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Abstract

Conventional tagging models, with parameters estimated by the widely used maximum like-
lihood estimatof, usually fail to achieve satisfactory performance in real applications. Since they
achieve lexical disambiguatioh indirectly and implicitly via estimation, these models are usually
unable to cover the statistical variation in the real text. In this papér, a discrimination oriented
learning algorithm is proposed to directly pursue the goal of lexical diSambiguatibn, so that the
modeling error and the estimation error due to insufficient training data can be compensaied. A
42% reduction in error rate, has been observed in the task of tagging Brown Corpus by using this

proposed method.

1. Introduction

Tagging part of speech (or lexical disambiguation) in a sentence is an important problem in
natural language processing. Traditionally, this task is achieved by ruling out the lexicai ambiguities
with a parser. However, as pointed out by Church[1], a parser is usually not capable to rule out
all of those undesired ambiguities. Thus, passing all the combinations of different grammatical
categories to the parser still let the problem to be unsolved. However, if there is a mechanism to
select only a few combinations to the pafScr, with high possibility to be correct, it not only reduces
the total processing cost, as parsing‘ is a very expensive process, but also enhances the power of
disambiguation, as fewer parse tree will be generated.

Several algoﬁthms have been proposéd 1n the literatﬁre to select the corrective category from
all the possible tags for a given word. Greene and Rubin[2] developed TAGGIT with 3300 context
frame rules. Each'rule deletes one or more candidates from a list of possible tags for each word when
its context is satisfied. TAGGIT achieves accuracy rate about 77% in the task of tagging Brown
Corpus. Leech, Garside and Atwell[3] tag LOB Corpus with CLAWS[4], which is a bigram model
with an IDIOMTAG procedure applied after initial tag assignment and before disambiguation, and
96.7% corrective tagging has been reported. Church[1] used a trigram model to tag Brown Corpus
and achieved 95%-99% (depend on the definition of correct) accuracy. DeRose[5] developed
VOLSUNG, which is similar to CLAWS, and reached accuracy rates of 96% without idiom tagging
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and 99% with idiom tagging for the LOB Corpus. It also achieves 96% accuracy rate for tagging
Brown Corpus. Recently, several probabilistic models based on trigram are investigated on different

corpus[6][7], and have made some improvement.

All above models (except TAGGIT) use parameters estimated by maximum likeli.hood esti-
mator. Correct disambiguation, however, depends only upon correct rank ordering of different
category sequences. Therefore, maximizing likelihood does not imply minimizing the error rate
of disambiguation[8][9]. Thus, a discriminative learning procedure is réquired to tune the model
parameters to achieve high performance. Furthermore, due to insufficient amount of training data
and incompleteness of model knowledge, the statistical variation between the testing set and the
training set is usually not well characterized in those conventional approaches, therefore, minimiz-
ing the error rate in the training set does not necessarily irhply maximizing the disambiguation
accuracy in real applications. To achieve satisfactory result in real applications, this discriminative

learning procedure must also be robust.

In this paper, a discrimination oriented learning procedure is proposed to fine tune the model
parameters. Parameters are adjusted to shift the correct category sequence to the top rank among
different combinations of categories during learning process. Great improvement, 42% reduction

in error rate, have been observed in the task of tagging Brown Corpus.

2. Simulation Setup

2.1. Corpus Preparation

Brown Corpus is selected in this paper to compare different approaches, because it is the
most well-known and widely-used corpus. Using sentence closer tag [10] as the delimiter between
sentences, we extract 1,147,474 words (including sentence markers),_of 54,597 sentences from
Brown Corpus. No morphological analysis is done in preparing the training set. So words with
different characters (such as advahtage and advantages) are considered as different words. In the
same way, the tags PPS, MD and PPS+MD, for the words he, will and he’ll, are also treated as
three different tags. Based on this, we construct a dictionary with 49,705 different words and a tag

set with 187 different tags (not 87 tags stated in[10]).

Because it is the performance in the real applications (i.e., the testing set in our case) that we

really care, the whole corpus are separatéd into two sets:

1. Training set — contains 919,247 words in 43,677 sentences, which is used to train the model
parameters. '
2. Testing set — contains 228,227 words in 10,920 sentences, which is used to estimate the

accuracy rate of different tagging procedures.
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2.2. Probabilistic Model

The purpose of lexical disambiguation is to find a correct part of speech sequence
“c1,c2,---,cn” for a given sentence, “wi,ws,- -, wy”, where w; is the j-th word of the given
sentence and ¢; is the part of speech assigned to the j-th word. This problem can be formulated as
to find argmaxP(c)’ |w{’), where ¢’ and w’ are the short-hand notations for “c, ¢z, -+, cy” and
Pwi, wa, -+, wy’ TESpectively. .P(c{V |w1 ) can be further derived, using the multiplication rule in

probability theory, as the following equation
le)—HP(ch,J“ wl). 1)

However, it is infeasible to directly estimate the parameter P( c; |c] -1 wiV), for it demands a huge
amount of data to train those a lot of parameters. To make it practlcal, assumptions must be made
to simplify the evaluation process of P( cjlc{_l, w{v ). It is obvious that the correct category of a
word in a sentence strongly depends on the word itself and the categories from the adjacent words.

So, it is reasonable to make either of the following assumptions :

1. Assume P( ¢;|c™", wl) ~P(c;|w;)P(c;e; ). This is the bigram! model used in CLAWS[3].
2. Assume P(¢; [~ wh) ~P(c;|w;)P(cj|cj—2,c;—1). This is the trigram model proposed by Church[1].

The probability P( ¢;|w;) is called lexical probability, and P(cj|c;j-1) or P(cjlej—2,¢j-1) is called
context (or transition) probability. | |

Using the above assumptions the problem of lexical disambiguation can be formulated as to
find argmax( HP(c] |w;)P(c; |c ) where n=1 or 2. The beginning of sentence marker is assigned

=1

to ¢o and ¢_; in the above formulation.

2.3. Baseline Performance

 The context probabilities P(c]|c7 ) are first obtained from the tfaining corpus by maximum
likelihood estimator. For example glvcn a sentence “I saw a beautiful girl”, one possible category
sequence is “pron v art adj n”, then the value of probability of P(nlart,adj) is estimated by C(art
adj n)/C(art adj), where C(art adj n) is the number of occurrences of the tri-POS? “art adj n” in
the training corpus, and C(art adj)= ¥ xC(art adj X) where X is any possible tag. The lexical
probability is estimated in a similar way.
Table 1 and 2 lists the performance of those bigram and trigram models. These results will
be used as the baseline performance in the following-tests. -There are’ 1',147,474: words (includin'g

sentence markers) in the Brown Corpus, but only 40% of these words are ambiguous (i.e., words

! Based on the assumption that the next word which will be uttered depends only on the previous one or two words, bigram and
trigram language models are widely used in speech recognition. Church[1] used the terms of bigram and trigram to indicate that the
next category is strongly depends. on' the previous. one or two categories, respectively. We will follow his notations in this paper.
2 In this paper, a tri-POS is defined as a sequence three categorles (1e sequence of ¢ c,z Ci1 c, . In the same way, bi-POS is
defined‘as a sequence of two categories like “ci.y ¢;”. : T s o
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with two or more categories, and are called ambiguous words). Therefore, using word accuracy
to measure performance is not a good way, because most words in the corpus can have only one
category. In this paper, the word accuracy rate is reported on the ambiguous word accuracy, which
is defined as Nj/Nw, where N4 is the number of ambiguous words which are correct tagged and
Nyw is the total number of ambiguous words in the corpus. The error rate of ambiguous words
is defined as 1—N4/Nw. In the same way, the sentence accuracy rate is defined as N¢/Ns, where
Nc is the number of sentences in which every word is correct tagged, and Ng is the number of

sentences in corpus.

Sentence Ambi. Word Ambi. Word

Accuracy (%) | Accuracy (%) | Error Rate (%)
bigram 55.65 91.66 8.34
trigram 64.96 93.95 6.05

Table 1 Baseline performance in the training set.

Sentence Ambi. Word Ambi. Word

Accuracy (%) | Accuracy (%) | Error Rate (%)
bigram 53.34 91.04 8.96
trigram 55.34 91.44 8.56

Table 2 Baseline performance in the testing set.

Table 1 and 2 shows that the accuracy rate of trigram model in the training set is much better
than that of bigram model, but, in the testing set, the performance of trigram model are just slightly
better than that of bigram model. The high accuracy rate of trigram model in training set is due to
the phenomena of over-tuning[9]. The large difference between the accuracy rate of the training

set and that of the testing set for trigram model is mainly due to the insufficience of training data.

3. Discrimination Oriented Learning

In sectionv2.2, the disambiguation process is formulated as to find argmaxP(c{V |w{" ), and the

simplified form of ﬁP(cj |w; )P(c; Ic;:},) is used to calculate P(c{v |w{\{ ). For the convenience of real

i=1
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applications, a score function is defined in here as

N
Score = log HP(C,‘Iw]) (CJ(CJ n)

j=1

{log(P(c]|wJ))+log( (cjlc n))} (2)

I
Mz

1

.,
I

I
™=

{S(c]|w]) +5 (CJ|CJ )}

1

.
Il

where S(c;|wj;)=log (P (¢j|wj)), is called lexical score and S(c,(c _p)=log (P (cjlcjﬁ:,ﬂ)), is called
context score. Then, the lexical disambiguation process is to calculate the score function for all
the possible category sequences of a input sentence, and to choose the category sequence which
has the highest score. In baseline models, the parameters used to calculate the score function are
estimated without considering the competing category sequences. So, they can not minimize the

error rate in the training corpus.

In order to minimize the error rate of the training corpus, a discrimination oriented learning
procedure[11][9] is adopted to tune the parameters (i.e., the lexical and context scores) in this paper.
Without loss of generality, we use the bigramv model and a sentence with three different possible
category sequences to show how to tune the parameters. Assume that the sentence “Press the left
button” has only one ambiguous word “left” with possible tags v, n and adj. The correct category
sequence should be “v art adj n” in this case. The disambiguation process, before learning, is listed

in Table 3. As the candidate 1, a wrong category sequence, has the highest score, an error is made.

Press the left button | sub total total
candidate 1 @ v art v n
lexical score 0 0 -0.3* 0 -03 -2.38
contex score -0.7 052 | -0.7* -0.16* -2.08
candidate 2 @ v art n n .
lexical score 0 0 -0.7 0 -0.7 292
contex score -0.7 -0.52 0.3 -0.7 222
candidate 3 @ v art’ adj n
lexical score : 0 0 -0.52* 0 -0.52 242
contex score -0.7 -0.52 -0.52% -0.16* -1.90

Table 3 Disambiguation process before learning. The symbol @ is beginning of
sentence marker. The marker * denotes those parameters which will be adjusted.

Comparing candidate 1 and candidate 3 (the correct sequence), we find that the parameters

SMileft), S(lart), S(nlv), S(adjlleft), S(adjlart) and S(nlad)) are involved in the incorrect decision.
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If we can increase the parameters S(adjlleft), S(adjlart) and S(nladj), and decrease the parameters

SWlleft), S(vlart) and S(nlv), we can make the correct category sequence to have the highest score.

To adjust these parameters, a score vector is first defined as

S = (s1, 52,83, 54, 55, 56)
= (S (adj|left), S (adjlart), S (n|adj),
S (vlleft), S (v]art), S (n|v)),

then the following equations are used to tune the score vector.

where

Siv1 =S+ AS,, )

NS =eCH (X”§) :
H (X’§) — ' (d) “X*H—ll—ET (5') X,
§%

HSH sl

®

In equation (5), ¢ is a small constant to control the convergence speed of learning process,

C is positive-definite matrix and dy is the window size[11].

is (1,1,1,—1,—1,
that of candidate 1.

The vector X in this example

—1), such that StX is the difference between the score of candidate 3 and

As the details of the learning process have already been investigated in

the literature[11], we will not give the detail derivations here. Using the above equations, the

disambiguation process after learning is listed in Table 4.

Press the left button | sub total total
candidate 1 @ v art v n
lexical score 0 0 -0.35* 0 -0.35 -2.51
contex score -0.7 -0.52 -0.74% »-O.‘20* -2.16
candidate 2 @ v art n n
lexical score 0 0 0.7 o | 07 292
contex score -0.7 -0.52 03 | 07 222
candidate 3 @ v art adj n
lexical score 0 0 -0.48* 0 -0.48 -2.29
contex score -0.7 -0.52 -0.48* -0.11* -1.81

Table 4 Disambiguation process after leamning. The marker *

denotes those parameters which should be adjusted during leaming.
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After discrimination oriented learning, the accuracy of lexical disambiguation is improved
greatly. Comparing Table 1, 2 , 5 and 6, the error rate of ambiguous words of bigram model is
reduced from 8.96% to 5.66% in the testing set, i.e., about 37% error rate reduction. For trigram
model, the error rate of ambiguous words in testing set is reduced from 8.56% to 6.4%, about 25%
error rate reduction. In the training set, the decrease of error rate of bigram and trigram models
are 48% and 58% respectively, but these improvements are not important because the error rate of

real applications is approximated by the performance in the testing set not the training set.

One phenomena should be noticed in Table 5 and 6. Although the accuracy rate of trigram
is much better than that of bigram in the testing set, the accuracy rate of trigram is worse than
that of bigram in the testing set. This problem is due to the limited size of training corpus and

will be discussed in next section.

Sentence Ambi. Word Ambi. Word

Accuracy (%) | Accuracy (%) | Error Rate (%)
bigram 73.94 95.66 4.34
trigram 83.89 97.44 2.56

Table 5 Performance in the training set after learning.

Sentence Ambi. Word Ambi. Word

Accuracy (%) | Accuracy (%) | Ermror Rate (%)
bigram 65.91 9432 5.68
trigram 63.65 93.60 6.40

Table 6 Performance in the testing set after learning.

4. Merging Unreliable Parameters

Due to the limited size of training corpus, trigram model suffers the problem of over-tuning,
which usually occurs when the number of available training data is not large enough compared to
the number of parameters. In this situation, the learning process will be lead to a pseudo optimal
point in the training corpus, which sometimes even degrades the performance in the testing set.
This phenomena is shown in Table 5 and 6 that the performance of trigram in testing set is poorer
than that of bigram, although the performance of trigram is much better than that of bigram in
the training corpus. One way to overcome ‘this problem is to replace the unreliable parameters
of trigram, i.e., whose number of occurrences in the training corpus are below a threshold, with
the more reliable parameters of bigram. For example, if the tri-POS (art v n) and (prep v n)
occurred less than R times in the training corpus, then the parameter S(nlv), instead of S(nlart,v)

and S(nlprep,v), will be used in the learning process.
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The merging procedure described above is similar to the backing-off procedure[12][7]. How-
ever, the proposed approach differs from the backing-off approach in that the parameters corre-
sponding to bi-POS will be adjusted during learning process, instead of using them directly as
backing-off procedure does. The threshold R is found to be insensitive in a wide range from 1 to
50 and is set to 20 in our simulation. Figure 1 displays the behavior of learning process for the

case of merging the unreliable parameters and Table 7 shows the final performance.

N ro
[
DO Training
« OTesting =~ [ %

Error Rate of Ambi. Words (%)

<t + - <t
1

o« T T —T T o
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Figure 1 The error rates of merged trigram model during parameters-merged learning.

Sentence Ambi. Word Ambi. Word
Accuracy (%) | Accuracy (%) | Error Rate (%)
training 76.51 96.23 3.77
testing 69.76 195.05 4.95

Table 7 Final performance of merged trigram model in both training set and testing set.

The reason for the improvement of performance is : although trigram carries more discrim-
inative informations, they are poorly estimated (or trained) for not having enough data, and thus
is quite unreliable to be used in the testing set. To replace those unreliable parameters with more
reliable parameters from bigram, although they carry less discriminative informations, we sacrifice
a small amount of modeling error for reducing a large amount of estimation error in the testing
set, thus to improve the performance in the testing set. Figure 2 shows the improvements made by

discrimination oriented learning and parameters-merged learning.
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Figure 2 The performance improvement of trigram model. Baseline means parameters are
estimated by maximum likelihood estimator. Learning means the parameters are tuned by
discrimination oriented learning. Merging means the parameters are merged and then tuned.

5. Conclusion

Recently, probabilistic models are widely used for lexical disambiguation. In conventional
probabilistic approaches, model parameters are estimated by maximum likehood estimator without
considering the competing candidates, therefore, the can not minimize the error rate of lexical
disambiguation. In this paper, a discrimination oriented learning method is proposed to tune the
parameters. The method results in 37% and 25% error rate reductions of ambiguous words for
bigram and trigram models in the testing set. To further improve the performance, a merging
procedure is used to conquer the problem of over-tuning and make the model more robust. Using
those merged parameters for learning, great improvement, 42% reduction in error rate, have been

observed in the task of tagging Brown Corpus.
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Abstract

A natural language acquisition model using Explanation-Based Learning (EBL) had been
proposed to acquire parsing-related knowledge which includes Context-Free grammar
rules and syntactic and thematic features of lexicons. The domain theory that is assumed
to be innate to the model includes the theta-theory and the universal feature instantiation
principles in Generalized Phrase Structure Grammar (GPSG). In this paper, we show in
particular how unbounded dependency may be acquired in the natural language acquisi-
tion model. The acquisition problem of unbounded dependency may be further divided
into two sub-problems: detecting whether there are moved constituents and finding the
places to which the constituents are moved. For these problems, the universal innate
domain theory facilitates and constrains the acquisition process which is otherwise in-
tractable.

Keywords: Natural Language Acquisition, Explanation-Based Learning, Theta Theory,
Universal Feature Instantation Principles, Knowledge Assimilation.
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1. Introduction

Parsing involves searching for a set of applicable knowledge pieces to transform a sentence
into its corresponding syntactic and/or semantic structure (e.g. the parse tree). This problem
solving process needs a knowledge base which is often enhanced, maintained, and tested period-
ically, especially when the system is appliedrt‘o different domains. Since natural language is ever
evolutionary in nature, extensibility of a natural lAanguage pfocessing (NLP) system becomes one

of the most critical concerns in real applications.

The Universal Grammar (UG, Chomsky[19]), which is claimed to be innate and universal
among various natural languages, is believed to reflect children natural language acquisition
phenomena. From this point of view, natural language acquisition may be approached by setting
the parameters embedded in UG and learning the'particular linguistic requiremen;s (called Peri-
phery Grammar) of the target language. Thus, the introduction of UG not only reduces the
hypotheses space and hence makes learning moré tractable, but also promotes the portability of
of the system, since it not only facilitates adaptive acquisition in various application dc;’mains
with the same target language (Lehman[10]), but also makes acquisition across different natural

languages more possible.

Therefore, a natural language acquisition model (Liu[13]) had been proposed to automati-
cally assimilate and maintain parsing-related knowledge, including Context-Free grammar rules
and syntactic and thematic requirements bf lexicons. In the model, the kﬁowledge bases of the
model consist of two parts: the static part and the dynamic part. The static part contains the
universal linguistic principles, including the theta-theory and the universal feature instantiation
principles in the Generalized Phrase Structure Grammar formalism (GPSG, Gazdaf[4]). They
are innate and invariant in learning. The dynamic part contains current parsing-related
knowledge of the system (periphery grammar). Through learning, the periphery grammar in the

dynamic part is enhanced by following the principles in the static part.

In this paper, we focus on the acquisition of unbounded dependency in the developed

explanation-based natural acquisition model. Typically, an unbounded dependency occurs in a
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construction in which there is an unexpected constituent outside a clause, while within that
clause a constituent is correspondingly missing (Chomsky[19]). Wh-questions, relative clauses,
and topicalizations, which all involve movement, are the representative examples of unbounded

dependencies we consider in this paper.

In fact, the task of unbounded dependency acquisition involves two steps: detecting
whether there are moved constituents, and then finding the place to which the constituents are
moved. For example, in the sentence "The boy I see is a student”, it is necessary for the learning
system to determine whether the VP (Verb Phrase) "see” hasa missing> theme or not. If a themé
is missing, the system learns that an NP (Noun Phrase) may be constructed by an NP followedv
by an S (Sentence) with a theme missing. On the other hand, if no themes are missing, the S can-
not have a missing theme. For these problems, the universal innate linguistic principles facilitate

and constrain the acquisition process which is otherwise intractable.

In the next section, we describe the framewbrk of the explanation-based natural acquisition
model. More detailed elaboration may be found in Liu[13]. In section 3, we show why and how
the universal linguistic principles are employed to acquire unbounded dependency. In section 4,
exp_erifnental results are shown to investigate the performance of the model. The model is also
related to previous works and evaluated from various perspectives. In section 5, we conclude

the article.

2. Explanation-based natural language acquisition

Explanation-Based Learniné (EBL, Mitchell[17], Keller[8]) had been widely applied to
learning domains in which intensive domain theory may be constructed before learning. Major
components of EBL may include Goal Concept, Operationality, Training Example, Domain
Theory, and Problem Solver. In learning, the problem solver uses the predefined domain theory
to prove (or explain) the given positive training examples to be an instance of the goal concept.
The sufficient conditions of the explanation are thus extracted and expressed in terms of the
operationality criteria. In later problem solving, when the extracted conditions may be directly

applied to the current problem, no further explanation processes are needed. Therefore, through
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learning, the domain theory is "compiled" into a more efficient version.

A new explanation-based natural language acquisition model had been proposed to leamn
parsing-related knowledge for.the parser (Liu[13]). The relationship between the traditional

- EBL and the language acquisition model can be summarized as follows:

¢ Goal concept: Grammatical sentence.

e Operationality: Recognizability of linguistic features of constituents.

¢ Training examples: Input sentences and their parse trees. '

e Domain theory: Universal linguistic principles (static) + Current parsing knowledge (dynamic).
e Problem solver: The parser.

e Explanation tree: Parse tree annotated with sufficient constraints (features).

In the model, the problem solver is the parser which uses its parsing knowledge to parse an
input séntence. If the highest level goal S-maj (a major sentence) can be achieved, the senteﬁce
is prbven to be grammatical (the sentence can be succéssfully parsed). The condition parts of the
rules in the knowledge base are expressed in terms of linguistic features such as VERB, NOUN,
AGENT, OBJECT, PERSON, ... etc. These features are oberational or "efficiently récogﬁizable"

(Keller[8]) in the system.

