75.00% | 50.00%
J1203 29 | 91.67% | 91.67% | 91.67% 4 0.00% 0.00% | 33.33%
J1204 29 | 88.46% | 88.46% | 88.46% 4 0.00% 0.00% 0.00%
J1205 31| 96.55% | 96:55% | 93.10% 2| 50.00% | 50.00% | 50.00%
M | 2095 | 94.57% | 88.50% | 94.86% || 211 | 64.29% | 60.95% | 67.14%

R HHEEHEHFEERERAPTRE RN EERER

A& B B BB BEE
Fihsy | B—8 |28 | Bhes |28 | g8
FHE | SX¥l | Sl | BhE | Bl Ext
SHTOEIEEHE &R || 94.57% | 88.50% | 94.86% || 64.29% | 60.95% | 67.14%
4711 fE N-gram || 94:53% | 86.73% | 94.58%- || 59.90% | 56.04% | 61.35%

F3-2 5079 E S H F SR EL 4711 E N-gram 7¢ [ &R H F B & R A s
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IR E R B E R i =g SEEAEIRS
B—% | "4 =% | 8—4% §_4% | =%
FERE | 94.86% | 99.56% | 99.95% | 67.14% | 76.67% | 82.86%
e SR || 97.23% | 99.90% | 99.95% | 59.52% | 74.76% | 79.52%
%33 MEEAEEREERERNILE

HBER3] - RIZEERI - HER RATBNER, RMATUHER,
MRS BT, IR E ST E R0 DUEZ] 67.14%, A0 REET =4, Al
BT LIGE R 82.86%; EFMRA 47118 N-gram B F , A BRI FHIE R, &
AL [ EEANERREANED T w4 RABBTRTE WO AERE
AFBHER L ERAME—L& -

32 REMMOTRER

L. R 4 T 4 M T TR 1T ST A R
B BN EERAESSEOE TN EST EE L AT
FERS B TAERS B B R RE R E BT R T I 5 37 B 35 4 0
Bl - AR EIERE MR, R T M RIS M S R ST
MR (Profile), E R BB EERRNIET RO BRE RS
B B T R B BB 7 |
BAE, B — B, REET 209 ~ 87 15T LARGAT L0 TR B B , K TE
BRSO, B2EER4 - |

FRELFIRY | BlgR s YR B ER ARER B ER

T8 BE |4 -4 | §=Z4 | 85—% 24 fi=4

BERH 5579, 94.86% | 99.56% | 99.95% | 67.14% Eﬁ.(ﬁ?”’o 82.86%

B 2017 4008 || 92.46% | 98.49% | 99.32% | 62.65% | 72.37% | 77.82%

BT 1597 3451 || 85.34% | 93.90% | 95.57% || 62.55% | 76.83% | 80.69%

BT104T 2445 | 82.72% | 91.81% | 94.13% || 60.54% | 73.56% | 79.69%

#&3-4 RAHTRTRMSEFENERER (HEER - HEEREENL)
BB SR, OB SR B, 0 20 L 1 20 77 L o SR W 3 i M

HoRNEER - FERNERRELR T —EEE, DR MKEIREL
FESM, HAS TR R E M SR RISRPEERT AT -
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2. JRA IR E R BB TS Bk

RABEIRERHBERE SN NWER, R EERE A AMES
/DS R SR S B B ; AR s £ 2 sk, AR R D S sy B
KA BRI EREERE -
B aTH IR R, B R4 8047 BRS04 12 B 4, L3k 7 A%
BB R B S M B, FE IR S A R TSR R k tBE B . — B3I T
RET 12 A—ME B 55RO B, R Mok o H I RER i1 L,
ERARERIAREASIELR - HB2ERISNWEBREE, ARES KA
HERER - oEEENE

A ik | BasEE IR EE =R A REE B ER

ZEER | BE | 5% | fi-4&| M=% | g—% W& | =%

T~121 5579 94.86% | 99.56% | 99.95% | 67.14% | 76.67% | 82.86%

8~ 128 | 5085 | 94.67% | 99.41% | 99.85% || 61.98% | T4.14% | 79.09%

9~12H | 4344 | 96.09% | 99.74% | 99.87% || 61.69% | T7.39% | 82.76%

10~12H8 3379 97.09% | 99.90% | 100.00% || 59.77% | 71.26% | 78.93%

Il1~128 | 2379 98.16% | 99.54% | 100.00% || 53.82% | 67.18% | 74.81%

12 B 1297 99.62% | 100.0% | 100.00% || 53.64% | 67.43% | 71.65%

£55 RONREFRE BB AEER - B mEE(l)