In real world problem donﬁains (e.g. natural language processing), although a pfeliminary
domain theoi‘y can be constructed (such as simple grammar rﬁles), it is quite difficult to have a
complete and correct domain thcory (Hall[6]). The domaih theory can be incomplete. It is
separated into two major parts: a static part and a dynamic part. The static part includes universal
linguistic principles which are invariant and innate to the system, while the dynamic part is aug-

-

mented through learriing,

When an input sentence cannot be proven to be grammatical (i.e. it cannot be successfully
parsed), learning is triggered to enhance the dynamic part of the domain theory. The parsing
knowledge in the dynamic part includes the argument structures of verbs (e.g. the verb "see”
needs an EXPERIENCER argument and a THEME argument), thematic features of nouns (e.g.
AGENT, OBJECT, ... etc.), general grammar rules (e.g. S --> NP VP), and some special phrase
patterns (e.g. "Althougk; S, ™). Initially, syntactic and thematic features of some verbs and.

nouns are provided to the dynamic part as the bootstrapping parsing knowledge.
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2.1 The learning algorithm

As the dynamic part is inadequate to provide actions, learning is triggered. The system can .
first deduceva correct solution path from the given parse tree (Liu[11], Liu[13]). After executing
each action in the solution path, an annotated parse tree can still be constructed as a sufficient
condition to explain the input sentence as a grammatical sentence. The new parsing knowledge
can be extracted from the annotated parse tree and then assimilated into the dynamic part of the

domain theory. The algorithm of the learning module can be thus formalized as follows:

(1) Get the parse tree of the new sentence from the trainer;

(2) Iteratively invoke the parser to annotate all constituents in the parse tree (i.e. apply the
current parsing knowledge and the universal linguistic principles to the parse tree);

(3) Extract new rules from the annotated parse tree.

(4) If the first subgoal of the extracted rule is a phrase, assimilate the new rule into the grammar
rule base;

Else begin

(5) Try to generalize the rules in the lexicon entry (empirical generalization);
(6) Assimilate the rule into the lexicon entry; ‘

end '

In the following sections, we further elaborate the extra parse tree input (step 1), the use of
universal linguistic principles (step 2), and the way of knowledge assimilation (step 4 and step

6). Finally, an example is shown to illustrate the learning algorithm.

2.2 The parse tree as external guidance

When there is missing knowledge in the domain theory, new knowledge might become too
ambiguous to acquire, even though the learning system has exploited all its current knowledge to
the largest extent. For example, consider the sentence "Taking exercises is good for your
health". The target knowledge is the rule "NP[NUM=-plu,PER=3] --> VP[VF=prp]" which
meansb that a singular (NUM=-plu) third-person (PER=3) Noun Phrase (NP) can be constructed
by a Verb. Phrase (VP) with present participle verb form (VF=prp). However, if no other infor-
mation is provided, the learning module cannot segmenf the sentence into phrases. In that case,

there are too many possible kinds of new knowledge. For example, the system can hypothesize
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that "taking" can be an NP, an S-maj can be implemented by the pattern "taking NP VP", an S-
maj can be expanded as "taking exercises VP", ... etc.

However, the .given parse tree cannot be a correct "explanation tree” in which the s'ystem
can find sufficient conditions for the sentence to be grammatical. For example, in a parse tree,
the system can deduce a rule "S --> VP" (since S is the mother of VP in the parse tree) which is
too general in the sense that the sentence "Eats the Aho_tdog" will also be accepted. To find a suffi-
cient condition, the parse tree should be annotated with critical features by the help of the static

part of the domain theory.

2.3 The static part -- universal linguistic principleé

In the model, the static (and predefined) part of the domain theory contains fhe "abstract”
and universal linguistic principles which guide the acquisition of "operational" knowledge (pars-
ing knowledge) in the dynamic part. It contains the minimal linguistic knowledge which is
assumed to be innate to the system and is invarianf during learning. It includes the theta-theory
and the universal feature instantiation principles. These principles promote the portability of the
system and make learning more tractable by reducing the hypothesis space in learning. The

universal innate principles in the model are thus defined as follows:

¢ The theta-theory (Chomsky[19]) proposes a theta criterion Which requires that, in the argument
structure of a lexical head, each argument must bear one and only one theta-role. For example,
in the sentence "John kissed Mary", the head "kissed" assigns the NP "John" the "AGENT"
theta-role, and the NP "Mary" the "THEME" theta-role. No arguments can be assigned more

than one theta-roles.

o‘The Head Feature Convention (HFC, Gazdar[4]) says that a mother’s HEAD features should be
identical to the HEAD féatures of its head daughter. For example, the verb "eating" is the
HEAD of the verb phrase "eating the apple” (the verb phrase is the mother of the verb in a parse
tree). Since verb form (VF) is a HEAD féature defined in GPSG, the verb phfase shouid share

the feature "VF=prp" with the verb (via unification).
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e The Foot Feature Principle (FFP, Gazdar[4]) allows FOOT features. to propagate from any
daughter to its mother in the parse wee. For example, the SLASH feature is a FOOT feature in
GPSG. If a constituent has a SLASH feature with value NP, there is an NP missing in it. Con-
sider the NP "the boy I like". There is an object NP missing in the verb phrase "like". By follow-

ing FFP, this SLASH feature will be propagated to the clause "I like".

e The Control Agreement Principle (CAP, Gazdar[4]) says that controllees (such as VPs) agrée
with their controllers (such as NPs) by showing the features that are essentially properties of the
controllers. The AGR feature in GPSG formalism needs to follow this principle. For example,
fof the verb "likes", an AGR feature with value "NP[NUM=-plu,PER=3]" (Subject-Verb agree-
ment) is encoded. According to the feature, CAP will inform the parser to climb the parse tree
upward to check whether there is a singular third-person NP. CAP can deal with‘semantic pro-
cessing when the value of an AGR feature includes thematic properties AGENT, THEME,
EXPERIENCER, ... etc.) of controllers.

For more detailed description, the reader should refer to Chomsky[19] and Gazdar[4]. The criti-
cal roles of these principles on the acquisition of parsing knowledge can be further illustrated by

the following examples:

e Suppose the system atiempts to learn from an English command sentence "Eat the hotdog", and
it has the rules for parsing the NP "the hotdog" and the subcategorization information of "Eat”
(e.g. "Eat" needs an NP as objecf) as the currently» available parsing knowledge. If HFC is not
employed, even though a parse tree is given, the system might induce the rule "S-maj --> VP" (it
comes from the parse tree). The rule is too general in the sense that the sentence "Eats the hot-
dog" will also be accepted. On the other hand, by following HFC, the VP can be appropriately
annotated by critical t‘eétures which are the basis of the genérality of the new rule. In this case, a
better rule "S-maj --> VP[VF=bse|" (a VP with base verb form can be a major sentence) can be

constructed to enrich the current parsing knowledge bases (see Fig. 1).
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@ {VF=bse;...}

: d ~—~
(VE=bse;...} @ @

Eat the hotdog

Fig. 1. Head Feature Convention

;Consider the sentence "Taking exercises is good for your health”. Suppose the parsingv module
does not have a rule to construct an NP from a VP with present participle verb form. From the
given parse tree and HFC, a VP[VF=prp] can be constructed by the parser. Therefore, the rule
"NP --> VP[VF=prp]" can be induced. However, this rule is too general in the sense that the sen-
tence "Taking exercises are good for your health" will also be accepted. On the other hand, if
the VP "is good for vour health" is parsed, by following CAP, it will restrict the number and per-
son features of the NP to be singular and third-person. Therefore, the target rule "NP[NUM=-

plu,PER=3] --> VP[VF=prp]" can be acquired (see Fig. 2).

{NUM=-plu;PER=3}

(VF=prp} . is good for your health

Taking exercises

Fig. 2. Head Feature Convention & Foot Feature Principle.

2.4 Blame assignment and knowledge assimilation

In this paper, we focus on the problem of incomplete domain theory. Enhancing the
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dynamic domain theory is simply adding and then properly generalizing new knowledge pieces.
From this point of view, the problem of blame assignment is reduced to the problem of finding
which knowledge pieces are the missing knowledge. When invoking the parser to parse the sen-
tence (step 2 in the lcarhing algorithm), the learning system keeps track of the activation of
rules. When no rules can issue the current action in the solution path, there is a missing rule at
this point. After th_e whole parse tree is annotated, the missing rule may be extracted and assimi-

lated into the dynamic domain theory.

- The acquired rules may be assimilated into either the lexicon entries (step 6 in the learning
algorithm) or the generul grammar rule base (step 4 in the learning algorithm). The way of
assimilating knowledge is closely related to the way of retrieving knowledge to use. In the
model, indexing is employed for fast assimilation and utilization of knowledge. If the first
subgoal of the acquired rule is a phrase, the rule is placed into the grammar rule base. If the first

subgoal is a word, the rule is assimilated into the lexicon entry of the word in the dictionary.

2.5 An example

When the parser fuils to parse the input sentence, learning is triggered, and the user is asked
to input a parse tree (Step 1). For example, for the above sentence "Taking exercises is good for

your health", the parse tree might be:

(S (NP (VP (v taking)
(NP (n exercises))))
(VP (vis)
(adj good)
(PP (prep for)
(NP (pos your) -
(n health))))).

As described in section 2.2, the system should have the ability to derive the critical features of
constituents rather than directly extracts the rules from the parse tree. Thefefore, after given 2.1’
parse tree, the parser is invoked to separately parse the constituents in the sentence (Step 2).
After that, the critical features (including syntactic and thematic features) of each parsed consti-~

tuent are derived. In this case, we assume the subcat pattern "take NP[THM=OBJECT]" has
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already been in the lexicon entry of "tuke". Therefore, the first VP "taking exercises" can be suc-
cessfully parsed. Its feature "VF=prp" is also derived (since "VF" is a HEAD feature). At this
time, the parsing module finds that it has a missing rule which allows it to construct an NP from

the VP[VF=prp]. Therefore, now the possible new rule is "NP --> VP[VF=prp]".

After parsing the main VP "is good for your health”, its feature "AGR=NP[NUM=-
plu,PER=3}" is computed, where AGR is also a HEAD feature whose propagation in the parse
~ tree must obey the Head Feature Convention. By following the Control Agreement Princ.iple,
the VP needs an NP which must be singular and the third person. This feature specification indi-
cates that the NP constructed from the VP|VF=prp] should have the features "NUM=-plu" and
"PER=3". Therefore, the final rule "NP[NUM=-plu,PER=3] --> VP[VF=prp]" can be success-
fully extracted from the annotated parse tree (Step 3). Since the first subgoal of the rule is a
phrase, this rule is considered to be a general phrase structure rule which should be assimilated
into the grammar rule base (Ste}p 4).

It should be noted that, this way of computing critical features of constituents is a conserva-
tive way of acquiring new knowledge. That is, the computed features might be too specific. For
example, consider the sentence "We live in an abundant life". Since the NP "Wé" has the
thematic feature "THM=PERSON", after the sentence is processed, the system will restrict the
AGENT of "live" to be an NP with the feature "THM=PERSON". Thus, when other inpui sen-
tences involving "live" are entered (e.g. the sentence "The dog lives with us"), the learning
module will try to generalize the rules which had already been acquired and stored in the lexicon
entry of "live" (Step 5). The generalized rule is then assimilated into the lexicon entry of "live"
(Step 6). Also note that, in some cases the system needs to generalize knowledge pieces among

different lexicon entries.

3 Acquisition of unbounded dependency

Since constructions of unbounded dependency frequently occur in natural languages, its
acquisition becomes an important task for natural language acquisition. As described above, por-

tability is one of the major concerns of the learning model. Therefore, we need to introduce a
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minimal and universal innate domain theory to constrain the hypothesis space, and simultane-
ously, maintain the portability of the system in the sense that it may be applied to various learn-

ing situations (e.g. Chinese).

Typically, unbounded dependency occurs in a construction in which there is an unexpected
constituent outside a clause, while within that clause its corresponding constituent is missing.
We consider in this paper such typical unbounded dependencies as in relative clauses, wh-
movements, and topicalizations. To acquire them, the learning system needs to determine
whether there are missing constituents and, if so, to which places the missing cohstituent_s are

moved.

Berwick[2] employs the Subjacency Principle to locate the moved constituents in the sen-
tence. The location process is simply triggered when the syntactic requirements (e.g. the sub-
categorization frames ot verbs) are not satisfied (e.g. an NP is expected but does not appear at its
corresponding place). However, when the syntactic requirements have not been completely
acquired, the location process might be miss-triggered. For example, many verbs may be both
transitive and intransitive. As a verb’s transitive subcategorization frame has already been
acquired, but its intransitive version has not, a new sentence with no NPs occurring at the object
position of the verb causes two possibilities: either the verb may have a intransitive version or
there is a missing NP that can be found in other places in the sentence (unbounded dep'endency).
If the ambiguity cannot be resolved, erroneous knowledge, which is not only useless but also

harmful to the learning system, may be acquired.

In this paper, FFP and the theta-theory work together to facilitate the acquisition of
unbounded dependency. They are consulted as the learning system attempts to acquire the

unbounded dependency.

3.1 Acquisition of unbounded dependencies in relative clauses

Movement in relative clauses may be characterized as A-Bar-movement in GB theory

(Chomsky[19]). ‘A constituent is moved from a position that is assigned both a theta-role and
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Case to an A-Bar position. Consider the sentence "The boy I see is a student”. The parsing
module needs to acquire the target rule-"NP --> SN S[/=NP]", where "SN" is a nonterminal for
simple NPs (without embedding clauses), und "/" is the SLASH feature in GPSG terminology
("/=NP" means "missing an NP"). Similarly, without using FFP to propagate the SLASH feature
of the VP "see"” to the S "I see”, the rule "NP --> SN S", which is too general, will be acquired.
However, if the verb "see" is intransitive, the slash feature may not exist. How can the system
determine whether the VP "see" has the "/=NP" feature? By following the theta-theory, the SN
'fthe boy" must bear a theta-role. In the sentence, only the verb "see” may assign the "THEME"
theta-role to it (the V»Clbls only assigns a theta-role to the whole NP "The boy I see"). There-
fore, the VP "see" is missing an NP.

The second step in the acquisition of unbdunded dependency involves the locating of the
moyed constitueqt. In GPSG formalism, FFP propagates the slash feature upward until there is a
rule which admits the subtree and mentions the corresponding slash feature in its LHS. However,
this rule is just the target rule the system needs to acquire (e.g. "NP --> SN S[/=NP]")_. In the
model, the theta-theory and FFP need to work togethe.r to locate the moved constituents. The
locating process propagates the slash feature upward, and as the first constituent with no theta-
roles assigned is encountered in a subtree, the constituent is treated as the moved constituent,

and the locating process then terminates. -

Similarly, in the case of reduced relative clauses, such as "The boy running in the park” and
"The boy seen in the room", FFP and the theta-theory may facilitate the acquisition of
unbounded dépéndencies. In the former example, "running" is allowed to assign an "AGENT"
theta-role to "the boy". Thercfore, there are no missing NPs in the VP "running". In the latter
sentence, since the verb "seen" with the passive participle form cannot assign theta-role to "the

boy", an NP must be missing in the VP "seen".

3.2 Acquisition of unbounded dependencies in topicalizations

The way of acquiring topicalization constructions is quite similar to the way of acquiring

relative clauses. Since there is an "extra” constituent (e.g. NP, AP, or PP) not been assigned any
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theta roles, there must be some corresponding constituent missing in the structures after the extra
constituent. Therefore, the acquisition of unbounded dependency may always be tng gered, and

locating process may also be succeeded in finding the extra constituent.

However, there might be multiple places from which the extra constituent is moved (Gaz-
dar[4]). For exampdle, consider the‘sentence "Sandy we want to succeed”. It rhay be interpreted
as "We want Sandy to succeed” or "We want to succeed Sandy”. In the‘ rnodel, the acquisition.of
unbounded dependency is triggered wheneyer necessary. Therefore, the leaming 'system will
adopt the first interpretation. Fortunately, no matter which mterpretatton is adopted from the

acqutsmon point of view, the target rule ' S --> NP S[/—NP]" may be learned.

3.3 Acquisition of unbounded dependencies in wh-movement

Wh-movement is also-characterized as A-Bar-movement. Therefore, unbounded depen-
dency in wh-movement may be learned in a similar way to acquiring relative clauses. The major
difference is that, additional transformation is needed (e.g. in English, the auxiliary-verb inver-
sion). Auxiliary-verb inversion can be treated as special phrase patterns which may be learned
in the way discussed in section 2.3. For example, consider the wh-questions "What do you
want?". The target rule is "S-maj --> what do S[/=NP]". It requires that, after matching "what"

and "do", an S with a missing NP is expected for constructing an S-maj.

Generality of the acquired rules deserves further elaboration here. The reader may question
why a better rule "S-maj --> wh aux S[/=NP]", where "wh" denotes a category covering wh-
words and anx denotes a cateaory covering auxtltary verbs, is not acqurred Unfortunately,'
umversal lmgulstlc pnnuples give no help in this case, since it is the Penpheral Grammar that
needs to take the responslblhty of this kind of generaltzatlon However, peripheral grammar is
what the system tI‘leb to learn thhout .tny prior knowledge about the peripheral grammar of a
partlcular natural language, over- generahzatton mlght be commttted due to elther the categories
that are not well pre- classn“led or some spe01al phrase patterns (e g. notonly S but also S) that
cannot be generahzed in this way. Theretore the more spec1flc version is preferred by the

model The specific rule "S-maj --> what do S[/—NP] may be further generahzed as more
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empirical evidences ure available (step 3 in the learning algorithm).

4. Expei’imént and evaluation

For efficienny, tvhe system is iniplemented in C language on PC-386 computers. There are
about five thousand lines of code in the PlOg,mm The system can acquire thematic features of
unknown nouns, arvument btructure:s nf verbs, general phrase structure rules, and specml patterns
(such as "Not only S, but also S") which are all essential for a practical parser. About thirty gen-
eral grammar rules and thousands of lexicon entries are currently in the dynamic part of the sys-
tem. They are either initially given (for bootstrapping) or acquired by the system. The initialiy
given knowledge includes the syntactic and thematic teatures of some nouns and verbs and a
general set of phrase structure rules such as "S --> NP VP" that can be easily constructed (recall
that the agreement in number between the NP and the VP is licensed by the Control Agreement
Principle). The features of the words in sentences that trigger the acquisition of new rules
should be available. Otherwise, no features can be propagated by the direction of the universal
linguistic principles, and in turn, the acquired rules will be erroneous (recall sec. 2.2). On the
other hand, when the system tries to acquire features of unknown words, all rules (e.g. argument
structures of verbs) for parsing the sentence should be available. Rule acquisition and lexicon

feature acquisition depend on each other in learning.

41 Efficiency of parsing

To show the parsing efﬁciency after 'l_e:u*ning, we show some interesting data concemning
the effects of the introduced problem solving strategies. We had employed the strateglcs of
common work sharing, dynamic conflict resolution, and knowledge indexing in the parsing
module (Liu[13]). Common work sharing keeps a record of both succeeded and failed goals to
eliminate redundant exploration. Dynamic conflict resolution resolves ambiguities in parsing by
dynamlcally scanning the hlstory of parsma and current input. Therefore, a set of parsing (diag-
nostic) rules in traditional Marcus’ parsing (Lxu[lZ]) which is quite difficult to maintain and

acquire, may be avoided. Indexing adopts the concept of lexicon-driven NLP to assimilate and
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retrieve relevant knowledge pieces.

In the kexperimen[, we use 77 sentences to test the performance of the problemv solver
(parser) after learning. Most of the sentences come from a testing corpus originally collected
from Chinese students’ articles for grammar and style checking. The result is shown in Table 1.
Since knowledge indexing maintains knowledge retrieval efficiency after learning, we focus on,
under indexing, the effects of common work sharing and dynamic conflict resolution. As the
result shows, common work sharing has significant contribution to efficiency. When it is incor-
‘porated, dynamic conflict resolution further improves the efficiency. Otherwise, the performance
cannot be acceptable. It is interesting to note that, when common works are not shared among
alternatives, the overhead caused by redundant invocation of conflict resolution even slows

down the global efficiency.

Table 1. Accumulated run time (in second).

Strategies Run Time
Indexing+Sharing+Resolution 62.44
Indexing+Sharing+Non-resolution 97.19
Indexing+Non-shdring+Resolution - 3659.76
Indexing+Non-sharing+Non-resolution 3006.39

The result also. shows that, if different learning approaches (Holder(7]), operationality cr1
teria (Keller[8]), or intelligent knowledge selection methods (Minton[16]) are introduced
without improving problem solving strategies, many "useful” or "goqd" knowledge pieces will
be discarded because of the poor problem solving performance. As a result, the effective power

of EBL may be limited, and even worse, the incomplete domain theory cannot be enhanced.

4.2 Minimal domain theory

As described above, the static part consists of the universal linguistic principles which are
assumed to be invariant and innate to the system. To design an effective explanation-based
natural language acquisition model, the application of universal linguistic knowledge is valuable.
As the model is applied to other languages (e.g. Chinese), whether the static part is adequate or

not becomeés an interesting problem (Huang[30]). We believe that a more concrete and "univer-

113



 sal" model can be expected only after analyzing various learning and processing requirements of
different languages. This analysis can help us to define the minimal static domain knowledge
which is the core of EBL.

- In fact, more predefined domain knowledge also introduces more domain constraints which
might turn to be obstacles in different learning situations (e.g. different target languages).
According to the GPSG formalism, there are still five components that are responsible for licens-
ing natural language sentences but not included as innate domain theory in our model. They are
Feature Co-occurrence Restriction (FCR), Feature Specification Default (FSD), Lexical Immedi-
ate D_ominance Rules (LIDs)7 Non-Lexical Immediate Dominance Rules (NLIDs), Metarules,
and Linear Precedence Statements (LPS). These principles are either the target knowledge to be
acquired (e.g. LIDs, NLIDs, LPS) or the principles that need fine-tuning (e.g. FCR, FSD,
Metarules) among difterent natural languages. Althbugh the introduction of FCR, FSD and
Metarules makes knowledge representation more compact by reducing redundancies in
knowledge bases, to acquire them needs a huge amount of empirical generalization which may
be intractable, especially when empirical generalization is expensive in learning. Fortunately,
they have no effects on the learnability of variouS parsing knowledge. In fact, by fast knowledge
indexing, enumerating knowledge pieces (possibly redundant from the point of view of FCR,
FSD and Metarules) in the general grammar rule base and the lexicon does not deteriorate pars-

ing efficiency.

4.3 The validity and availability of the given parse trees

The kinds of input given to a learning system is essential and can vary from different learn-
ing methodologies and systems. The learning system utilizes the input to derive (or infer) new
knowledge (such as a consistently generalized version of knowledge). In natural language
acquisition; - additional input is indispensable (the semantic bootstrapping hypothesis,
Pinker[20]). In practice, the form and availability of the extra input have a strong effect on the
plausibility (including portability and convergence quality) of the model.

In our model, giving a parse tree of an unrecognized sentence to the system seems to be a
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strong assumption. - From the parse tree, we can have not only categories of words but also
phrase structures of the input sentence. However, there are still many things remaining to be
learned. No parsers can completely parse sentences using general phrase swructure rules only.
The information in the parse tree isbproperly generalized according to the linguistic principles
and current parsing knowledge. The system can thus derive practically essential knowledge
(syntactic and thematic knoWledge) based bn the informative initial input knowledge.

In fact, the extra input can range from syntactic association to semantic-association (or
both) to the current sentence. The critical point is what kind of information the input provides.
Giving syntactic information (Zernik|28], Lytinen[15], Liu[11], Liu[13]) to the system allows
the acquisition of more syntactic (and perhaps semantic) information, while entering semantic
information (Berwick|2|, Siskind[24], Pinker[20], Zernik[27]) facilitates the acquisition of more
semantic information.