RIKERTS , EIHRERERYS EER(ZER)GUSEREGH
B, KR ERERD, —ERRFEE SENESHEAEEY - M ER. 2R
FRERE —ER B TEMEM R REFEENIIRESOHE TR
RAAER N IERER, ERRMA A IREEER, BT IR E R R
BT RAR -

3. R M 2 B o 3R Y SO B SRR (R

RIS E I, — S E T =(EFEE, 2 BFARXBES - 2MikEslES
BREEFURER—ETERESBESREED - AP HR—HE(2
RARE, #HERFRLTMERE - EFAR, ERTEREERART —&,
MNEE CAFSHBESREETE S F RN R BT ERRE
BB RRTIAE " H ERR R B RE -
NERRE2RARER/AR, HEE 7 DA 8 0 3Ry S BOR E 57
R{E,AORET FRE, KETZEE S BHRNVIERER . QI LI 2 B #
AR EE
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BRI XEBNABRESIHES (BB ERR) - 2 3. ERERE
BEHIGC -

B | HREH IR E R B ER HAER B E R
FRE| BE | F—% §i=% |§i=% || 8% =% | H=%
L| 5579 || 94.86% | 99.56% | 99.95% || 67.14% | 76.67% | 82.86%
2| 5432 || 94.47% | 99.47% | 99.90% | 66.67% 77.14% 83.33%
3| 4843 || 93.53% | 99.17% | 99.85% || 64.59% | 75.12% | 82.30%
5| 3375 || 91.06% | 98.62% | 99.44% | 62.44% 73177) 78.05% |
#3606 EXHBRAREFSNERER (MEEX - E2EEEL)

P LR EERR RGN, B RMRE  HERME T LU XX HEH
FRME, HRERRRRRE LU L ERE 4 E, QLB -RHFERE
HE T LS EE, ERE RS R R -

4 éia:\ﬂ?

AR IS SR BT A R SR R (1) TR
M A SR | (2) R B S R -

B — SR MTE B EER 2 BT LS — R A R B
J0206 &/l ~ JO207TEZR M J 103 BFHE ~ JI203 5588 HZ

S 2B PIAER O DU X, = (20,00, )T 257, AT AGRER T, 70
B, 89S TR0, Hl =1 58 =0, B 38, SRt TIPS X, 30
X, 0B (Cosine) Fm B 5 0 o oA S 15,0 B

HXHHXH
J0207( 343 .]0505(#@57}5}'%) 0.39
J0206( £ Bl ) J0207( 38 0.36
JO204( B2 BEFISE)  J0205 (Wg 0.20
JI1202( EAES) - JI203(mEEE)” 0.19
J0207( 343 JO209( 75 L 1F1E) 018
JUI03(BTHEE) J1203(mEee) 0.16
JO207(34) JO301 (B HEK) 0.15

B FEEERERNEE, E RSB EN ERER, ARERES
b “
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. EHFFEBER S BAE USSR &6 -

2. RAEESE MR -RBHEEYE, BRERHER ARENSEBARS,
RIS RS EFEREEAEERE - ER MRERNEE ATLEREER
R th ZHE R R LR M ERIRREEE= - |

SH BRMAXER BEEATESSERRMRTR, MEZHNESE -
PREBRE IR, APTER N BB SRE , AT L ER SEEE , T E KT8k A9 B
®Bi, KB LER2ENEE ERT—EFEFERE(RANBRETS) - —@
B ERENFR, THERERB KSR E M EEERIE, BT EERE R
BEARASRERR, MEARSEOEE - KOBXR, Ao EEENT R, HrilE
PEE-FREEENFR  EAERD  AREASET & RN EESF
B Al RE R AR —I 4, BT RERRE & e (Function Word ) BeZ I 58
(Bound Word) Ti B RER TR EEEE - FESCEELFRN " oE,  FIABE
FARMURFAEBE RS KREEEL " NF |, NS EFRE TR
= .