Another aspect of providing extra input is the availability of the input. In practice, provid-
ing complicated semantic association is a very heavy burden for a naive user. In language
acquisition, we can also rely on a large "pre-processed” corpus. However, to what extent the
corpus should be bre—pro’cessed? As pointed out in se;tion ;2 (and in Zernik[28] also), a
minimally pre-processed corpus allowing only co-occurrence acquisition contn'butes little in
phrase structure and lexicon ucqhisition. Two constituents that afe conceptually related (e.g. a
verb and its argument) niay not be co-located because they are distant from each other, while
two constituents that are conceptually unrelated may still be co-located due to inadequate infor-
mation in the minimally px'e-proce§sed corpus (Basili[1], Smadja[25]). Furthermore, co-location
acquisition neéds a large corpus and a large memory. To reduce these difficulties, a partial parser
(Basili[1], S‘ekine[22], Smadja|25]), a tagger (Zemik[29]), and/or a set of predefined syntactic
and semantic categories (Basili[1]|, Smadja[25]) need to be constructed before learning. How-
ever, the limitations (e.g. the incorrect analysis on the text and incofnplete set of categories)

_coming from these preprocessing may also be introduced.

Machine-readable dictionaries were also the available sources of the training input in recent
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years (Sanfilippo[21]). To acquire kl.lowledge trom them, a pre-processor (e.g. a parser) is
needed for processing the description text part and the example part in lexical entries. When the
system tries to-learn from-multiple dictionaries or multiple lexical entries, filtering and combin-
ing information from different sources are needed. These processing modules are the basic

requirements, and hence the limitations, of the learning model.

Interactive acquisition (Lang[9], Liu[11], Lu[14], Simmons[23], Velard[26]) shows another
alternative for giving additional information to the system. The confirmation information is
available only if there is a well-trained trainer monitoring the learning behavior of the system.
In addition, the number of questions needed for justifying the generated hypotheses may become
a critical bottleneck (Liu[11]).

The parse trees assumed in the model can come from the trainer, the existing incomplete
parsers, and the parse tree bank constructed for research evaluation (Grishman[5]). Currently,
we are trying to transform an on-line parse tree corpus (PENN tree bank in the CD-ROM from
Association of Computational Linguistics Data Collection Initiative) into the form suitable in the
model. By exploiting the large available parse tree bank, the system can converge to a more

complete parser without relying on the parse trees given by users.

4.4 Future work in the acquisition of unbounded dependency

The acquisition of unbounded dependency in "missing-object” constructions has not yet
been well-developed in the model. For example, in the sentence "Kim is easy to please”, there is
an NP missing in the VP "please". However, for the sentence "Kim is eager to please”, the VP
“please” does not have any NP missing (Gazdar|4]). GPSG deals with the problem by using lexi-
cal immediate domihance (lexical ID) rules of "easy” and "eager”. However, from the acquisi-
tion point of view, the incorporated universal linguistic principles have no help to the discrimi-

nation of the two sentence structures.

5. Conclusion

In this paper, we consider the effects of incorporating universal linguistic principles from -
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the viewpoint of computitional natural language acquisition. PQrtubility and learnability are the
major concerns of the explanation-based natural language acquisition model. Currently, we find
the theta-theory and the universal feature instantiation principles may play the critical role as the
domain theory in EBL. The acquired knowledge can be properly generalized (without causing
over-generalization) by following the guidance of these principles. In the acquisition of
unbounded dependency, these principles facilitate not only the triggering of the chaining pro- 7
cess, but also the locuting of the moved constituents. The acquired operational knowledge,
including Context-Free grammar rules and syntactic and thematic requirements of lexicons,

becomes new domain theory for later parsing and learning.
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ABSTRACT

In a Chinese sentence, there are no word delimiters, like blanks, between the “words”.
Therefore, it is important to identify the word boundaries before processing Chinese text.
Traditional approaches tend to use dictionary lookup, morphological rules and heuristics to
identify the word boundaries. Such approaches may not be applied to a large system due to
the complicated linguistic phenomena involved in Chinese morphology and syntax. In this
paper, the various available features in a sentence are used to construct a generalized word
segmentation model; the various probabilistic models for word segmentation are then derived
based on the generalized model.

In general, the likelihood measure adopted in a probabilistic model does not provide a
scoring mechanism that directly indicates the real ranks of the various candidate segmentation
patterns. To enhance the baseline models, a robust adaptive learning algorithm is proposed
to adjust the parameters of the baseline models so as to increase the discrimination power

and robustness of the models.

The simulation shows that cost-effective word segmentation could be achieved under
various contexts with the proposed models. It is possible to achieve accuracy in word
recognition rate of 99.39% and sentence recognition rate of 97.65% in the testing corpus by

incorporating word length information to a context-independent word model and applying a

- robust adaptive learning algorithm in the segmentation process.

Since not all lexical items could be found in the system dictionary in real applications, the
performance of most word segmentation methods in the literature may degraded significantly
when unknown words are encountered. Such an “unknown word problem” is also examined

in this paper. An error recovery mechanism based on the segmentation model is proposed.
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Preliminary experiments show that the error rates introduced by unknown words could be

reduced significantly.

1. Introduction

Most natural language.processing tasks, such as machine translation or spoken language
processing, take words as the smallest meaningful units. However, no obvious delimiter
markers can be observed between Chinese words except for some punctuation marks.
Therefore, word segmentation is essential in almost all Chinese language processing tasks.

(The same is true for other languages like Japanese.)

Matching input characters against the lexical entries in a large dictionary is helpful in
identifying the embedded words. Unfortunately, an input sentence can usually be segmented

into more than one segmentation patterns. For example, a Chinese sentence like:

HTIIRMS » MSEBIERINRE —ETIR =AY o

may include the following ambiguous segmentation patterns based on simple dictionary

lookup:

L+ HER Wis 0 S B BUARK B BRE — A maEs o

TO MS. FANG, those who decide to BE A STATESMAN never succeed and become famous.

28 AR WE 0 ME Bl BR B BE — B ey fo

TO MS. FANG, those who decide to HOLD POWER and MANAGE A HOUSEHOLD never ...

3 HA MR ME 0 ME Bl OBK M 8E — # URER e

To the LADY of the COUNTER PARTY  those who decide to HOLD POWER and MANAGE A HOUSEHOLD never ...

4axBH MR ME - ME B AR B O®HE — @ Rem o

To the LADY of the COUNTER PARTY, those who decide to BE A STATESMAN never ...

where the first segmentation pattern is the preferred one. To find the correct segmentation
pattern, it is necessary to use other information sources in addition to dictionary lookup. The
main issue for dealing with the word segmentation problem is how to find out the correct

segmentation from all possible ones.
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There are several technical reasons that make the word segmentation problem nontrivial.
First, the Chinese characters can be combined rather freely to form legal words. As such,

ambiguous segmentation patterns may not be resolved by using simple dictionary lookup.

Second, a Chinese text contains not only words but also inflectional or derivational
morphemes, tense markers, aspect markers, and so on. Because such morphemes and markers
may often be combined with adjacent characters to form legal words as well as standing alone

as a word, it is hard to deal with such ambiguities with simple morphological analysis.

Third, unknown words may appear in the input text. This fact may make many word
segmentation models work badly in real applications, because most segmentation algorithms
today assume that all words in the input text could be found in the system dictionary. In fact,
unknown word resolution has become the major bottleneck with the current segmentation

techniques.

To resolve these problems, various knowledge sources might have to be consulted.
However, extensive use of high level knowledge and analysis may requires extremely high
computation cost. Hence, segmentation algorithms that make use of discriminative and easily

acquired features are desirable.

In the past, two different methodologies were used for word segmentation; some ap-
proaches are rule-based (Chen [3, 4], Ho [7], Yeh [10]) while others are statistical ones
(Chang [2], Fan [6], Sproat [8]). Since it is costly to construct lexical or morphological
rules by hand, no objective preference could be given for ambiguous segmentation patterns,
and it is difficult to maintain rule consistency as the size of the rule base increases, it is
less favorable to use a rule-based approach in large scale applications. On the contrary, as
data are jointly considered in a statistical framework, statistical approaches usually do not
suffer from the consistency problem. Also, global optimization can usually be modeled in
statistical frameworks, rather than local constraints by rules. Therefore, statistical approaches
are usually more practical in a large application like machine translation. However, the cur-
rent statistical approaches usually use a maximum likelihood measure to evaluate preference
without regarding to the discrimination power of such models. As a result, when the base-
line models introduce errors, heuristic approaches, such as adding special information to the
dictionary or resorting to later syntactic or semantic analyses are suggested (Chang [2]) to
remedy the modelmg and estimation errors. Such approaches not only deslroy the uniformity

of the stat1st1ca1 methods but also make maintenance difficult.

125



To resolve the above problems, several probabilistic models are proposed in this paper
based on a generalized word segmentation model. The focus is to derive different formulations
under different constraints of the available resources. In particular, features that could be
acquired inexpensively will be used for cost-effective word segmentation so that deep analyses
are needed only to the least extent.

In order to adapt the probabilistic models to reflect the real ranks of the candidate
segmentation patterns and to suppress statistical variations among different application
domains, a discrimination and robustness oriented adaptive learning algorithm (Su [9],
Chiang[5]) is applied to enhance the performance. Moreover, the unknown word problem
will be addressed and be examined against the proposed models; some experiment results

are given and general guidelines to this problem will be suggested.

2. Word Segmentation Models

2.1 A Generalized Word Segmentation Model

For an input sentence with n Chinese characters cy,cg, - -+, c, (represented as c7 here-
after), it might have several different ways of ‘segmentation according to the system dictionary.
The goal of word segmentation is to find the most probable segmentation pattern for the given
character string. Since a segmentation pattern can be identified uniquely with the sequence

of words of the segmented sentence. The goal is equivalent to finding a word sequence
W= ar%‘rlna,xP (W; | ¢t) (2.1.1)

with the largest segmentation score P (W; | c}). In this formula, ar%na,xP( ) refers to
the argument, among all possible 1W;’s, that maximizes the probabilistic function P (-), and
W; = w: ;"‘ W; 1,W; 9, ,W; m, denotes the i-th possible word sequence with m; words,
whose j- -th element is w; ;. |

In general, we could formulate the segmentation score by involving whatever features that
are considered discriminative or available, subject only to the constraints of the complexity of
the model and the number of parameters that need to be trained. In particular, we would like
to use the segmented words (W), the word length information (L;), the number of characters
(n) in the input sentence and the number of words (m;) for the i-th segmentatioh pattern
as the features for word segmentation. (L; = lz’ f = li1,1; 9, -+, l; m; refers to the i-th

sequence of word lengths, where /; ; denotes the length of the j-th' word in the i-th posSible
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word sequence.) These features could be acquired inexpensively in general. Thus, they are
adopted in the current task. With these features, we can identify a “segmentation pattern”
uniquely with a (W;, L;, m;) triple, and the goal of word segmentation would become to find

the word segmentation pattern corresponding to

argmax P (W;, L;,m; | ¢T',n) (2.1.2)
2

Hence, we could define a generalized segmentation score as:

P(WuLzaml I c?vn) (213)

Note that the variables, such as W; and L;, are not independent. Technically, however, these
features are integrated in a single formula so that all models that are computationally feasible
could be derived from this general formula; unavailable features will simply be ignored
when deriving a particular model. ‘

The generalized segmentation score can be estimated in several different ways depending
on the available information resources. In the following sections, we will give a more detailed
derivation of a particular model, which takes advantage of the segmented words and the word
length information for segmentation. Other models can be derived in much the same way.

So they are simply listed without proof.

2.2 Computational Models for Word Segmentation

Assume that a segmented text corpus is available, then we can use the frequency
information of the words and their lengths (in characters) for segmentation. The corresponding

segmentation score for the i-th segmentation pattern will be:

P (L;,W;,m; | cf,n)
=P (l;’?“}w;”lni,77z,; | T, n)
= P (17" wi*,m | ¢}, n)
= P;(IT",wi* | m,c},n) x Py(m | c},n)
m;
= H P; (lk,wk | l’f‘l,w{“_l,m,c?,n) X P;(m | cf,n)
k=1
k=1 k-1 , k=1, k-1
:HPi(lklwkvl] y W a"'v“’)'Pi(u]klll » Wy ,---,n)xPi(mlc?,n)
k
224
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For notational simplicity, P;(-) is used specifically to denote the probability for the i-
th segmentation pattern, and all the respective i indices are dropped from the equation.
The multiplication theory for probability: P (a,b|c) = P(a|b,¢) x P(b]|c), is applied
repeatedly in the derivation, which results in the product terms, indexed by %, in the last
two formulae.

Since [, is unique once wy is given, we have P(ly | wg,---) = 1 for the first
term in the equation. If we assume that the k-th word depends only on the length
lp_1 of the previous word, the second term in the last formula can be approx1mated as

(wk | Z’f l,wf 1. -,n) ~ P (wy | lg_1). Furthermore, if we assume that the number
of words m; depends only on the length of the sentence n, then we have P; (m | <7, n) ~

P;(m | n). With these assumptions, the segmentation problem is equivalent to finding:

argmax P (W;, L, m; | ¢f,n)
2

S argl_na‘xHPi (wi | lg—1) X P;(m | n)
2 .
k
= argmax Z log P; (wy, | lp_1) + log P; (m | n)
1
k

(2.2.5)

where log (-) refers to a logarithmic function. (The log-scaled probabilities are used simply to
reduce the cbmputation time and avoid mathematical underﬂow;) There are several variants
of the above equation, depending on different assumptions made in deriving the- segmentation
score. First, it is possible to drop the term P; (m | n) or ) _log P; (wy, | {;_1), depending on
what information is available, in the previous derivation steps. Alternatively, we can also
assume that the word w;, does not depend on the length of the preceding word length [;,_1,
and thus use P;(wy) instead of P;(wy, | l,_1) in the formula. By changing the roles of
wy, and [ in the last step of derivation, we can use the transition probability P; (I}, | l_;)
instead of P; (wy, | {;._1) in the segmentation score. Therefore, the above formula along with

its variants constitute a family of segmentation scores as shown below:

argmax P (W;, Li,m; | cf,n)
1

m;

Z log P; (wg) (M1)
o .
. (2.2.6)
 onganas | 2 PPl L) (2)
‘ lo;JP m | n) (M3)
Z log P; (wy, | l—q) (M4)
\ k=1

128



Model M1 is a context-independent word model. It assumes that all words are inde-
pendent of the other contextual information. Such a model is used in Chang [2] for the

segmentation task.

Model M2 uses only the word length transition probabilities in determining the word
segmentation patterns. Model M3, on the other hand, uses the number of characters and the
number of words in a sentence as the features for segmentation. It seems that such features
have nothing to do with the characteristics of Chinese words. However, as shown in Chang
[2] and other literatures, most Chinese words are double-character words, single-character
words and tri-character words; more than 99% of Chinese words fall within 4 characters.

Hence, it is possible to make guesses based on word length information.

Moreover, the length information could be acquired without much extra cost when
preparing a segmented corpus. Therefore, such features could provide an inexpensive way
for word segmentation in applications where a large dictionary is not available or expensive
to acquire. In fact, as will be seen in the performance evaluation section, the performance of
such formulations is comparable with others. So it could be used, for instance, to bootstrap
the automatic construction process of an electronic dictionary, where there is not a largé
dictionary initially. | | |

Model M4 uses both word sequence and word length information for segmentation. If
the word length information is ignored, this model reduces to M1. By using the extra word
length information, which could be acquired from the same corpus for training model M1,
this model could make use of more information and the performance is expected to be l:)ette'r'
if the training corpus is large enough to provide reliable estimation of the model parameters.

If a sentence is annotated with lexical tags (i.e., parts of speech) T; ; = ¢; ; 1, - . tij,ms
then it is possible to use such information to define a modified segmeniation score. (Tag
tijk stands for the k-th par't of speech in the j-th poésible tag sequénce of the i-th segmén—
tation pattern.) One can achieve the same optimization criteria as that of the generalized

segmentation score by noting that:

_a_rg?la.x,R (Wi, Li,my | cf,n)

= argmax Z P (W;, Li, T; j,mi | ¢f,n) ‘ :
all T; . 2.2.7)

A argmax 11111r71\ P (W, L, T; j,m; | ct,n)| -
b |aiTy o
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The last formula means to find the tag sequence T; ; with the largest score as defined by

P (Wi, L;, Ti jymi | ¢i,n) 2.2.8)
for each possible segmentation pattern. Then select the segmentation pattern with the highest
maximum score as the preferred segmentation pattern.

By following the same procedures as in Eq. (2.2.4) and making some assumptions, it
is not difficult to find that the following word segmentation models could be used when the

lexical tag information is available:

argmax P (W;, L;,m; | ¢}, n)
1
m;
max 3 log Py (tg | tp-1) (M5)
T; k=1 _ (2.2.9)
~ argmax | max ) log Pij (wp | l—1) + > log Pij (tg [ tr—1)  (M6)
i Tii & ok
max ) log Pyj (wy. | tp—1) + 2log Pyj (tg | tp—1) (MT)
1k k
Here, we use P;; (-) to specify the probability associated with the i-th segmentation pattern
and the j-th tag sequence, with the corresponding indices within the parentheses omitted.
Model M5 is used to find the best parts of speech sequence associated with the ambiguous
segmentation patterns. So the segmentation pattern that produces the most possible lexical tag
sequence is regarded as the desired one. In Model M6, the parts of speech sequence is taken
into account to facilitate word segmentation model M4. In model M7, the segmentation is
considered best if the segmentation pattern maximizes the sequence of corresponding parts of
speech and the sequence of words. Because both word sequence and lexical tag sequence are
the target of optimization in this process, such a formula can be used, with some reestimation

techniques, to segment the words and assign parts of speech to each word at the same time

automatically.

3. Discrimination and Robustness Oriented Adaptive Learning

There are several technical problems with a general probabilistic model. First, the model
might not be good enough to formulate the characteristics of the task under consideration.
This problem can usually be relieved by using appropriate features and by considering more
contextual information when constructing the model. Second, the parameters of the model

might not be estimated correctly due to the lack of a large corpus. This problem can usually
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be made less severe by using a larger database or better estimation techniques. Nevertheless,
even if such modeling problem and the estimation problem could be resolved, it does not
mean that the ranks of the estimated probabilistic measure are the same as the ranks of
preference of the candidate segmentation patterns. Correct recognition, however, depends on

the relative order of the ranks of the candidates.

The criteria of rank ordering and maximum likelihood are usually not equivalent, although
they are highly correlated. Therefore, maximum likelihood estimation does not necessarily
result in minimum error rate for data in the training set. For these feasons, the estimated
parameters for the baseline models need to be adjusted to reflect the ranks of the candidate
segmentation patterns. Hence, another (probably more) important issue is how to adjust the
estimated likelihood measures so as to reflect the real ranks. We do this by adjusting the
values of these probability terms based on the misjudged instances. By doing so, the set of
parameters could be adjusted toward the goal of minimizing the error rate of the training

corpus directly.

Furthermore, since statistical variations between a testing set and a training set are not
tékcn into consideration in the baseline models, minimizing the error rate in the training
set does not imply maximizing the recognition rate in an independent testing set, either. To
enhance robustness, an extra step can be adopted to enlarge the difference in scores between
the best scored candidate and the other candidates. This step will enhance the robustness of

the model so that the performance will not be affected significantly by different text styles.

3.1 Adaptive Learning

The goal of adaptive learning is to provide a new parameter set, A’, such that the new
parameters in A’ can provide more discrimination capability than the baseline parameter set
A by adjusting the current parameters based on the misjudged training tokens. The basic idea
is to adjust the parameters associated with the segmentation score of the correct candidate
when the correct candidate is su'p'ersede'd By other candidates of largér scores; the adjustment
will be continued until the modified score of the correct candidate is the largest among all
candidates. Let y; be the candidate whose segmentation. score is the largest among all the
candidates for the k-th training sentence, and let z be the correct candidate, then a distance
measure dy (yy, z;) could be defined as a measure of separability between y, and z;. In
particular, since we are concerned with the ranking order of the scores of the candidates, the

differences of the segmentation scores could be used as the distance measure.
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A larger difference between the segmentation scores for the correct candidate and the
highest-scored candidate implies larger penalty of misjudgement. Thus, we can define a loss
function as an increasing function of the distance, such as tan™!(d, /dg) (Amari [1]), to

indicate the penalty suffered from misjudgement.

To acquire a better parameter set, each parameter corresponding to the misjudged sentence
is changed by a small amount in each iteration of learning so as to reduce the penalty of
misjudgement; the amount of adjustment, say 6A, will depend on the loss or penalty of

misjudgement. Take the following segmentation patterns as an example:

Lo HER s
Wi w2 w3

2. #Y5 MR WS
wr o w2’ w3’

If model M1 is used, then the segmentation scores for these two patterns are determined by
5 parameters, namely, P1 = logP(W1), P2 = logP(W2), P3 = logP(W3) and P1' = logP(W1'),
P2’ = logP(W2'), P3' = logP(W3/) .( = P3, in this case), respectively. Assume that the initial
values of these parameters are P1 =-1.8, P2=-2.6, P3 =-1.7,P1' = -1.6, P2/ =-2.3, and P3/
= -1.7, then the segmentation score of the first candidate (which is also the correct pattern)
is -6.1 (= -1.8 -2.6 -1.7) and the segmentation score of the second candidate (which has the
highest score) is -5.6 (= -1.6 -2.3 -1.7). Since this training sentence is misjudged, we may
suffer from a loss whose penalty depends on the distance, namely the difference between
the scores, (-5.6) - (-6.1) =0.5.

If the value of the loss function for this distance is 0.46, and the amount of adjustment,
6A, for that amount of loss is 0.2, then we have a revised parameter set: P1 = -1.840.2 =
-1.6, P2 = -2.6+0.2 = -2.4, P1' =-1.6-0.2 =-1.8, P2’ =-2.3-0.2 =-2.5and , P3 = P3’' =-1.7.
Note that since P3 (P3’) happens to be adjusted in both patterns by the same amount, this

parameter will not be changed after adjustment.

It is obvious that the correct candidate now has a higher score after parameter adjustment.
Moreover, the parameters for the highest-scored candidate, which might be responsible for
the misjudgement, are reduced after adjustment. So other misjudged sentences might also
be affected by the adjustment of these parameters. If the correct candidate is still not the

one with the highest score after the adjustment, the same procedure can be repeated; the
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parameters of the correct candidate and the (possibly new) highest-scored candidate will be

adjusted further until the correct candidate has the highest score.

Although the amount of adjustment for the various P(W)’s is shown to be the same
in the current example, it may have to be weighted differently when we consider different
information sources jointly. For instance, in model M6, we may use a smoothing technique
to get a better estimated score by assigning different weights to the P (wy, | lp_1) terms
and the P (t; | t;_1) terms. Under such circumstance, the amount of adjustment for these .
two kinds of parameter sets will also be weighted by the same amount to account for their

respective contributions.

Under appropriate conditions, it can be proved that the average amount of change in
average loss will be decreased due to the adaptation (Amari [1]). Therefore, it is guaranteed
that, by adjusting the parameters A of the baseline models in this manner, the discrimination
power, in terms of the distances between the correct candidate and the other segmentation
patterns, will be increased. Furthermore, since the amount of change in the parameters is
directly proportional to the gradient of the loss function (Amari [1], Chiang [5], Su[9]), this
also implies changing the parameters A in the direction in which the change in mean loss is

“ the most drastic. Therefore, the speed of convergence is fast with this learning algorithm.

3.2 Robustness Enhancement

In addition to enhancing the discrimination power of the segmentation models, the
robustness of the segmentation models is also an important concern. The robustness could
be enhanced by increasing the “margin” of distances between the correct pattern and the
other competing candidates (Su [9]). This can be done by adjusting the scores of the correct
segmentation pattern and the one with the secondary highest score even after the correct
segmentation pattern has been assigned the highest score. The adjustment of the parameters
will stop only after the distance margin between the correct one and the candidate with the
secondary highest score exceeds a given threshold. This will ensure that the correct candidate
is separated from other competing candidates by at least the prescribed amount of margin. In

this stage, the loss will be measured in terms of the distance between the top 2 candidates.

By enforcing a “margin” between the correct segmentation pattern and the most compet-
itive candidate, the segmentation score will be more robust in the sense that any statistical
variations between the training corpus and the real instances in the various applications could

be properly suppressed. It is very important to enhance the robustness of the models in this
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way, because the instances in real applications could not be predicted in advance. For more
technical information on the robust adaptive learning algorithm, please refer to (Amari [1],
Chiang [5], Su [9]).

4. Resolution of the Unknown Word Problem

Most word segmentation models in the literature are based on a simple assumption
that all words in the text could be found in the system dictionary; there are no “unknown
words” to the dictionary. However, as will be seen in a later section, such an assumption is
usually unrealistic; the error introduced by unknown words, such as unknown proper nouns,
constitutes a large fraction of the error rate in word segmentation. Therefore, it is important
to take the unknown word problem seriously in dealing with real applications.

A word may become unknown to the system simply because it was not stored in the
dictionary. or because it belongs to some particular types of words, such as proper nouns,
that can not be enumerated exhaustively. Sometimes, a substring of an unknown word is a
legal word in the dictionary. In this case, the unknown word will be divided into pieces in
the dictionary lookup process. It is also possible that an unknown word is a substring of
some legal words in the dictionary. In this case, the unknown word will be hidden behind
the legal word. All these error transformations: missing entry, separation of the unknown
word into pieces, and hidden by a legal word, make it impossible to find all segmentation
patterns by a simple dictionary lookup process.

The general solution is to take possible inverse error transformations in the vicinity of an
unknown word; then evaluate the segmentation score or a revised version of it to select the
most possible segmentation pattern, with unknown words recognized as a particular class of
character stream of unknown length. This means to extend the segmentation patterns acquired
from simple dictionary lookup by combining or dividing characters in a prescribed window
where an unknown word is suspected to occur, and choose the most likely segmentation -
pattern from the set of extended segmentation patterns, including those candidates that are
introduced by the unknown word problem. The general solution could be very complicated
and will be addressed in other papers. Here, we just show a simplified version, and reveal
some technical issues in unknown word resolution.

In particular, we could regard an unknown word, say wy, as a unit of unknown length
[ that could possibly appear anywhere in the region where an unknown word is suspected

to occur. We then use the dependency of the class of unknown words with their context to
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determine the preference of the various segmentation patterns. The main task is to determine
~ the positions and lengths of the unknown words in the suspected “unknown word regions”

as shown below.

i » unknown word region — 4.

iz/“‘"“\/"“\/w\/\/’m\
- W .
<A

1k-l

P(Wyllc1)  P(Wkally)

Figure 1 Evaluating segmentation score when unknown words are encountered.

For simplicity, assume that an unknown word region has been identified and exactly one
unknown word is within the region, then we can formulate the segmentation score as in any
of the previously mentioned models by replacing w; , in one of the probability terms with
wy, and evaluate the segmentation scores for the various possible locations and lengths in the
same way as if it was a known word. For example, if model M4 is applied to the suspected

unknown word position and word length in Figure 1, we will have probability terms like:

score - X Py [ lp_1) X P(wpyy | Ly) x--- “4.1)

where P (wy | l;_1) is the probability that an unknown word will follow a word of length
Ip_1, and P (wpy | ly) is the probability that the next word wy, will appear after an
unknown word of length [,.

‘The transition probabilities concerning the unknown words could be estimated from the
training corpus by counting the relative frequencies of the lexical entries that could not be
found in the system dictionary and the word lengths of their surrounding words.

Also, to rate the possibility that the suspected unknown word region does contain an

unknown word, the above formulation must contain a factor of the form:

P (cf coutains an unknown word of length I, at position k | ch) 4.2)

which serves to detect the unknown word regions. The detection of the unknown word regions
is a nontrivial task. For the present, we just use the available word length information and

~ the following simplified formula to account for the above factor:
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P (Luwr) X P (w.“_ € dtlwwr= Luu,,.) x P (zu | wy € cﬁ“uwr‘l) 4.3)

where P (L) is the prior probability that the unknown word region (“uwr”) consists of
i+L1m7‘_l

isolated single characters of length Lyyr; wu € c; stands for the event that an

unknown word does exist in the unknown word region, and P (lu | wy € c?Lum_l) is the
probability that the unknown word length in such an unknown word region is of length /.

The results will be investigated in the analysis section.

5. Test and Analysis

5.1 Simulation

To compare the performance of the various models, a Chinese text corpus with articles
from different domains is constructed for evaluation. The contents of the corpus are mostly

related to politics, economics and cinema review.

The sentences are segmented by hand so that they could be used for training or testing, as
well as for comparison with machine processed results. The characters between punctuation
marks are segmented into smaller tokens. Because there is no common standard about the
definition of Chinese words, some rules of thumb are used for manual segmentation. In
particular, the following principles of segmentation are taken to keep it as consistent as

possible.

1. Frequently used compound nouns and idiomatic expressions are segmented as single
words without further segmentation.

2. A segment that has a direct mapping with an English word is considered a Chinese
word. This technical principle is adopted specifically for the machine translation
system we are working with.

3. Small segments that could be derived with general morphological rules are merged
and be regarded as one word. In general, such words can be formed in the lexical
analysis phase with a simple finite state machine. Therefore, the merged segments are
considered a word that should be output by the segmentation algorithm as one unit.

4. When a segment is segmented into smaller tokens and the semantics of this segment
can not be recovered by the compositional semantics of the smaller tokens, then the

original segment will be regarded‘_ as a single word.
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5. A large segment that contains a predicate part, its arguments or complements,
negation markers or aspect markers is divided into smaller segments correspo'hding to
the respective parts. This makes it easy to map each part to its syntactic or semantic
construct when used for natural language applications. In fact, the purpose of word
segmentation is to find the terminal words to be used by a syntactic or semantic
analyzer. Therefore, those segments that could be mapped directly to th.e' syntactic
or semantic constructs are identified as such terminal words.

6. When conflicts are encountered in applying these principles, judgement is given by

the human according to the frequency of use.

The testing sentences are scanned and all ambiguous segmentation patterns allowed by
dictionary lookup are constructed. The various segmentation patterns are then scored with
the various segmentation models. Adaptive learning as well as robustness enhancement are
performed to improve the segmentation models in some testing cases. The top-1 candidate is
then compared with the hand parsed results to evaluate the performance of the model under

consideration.

Instead of judging the correctness by human inspection after the machine processed results
are produced, a file is prepared to hold hand-parsed segmentations for comparison before the
evaluation is started; the file is kept untouched throughouf the evaluation process for all
models. Such arrangement ensures that the evaluation is not affected by personal judgement,

which may vary from one time to another, and keeps a consistent criterion of correctness.

The dictionary contains 99,441 entries, and about 9,755 words are actually encountered
in the corpus. The tag set for models M5 — M7 contains a total of 22 parts of speech for
Chinese and 3 special tags. (The testing environment is shown in Table 7.) To see the effects
of unknown words on the performance of word segmentation, some tests are conducted in
two modes, one with unknown words in the testing sentences and the other with all unknown

words inserted to the dictionary.

5.2 Performance Evaluation

‘Since most models exhibit high recognition accuracy, the error rate, defined as “100%-
Accuracy” is emphasized in performance evaluation. (The word accuracy or sentence
ac(curacy._ are shown in the parentheses for comparison with other reports though.) The
word accuracy is defined as the number of correctly segmented words divided by the total

number of words in manually segmented sentences. The sentence accuracy, on the other
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hand, is defined as the number of correctly segmented sentences divided by the total number
of sentences involved in testing. Here, a sentence actually refers to a segment between the
punctuation marks. A sentence is said to be “correctly segmented” if none of the words in

the sentence is incorrectly identified.

Baseline Performance

Table 1 and Table 2 show the baseline performance with models M1, M2, M3 and M4
as shown in Eq. (2.2.6). In Table 1, the training and testing sentences contain unknown
words, which can not be found in the dictionary. In Table 2, all unknown words are entered

to the dictionary as legal entries.

Training Set Error (*Accuracy) | Testing Set Error (*Accuracy)

Model word (%) sentence (%) word (%) sentence (%)
Max Match-1 4.01 (95.99) | 20.74 (79.26) | 4.23 (95.77) | 20.68 (79.32) .

Max Match-2 4.01 (95.99) | 20.77 (79.23) | 4.15 (95.85) | 20.54 (79.46)

P(LkILk-1) 8.70 (91.30) ' | 45.54 (54.46) | 9.41 (90.59) | 47.86 (52.14)

P(min) 7.19 (92.81) | 38.61 (61.39) | 7.82 (92.18) | 39.30 (60.70)

- P(Wk) 3.62 (96.38) | 19.81 (80.19) | 3.94 (96.06) | 19.97 (80.03)

P(WkILk-1) 3.68 (96.32) | 20.08 (79.92) | 4.07 (95.93) | 21.04 (78.96)

(*) The numbers in the parentheses show the accuracy rates

Table 1 Baseline Performance WITH Unknown Words

Training Set Error (Accuracy) Testing Set Error (Accuracy)

Model word (%) sentence (%) word (%) sentence (%)
Max Match-1 1.14 (98.86) 4.05 (95.95) 1.22 (98.78) | 4.07 (95.93)
Max Match-2 1.14 (98.86) 4.07 (95.93) 1.12 (98.88) | 3.78 (96.22)
P(LkILk-1) 6.16 (93.84) | 37.57 (62.43) | 6.82 (93.18) | 40.09 (59.91)
P(mln) 5.24 (94.76) | 28.53 (71.47) 571 (94.29) | 29.60 (70.40)
P(Wk) 0.54 (99.46) 2.07 9793) | 0.76 (99.24) - 2.50 (97.50)
P(WKILk-1) 0.47 (99.53) 1.77 98.23) | 0.73 (99.27) | 2.50 (97.50)

Table 2 Baseline Performance WITHOUT Unknown Words
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A commonly used heuristic approach, designated as “Max(imum) Match-l”, is also shown
for comparison. It scans the input from left to right and from right to left, respectively, to
match against the dictionary entries; the one with a smaller number of words is considered
the preferred segmentation pattern. During the scanning process, if two matches against the
dictionary entries are possible from the current word boundary, then the one with a larger
number of characters is selected as the correct match. If the total number of words in both
scanning directions are the same, then the first distinct word, either from left or from right,
is compared. The segmentation pattern cofrespondjng to the word with a larger number of
charac'te'rs“is selected as the preferred pattern. A variant of the maximum match approach,
designated as Max Match-2, as proposed in Chen [4] (Heuristic rule #1), is also implemented
for comparison. It scans the text left-to-right and uses a 3—word sequence, instead of a single

word, to judge the preference of the first word in this sequence.

There are several interesting and important points to point out concerning the above
performance. First, it is surprising that a “trivial” model like model M2 (P; (I | I._1)) or
model M3 (P (m; | n)), which uses only the word length, word count and character count
information, achieve comparable performance in word accuracy as the other models that

make use of word information.

As noted previously, Chinese words are mostly double-character words, single-character
words and tri-character words. This implies that there might be useful information in the
dependencies between word lengths and even character counts or word counts. Therefore,
it is significant to use such features for segmentation. As can be seen from the tables, such
a trivial model is not significantly worse than other more “reasonable” models. This means
that word segmentation could be easily resolved statistically even with a simple model like
model M2 or M3. Because the number of parameters for these two models are very small and
the parameters do not refer to any lexical entries, they could be used in some applications

where a large dictionary is unavailable.

Second, the unknown words introduce significant error rates. The word accurzicy is
degraded by about 2-3% in both training set or testing set, and the sentence accuracy is
degraded by about 8%-19%. This means that the unknown word problem is a major source
of errors for the word segmentation problem. The degradation is also observed between Table
3 and Table 4 evén after adaptive learning is applied; in this case, the degradation in word

accuracy is about 3% and the degradation in sentence accuracy is about 17-19%.

In Table 1, M1 model is slightly better than M4 model; in Table 2, M4 is slightly better
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than Ml However, the difference in word accuracy is not more than 0.1% and the sentence
accuracy differs by less than 1.1%. So it is hardly dlstlngulshable The same is true when we
'compare the correspondmg rows in Table 3 and Table 4 where adaptive leamlng is apphed
A larger difference is observed only when the tag transition probabilities (P (¢, | tx_1)) is
jointly considered for segmentation as shown in Table 5. In general, the M4 model is slightly

better than M1. Yet, both models are better with respect to the maximum match heuristics.

Adaptive Learning

Table 3 and Table 4 show the performance after the robust adaptive learning algorithm
is applied to the baseline models. Since the maximum match algorithms use a deterministic
process, they do not have the capability of learning. Hence, there is no corresponding entry

in the tables.

Training Set Error (Accuracy) | Testing Set Error (Accuracy)
Model word (%) sentence (%) word (%) sentence (%)
P(LkILk-1) 4.17 (95.83) | 21.33 (78.67) | 4.37 (95.63) | 21.33 (78.67)
P(mln) 4.33 (95.67) | 22.18 (77.82) | 4.43 (95.57) | 21.47 (78.53)
P(Wk) 3.28 (96.72) 18.79 (81.21) | 3.84 (96.16) | 20.26 (79.74)
P(WkILk-1) 3.23 (96.77) 18.28 (81.72) | 4.00 (96.00) | 21.04 (78.96)
Table 3 Performance WITH Unknown Words after LEARNING
Training Set Error (Accuracy) | Testing Set Error (Accuracy) -
Model word (%) sentence (%) word (%) sentence (%)
P(LkILk-1) 1.20 (98.80) 4.65 (95.35) 1.19 (98.81) 4.14 (95.86)
P(mln) 1.26 (98.74) 4.99 (95.01) 1.23 (98.77) 4.21 (95.79)
P(Wk) 0.38 (99.62) 1.60 (98.40) | 0.68 (99.32) 2.50 (97.50)
P(WkILk-1) 0.11 (99.89) 0.48 (99.52) | 0.61 (99.39) 2.35 (97.65)

Table 4 Performance WITHOUT Unknown Words after LEARNING -

When comparing Table 3 and Table 4 with Table 1 and Table 2 respectively, some facts
are observed. First the simple models M2 and M3 are greatly impro{/ed both in word accuracy
and sentence accuracy by adaptive learning. The improved performance is comparable with

the other models which use word information. The improvement for M1 and M4 models are
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less obvious because the baseline performance is already very high before learning. In fact,
one instance in Table 3 shows a little degradation in sentence accuracy due to over-tuning of

the parameters. However, substantial error rate reduction can be observed in the other cases.

The above results confirm the underlying principle of adaptive learning that finding the
correct ranks among the estimated scores, rather than finding a better estimate of the scores,
plays an important role in statistical word segmentation (and virtually in all such statistical
frameworks.) This may also imply that the initial baseline model might not be as important
as the learning process, although it is important to have a good initial guess. Indeed, the
criterion of the initial baseline models is to minimize the risk of misjudgement by maximizing
the estimated probability measure. On the other hand, the robust adaptive learning algorithm
try to find a direct mapping between the scores and the ranks of the candidates and try to
overcome statistical variations between the training and testing sentences by minimizing the
system error rate directly. Therefore, as observed in the tables, it is more robust for unseen

- text after learning.

Segmentation with Lexical Tags

Table 5 shows the performance when lexical tags (i.e., parts of speech) are used in
word segmentation. These rows correspond to the models M5, M6, M7 in Eqn. (2.2.9). In
comparison with Table 2, the baseline performance of model M5 (P (¢, | t.—1)), which uses
lexical tags for segmentation, does not show more promising performance than M1 or M4,
although its word accuracy can achieve as high as 97%. The model M1 (P (wy)), when
jointly considered.with the lexical tag transition probability (P (wy) x P (tg | tr—1)), is in
le—1) X P (2 | tp—1)) is
only slightly better than that of M4, where the tag transition probability is not used. The

fact degraded slightly. The baseline performance of M6 (P (wy

surprising results might be due to the very free linear order of the Chinese language.
Nevertheless, the overall performance of model M6 is the best among all when robust
adaptive learning is applied. Word accuracy in this operation mode can achieve as high as
99.91% for the training set and 99.39% for the testing set. The sentence accuracy is 99.55%
and 97.65% for the training set and the testing set, respectively. Since this model is to
optimize the segmentation pattern and the tag sequence, it is useful for automatic tagging

of plain Chinese text.

If adaptive learning is not ap'p]ied to M6, its performance becomes slightly less satisfac-

tory. Under this condition, the M4 model with adaptive learning has the best performance
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among all interesting models. Since the same corpora for the M1 model could be used to
acquire the required parameters P (wy | l;;—1), the performance is achieved without extra
cost beyond what is required for the context-independent word model (M1). Therefore, a
good model along with robust adaptive learning could result in a cost-effective segmentation

model without using extra resources.

Training Set Error (Accuracy) Testing Set Error (Accuracy)

Model word (%) sentence (%) word (%) sentence (%)
P(TkITk-1) 2.52 (97.48) 14.39 (85.61) | 2.65 (97.35) | 14.19 (85.81)
after learning => 0.82 (99.18) 3.14 (96.86) 0.92 (99.08) 3.21 (96.79)
P(W)*P(TkITk-1) 0.66 (99.34) 2.89 (97.11) 0.89 (99.11) 3.57 (96.43)
P(WIL)*P(TkITk-1) 0.47 (99.53). | 1.77 (98.23) 0.71 (99.29) 2.43 (97.57)
after learning => 0.09 (99.91) 0.45 (99.55) 0.61 (99.39) 2.35 (97.65)
P(WIT)*P(TkITk-1) 1.47 (98.53) 6.79 (93.21) 1.50 (98.50) 6.04 (93.94)

Table 5 Bascline Performance WITHOUT Unknown Words but WITH Lexical Tag Information

Lexical Tags vs. Learning

In contrast to adaptive learning, using lexical tags does not seem to help much in
word segmentation. This can be verified by comparing the baseline performance of the
P(wg) x Pty |tp—y) and P(wy |lp—y) X P(t | tg—1) models in Table 5 with the
performance of P (w},) and P (wy, | I;,_y) models in Table 4; the small amount of degradation
might imply that adaptive learning is more effective in improving the baseline models than

using the lexical tag information (unless adaptive learning is also applied.)

Unknown Word Problem

As described previously, the error rate introduced by unknown words is significant. Many
models in the literature are based on the assumption that all words in the text could be found
in the system dictionary. It is evident, however, that such an assumption is unrealistic from
the experiment results. This may imply that more research energy should be directed toward
unknown word resolution rather than the development of alternative baseline models. Table 6
shows the performance for unknown word resolution with the model proposed in the previous

section; the underlying model is a revised version of the M4 model.
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Training Set Error (Accuracy) Testing Set Error (Accuracy)

word (%) sentence (%) word (%) sentence (%)

before learning 38.06 (61.94) | 85.04 (14.96) | 39.64 (60.36) | 86.38 (13.62)
after learning 1.78 (98.22) 8.35 (91.65) 3.59 (96.41) | 15.26 (84.74)

Table 6 Performance for Unknown Word Resolution (Baseline and Learning for 10 iterations)

It is interesting to note that the performance of the baseline model is very low. This
is probably a generic phenomena for all kinds of error correction problems; because the
segmentation patterns are extended according to the error types, the candidate patterns are
no more confined to the patterns that could be generated with dictionary lookup. Hence,
the number of possible segmentation patterns increases drastically, and the performance of
the baseline model tends to degrade. Another factor that accounts for the degradation in the
baseline performance is the estimation error of the model parameters. Because all unknown
words are regarded as a special class of words with the same statistical behavior, the estimated
probabilities, such as the P (wy | [;~1) term, may not indicate the specific distribution of a
specific unknown word under consideration. To resolve this problem, adaptive learning is
essential. The learning results in the table show how unknown word errors can be recovered

after adaptive learning is applied.

In comparison with the best baseline performance in Table 1 and the best learning results
in Table 3, where unknown words are not handled, the error rates are reduced by 45-51%
for words and 54-58% for sentences in the training set; in the testing set, the reduction in

error rates amounts to 7-9% for words and 24-28% for sentences.

Of course, we also noted that some isolated single-character words are merged by mistake
with this simplified error correction model. This may imply that the current features for
detecting the unknown word region and the existence of the unknown words are not effective
enough for detecting some instances of unknown word errors. If better features other than
the sentence length, word count, and character count could be used, the improvement might

be even more encouraging. -
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Cost Concern

The costs of the various models are directly related to the corpus size and the number of
parameters to be estimated. Table 7 shows the testing environment, including the numbers of
parameters for all models. Among the various models, model M2 and M3 have the smallest
number of parameters. As shown in the above experiments, many models proposed here do
not have significantly different performance in terms of accuracy on segmentation. The costs
of the models are thus important in some applications. This seems to suggest that we could
start with a simple baseline model and use an adaptive learning algorithm to acquire low
cost yet high performance in word segmentation. It also suggests that we could use the less
expensive models, for example, to bootstrap an automatic dictionary construction process

from very limited available corpus resources.