ERSERMETTE , BT ER , 2 IR F EMER AWM
BRE, AlRE R DA — MR R S S 55 B MR 3R SE R I A ARS R
ARER A WERE A —E - ARERNESRTFNRIFTHRERES . B
FERTTRE S S 88 - A b AEMOER FIANE "HE, MEETRER
ENTHLOHBAMREERZSIH 8 - ERABIHER T EEERE
S-SR HEREBPT BMPRAEEMANOHER - B4 —/ —BH
SR RIBRLIRE, AR SELEFRETEEEIRENL S EHR
HMERBRERTEREEES - 8% TEERE - RREBITHNES
Rt e R AR EE -

ER BESBFNGAFRESRMOEREE & 7 2%, ATH5S
HFHFRE ARV AGMHTRANER EER— AETRAKRBETEGEHETH
RURE R

5 HRERRT
B BHT LT IS, BB SRR AR I ] RS M

HYRE Rl — 28, 58 T AR R AL (USRI B8 M B R B IE RS I B 3l & L 8
EHRM) TAKRBSELESERF & -
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S4h, FIRIOTY (8 S8 h SR ER , & LLIR AT 4471 i N-gram BB F T 1889
BREBEFL HERANEMTS KMAGRE T E N-gram BIRHE LEBR
B HiERmEET S thkEeL - |

REABTET S, BEIEAKETD, FH=FEHME SR AEEE, %
HIZERRA BEEZRPIIMERNTRE 5S40, 6 EME L AFEErRER
A5 UREEHBAGEEERRITNEERE - 67% #y 73 B =R ( IEHE
R), AARUBEIAAL, R EES HRAEREGEHN -, FEAT
SEHRERERARNRTEERZSR - ENBRENEI =4, 2EXE
83% ZE A5 - ANREIE IR =4, M AKE , BE AWM EH LTIE, B8
HEE B S VD RBREAEEA TR ERE -

R, WAFH LA EFM T IR TIE:

L@l E s R AT E O RIBEE , A LR B AN R K EERL 1
WERBENTRE BB L FEFHRAEHE&R  EAE+RREHHRY
RAFE AL UARRRE - ROFEHFRBBE BN . FIRE R
, B AT LIS B A RS R -

2. MABRFESHAH EAX L FRES ERMANSE. FEZRKHNA
%R EEAEKEERESEE LFBNHRR Itk - 88
R (Automatic Tagging), H%0 Mutual Information - - - 254
BTEEHEANGSE MANAEZREELEN HEBRRENEE L
MR FENHEE - B4 RAEER PR T LIE RMA #1410

"RERFE, - "RIBFHE . WARR ROENERE ZERM . PR
JHILUERIL T ? BAE ) WARKRFEFELFAR -

3. F RS AR RS B BT AR AG B A B E RS E R R B 5T L R
HEIMRRESELE , EEETERITRNER -

4 HESE-RELET RESBRR - SRARREE AERS HLLEHE
HEERECAREUNER ALEFERI>ETERTSERTE -

RIS BRI E 8, TR RS ARA T LU E AT - BERA
AT IS S0 3 ek O R M 5 BB A TS SEAE S — BO M L (R A e
Sy AT, G R B 1 P SR S P P, 0 AR SR B S S B T
IS SR LA B S SRR, BT e A RS R T . E
R BERRE, T EATREEE B -

=+ sﬂj—
Wy w

[
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75 SCHY 58k, B2 IR o B W ek T AR S B TR R R R R B4 R R
et EERAT B 2 R LI L DU R E R B ERATR BB BEREH T L
EENER N0 -

iEs &k
AAKE R 24 /NEERI 48
: &=l JE R R
102 R - EHE
J0201  EEdesEz 56
J0202  BABK 11
J0203  FREl 64
J0204 EREFE 59
J0205  wyiE 40
JO206  &Bh 285
JO207 s 699
J0208 F b 33
JO209  PELLETRE 24
_ J0211  ZEFhee 116
J03 R - % -
JO301 B KER 112
J0302 A EES 32
J0303  EEE 211
JO305  PESLTESE 36
JI0 BEMK - 2R - HfE
' JI008  EEdeskdR - s 40
JI00Y  EHEEHER 24
JI012  POEaED s 44
Ji EF - B
JI03  BIHME 200
J1105 SHEBER 12
J12 EE - #E
JI201 HER&ER 30
J1202 B 53
J1203 TEEE 29
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J1204 REpikaE 29
J1205  EERERME 31

25 3R
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