Number of Number of
Model Model '
Parameters Parameters
P(LkILk-1) 40 P(TkITk-1) 625
P(min) 229 P(W)*P(TkITk-1) 9,7554+625
P(Wk) 9,755 P(WIL)*P(TklITk-1) 14,473+625
P(WkILk-1) 14,473 P(WIT)*P(TkITk-1) 10,231+625
Training Set 41599 words / 5608 sentences
Testing Set 10134 words / 1402 sentences
Dictionary 99441 entries
Lexical Tags 22 parts of speech & 3 special tags
Ambiguity 8.6 candidates/sentences (both training set & testing set)

Table 7 Testing Environment

6. Conclusion

In this paper, we have proposed a generalized word segmentation model for the Chinese
word segmentation problem. We have shown how to use the various available information
to resolve the segmentation problem based on the generalized model. It is shown that word
segmentation can be resolved easily and inexpensively with the proposed statistical models.
Word accuracy as high as 96% and sentence accuracy up to 80% can be achieved in the
baseline model when there are unknown words. When there are no unknown words, the

performance is about 99% for words and 97% for sentence.
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In addition to the baseline models, a robust adaptive learning algorithm is proposed to
enhance the performance of the baseline models so that these models could perform well
even in handling unseen text. It is noticed that a good adaptive learning algorithm is critical
to facilitate word segmentation. The reason is that a good robust adaptive learning algorithm
could provide a scoring mechanism that direc;tly minimizes the error rates both in the training
corpus and the testing set. Therefore, it provides better discrimination power in ranking the

large number of possible segmentation patterns.

We also find that the unknown words contribute a significant portion of the error rate.
To be practical in real applications, the unknown word problem should therefore be taken
seriously. In this paper, we have proposed an error correction mechanism for resolving
the special unknown word problem. With such a mechanism, the error rates are reduced
by 45-51% for words and 54-58% for sentences in the training set; in the testing set, the

reduction in error rates amounts to 7-9% for words and 24-28% for sentences.

Throughout the framework, we had tried to use extra information from the least expensive
features already available in a segmented corpus. By using the extra features of character
count, word count and word length information, it is shown to improve the system perfor-
mance with respect to the other models that do not use them. The use of such inexpensive

features also make possible some applications where the available resource is limited.
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Abstract

In this paper, we report our experiment on a modular statistical approach to machine
translation system. The experiméntal MT system consists of modules implemented by
statistical methods to handle different level Qf ' linguistic analysis. The overall
architecture of the system resembles that of a transfer-based MT system, but With less
explicit expert knowledge involved. Five hundred simple bilingual sentences with main
verbs restricted to 30 commonly used verbs are used as training data. These sentenées are
syntactically and semantically tagged to provide statistical data for case role analysis and
transfer. A bilingual dictionary and collocation data from a corpus of Chinese news are
used in target generation. The system is tested against the original 506 sentences and

additional 100 sentences with promising results.

1. Introduction

Changes in the philosophy of language and mind heavily influence the MT
researchers in using different approaches. In the 1970s and 1980s, rule-based systems are
philosophically based on Norm Chomsky's deterministic rationalism, which means, the
meaning of é sentence is inferred by a successively modification of internal model. As a
result, the translation process amdunts to the mechanical determination by fixed rules.

However, Chomskyan paradigm is by now widely rejected [Sampson 83].

Another view being widespreadly accepted is fallible rationalism, ‘which means, the
mind responds to experiential inputs not by a deterministic algorithm (rule), but by
creatively formulating fallible hypothesis. On this view, it suggests MT researchers
ought to exploit any techniques that offer the possibility of better approximation to

acceptable translation.
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This changing trend was reflected by the growing popularity of statistical-oriented
approaches in computational linguistics community. For MT, rule-based approaches
need complete understanding of the.chaiactgdsti_és of the source and target language; on
the contrary, staﬁsﬁcal—oﬁented ‘approaches_ uses little lingui's'tki'cs. ‘anﬁlysis and treats
translation problem purely as a process of opiimization of possibility. Both approaches
have its own benefits and drawbacks. Generally speaking, they can compensate for.each -
other. Hence, to seek a balance point between these two different approaches seems a

feasible way to go.

1.1 Machine Translation Model
The models of MT range from rule-based to corpus-based. Others that lie between are
example-based and hybrid systems. For simplicity, we orily discdss the rule-based and

corpus-based models here.

1.1.1 Rule-based Machine Translation

Rule-based machine translation model may be roughly classitied as transfer and
interlingua approach. "The interlingua approach is now largely disfavored in most
practical systems. The distinction among direct translation, transfer-based ahd
interlingua system is fairly captured by the well-known pyramid diagram in Fig-1 that is
probably first found in [Vauquois 73]. This diagram shdwé the deeper the 'ané.inis of the
source language (SL), the less com'plex is the rhapping from source language to target
language (TL) [Somers 87]". But how deep should the analysis be remains an open issue.

Undoubtedly, proper analysis gréatly reduced the conip]exity of thé'-problem,
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theoretical pivot language

) interlingua " ‘generation
analysis 9 9 -

/ transi_‘er ] \ -
. dlrve'ct.» . - target language

Fig-1

source language

In most transfer-based MT systems, SL text is syntactically analyzed, then transformed
into some intermediate representation (e.g., case role in case grammar), and finally TL
text is generated. In summary, the whole process can be realized in three phases:

analysis, transfer, and synthesis.

1.1.2 Corpus-based Machine Translation
[Brown 90] first proposed a new MT model, consisting of translation model (TM)
and language model (LM) The former describes the local correspondences between the
.two words in two dlfferent language while the latter shows the linear relauons among the
words w1th1n the same language More precisely, glven a sentence in SL the translauon
problem reduces to: (1) ﬁnd the word- by-word correspondences of the 1nput in the TL
and (2) among the correspondmg words i in (1), find the most likely translatlon of the

1nput W.I. t the TM and the most plauslble target sentence w.r.t the LM

1.2 Recent Statistic_él Computaional Linguistics Researches
The researchers on machine translation have paid much attentions to corpus-based
approach for the past few years. This trend is due to the fact that machine translation

involves in both complex and tremendous knowledge acquisitions. The rule-based
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approach suffers from the disadvantages of time-consuming knowledge.engineering -and

difficulty in maintaining data consistency. _ o

Lately, much research effort in statistical approach has been devoted to fundamental
works in computational linguistics. The following sugcessful_ results encourages MT

researchers to reconsider the MT proble_:m from quite a different p_oin; of view.

. _Tagging part of ‘speech _

Seyeral studies attack the problem by optimizing the product of the probabilities of
relative tag prdba_bility (RTP) and tag bi-gram, achieved a correctness of 95% [Derose
88,_Church 89]. Also, a corpus-based segmentation of Chinese text reported a 90-95%
accuracy [Chang 91].

¢ Grouping non-recursive noun phrase

Using the bi-gram probabilities of starting a noun phrase and ending a noun phrase, non-
recursive noun phrases for unrestricted text can ’be grouped with a 95-99% accuracy
[Church 88]. |

¢ Finding clauses _

Similar technique also applies to finding clauses in unrestricted text with a mere 6.5%

error rate [Ejerhed 88].

In addﬁon, some researchers also use statistical models to disambiguate word sense
[BroWn 91] and [Dagan 91), and to tag sentences for thematic relation learning.
Nevertheless, not all the statistics-oriented natural language processings are satisfactory.
With the progress in these fundamental problems, the framework of a modular and

statistical MT system apparently based on sound ground.
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1.3 Our Model

Traditional rule-based systems deal with different linguistics problems in several
modules because MT problem involves many huge and minute knowledge sources on
different linguistic levels (morphology, lexicon, syntax, semantic, etc.).“In a statistical
MT system, in order to isolate the effects of irrelevant parameters, the work of analysis,

transfer and synthesis should be accomplished within different modules.

Our major concern for this study is how to take advantage of the Stétisticai power in
dealing with uncertain or inconsistent data in corpus-based system, “and the
generalization power as well as economic property of linguisﬁcs knowlédge. Hencé, we
propose a statistics-oriented method that incorporates the linguistics knowledge as the

backbone of information retrievals.

Our assumption is that if statistical approaches to group all kinds of phfase and
embedded sentences (instead of parsing) can be fuliy developed in the near _future, it
would be worth paying more attentions to do analysis, transfer and synthesis not in so
rigid ways as before. We thus, by the use of case grammar, attempt to cohs&uct
staﬁsiical models, with less effort involved, to deal with case role analysis, case role
translation (some kind of transfer) and lexical choice. These three niodules togethér can
form the kernel of a MT system. We hope that some inspiration from our experiment
might help to sketch out the skeleton of a modular and statistical machine tra_mslation

system in Fig-2.
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Our discussion includes (3), (4), and (5). (1) comes from the Claw tagging system. In
(2), the statistical models for grouping non-recursive noun phrase comes from [K. D.

Church 89]; the grouping of other kinds of phrase were implemented by some heuristics.

2. Case Role Analysis

Case grammar is widely adopted in MT researches because of its good property of
capturing the deep structure of a proposition, and thus is suitable t\'or analyzihg source
and generating the TL. For simplicity, in our experiment we only consider the easiest

case, that is, simple sentence without any tense, aspect or mood .

2.1 Statistical Model for Case Role Analysis

A predicate may have many case frames; to tell one from the others may need a

delicate mechanism to analyze the functional relationships among the constituents of a
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structure. In order to avoiding such complex work, we attempt to construct a simpler

statistical model to do the same things.

L For inner roles:
We use the tri-gram information of inner roles and prepositions (case makers) for a
specific predicate to substitute the need for the case frame. Take the case of provide for

an example:

2-1.[Ag I [V prov{de] [Th a book] to [Be him].
The tri-grams are: ("","",Ag), ("",Ag,V), (Ag,V,Th), (V,Th,to), and (Th,to0,Be).

2-2.[Ag 1] [V provide] [Be him] with [Th a book].
The tri-grams are: ("","",Ag), ("",Ag,V), (Ag,V,Be), (V,Be,with), and (Be,with,Th).

In addition to the tri-gram contextual probabilities (CP), we also need relative case
probabilities (RCP). We define RCP to be the "relative probabilities of the tags the of a-
phrase head to assume a certain case role", i.e., Pr(roleltag,.,,). For example, a singular
common noun NN! may act as a Theme with the probability of 0.6, as an Agent with
probabilityIO.l, as an Experiencer with 0.03 probability, and as a Beneficiary with 0.02
probability. Then, the RCP of NN would be: Pf(ThINN)=O._6, ?r(AgINN)_--O.L
Pr(ExINN)=0.03, Pr(BeINN)=_0.04. Ta_ble-l shows part of the RCP.

1 All the tags used in the paper come from LOB tagset.
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‘RCP | NN | ‘NP2 | PP1A3 {PP30S*| JI5

Th 0.6 0.3 0.05 08 | 0.1 -

Az | 01 | 02 | o8 0 0.1

Ex | 003 | 0.1 0.07 | 0.06 | 0.05 |

Be | 004 | 01 | 0 | 008 | 005

cp | 002 ] 001] o 0.01 | 045

Table-1 Relative Context Probability . =

In table-1, Pr(AgIPPlA):O;S, - means that I tends to function as -an Agent.
Pr(AgIPP30S)=0 means them never function as an Agent. Pr(ThINN)>Pr(AgINN) means
a common noun has a greater tendency to function as a Theme than as an Agent. We
choose the tag of a phrase head because of two reasons: (1) Head is the most informative
word in a phrase and.(2) The n-grams can capture more. information with unimportant

words skipped.

The analysis process is to maximize the product of case role tri-grams for the predicate

and RCP.

IL. For outer roles:

Most outer roles can act as only one case role; this greatly reduces the ambiguity in
analysis. Unfortunately, dealing with outer roles may be problematic invca.s;e role analysis
because: (1) Outer roles occur with comparatively low frequency, simply training outer.
roles from corpus without special processing may suffer from the problem of

undersampling. (2) The syntactic structures (surface structure) of outer roles are diverse,

2 proper noun: John, London « -
3 1st singular nominatiove pronoun in subject posmon 1
4 3rd plural nominative pronoun in object position:: them
5 general adjective: tall, good

: 157



ranging from all kinds of phrase to subordinate- clauses. - Among them, some are

analyzable; others are idiomatic.

. Since there is no suitable statistical model at hand, we use mainly heuristics to deal with

outer role analysis.

3. Case Role Translation
Transfer operations improve the quality of translation. Instead of examining the
syntactic structures and idiosyncrasies of specific lexical items, we choose to do case

- role translation to facilitate the transfer process.

3.1 Why Transfer?

Even though the deep (semantic) structures are identical, there are surface (syntactié)

structure differences between source and target language. See the following examples:

3-1. [Ag 1] [V washed] [Th the car] [P1 in the garage] [Ti yesterday].
The translation "[Ag 3] [Ti #FK] [Pl FEEE] [V %] [Th E-F]" shows the syntactic

differences (case role order) between Chinese and English.

3.2 Statistical Model for Case Role Translation
" As before, we rely on both translation and language model to cope with case role

translation. The majbr tasks of case role translation are as follows:
(1) Reorder the case roles.

(2) Translate the preposition of outer role into proper target words.

(3) Pick out some function words and put them in appropriate place.
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For instance, the sentence "I place the vase on the desk carefully” has the case analysis:
3-1. [Ag I] [V place] [Th the vase] [Lo on the desk] [Ma caréfully].

After the case translation, the result is "Ag Ma #tt £ Th V ¥ Lo _E". These three

tasks are realized separately as follows:

(1) (Ag V Th Lo Ma) is reordered to (Ag Ma Th V Lo). |
(2) on is translated into 7E... . '

(3) # and 7€ are inserted in the proper positibns.

I. Translation model:
The translation model provides the probabilities of correspondences between source’

and targets case roles with/without a case markers. See table-2.

.with a stick H #H+ wtih Im HIm
run H B v #1 v
fast B/ 1% Ma 8 Ma

| during last year| %€ % I8 | during Du | %Du BIA |
| to the school B B to Lgo 3 Lgo |

with courage B it with Ma Ma it

company £ nE] Th £ Th
| | Table-2 |
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IL Language model:

It's not trivial to determine whether and where to insert the source-independent
function words such as &, 1, and #2 in the target sentences, because the inclusion of
these words depends on. the ordering of target case .role. Consider the following

examples:

3-2. [Ag John][V runs] [Ma fast].
- [Ag H98[V 1R Ma tR].
*[Ag B[V BB [Ma 1R].
3-3. [Ag John ][V runs][Lgo to the school ][Ma quickly].
[Ag #88][Ma RIRIH[V BE][Lgo EIRHX].
*[Ag S8V H][Lgo R F[MafRIR].
3-4. [Ag John ][V runs][Th the company ][Ma very successfully].
[Ag H9B]HE[Th ATV KE]1R[Ma #%’Wﬁ]_.
*[Ag H98][Ma FEFE BTNV L& Th 225)].

"From the observations above, the language model should insure proper target role

ordering and the insertion of function words consistent with the ordering of the target

roles.
Our language model encb_deS the possibilitigs. of the mutual ordering among case
roles, which are possibly merged with function wdfds; in the form of tri-gram. The tri-

grams of the languAge model in eXample 3-2 above would be

.. .- (um’ml’Ag’)’ (““,Ag,V), a.nd (Ag,V,nga).
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Similarly, example 3-3 has tri-grams as'
""" Ag), ("",Ag,Ma), (Ag,Ma, V), and (Ma,V,ZLgo).

The process of case role translation is simply to optimize the product of these two

models.

4. Lexical Choice
4.1 Statistical Model for Lexical Choice

Different senses of a word in a context result in different target words are significant.
To choose proper lexical items, we employ global scope and local scope to differentiate
word sense implicitly. "Global scope" means the sense of a word is determined by other
- words in different structures. On the contrary, "local scope" means the sense of a word is
determined by its neighbors within the same structure (the words to the left and/or right).
In the following, we will describe the proper translations of a verb and another
informative word (informant) from global scope. Other words are translated with the

local scope.

1. Global scope:
We assumed that, in a sentence, the meaning of a verb is related to one of its
argument. More precisely, we presume the most probable informative argument to be the

head word of an inner role. For examples, in

(run, machine), (river, run), (take, bus), (take, job), (break, bank), and (Window,'breakj,
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the translation of run, take, and break is determined by its Theme. How. to. select the

informant is not trivial, we thus make the decision by a heuristic. The inner role is

selected by the precedence "Cp > Th > Lo > Ag".

II. Local scope:

With the belief that words within a grammatical unit are strongly correlated, we deal
with other words on the base of phrase, i.e., from a local scope. From observations, we
know that heads and their modifiers have greater tendency to co-occur. Consequently,

sampling the collocation information from corpora would be feasible.
To demonstrate how GSP and LSP work in lexical choice, consider following examples:

4-1. [Ag They] [V develop] [Th all the hatural resources]. |

The proper translation can be "ffiff! FAR FTERIKARIR"

The GSP is Pr(Verbldevelop)*Pr(Informantlresource)*Pr(Verb,Informant).
The LSP is Pr(T3lall)*Pr(T3;lthe)*Pr(T33inatural)*Pr(Ts4lresource)*X where
Collocation probability X = Pr(T31,T32)*Pr(T32,T33)*Pr(T33,T34).

To get a feel of the difficulty involved in word selection, take a look at the possible

translations of words listed in a dictionary:

develop: 3138 1B Wik R MR FE B L BE B AR MW e
natural: X FE X&
resource: Eﬁ "R IR BEY
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If we can extract sufficient collocation information from corpora, it is likely to encounter
the co-occurrences of (Bﬁ% ﬁﬁ) in “55%::: HE 5’MﬁE?EBﬁiE" and (3525 Eﬁ) in
"f%ﬁﬁiﬁ??ﬂlZTﬁﬁ" Especrally, to surt the need for a limited domain amounts to
train the parameters from that domam rather than to burld semantrc hlerarchy (network)

by some domain-dependent features.

Technoiogy of acquiring collocadon information is beginning to mature and the burden
| of human knowledge acquisition will be alleviated at least partly [Smadja 90]. For this
experiment, we use collocation probability to handle GSP. As for LSP, we use only the
stand alone probablhty of each word. The best translatlon of words is determined by the

product of GSP and LSP.

s. Experimental Results
5.1 Training Data

To avoid additional work irrelevant to our discussion our training data include only
srmple sentences with present aspect actrve form and non-recursrve phrases. Frve
hundred b111ngual (English-Chinese) sentences, wrth 30 commonly used verbs as the
main verb, were adopted frorn two dlctr_o_narresﬁ._ The English sentences were
syntactically tagged by Ctaw-taggerz and bo_th_Engiish and Chinese sentences were.
semantrcally taggedr(case role) by hand. After tagging, we grouped the. phrases of the
sentences then fed them to the system. These 30 verbs are averagely selected from. 15
verb classes Wthh are classrﬁed by Cook's matrix model in Case Grammar Theory
[Cook 70], thus have a representatxve coverage in case role analysxs The tag set is from_ :

the LOB tag set and case role set mamly borrows from [Tang 1975]

6 These two dictionaries are Longman Englis-Chinese Dictionary of Contemporary English, Longman
Group (Far East) Ltd. 1988 and ﬁéﬁﬁﬁﬁi’]ﬂﬁﬁ?ﬁ*‘]ﬂﬁ (A chtlonary of Commonly Used Engltsh
Verb), BREIE®R, BB CHMA, 1986, ‘ e
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In édfdition fo these 500 sentences, about 8,000 subject-verb (SV) or verb-object (VO)
type of Chinese phrase head bi-grams are extracted from two sources” to facilitape the

lexical choice of verb and its informant,

The translation of single words comes from BDC Chinese-English Dictionary version

1.0 (BuafHEAE).

5.2 Evaluation Criteria
Due to the lack of programs for extracting collocation information and the shortage of
bilingual corpus, our models severely suffer from the problem of undersampling.

Therefore, to evaluate the performances of the models needs special consideration.

I. For case role analysis:

Our criterion for judging case role analysis is rather simple. Namely, if the ahy case is
assigned to a phrase ixicorrectly, we regard the whole séntence as a wrong mﬂysis.

1. For case role translation: | | -
If the source case foles assigned to a sentencé is reordered.to target case fble inc_:orrectiy,
or any case markers is improperly inserted, omitted, 6r placed, we regard the case rolé
translation as a failure. | | | |

II. For lexical choice:

Since our simplified model for lexical choice in local | Scbpe model (LSM) hasn't
incorporated the collocation probability yet, our evaluation critefion for iexiéal choice is

restricted to the suitability of a verb-informant pair.

7(a) 30,000 Chinese words fr.om. gerierai domaihﬁ. (b)lOO0,000 Chi'nese'v'(rords_ of reportége from Uhion
Press (BEH).
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53 TWo Tests

We did two tests to evaluate the system performance acéording t() the cntena defined
above. In the first test, we test the sy:'stem'with' the same training sentences to see its
capability .of leamingr._ Secondly, we randomly selected 100 senie'nces ‘from Brown
Corpus of category A,B,C? under two constraints: (1) the ‘usage of a verb CAﬁndt be a
phrasal verb and (2) the inner and outer roles are within:'ouf.recognit'ion. The overall
result shows a satisfactdry capability of learning on theé whole, as some of the testing

sentences reveal®;

5-1. [ The /ATI delegation /NN ] ( arrives /VBZ ) in /IN[Bexjmg /NP ] on /IN [ Wednesday /NR ]
AGVIN,LGO TI
ARME HMAKRME 2
e RE B BT BE JEE BN AP OWE 9
k@M BH= 33E LR

5-2. [ John /NP ].( breaks /VBZ. ) [ the /ATI windows /NNS ] with /IN [ a /AT'stone /NN | -
AG YV TH WITH,IM
Rk TR BT ThRE RIET K b)ﬁ WR ME Bk FAIR EF BR 210 By #BR Bk
PRtk MEGE BT WiZY S RO %29 24 '
BBFEBE R 4
#1% RO mEF fTHR
5-3. (Break /VB ) [ the /ATI news /NN ] to /IN [ him /PP30 ] { gentlely /RB }
V TH BE MA
#e wHE 2
dhub fTRE WET IhRE RIFT & W HH& W Bik H'HIE E% B 125[’. 41 1‘6& :EB&
Rk MR BT BT AR WMH 868 -
BEHA wmE HER S

5-4. [ They /PP3AS ] ( count /VB ) [ him /PP30 ] among /IN [ their /PP$ supporters /NNS] .
AGV THCP
B OB SB¥RA KEME N EFEE A N RE B 12
XHE 1
A BAE i RGPS

5-5..[ The /ATI train /NN ] ( moves /VBZ) { slowly /RB } along /IN [ the /AT river /NN side /NN .
THV MA ALON PA
CKE KT ISk BE 4

8 Category A: ETIM HMBX# (reportage), Category B: ESATM #L3k (editorial), Category C:
HF (reviews).

9 NP is grouped by "[]", VP by "()", ADVP by "{}", and ADJP by "<>". Line 1: mput Lme 2: After
analysis. Line 3,4: senses of informant and verb. Line 5: output.” : -
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OF) T8 BB 2 5 SR &
T ER BRI R RE BB BE #
Aﬁ E%ﬂﬁﬁ! t@ig B E

5-6. [ Last /AP year /NN ] [ we /PP1AS ] ( open IVNB) [ trammg /VBG classes /NNS ] for /IN [ the /A'I'I

school /NN teachers /NNS ]

TI AG V TH FOR,OBE

PR fTBA 2KARFS 145 Tﬁﬁ ”"W FRPR JRPA 3RGH BA BA%S PANK PARL PR Pﬁﬁ pAg

~ DRRA BRPA ek PR WE
Eiﬁ?&?&ﬂﬂm%l@“&ﬁiﬁ :8
ZE RM R|REG A ISR

The result of second test is slightly less satisfactory than that of first test since our
examples suffer from undersampling in case role analysis and case role translation.
Although many case frames are within our recognition, yet the case role orders of testing

sentences are different from that of training sentence. As for the overall performances of

these two tests, see table-3.°

B B Bk Wibibihﬁfifﬁh BR
# 8y & A% .

For more detailed exafnples, refer to appendix A.

6. Conclusions

6.1 Summary

We propose the MT model with statistical analysis, and modﬁl'a'r_ity‘becaube of the
following reasons: (1) encouraging results from recent statistical computational

linguistics researches show the potentials in statistical MT, (2) the progress in automatic

10 Jf the case analysis fhils, then we did not do case translation.
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Error Rate Analysis [ICase Translationl®| Choice
Testl 5/500=1% 15/495=3% 1/495=0.2%
Test2 17/100=17% | 6/83=7.2% 20/83=24.0% |

Table-3 -




6.2 Future Work
6.2.1 Extend to More Complex Syntactlc Structures

Case roles can be a331gned to not only phrases, but also to other structures (e g .
subordinate sentence and infinitive). Moreover, case relation can function at levels other
than verb-phrase, such as Characteristic/Composition in “a book of poems" and Partr'tivé

in "the chairman of the board". That is, prepositions can also assign case roles to phrases.

To extend to complex syntactic structures, we might have to subdivide to case role set
accordmg to their different syntactic structures For mstance although both an NP and an
mfinmve can function as a Th, we may assign them Thl and Th2, respecnvely
However, this inevitably enlarges the size of n-gram matrix and consequently increases

the cost of knowledge acquisition.

6.2.2 Substitute Semantic Tag for Case Role

During the development of the system, the case role assignment and the
c_o_Ve_ra_ée of case role set is unclear. This may be a bottleneck in the long run. A
more specific pivot language (such as semantic tag) may be an alternative to tag a
structure semantically and automatically. Yet, the study of semantic tag still has a

long way to go.
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Appendix A
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ICG)[1] » EBRFHR IR THRATHBEAE L2 » LRARSE EHR o P
Lo RIBEZEETRHEZRE ’),?E:?{‘i’i'j'l&?? Edﬁ; *i‘l‘"if/':i’ BT R
BHARE o BoRREF » X EEHE VR BEZARAH 1EAP\‘£:£$.——1L%J—-
M8 R 859655955 » L AR B R 259653 .%?‘:'F‘i‘i ° kcﬂ&ij%zzﬁfﬁ.% s 1%
PSR AT LEME - zzﬁj(éﬁ’?fnigé *Rf&?ﬁﬁﬁéﬁ#ﬁ.’* ’ &;’:ﬁﬁr—z
ST T 6059 » AR AHTT— 4 > 122 UBHTDHT EoFke RS BIBX - SP7R
BRELHE - R > DT LLRB R I9EH5E %%gﬂadfgﬂﬁﬁmiﬁ

RN R F LB W—E—’ﬁﬁﬁaﬁmﬁéﬁ%‘iﬁ (semantic frame) ,
B T BN HTAR » AR B THEIRTX (reallzatlon)/t\j"l#i;b
Bt » KPR EBAGZZE 7 (3£3] o ?itTF‘i ﬁriﬁ‘%ojﬁ‘l’iéﬁ J:«ziﬁ
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52 2401 (nomlnallzatlon) Fn}f/ﬁkéb,}&i%,j( derived nouns)[35%4] o &K
X%-Epﬁ?z@ﬁ*”’ﬁit;ﬂéblf"’“?l:%%,&i%;ﬂ/;%T%’%\" SRTHEIRT S
AR » LR LIRIAS T W ST 00 TRk 2 595 M/ INJE » oo Bke
TR ANRLE HREOBILTEL FEHFE %ﬁéﬁﬁ*mﬁkmﬁ)&i% 59406555 %
HEF 5P o

2. BB 2RI
2.1. B39 25? -
BFFRRBGATFL IO ELBIELPILER & (It s REEE
%ya Fo%850 o RIpTL XU TSI E RO H [253] » 2ERES > 3L
“aﬁi@uw xﬂxﬁﬁ iﬂ&%ﬁﬁ%igw‘%x%b%@ﬁ
» FABURELE ABEHT o Ml > BB BB LEHIHE
yjﬁm SR RMIE [2] o RIBAPIHIE » AR E © Bk L eo®39 -
IS DERTPATRIBE: Fit: \ FLHHID LA L5E - K
BB - —HUL R —RBRIRL - AT LRI E o L T HRE DT

(1) a. ARR—BMEo
b. e {PUTHFTI o
(2) a. HIFTRITIFRNERS o
b. tiPtRksE T HTR o

LEﬁﬁﬁ%# B THf3e ) MAUBRELENKBEL > KTHEH (1)D
Py THI ) BABIIEEHBIE4] > TL(B)SL TR ) REF % (3a 4a) »
(B)FZ K IEA B2 (3b » 4b)'\(C)ﬁ§i§£§haﬂniﬁ%@ (3c » 4c) » (D) LAIEBHEHES
6HEYEBRITER(3d » 4d) ~ (E)im beb 138 ) A3 Masit R ¥ RS (3e,
de)[8£5 6] - T (2) 4y THIFRT | ADREGELIFEE (55 6) o

. AR R BRI o
HIRHT I R — @8 o
EHRR—1BAME -
ALFRR— B o
mnﬁﬁamﬁ—mﬂﬁo
Tt?ﬂﬁﬁﬁ"ﬁn ° |
. (PR3 AT SR 50 ?

e P37 HEHFR o

fe PAgT B S 29T o

e, P I 38 Mk — B o

(3)

(4)

svmnsfz»'msms”.vw
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- (5) a. *RHFRIBRITIFRIEF o
b. *FRHFIFIiRITIFIRIRFY o
c. *EHIFIEITIFRIER o
d. *ILZYFFFTIRITIFSIRIEFY
e. *JFRIFIRFEREITIFIRIEFY o
(6) a. *Mt{Pirks T RHFIR o
b. *ft Piakl T FIRHIR o
c. *tPimkil T EHTRT o
d. *fe{Pisg¥ T ILZYFIIT o
e. *ft {Pimkl T HTFRIFIRMKIE ©

Sk (L)BFe THIR ) » RETAEHRREGIDIAE » 7 (2) D
FFE3e | BP2RIT o

(7) a. FAZLEBRAER o
b. fe{fiirEFFIELE o

(8) a. ?HIRTAEREIBITIFIRIEF o
b, *th B PIasBFIFI AR o

RZ s o RBELUSEREHIIN KR TR ) W E(8c» 8d) » §F&5E%
ARG EAE A o

(8) C. EMEHTIIRITIFIRIER o
.&3ﬁm%&%%m%o‘

,FWAJEu)wmmo@i Vo h%iﬁﬁ%Aﬂ%iﬁ TR
Fer L EBHAMo (1) OFPer:EmE R 8 Tl BRARESIE
i S LEADE ZESEH: B S 3y PEEELEHNED o TRIRAER £ Bt Leb®rza T
WAJ’ﬁﬁtmﬁﬂﬁ%%ﬁ%%Qﬂﬁ%igﬂ%riﬁJ\FmﬁJ
— RS LS EW AR SDBDEHHT » TR E » Bz e THR
1 EEREFHIORE » AT T AR R KRS EER SN o

(9) a. E=IFEFTRRITISRIEF o

b. flsii T PPEREHR o

RigsE e xR ﬁﬁﬁﬂ&ﬁﬁ@rwnJTﬁ%—m%Jo&n¢
e THFFe ) RIETLLREB L BT ER(10a) » BT LULEIRE Tie | o8
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BELE(10b) » T3k, FHe5£1%(10c) ’ E%?\?BL@%"'&%%@JE?H » 38
HEBE—RESAALPTRIRGULE » EHo3EEA (2‘)>)'=U':Pé§ eyt ) 22—
B2E o

(10) a. M {Pieks T FHKEHFFR o
b. M{f3erFsTatE T o
c. HIFI KM PIRgE T o
d. fe{Pimksf T FFFR otk o

RE, TITH | HFER S - EHELUAEB R PAITE » RAARRE
Mg ) FOHRELIET] Y Tik) FOEHEM » ERARAI[IALSY o

(11) a. *MePiFrHHKHSFR
b. *t {fijefLITH o
c. *HIRMEFIFTH o
d. *t {3 HHFTFIT Itk o

el . KRS (1) (WO TR, KA » —285,
—R 25 o -

2.2. LAt 235D
TR (2)DFE THIR ) &35 c ©RBHI NFTR ) FiHAEMFER?

FHPIRE (2)F 85 THIFN ) (TPl THRN) KRR %K) 283 MR, (T
FIRV] VR IR e 259 » F AL FEEHJRAE 259 © creation -
agreement » criticizism ...’ R a&3%%9 ‘create -, agree - criticize

.7 RIPILTRES o RRE S EFELBEMIBIL » Fl®rzd THIZT ) 87
BERRSRD » XX~ R o FT L HETRABEMSRERED > ko
‘research » program - plan ...’ - T34 T1ERE ~ 22800  1R#BBEE
¥ MTREZ—BRBABICOHIRE R [28] o BEIRA PR8I I
T8 B4 KB po LSRR (suffixes) T~ v ) RpILiizRay o T
15388 B2 KM TR BB IR A R FT"iéN » BZEEN N IRFBN
[5£9] o SALL B T BEEHHY-F-[5£10]: | |

(12) a. # FHHRBELHTER

b. # & ¥R AROIERA
(13) a. EBEERBHRROGEE
' b. RIEEABRBRRGE)
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(14) a. INFKERBIREH KIS
b. NIKEFRBIRES AR

TR H,) ~ TIERMAEL B TRBE ) FABRMORPLIHPE—HE
FEBLIZTT A L R EH 25D » TLDWDEREE o MrBitesiE » F5
HHRF[8] c AXEEZHFRMAIBAERIIOREF X o

3. RAERXPESSHE
3.1. SRHTBBBRERPH S .

ATEIREVRE R T1EHEN B8N 1R8N 52 MERME 280 K
Ry | BRBEFI [1ERV B2V KBV R9LTRE o #1383 2421054
JrAE W REH X5 SRR BB > PEERF/RBPYFTAE » RER
WAKXRFE c B3O TR S T FNHFHE ; RIDHF T YIRS 58555 o
e (18)F, TRAAL & TRE ) 258 (theme) » i NMEHKRE | HHER
(goal)[E£1ll] o

(18) a. BAMEHFBEHRA
. BAHEHRBHRAR
. BABTESHREIRRA o

BEARRZFEEEFRT o
HIZEBALSHPR
. EIEHEHBEALSHER

. EIREEKRBA o

(19)

Q T O Q U

W

1B2% » HIEMHEIRELFPDBAR/REHZIHHTLER » 20(20b)ss T
£ BRI LAWSHTHE o

(20) a. RTASAEEXE o
b. *REE BEXFELHEH o
c. RIS EBEXEETE—HBES o

PR L EEYIRE D2 2h » IEJRELREIR THER | ~ TE | ~ T1Ex
B LAFRERT ©

(21) a. fEXPEORMIIX PeStin iR o
b. ZRERE AL > B FHEL ERLHECKRHK o

|

> KPIAXRENB RBP4 MASE » —## 5T (argument-taking nouns »
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GUE SAS "—§§ﬁ§ﬁ$%$5t(non—arguﬁent—taking nouns » {£53/& /4865
S BNASE[10]) [5£12] o ' '

3.2, m%ﬁﬁ%m%i%ﬁ% ¥

L—wﬁﬂ%ﬂ?&%%#ﬁiﬁ%ﬁxﬁOﬁ%A TR » B
AR B R T RT A BIR X TSRS [10] o WEmT ey 250655

FHER > T X RITNEIRTLUAARE mébﬁ&ﬁ?‘f"([&ﬂ]o

B—# (ANL)WEFHEL mmﬁm,%ﬂa#$ryJ54 o BHIE
—E45H THRBY) ~ Tl 52 ressg ) F%ﬁEB»J o

(22) a. <R&R$&§»><¥j§§m>éb éé'iﬂ%ﬁﬁNﬂrrm 13I8 o

agen goal
b. <KEXR ::BED>E5RIENISIRIRRM ¢ B3R o
agent

R EFHBZABRIRGHEE - i%ﬁ&ﬁ%%ﬂ%ﬂ(NP) r BEEAE ‘% 59
%%ﬁﬂ@ﬂﬁn»ﬂiiﬁa%zm»a%%&izﬁzﬂ$~m%m¢
@ 5E654 5 (head marker) ‘&5’ (22a)[l4]; ZFE+FFHWIR > sy ieR 8
‘NP’ EFHIEERFPHA ‘4 (22b) c LT AEERAPT FREFKNX
EH R ER[E£14] » K PHEHTAHRRILLIPR Y605 RAB L BT X8 » LARREER
Frix ‘BP’ (Basic Pattern)3R %% et = HlehR A o

semantic: [
arqguments: agent » goal
syntactic: — class: ANl
[ features:
constraints: form:
agent[NP]
goal[PP[#]]

—'BP:['Bl agent { goal < gy <
B2 agent < g4 < *

% —#5 (AN2 )?ﬁ"%'iﬁsg‘i%-(experiencer'} exp) B EEERT , = 12 Fo 25—
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% s BNBRIIN PRI ESHEFR T F LR AL s » EEOSHERIREK
BE—EEE o

(23) a. PEFed L » <t ><EFH>EHB IR B E AR o
exp goal
b. R4 BYKIE AR TN FBER<ML>E5 4R o
. exp

BoIERRTHHAE (AN3)oifRE— » LA —EEE& » ABEY
L ‘%P RN 5 (R S—(EHTEERE o

(24) a. 7ﬁT}3ﬂiTi?&i&£E<Aﬁ‘iﬂiiii<&}§><¥a‘xbb$>ééi#i o
: theme goal
b. B AE SIS <H B> HR o

theme

Beg N B TN SR T 65 2,53 (ANG ~ ANS  ANG) #BE —1EFZX T LA S EHED4E (
VP)E‘M:J—%(S)ébE % BPOBE—H—R  EABHRAREE; BAE
BB~ R —1BHTEERE; WERERMPE=8—4 » 5—@
WL AHBR o

BoiE:

(25) a. B EX<KEFESIEFE T LR T>EHEE o
goal

b. BRI KFAL<SBKRIILE FRA>65E 5 o
.goal :

c. 1&1Fﬁ“5-§$k%3z%< f§‘><éf’<&1@'>ébi§& o[
' agent - - goal

g
&
wn
S

BAIE:

(26) a. F<tt 2 F X IEERASLHIEER
goal
b. xi% <t P> LIRZI>EHRH
exp  goal - o
d. FiE<M>EHIRE
exp
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B

(27) a. KA&JEIo=k » H H17>8HFR %K
goal h
b. 3&7w J <MEM><FTEILSEHIES
theme goal
c. Bt » <FEIMIARE>HEHARER L
o goal : ' '

B-CHEWHTHIRELT (AN)HEF s BEE—-BEX &5 3EXD
F-HERE o ZBHTIRI—R YR > TARRRNAFIZELFPA—R LWL
B RERBSIERFE » REFRBRIE o (28a)& EFHEL iz WIR 5P
FZ» (28d) & BERBRBRFE-FWIRSET o oo :

(28) a. BEKE 4ot K » RARF L HRER
'  <EEMMO<REERRESRHAB AT OHAE o

' agent © theme _
b. FHBALHFLDIMIRARE P<HB R P I+ — TR FT>EHARES o
theme oo
c. <HFFE>EHRE » RHIFL KRB o
agent
d. AMBELEER TESF>ERARMARBE T>HHH o
goal " theme -

BoNHE (AN8)ke TRE, > T3w®H L ~ M3xE > Mok, ~ MR
v TERE B BHHTALIFRER > BRRERBZMTUHR 47
(29a) » T RUREH ‘457 (29b) o EEBRWI » o R W » S L5
% F[E£16] o

(29) a. <RIBF LE>EHERE

theme
b. <H#&H>BE
theme
c. <Ep BB HRF><sh 3 H1F>65% 3
agent theme
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FAME(AN) AW —TBRie IR TR ~ TRI5, ~ Tk
g1 > T8 | Fo "

(30) a. 1&1?'1?35 «ﬁ’«’ﬁ ’l'i » ‘?Ek<“ 7T§t>é’35"<ﬁk o
. theme
b. ;k?-}"'l u’(nx?ﬁﬁéq—-‘-?-??ébéﬂ?’ o
theme

iR —HEH S T 45 £ 59 (AN1O) B mii—mﬁx,gmﬁg ‘NP’ o

(31) a. < PIesIREERREER o
agent ‘ » _ .
b.. <ﬁ5Il>éb$k%%——1§ﬁﬁj;o -
agent

BFOHEIE LR ERSRAIIE 0

3.3. YRk AP RKH AL DR L | -

L*éﬁ%ﬁéﬁ%ﬁﬁmﬂ&i%?@éé?ﬁi&%$@.’l‘l s RS ERE AR IR
25O pe I AT M e K 176508 o RIBHPIHIER » EH LB REHY
Pd o s 17 Res Bl (time) ~ #25 (location) » & &53 (quantifier) R IFEFEE
(property) o 0T BB SOAE RS po sk 17 F WILEOTIX A KARIER S 2P
(Adjunct Pattern) o

B JHP po K (7 AL F 2 & ﬁrﬂ%feﬁ%njé‘b%;ﬂ%ﬂ(NP[Nd]) s B EesRA
HRERRIBMETH KSR EF-S594A (DM[NEg » +definite » +temporal _
relation]) » F 135344 (GP)sKk M 5348 (PP) &5 X WER o

(32) a. MEBARK T <PUE>E AR 6 E KT o (NP)
b, EEBIK<ELEEDES BEIF LB R IE o (DM)
c. HIEME Y KE U B FR>E B B EFL B ss# I o (GP).
d. EIEME T %< BAT>7E B 687 LE e sbF R o (PP)

i&%siﬁH#ﬁnﬁkﬁﬁ'ﬁ%ﬁ%@%&ééﬁ?it&ﬁ HEA(32b > 32c > 32d) o &K
U R ERSPESFIA LI (33) ; EHFEFHHXBAFRRLE (34a) &
$9(34b) K IREIAFZE 33 (34c) o

(33) EEBIXBELRWES GEIH LB <P =10>RF o
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(34) a. tELA T UULH BB E>KIE o
b. MAE AHEAMESRESHE o |
c. FHMBLE TRABIRIIRNE 5B KRR o

EEM AR RFTHRFARKE: (1) e5E#IEZ A (35a) 5 (2)
B RA B 36 Bk Fo sk FE TR T [$£17 ] 2 RASZ AT 4R 2Rk L ALPE#I (35b > c)) 5 (3)
B 595 NEH T L AR ARRLOSR LR FPEHFY(35d) » AKE R F LR
Z‘ETI"ﬁﬂhumEi(%e) H (4)=F & F FH\%EEZ'E'HE»?. o

(35) a. EIEfE T HK<UARD><FEIRF L >ES M ah<— LR T>HEF o
b. {EIEfE T <l iy>F <IEIRF_E>EF e bh<— >R FDFTF o
EIEJE T <LART><TEIRFY L ST EF it fh<— >R FI>HLTF o
SEIE B T J% <SLAT><TEIRFY L ><—Ee> Bt pH<RE BSFLTF o
*E JF B T K <LART><IEIRFY L >EF 1t 6 <JR TI><—LE>HLTE o

Q. 0

0]

AT 2 Ao R I7 65 R A R DE .

constralnts form: tlme[{Np[Nd]r DM[Nfgr +def1n1ter
- +temporal _ relatlon]r GP » PP}]
location[PP]
quantifier [DM{Nfa » Nfc » Nfd}]
property[{N » V,-A}j )
AP: Al:time < location < goal < *

A2:quantifier < property < *

3.4 241k R FDEHFERIAIE

BWHTHRDILRERDEHIDLYILTR » B%HAE BB THE
o Btk » R F—EHRB T FTHERLRFERT > BESHFTXS5294 -
RSB RMICIA AL S TIRE R BE—4E (ANL) o 1L ‘Hi% —I
&5 > VE128/59 (36a)e5 6055 L I8 T S Sx MEEHED (VC2 ) 653534 & 1% (37) /458
[5£18] » $E1E 2 5985 (36b) » SE2 IR RYch B e ST S5 T Uk 2 2 53 (ANL ) pH 25
F BN (38)BRIF o FEHTAE » ARFEXBGEHREF o

(36) a. $OHE AN RBEAXHAHAOUE o
b. PRMBIBEBH L PSR I KIF o
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(37) :
semantics: aning:

features:

arguments: agent - goal

adjuncts:

yntactic: lass: VC2
: [Eeatures:

onstraints:

(38)

emantic: meaning:

feature:

yntactic: class: ANI

features:

—constraints:

LA » B ALK PIT B I96HEE

B9IRE R DB LA —IEFE o 1BER

—form: .

agent[{NP» PP[3#k » & > & » il »
E& » +agent]}]

Lgoal[{NP’ PP[{je > #%} » +goal]}]

LBP: Bl agent[{NP > PP[e5]}] < * < goal

arguments: agent » goal

~adjuncts: time » locatlon’ quantlfler’ property

—form: time[{Np[Nd] » DM[Nfg » +definite »
temporal relatlon]’ GP PP}]
location[PP]
quantifier[DM{Nfa » Nfc » Nfd}]
-property[{N» V> B}]
agent[NP]

. goal[PP[#4]]
BP: Bl agent < goal <45 < *
| B2 agent < gy < *x

Lap: Al time < location < goal < *

A2 quantlfler < property < *

AT RITCLIR £ 2 W R W T
s Fl— BSR4 255 » A B REST

ARRWFTHRERLT T ARRRBHFTHRERT ) %o Féti?J ® g

B, FIBRERENEENTI (VC2) » 1BERIDILIE » —EEEE R

1

fr’ﬁ\nm7C 4
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— BT o Et?iﬁﬁ#«i%?&:%Ebiﬁ%@é@iﬁﬁd*ﬁiﬁﬂﬁréi%ﬁﬁ% > FTLAFE
MOBFEENEIEHEIE P SoMEEE[EE19] o AKXl ‘[+argument]’ RAERTR R4
I € E AR TEIVRAE 2359658033 - ‘

REULEFTE » HPTT L 45986y ¢ [arqument]’ $FECRIE 201
SRITFTA KRR DR REBT o M BIIM BN E LM TINME @EJEE
2,59 BHABENE o AT RKPURKISE FERRTEBAY REHIE » VA S
TR EOPIEE LSS R 196 MA<<E B HRE S HIFTAR>>[10] o

1. [{vC2» VBl » VD} » +tarqument] -—> BNl
2. [{VI1.»VJ2}s» +arqument] -—-> AN2
3. [{VI2 »VJl} » +tarqument] -—-> AN3
4. [{VE2 » VF1} » +arqument] --> AN4
5. [VK1l » tarqument] --> ANS
6. [VK2 » +targument] --> BAN6
7. [{VEl » VF2} » targument] -->AN7
8. [VC3 » tarqument] —--> ANS
9. [VH » +tarqument] --> BAN9
10. [VA » +arqument] -—> AN1O

A E S PUSIRAE 2D, IMAIREE T $E 2 K2 o M BP AP R LIL
JhA RFIHELRE - BAEDL LEHRFE » AT U MR S HERBRE
Gh 45T o

4. %

AR5 RN ARGSHEE L FESRRRDELHER S &FR
! BE—BERSST > tEBBRTH S HEEK 9T A%T 0 B BELE
T85> BESE - BE > ThBHIISIERLSw o B_BIEH » &ri9sk
$HIFIBBR GBI » BE LD 290t &—BJkE 259 0 B ESESH DS
BEL 2 2560 9E I o 2IpIIRE R IDHRA R LB IIHE RIS
BRI B EIELR » AN T B F TR o XIS R IHILIRE 2R
HART S HTAM » LR OHTAILMTIS IR TEIRE 2 595 K-
1B N4E » RUES R E o DAL RBDEALELIEOHT » FUAK
PIT S e A ZD T s ey ¢ [arqgument]’ 5B BAYSE S BRI BN 21
BT EABHTHRDBATENLE o Hit » BESE 598 > PTRISH—
45 IRk R IDEHE LR o |
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6.

EiE
1.
2.
3.

K PV E PR A& — B LD o

% E R WEHIES DT o |
HKPIRABREDSESEGET » 1% 153 ¢OKRBRRA /5 (1a) 22 E5Y
965 sk (1b) © RIPILIRE RPDAGH MG HEE LR LOMIZ » LoFHTeY
HE - B Rtk AE PDRIT AR RITR ; T 185 o4 REEABA
SR P ORBPEBMIZ - FIKCEFIRREREE o

(1) a. B=F$F o _
b. HFEIKK= o

. ook RBRR T P/ERALs) > FEHXABE » SFEXABMH » 20 RFE5HF

onh 9
)

1859 » TAREFRIBEEBMRZ o 35> RRERY SEX AR $ E3ok5) 244
(verbalized) » B K FUABEE SRR c —RTTRPLPLLEDTS
# € SR XW (causative) K F R #2484 (inchoative)dh F ok o

. 2EBHPBTLUEIRE > ERFEFLWIRELHA (A)-(E)FHSHH » &

w&:QWUMO?R’iE?%Eﬁﬁﬁﬁzﬁ%’ﬁwMﬂmBﬁﬁ%%
P o TNREZIERE > FHENIFE AR » —ATE » SBESHBTIRFEE o

. 3R o

. HIR3R o

e 7R 3R o

f & 3R o

fte 32 ZY 3R o

. RIBRF o

. SREHRA o
*RREHRA o
*SE EREHAA o
*REGRHERZE o
*SRILZY R ERF o
*5 K £ HRAEIRF o

~~
™.

g
)

(3)

mPROTMMO R0

EFL, FRAEER R WPITEFAR FEEHIFERRFIT > ko
FFT . CHRR—IEMAME Peb (R CATRRRE - T PR
HEFL Fab THIT ) SPRARR®IE o ,

SEIEFTR 2 — BRI o

(4) ‘a.
b, ERESFRE—BAE o
(5) a. Mt (PPrHEREFFRT o
b. e {Pi3rH £ ABLHFTR o
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10.

11.
12.

13.

14.

15.

16

17.

18.
19.

BRBIEY  AARARNIRIE Tie ) FPEE R AEXTERPUs, » LB

EEWEAM (6) o122 > T47H ) BHHR—BEHIE » BHBERKFT
BB “FWEERPM HEKo .

(6) *¥KINEFRT o

BSIHES TR R A NE E S 2 R BTUEREM o
HE]N)TRIE P RINLTHRE & TIH) (BHEHA) TR, ~ T

8]EFE | > i) FORFSt RRRPDESHFI R o

%8 (12b)EL (13b)1EIF B [7] > & T FBER K PIGHEES » K IPUF (12b) A
HetSEk o

HAEEACYIERIT » AXEZETER([9] 0

WHAHRPEDY P X TLUHBIE (process » ko (7a) )EBIER (result s %o
(7b)) FRIEIIF[11&12813] o SEHEFRAM » £ F BRLEHFEIRE o AR
MBI R PEMAEEE o ML BRI » HPWS S508XIRTH o

(7) a. MEHKHEE—EIFHEIIRPeFR o
b. ¥ eh B2 K S RERGS AT

SIS S HEAT A TS RS RIDE AP —REESE
ERARRGPH S, ERRAEF > AEEAREELRBOPL LRI
4+ 259 TIRH T RIPILIRE R IDT AP BHIILLT 0

A B — BT KA RE » TSR ENRIMEIKDREDR » i85 4@
EhEEE R E P L IR o

SEMERB N LHERERFDTUUHA B L 65’ (8a) » HF B LT L

WIERFEE FILE (8b) ©

(8) a. MPPTFRMARIIFUTHLRAKS LK o
b, P FRMARIIFXETHERRIKEK o

BRFRYIR > MEFRXPMPBSTHALELHRIE (10) ©

(10) ftegsyEkst
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ABSTRACT

Serial verb constructions (SVCs), a series of VPs' juxtaposed without any marker between
them, is a speciﬁc structure in Chinese, which can not be treated as ordinary VPs. Structural
ambiguity is the most serious problem for analyzing SVCs. In this paper, we investigate
resolution of structural ambiguities of SVCs as well as the related problem, determinism
during the course of parsing. We show that some types of SVCs, such as pivotal constructions,
sentential subjects and sentential objects, can be dealt with as ordinary VPs through their
lexical representations. In addition, we use a reconstructive phrase structure rule for describing
the remaining SVCs, two more separate events and descriptive clauses. This reconstructive
rule plays the role of eliminating nondeterminism during the course of parsing. At first, these
types of SVCs are temporarily analyzed as an S followed by a VP; then after completion of the
right-hand side of this rule, reconstruction rules are consulted to build the actual structure of
the SVC sentence. The parsing results of SVC sentences are naturalIy expressed in
conventional head-complement structure in HPSG, without inventing any new structure.

! To whom correspondence should be addressed.
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1. INTRODUCTION

A Chinese declarative sentence, like an English sentence, is basically composed of an
NP and a VP. Generally, a Chinese NP is composed of a head noun and some preceding
modifiers;a Chinese VP consists' of a head verb, one or two complement NPs and some
adjuncts [1-3]. Some kinds of Chinese VPs have different structures. For example, the VP, &
—&E fR H#, in sentence (1) consists of a head verb, A, a complement NP, —Z&&, and
another VP, /R H#, In the corresponding English sentence, "He has a book which is very
interesting”, a marker, which, is used to denote the beginning of a relative clause. In such
manner, it is easy to divide these two VPs because of the marker. However, there is no such
marker in Chinese, which will make parsing difficult. In addition to sentence (1), there are
other types of sentences having similar structure, as in sentences (2) to (6). In general, these
types of sentences contain two or more verb phrases juxtaposed without any marker between
them, termed serial verb constructions (SVCs) [2,3].

Wt B —F&F R A&,

He has a book which is very interesting.
@) ft = B 5T EIR.

He went to school to play basketball.
(3) & R it Ak &.

I begged him/her to represent me.
@t B —FxEF &R R EK.

He has a book which I like very much.
G)ft A fit B = &it.

He said he want to go to Taipei.
6) BEA & —&ELE R GR.

It is very dangerous that five people ride on a motorcycle.
All of the above sentences have the same form,

(NP) V1 (NP) (NP) V2 (NP),
where the NPs in parenthesis are optional and V1 and V2 represent the first and the second
verbs, respectively [2]. These sentences have different syntactic structures because of different
types of verbs and relationship between them. Generally there are the following types of SVCs
shown in Table I [2]. The syntactic structure in head-complement tree form of each type of
SVCs are shown Fig.1. The labels C and H adjacent to arcs in the trees denote complement
and head, respectively. |
There are two main approaches for analysis of SVCs: one is based on phrase structure

rules (PSRs) [4-7] and the other is based on Case Grammar [8-9]. It is difficult to obtain a
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uniquely correct result by merely using simple syntactic types because an SVC sentence can be
any structure in Table I. Therefore additional information is required to rule out structures not
preferred. Subcategorization structure of verbs is a useful clue to guide the construction of an
appropriate syntactic structure [4,5]. For example, a pivotal verb, such as # (suggest),
subcategorizes an NP and a VP as its direct and indirect objects, respectively; the verb (say)
needs a saturated sentence as its object.
Table I. Types of Serial Verb Constructions.
Types Descriptions - Examples

() | Two more separate events | ffi L% EEBR (He went upstairs to sleep).
fit & —&HRKT 1Z8K (He uses a pair of chopsticks to

eat rice).

(i) | Pivotal constructions B E 4t AF & (T asked her to represent me).

& #) fth B B (I suggested him to study medicine).

(iii) | Descriptive clauses # B ALKk EE Bk @ have a sister who likes

to swim).

fit H# —&F R A& (He has a book which is very

interesting).

(iv) | Sentential subjects HEA & —#WERE R &8 1t is very dangerous
. that five people ride a motorcycle). '

B BF @ W B RS It needs five

minutes for machine to translate a sentence).

(v) | Sentential objects fir 3 ¥R R 5 (He said you are very beautiful).

ftt 5558 L #88 T (He denied that he was wrong).

A A N
" fp{ VX; NPB/C),P\(\ NPVP?/V\IS?\

. N VP2
Type () Type (i) | Type (iii)
C o/
)] NP YR C
C |
NP VP1 N;I/ VP2
Type (iv) Type (v)

Fig. 1 Types of syntactic structures of SVCs in head-complement tree form.
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Classification of verbs based on their meaning is another effective method to help
determine the types of SVCs. Yang [8] divided verbs into seven groups according to their
semantic .categories: causative, emotional, possessive, narrative, special-1, special-2, and
normal. Chang [4,5] divided stative verbs into three classes: (1) NP-statives which describe the
properties of individuals; (2) VP-statives which modify the verb phrases; and (3) S-statives
whose subjects are propositions. Pun [9], based on the theory of Case Grammar, nominated
fourteen verb classes, where each one has different basic slots.

Preference rules make up the deficiency of the above methods to choose a preferred
structure. Chang [4,5] used a preference rule that argument readings are preferred adjunct
readings. That is, pivotal constructions and sentential objects are preferred over descriptive
clauses, two more separate events, and sentential subjects. If there are alternative reading
survived, Chang applies the last rule to choose a preferred structure in the order of descriptive
clauses, two separate events, and sentential subjects.

From the above discussions, subcategorization structures and classification of verbs are
essential means for structural disambiguation in SVCs even if they are treated in different
manners. In this paper, we investigate the analysis of SVCs in our HPSG-based parser by
utilizing subcategorization information and classification of verbs. The former works on SVC
analysis focused on the resolution of structural ambiguities[4-7]. We will focus on determinism
of parsing in addition to structural disambiguation in SVCs.

Our parser is basically a unification-based, lexicon-driven left-corner parser [10].
Certain types of SVCs can be analyzed by relying on the specific subcategorization structures
of the verbs [3]. The lexical entries of verbs in remaining types of SVCs have the same
subcategorization frame as ordinary verbs [11]. Classification of verbs is thus used to
disambiguate these types of SVCs. There are exceptions in descriptive clauses which can not
be disambiguated according to verb classification, as in sentences (7) and (8) [2].

Mt T —EE B R ER.

He cooked a dish which T like very much.
®) B & MWk 12,

We raised that kind of vegetable to eat. _
In these types of SVCs, the second VPs are either an object-missing sentence, S/NP[Obj] or an
object-missing verb phrase, VP/NP[Obj].: Both of these structural features can be used to guide
the constructions of SVCs. . |

Our unification-based left-corner parser scans the input sentences from left to right. In

such manner, each the prefixes of SVC sentences will form a subconstituent which is itself a
saturated sentence. The remaining of the sentence will form a phrasal verb, which plays the
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decisive role to build up the syntactic structure of an SVC sentence. We thus do not give a
PSR for each kind of SVCs, which will result in nondeterm1n1sm Instead ‘we use a general
.PSR with loose conditions on the subconstltuents in the rule. The PSR only confines that the
subconstltuents is a saturated sentence followed by a phrasal verb and, temporanly, it does not
state how the target constituent is conﬁgured Then after the second verb phrase is actually
constructed, a set of reconstructlon rules wh1ch deﬁnes the relationships between the
subconstituents in SVCs and how the complete structure is constructed is consulted to build up
the actual structure of the SVC sentence. ' y -

_ In the following section, structural amb1gu1t1es and their resolutlon in SVCs are
demonstrated by examples. In Section 111, we show a method to eliminate nondeterm1n1sm in
the course of parsing SVC sentences. In Section IV, we show the implementation of SVC
analysis in our HSPG parser. Finally, concluding remarks are made in Section V.

- II, STRUCTURAL AMBIGUITIES AND THEIR RESOLUTION
, In this section, we show the situations of structural ambiguities in SVCs and their
resolution. According to the structures of SVCs shown in Fig. 1, SVCs can be described by
the partial set of PSRs shown in Fig. 2. : |

PSRs 7 Descriptions
VP->VPVP Two more separate events.
VP —-> VP NP VP Pivotal constructions.

VP -> VP NP1 Descriptive clauses.
NP1-> NP VP
VP-> VPS Sentential objects.

- 8§->S8SVP Sentential subjects.
VP->V VP-forming rules
VP -> VNP

Fig. 2 Partial set of PSRs for SVCs.

Based on the above PSRs, an SVC sentence such as & ¥ 1tz 2 2 (1 suggested him to
study med1c1ne) can be analyzed as any one of the structures in Fig. 1, which results in
ambiguity. However, there is only one is correct among these structures. We first employ the
subcategorization structure of the main verb ). Since the pivotal verb, &, subcategorizes an
NP as its first object and a VP as the second object. Thus, by this information, a structure of
Type (ii) is selected. Similarly, the main verbs in SVCs of sentential subjects and sentential
‘objects have their specific subcategorization; thus these types of SVCs can also be 1dent1ﬁed by
subcategonzanon 1nformanon Table Misa summary of the spe01ﬁc subcategonzatlons

Lo
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Other types of SVCs, descriptive clauses and two more separate e\"erits,‘ do not have
sp'eciﬁo subcategorization for disambiguation. A method based on classification of verbs can
be useful. If the class of verbs in the second VPs of these two types of SVCs can be
distinguished, then the ambiguity of these two types of SVCs can be removed. Chang's
classification is effective for this purpose [4,5]. In Chang's classiﬁcation, (1) NP-statives
‘describe the properties of individuals, such as ¥8BH (clever); (2) VP-statives modify verb
phrases, such as H(* (engrossed); and (3) S-statives whose subjects are propositions, such as
&R (dangerous). Preference rules of SVCs indicate that the second VPs in SVCs of
descriptive clauses, two separate events and sentential subjects are NP-statives, VP-statives and
S-statives, respectively. In the sentence, ffl _[#% FEER, the second VP is a VP-stative in
Chang's classification and the first verb, -1, does not subcategorize a VP object; therefore, it
is identified as an SVC of two separate events. The second VP in sentence (1) is used to
modified an NP which is NP-stative; thus a structure of descriptive clauses is established. The
classification of verbs is finer in the Case Grammar approach [8 9], which will not be
discussed here.

Table II. Subcategorization structures of some verbs of SVCs.

Types Subjects Objectl Object2
Pivotal NP NP VP
Sentential subjects S . NP - - null
Sentential objects NP S null

There are still cases in descriptive clauses which can not be identified by the above
methods, such as sentences in (7) and (8). These sentences have structural evidence in the
second VPs. The second VP is an object-missing sentence or S/NP[Obj] in sentence (7), and
an object-missing VP, or VP/NP[Obj] in sentence (8). Thus the parser can analyze these
sentences by taking advantage of these structural evidence. . :

II. ELIMINATION OF NONDETERMINISM IN PARSING SVC SENTENCES

| Efforts of parsing SVCs mostly focus on resolving structural ambiguities [4-7]. The
_related problem concerning nondetermm1sm during the course of parsing are not addressed at
all. In the following, we 1nvest1gate the ehmmatlon of nondeterminism, which .wlll further
promote the efﬁ01ency of parsing SVCs.
, In the bottom-up parsing, based on the partlal set of PSRs listed in Fig. 2, nondetemu—
msm occurs when a VP subconstltuent is constructed because all VP rules of SVCs 1n F1g 2
are candidates i in the next rule activation. From the observatlon of syntactic structures shown
in Fig. 1, the leaves in all SVC sentences are of the same linear form: an S followed by a VP,
each of which is shown in shaded areas in Fig. 3.
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Type (v) Type (V)
Fig. 3 All types of syntactic structures of SVCs redrawn in S-VP form.

Thus if we use a PS rule, S_SVC --> S VP, to describe SVC sentences, then nondeterminism
just described can be eliminated. All SVC sentences are temporarily treated as a sentence
composed of an S and a VP. Then after the right-hand side of this S_SVC rule is completed, a
set of reconstruction rules are needed to reorganize the subconstituents in S and VP to establish
the actual structure of the SVC sentence. In fact, the reconstruction rules play the role of
structural disambiguation of SVCs.

According to the discussion in the previous section, we adopt subcategorization
information of verbs to identify pivotal construction, sentential subjects and sentential object.
We use the verb classification of Chang [4,5] to distinguish SVCs of two more separate events
and descriptive clauses. In the following, we show in order the reconstruction rules for these
two classes of SVCs in Table III. Note that S and VP in the table are the right-hand side of the
S rule, S —> S VP, and S/NP[Obj] and VP/NP[Obj] denote an object-missing sentence and an
object-missing verb phrase, respectively. o
Table III. Reconstruction rules for SVCs.

Rule # Descriptions Conditions Actions

1 For pivotal constructions = | head verb(S)=pivotal - Construct a Type (i)
structure.

2 For sentential subject subj(head_verb(S))= sentence Construct a Type (v)
obj(head verb(S))=NP structure.

3 For Sentential object subj(bead_verb(S))=NP Construct a Type (V)
obj(head verb(S))=sentence structure.

4 For two separate events | head_verb(VP)=VP-stative Construct a Type (i)
. structure.
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5 For descriptive clauses head_verb(VP)=NP-stative Construct a Type (iii)
structure.

6 For descriptive clauses VP=S/NP[Obj] Construct a Type - (iii)
. structure.

7 For descriptive clauses VP=VP/NP[Obj] - | Construct a Type (iii)
structure.

IV, IMPLEMENTATION AND RESULTS -

In this section, we show the implementation of the S-rule and reconstruction rules for
analyzing SVCs in our HPSG parser without altering the existing structure of the parser. In
addition, we will show a prominent merit of our parser in dealing with SVCs; that is, pivotal
constructions and sentential objects can be treated as ordinary sentences by our lexicon-driven
method.

A. Overview of an HPSG parser

HPSG (Head-driven Phrase Structure Grammar) is a lexicon-driven grammar
formalism [12]. It reduces PSRs of its predecessor, GPSG [13], by enriching the content of
lexical entries. An HPSG consists of a list of universal principles, lexical entries, arid
language-specific grammar rules. The most often used universal principles are the head feature
principle (HFP), the subcategorization principle (SP), and the adjuncts principle (AP). The
HFP declares that a phrase shares the same head features with its head daughter; the SP states
that in any phrase, each complement daughter must be unifiable with a member of the head
daughter's subcat-list, a list of subcategorization specification that remain to be satisfied; and
the AP states that any adjunct daughter must be unifiable with some member of the head
daughter's adjuncts specification.

The structure of our HPSG can be depicted schematically as shown in Fig. 3, where
each component is described in the following.

Genergl'_ PSRs
Universal principles

Language-specific
grammar rules

Input sentences =) Left-comer parsing = Output sentences
procedure

Fig. 4 Schematic diagram of the HPSG parser.
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The HPSG rules translated in PATR-II formalism [14], 1mp1emented in Prolog, are
shown in F1g 4, ‘where each one actually is a rule-of-rule. That i is, a translated HPSG rule is
the sole argument of the functor rule_sel (rule selection), which is selected according to the
conditions listed in the body of the corresponding rule sel The body of a rule_sel plays the
role of deterministic selection of an HPSG rule.

% Head pre-complement structures. ' % Head post-complement structures.
rule_sel( R ule X —> [X1, X2]:- rule_sel(R ule X —> [X1,X2]:-
Xl:syn:loc === X2:syn:loc:subcat:first:syn:loc, % X1:syn:loc:subcat:first:syn === X2:syn, % SP
SP X:syn:loc:subcat === X1:syn:loc:subcat:rest, % SP -
X2:syn:loc:subcat:rest === end, % SP X:syn:locthead === Xl:syn:loc:head, % HFP,
X:syn:loc:subcat === X2:syn:loc:subcat:rest, % Sp X:syn:loc:lex === "',
X:syn:locthead === X2:syh:loc:head, % HFP. X:head_dtr === X1,
X:syn:loc:lex === "-', ] X:emp_dtr === X2)):-
X:head_dtr === X2, current_dag(C), .
X:emp_dtr === X1)):- (C isa_preposition;
current_dag(C), Cisa_vp2). % C is a VP with subcat length >1.

rem_sen([Next_word|_}),N ord Next_word,
(subcat_feature(C);
C isa_vp, N isa_nominalization_particle).

% A lexical X is changed to a phrasal X. % Head pre-adjunct structures,
rul_sel( R ule X —> [X1]:- rule_sel(R ule X —> [X1,X2]:-
X:syn:loc:subcat = == X1:syn:loc:subcat, % SP X:syn:loc:subcat === X2:syn:loc:subcat, % SP
X:syn:loc:head === Xl:syn:loc:head, % HFP. X:syn:loc:head === X2:syn:loc:head, % HFP
X:syn:loc:lex === '-', X2:syn:loc:head:adjuncts = == X1:syn:loc:head,
X:head_dtr === X1)):- X:syn:loc:lex === '-, ’
current_dag(C), . . X:head_dtr === X1,
(C isa_lexical_v; » X:syn:loc:adj_dtr_type === pre,
Cisa_lexicaln; ) o X:adj_dtr === X1)):-
C isa_genitive_marker; ) current_dag(C),
C isa_nominalization_particle). C isa_pre_adjunct_category.
% Head post-adjunct structures. Note:
rule_sel((R ule X —> [X1,X2]:- (i) The symbols X, X1 and X2 are variables denoting
X:syn:loc:subcat === Xl:syn:loc:subcat, % SP
X:syn:loc:head === Xl:syn:loc:head, % HFP the feature structures of constntuents
Xl:syn:loc:head:adjuncts == = X2:syn:loc:head, (u) ‘The symbols concatenated by colons are path
X:syn:loc:lex === "', o )
X:head_dtr === X1, names of the correspondmg feature structure.
X:syn:loc:adj_dir_type === post, (iii) The 1dent1ty symbol, ===, represents the
X:adj_dtr === X2)):-
current_dag(C), destructional unification.
C isa_phrase, o . - ' : —

(rem_?sen([Nem_woyd | _D;rem._sen([Next. word])),
N ord Next_word, )
N isa _pont_adjunct‘ _category.

Fig. 4: HPSG rules translated into PATR-II form.
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The HPSG lexical entry, expressed in feature structure form, is shown below.

(12) phon:

syn: loc:  head:
subcat:
lex:

bind
Lexical entries for Chinese verb ¥ (sell) and noun Fi/IL (water melon) represented in PATR-
II form are shown below.

(13)Word 'N":-
W:phon === '],
W:syn:loc:head:maj === v,
W:syn:loc:subcat:first:syn:loc:head:maj === n,
W:syn:loc:subcat:rest: first:syn:loc:head:maj === n,
W:syn:loc:subcat:rest:rest: first:syn:loc:head:maj= = =n,
W:syn:loc:subcat:rest:rest:rest === end.

(14)W ord 'FH/A":-
W:phon === "B/,
W:syn:loc:head:maj === n,
W:syn:loc:head:type === common, '
W:syn:loc:head:hier === fruit.

Note that the adjuncts features of lexical entries are inserted by using a ‘meta-lexicon
procedure, which adds the adjuncts feature to the corresponding lexical entries automatically.
The parsing procedure is a left-corner one [14], as shown below.

(15)  recognize(Dagl,B,C) :- leaf(Dag0,B,E), left comer(Dag0,Dagl,E,C).
left_ corner(Dagl,Dag2,C,C):-unify(Dagl,Dag2).
left_corner(Dagl,Dag2, C,D) :- |
rule_sel((_ ule Dag0 — [Dagl|Dags]:- XXX)),call(XXX),
recognize_rest(Dags,C,H),left_corner(Dag0,Dag2,H,D)
leaf(Dag, [Word | C],C):- Dag ord Word.
recognize_rest({],A,A). |
recognize rest([Dag| Dags],C,D):- récognize(Dag,C,E), recognize_rest(Dags,E,D).
The first rule, recognize, states that a sentence is recognized as category Dagl if it proves that
a leaf of category Dag0 constitutes a left-comner of Dagl. Detailed descriptions of the rest
clauses can be obtained from [10,14].

B. Lexicon-driven parsing of SVCs
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SVCs of pivotal constructions and sentential objects can be analyzed as ordinary
sentences by using our lexicon-driven parser. The lexicon-driven parser relies heavily‘on the
subcategorization frame of verbs to construct the head-complement structures. The
combination of the head and the adjuncts depends on the adjuncts features of the head. To deal
with the verb of pivotal constructions, &l (suggest), for instance, a lexical entry is given
below.

(16) W ord '’ :-
W:phon === #,
W:syn:locthead:maj === v,
Wisyn:loc:lex === "'+',
W:syn:loc:subcat:first:syn:loc:head === n, % The first obj. is an NP.

W:syn:loc:subcat: first:syn:loc:lex === "'-',

W:syn:loc:subcat:rest:first:syn:loc:head:maj === v, % The second obj. isa VP (a
W:syn:loc:subcat:rest:first:syn:loc:lex === '-', % subject-missing sentence).
W:syn:loc:subcat:rest: first:syn:loc:subcat:rest === end,

W:syn:loc:subcat: rest:rest:first:syn:loc:head:maj === n, % The subj. is an NP.

- W:syn:loc:subcat:rest:rest: first:syn:loc:lex === '-',
W:syn:loc:subcat:rest:rest:rest === end. % End marker of subcat frame.
For the case of sentential objects, i (say), for example, a lexical entry is shown in (17).

(17) Word '#"-
W:phon === "31’',
W:syn:loc:head:maj === v,
W:syn:loc:lex === "+",
W:syn:loc:subcat: first:syn:loc:head:maj === v, % The obj. is a saturated sentence.

W:syn:loc:subcat: first:syn:loc:subcat ==
W:syn:loc:subcat:rest:first:syn:loc:head:maj === n, % The subj. is an NP.

end,
W:syn:loc:subcat:rest: first:syn:loc:lex === "',
W:syn:loc:subcat:rest:rest === end. % End of subcat frame.
“In the following steps, we show how the pivotal construction sentence, % % ffl 2
B (I suggested him to study medicine), is constructed according to the lexical entry of the
verb &l and the HPSG rules in Fig: 4. In the following demonstration, for convenience, we
only list the main part procedure of rule invocation. '
Step 1: Current Word: 3.
The NP 3% first activates the head pre—complement ‘rule, and requ1re a VP
(S/NP[subj]) to form a complete sentence '
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Step 2:

Step 3:

Step 4:

Step 5:

Current Word: %,

The verb & activates the head post-complement rule, and an NP (the first object of
%)) is required by the rule to form a larger VP which in turn leaves over a VP to form
a saturated VP. ' '

Current Word: ft.

The NP 1t unifies successfully the remaining part in Step 2. Again this resulting VP
activates the head post-complement rule, and a VP (the second object of &) is
required to form a complete VP.

Current Word: 2.

The verb %, a transitive verb, activates the head post-complement rule, and an NP
(the object of ) is required.

Current Word: B4, |

The NP, B, satisfies the remaining part in Step 4; thus a complete VP, 2 &, is
constructed, which in turn unifies successfully the remaining part of Step 3. A
complete pivotal construction is thus constructed.

C. The S-rule for SVCs and reconstruction of SVC structures

In Section III, we use an S —> S VP rule to describe some SVC sentences in order to

remove nondeterminism on PSRs selection. Then a set of reconstruction rules are applied on
the right-hand side of this S-rule to reorganize the real structure of the SVC sentence. In the
HPSG parser, this S-rule is thus expressed as the following form.

(18)rule_sel((R ule X —> [X1,X2]:-

X1:syn:loc:head:maj ===v, % A sentence.
X1:syn:loc:subcat === end,

X1:syn:loc:lex === "-',

X2:syn:loc:head:maj === v, % A phrasal verb.
X2:syn:loc:lex === "'-',

assert(svc(X,X1,X2)) )):-
current_dag(C), C isa_saturated_sentence.

Note that in this rule we only confine loose restrictions for X1 and X2, i.e. the S and the VP
in the right-hand side, respectively. At the end of the list of identities, an sve(X1,X2,X3) is
asserted into the database, which is used for latter reconstruction. The reconstruction rules are
represented as follows.

19

reconstruction(Dag0,Dagl,Dag2):-
retmgt(svc(DagO,Dagl,Dag2)),

% Case 1. Two more separate events. E.g., [42]i BB ei Bk5E.

Dag2:syn:loc:head:type === vp_stative,
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Dag2:syn:loc:subcat:rest === end, % S/NP[Subj]

Dag2:syn:loc:subcat: first:syn:locchead === % Dag2'snull NP ===
Dagl:cmp_dtr:syn:loc:head, % Dagl's subject.

Dag0:syn:loc:head === Dagl:syn:loc:head, % HFP

Dag0:syn:loc:subcat === Dagl:syn:loc:subcat, % SP

DagO:cmp_dtr === Dagl:cmp_dtr,

Dag0:head_dtr:head_dtr === Dagl:head_dtr,

DagO:head_dtr:head dtr === Dagl:head_dtr,

DagO:head dtr:cmp_dtr === Dag2;

% Case 2. Descriptive clauses. E.g., it H [—Z&Zliei R BER.
Dag2:syn:loc:head:type === np_stative,

Dag2:syn:loc:subcat:rest === end, % S/NP[Subj]

Dag2:syn:loc:subcat:first:syn:locchead === % Dag2's null NP ===
Dagl:head dtr:cmp_dtr:syn:loc:head, % Dagl's object.

Dag0:syn:loc:head === Dagl:syn:loc:head, % HFP

Dag0:syn:loc:su === Dagl:syn:loc:subcat, % SP

DagO:cmp_dtr === Dagl:cmp_dtr,

DagO:head_dtr:head dtr === Dagl:head dtr,

DagO:head dtr:cmp_dtr === Dag2;

% Case 3. Descriptive clauses. E.g., ft H [—&Hi $ B =& ei.

Dag2:syn:loc:head:maj === v,

Dag2:syn:loc:subcat === end,

Dag2:head dtr:cmp_dtr:syn:loc:head:maj ===n, % S[Obj:null]

Dag2:head dtr:cmp_dtr:syn:loc:null === '+"', % S[Obj:null]

Dag2:head_dtr:cmp_dtr:syn:loc:head === % X2'snull NP ===
Dagl:head_dtr:cmp_dtr:syn:loc:head, % X1's object.

Dag0:syn:loc:head === Dagl:syn:loc:head, % HFP

Dag0:syn:loc:subcat === Dagl:syn:loc:subcat, % SP

DagO:cmp_dtr === Dagl:cmp_dtr,

DagO:head_dtr:head dtr === Dagl:head_dtr,

Dag0O:head dtr:cmp_dtr === Dag2;

% Case 4. Descriptive clauses. E.g., [$:{/]]i & [5%]j ei 1% ¢j.
Dag2:cmp_dtr:syn:loc:head:maj ===n, % VP[Obj:nuli]
Dag2:cmp_dtr:syn:loc:head:type === null , % VP[Obj:null]
Dag2:cmp_dtr:syn:loc:head === % X2'snull NP ===

Dagl:head_dtr:cmp_dtr:syn:locchead, % X1's object.
Dag2:syn:loc:subcat:first:syn:loc:head === % X2's subject ===
Dagl:head_dtr:cmp_dtr:syn:loc:head, % X1's subject.
Dag0:syn:loc:head === Dagl:syn:loc:head, % HFP
Dag0:syn:loc:subcat = == Dagl:syn:loc:subcat, % SP
Dag0:cmp_dtr === Dagl:cmp_dtr,
DagO:head_dtr:head_dtr === Dagl:head_dtr,
DagO:head dtr:cmp_dtr === Dag?2;

% Case 5. Sentential subjects. E.g., i { A & — ¥ EiE= R G,
Dag2:syn:loc:head:type = == s_stative,

Dag2:syn:loc:subcat:rest === end, % S/NP[Subj]
Dag2:syn:loc:subcat: first:syn:loc:head:maj === v, % X2 subcats an S.
Dag2:syn:loc:subcat:first:syn:loc:subcat === end, %
Dag0:syn:loc:head = == Dag2:syn:loc:head, % HFP
Dag0:syn:loc:subcat = == Dag2:syn:loc:subcat, % SP
DagO:cmp_dtr === Dagl, :

DagO:head_dtr = == Dag2).
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Recall that reconstruction is activated after the right-hand side of S —~> S VP rule is

completed. Thus the activation of reconstruction is inserted after the recognize_rest procedure
in the seconds left_corner rule, which becomes the following.

(20)  left_corner(Dagl,Dag2, C,D) :-
' rule_sel((_ ule Dag0 -- [Dagl | Dags]:- XXX)),call(XXX),
recognize_rest(Dags,C,H),
case([sve(_,_,_ ) -> reconstruction(Dag0,Dagl,Dag2)]),
left_corner(Dag0,Dag2,H,D)
In the following, we show, in brief steps, the process of parsing a sample sentence, it
| —&xE R 7&. ~
Step 1: Current word: L, |
The NP headed by this noun activates the head-pre-complement rule and a VP is
required to form a complete sentence.
‘Step 2: Current word: H. '
This verb is first changed to phrasal verb which in turn activates the head-post- _
complement rule. An NP is required to form a VP headed by A.
Step 3: Current words: — & .
An NP headed by & is formed, which satisfies the requirement of Step 2. A sentence
is thus established; the S --> S VP rule is activated according to this sentence. To
complete this S-rule, a VP is required.
Step 4: Current word: {R.
This adverb activates the head-pre—ad_]unct rule and a VP is requ1red
Step 5: Current word: F#,
This is an intransitive verb. It is first changed into a phrasal verb, which meets the
requirement of Step 5. A VP, R H#2, is formed, and then it satisfies the remaining
VP in Step 3. Before the completion of the S-rule a svc(X0,X1,X2) is asserted into the
database. |
Step 6: After the completion of the right-hand side of the S-rule, i.e., execution of recognize-

_rest in left_corner, a check on svc(_,_, ) is true, which activates reconstruction to
establish the actual SVC structure. In this situation, Case (ii) in reconst_ruction is
fired. ' | '

D. Sample results of parsing SVC sentence

In the following we show the parsing results of two sample sentences, in abbreviated

feature structure form.
SVC Type: Two more separate events.
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Sentence: fit FH W Hi.

syn: loc: head: ...
subcat: ...
cmp_dtr: syn: loc: head: ...
lex:-
_ head dtr: phon:f,
syn: loc: head: ...

lex: +
bind:- )
head dtr: head dtr: syn: loc: subcat: ...
head: ...
lex:-

head_dtr: phon:HE
syn: loc: head: ...
subcat: ...
lex: +
cmp dtr: syn: loc: head: ...
cmp dtr: syn: loc: head: ...
subcat: ...
lex:-
adj_dtr_type:pre
lex:-
head_dtr: syn: loc: head: ...
subcat: ...
lex:-
head dtr: phon:H.(»
syn: loc: head: ...
subcat: ...
lex: +
adj_dtr: phon:fR
syn: loc: head: ...
lex: +
bind:-

SvC Type: Descriptive clauses.
Sentence: fit H — & #H & R FK.

syn: loc: head: ...
subcat: ...
cmp_dtr: syn: loc: head: ...
lex:-
head_dtr: phon:f! S
syn: loc: head:... .
lex: + '
bind:-
head dtr: head dtr: syn: loc: subcat: ..,
head: ... o
lex:-

head _dtr: syn: loc: subcat: ... ,_: -

head: ...
lex:-
head dtr: phon:H
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syn: loc: head: ...
subcat: ...
lex: +
cmp dtr:  syn: loc: head: ...
subcat: ...
lex:-
adj_dtr_type:pre
head dtr: syn: loc: head: ...
subcat: ...
lex:-
adj_dtr_type:pre
head dtr: syn: loc: head: ...
subcat: ...
lex:-
head dtr: phon: &

syn: loc: head: ...

lex: +
bind:-
adj dtr: phon: &
syn: loc: head: ...
subcat: ...
lex: +
bind:-
adj dtr: phon:—
syn: loc: head: ...
lex: +
bind:-
cmp dtr:  syn: loc: head: ...
subcat: ...
lex:-
lex:-
head dtr: syn: loc: subcat: ...
head: ...
lex:-
head dtr: syn: loc: head: ...
subcat: ...
lex:-
adj_dtr_type:pre
head dtr: syn: loc: head: ...
subcat: ...
lex:-
head_dtr: phon: EEX

syn: loc: head: ...

subcat: ...
lex: +
adj_dtr: phon:fR
- syn: loc: head: ...
lex: +
bind:~
cmp dtr: syn: loc: head: ...
lex:-
null: +
bind:-
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cmp dtr: syn: loc: head: ...
- ‘lex:-.
head_dtr: phon:%
syn: loc: head: ...
lex:+
bind:-
V. CONCLUDING REMARKS

We have shown a reconstructive method for parsing Chinese SVC sentences by using a
lexicon-driven pafsér. In this work, only one phrase structure rule is added into the parser for
SVCs. The lexicon-driven mechanism shows promising in processing SVCs of pivotal
constructions, sentential subjects and sentential objects for the head verbs in these types of
SVCs have their specific subcategorization. They are handled as ordinary VPs by using the
existing parser‘without adding any phrase structure rule. The only phrase structure rule for
SVCs is used to describe SVCs of descriptive clauses and two more separate events.
Nondeterminism during the course of parsing SVCs does not occur because there is only one
phrase structure rule for SVCs. The phrase structure rule is attached with a set of
reconstruction rule which is used to build the actual structures of SVCs and resolve structural
ambiguities. We have tested every type of SVCs in our parser, and performance is similar as
processing ordinary declarative sentences. The resulting structures fit the conventional HPSG
format, so that it can be treated as ordinary declarative sentences in latter phases, such as
semantic interpretation, structural transfer in MT, etc. At present, the parser performs well for
every SVCs consisting of two VPs. However, there are still further work for long SVCs.
Consider the SVCs containing more than two VPs, as in sentences (21) and (22).
Q1 ft &£ B &K FF T &K,

He went to school to find classmates to play basketball. -
22) B A —E Kk FRK & BR R AR A X o

| I have a sister who likes to go to school to find classmates to play basketball

At present, the reconstructive approach for SVCs can not parse these sentences. By
observations, the troublesome VP series in these sentences are mostly in conjunctive
structures. Consequently, the cases of long series of VPs will be handled in our further work
on analysis of Chinese sentence linking.
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ABSTRACT

Morphologically derived words can neither be identified by dictionary look-up
nor be accounted for with a syntactic parser in NLP. Mandarin Chinese
involves several productive morphological rules. This paper proposes a set
of rules to identify reduplicatives in Mandarin Chinese. This set of rules will
be used to complement dictionary look-up and DM generation rules in the
word segmentation module. The co-occurrence restriction of adjuncts in
reduplication is also discussed and expressed in ICG mechanism to improve
parsing results. |
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I. Introduction

| Mandarm Chinese reduplicatives are constructed by repeating the whole
or part of a lexical item. Verbal reduplicatives may denote delimitative as
well as tentative aspects(¥ 3 %7) or intensifying meaning. For instance, both
verbs chang ’to sing’ and pingan ’to be s_afe and secure’ can be reduplicated,

as shown in (1).

(1) a. tamen pingshr shihuan chang chang ge
they usually like sing sing song
"They usually like to sing a little bit’

.. b..shiauhai dou ping ping an an
children all flat flat peaceful peacefu
’Children are all very safe and secure’

In addition to verbs, onomatopoeia, measure words, and ‘morphological
derived determinative-measure comp.ounds can also undergo the process of
reduplication. Because of its high productivity and its being fed by another
morphological rules;, exhaustively listing reduplicatives in the lexicon is not
a viable alternative. |

The current version of CKIP word segmentation system [3] is based on
a lexicon of about ninety thousand words and a set of determinative-measure
rules [7]. Without rules to account for reduplicatives, not all correct word
breaks can be found. Examplé extracted from machine-readable _Chine.se.

corpus is given in (2)'.

(2) a. juang man E yi dai @d_e pinggﬁo :
fill full LE one bag bag DE apple R
’(The container etc.) is filled with bags of apples.’

1. The following examples presented in this paper are mainly adopted from this
machine-readable corpus whose texts are mostly from a Chinese newspaper, Tz You
Shr Bau ’Liberty Times’ from October 1990 to February 1991, which contains 10
million words or so.
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b. yijr tzai gung shiu  shrchang jung jang jang die die
always in supply demand market center rise rise fall fall

’(The price) has always been rising and falling alternatively in
the market.’

In order to solve the above-mentioned problem, this paper proposes a set of
reduplicative-formation rules to build reduplicativés within the word
segmentation module. We will first discuss the scope and types of
reduplicatives in Mandarin Chinese, and their syntactic behavior and semantic

variations.
II. Reduplicatives - their scope and types

Morphologically, reduplicatives are formed by total or partial repetition
of a lexical item. However, not every lexical item containing partial
repetition is regarded as a reduplicative in this paper. This is because
reduplicatives are handled in terms of morphological rules in this paper. And
some of the reduplicated types do not follow these requirements: they have
limited productivity and show idiosyncratic grammatical behavior, which

mean their forms are not predictable by general rules (cf. 3a, 3b, 3c, and 3d).

(3) a. the reduplication of adverbs

chang chang
often often
’often’

Jin  jin
-only only
,Only?
b. the reduplication of nouns
en en yuan yuan

favor favor hatred hatred
’gratitude and grudge’
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~ thing thing object object. .
’things and objects’

c. the xlixy reduplicatives
o L luosuo

chatter inside - wordy
. ’verbose or wordy’

tu li- - tuchi
earth inside rustic
Crustic’

d. the xyy reduplicatives

liu you you
- green.oil oil
"bright green’

- shiau ha ha
laugh Ha Ha
’laugh heartily’

Zeng bing biﬁg'

cold ice ice -

b b

icy

shie lin lin
blood drench drench
"bloody’

In (3¢c), for example, only those adjectives with pejorative meaning, such as
tuchi ’rustic’ and luosuo ’wordy’, can undergo this type of reduplication.
Since their set is quite small, we will simply list them all in the lexicon. As
for the xyy type, the meaning as well as the reduplicated yy form are lexically
determined by the head x, which may be a noun, verb or'adjective [11&[4].

Try to compare the examples below.

(4) a. hei  chi_ chi

black paint paint
’very dark’
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*a’. bai  chi__chi

white paint paint

b. ching piau piau
light float float

’lightly’

*b’. jung piau piau
heavy float float

From example (4), we may observe that the reduplicated yy types, chi chi and

piau piau must co-occur with hei ’black’ and ching ’light’, respectively.
Using regular expressions to construct these reduplicatives is not feasible
because there is no context-free constraint to rule out the non-existing forms.
Therefore, they will still bé stored in the lexicon. |

To sum up, only those reduplicativeé of high prbductivity and
predictabiIity are formed by rules and are included in this paper. Moreover,
the categories that can have reduplication are limited to verbs, determinative-
measure compounds, measures and onomatopoeia.> In what follows, a
detailed discussion of various reduplicated forms and a set of formation rules

will be offered according to different meaning properties.
2.1. Reduplication to Express Tentative Aspect

Generally speaking, the process of reduplication may add a sense of
tentativeness to any action verbs which contain no modifier-head internal
structure and have no meaning contradicted to the semantic function of

reduplication, such as controllable verbs. Lastly, a reduplicatable action verb

2. Among these four categories that can undergo reduplication, except for the verb’s,
the forms of the other three are rather simple. Hence, in the paper, we will only
list their formation rules without further explanation. As for the semantic functions
of these reduplicatives, a sense of vividness is imposed if the original form is an
onomatopoeia; otherwise, ’each’ or the way of measuring is added. -
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cannot be an achievement verb. Take chujia ’become a monk’ for example.
Although this verb is both active and controllable, it cannot be reduplicated
because it is an achievement verb. This verb is an achievement verb because
the goal of becoming a monk is attained at the endpoint of the denoted action.
In terms of lexical semantics, a tentative aspect stipulates that an act be
broken down and carried out in a piecemeal fashion. The instantaneity of an
achievement verb contradicts this interpretation; This is how our rule
excludes chujia become a monk’. Additional functional types as shown in

the following sections.
2.1.1. XX Type®

If the input is a monesyllabic action verb, some other words like yi
"one’, or le ’PERFECTIVE’ may be inserted between the two Xs; but if the
original form is a disyllabic one, then no word may occur in between.

Ex_amples are shown in (5)..: |

(5) a. shiou (yi) shiou ye hua de shiangwei
'smell (one) smell wild flower DE fragrance
’try and smell the fragrance of wild flowers. a little’

b. jengli jengli shuguei
arrange arrange bookcase
’arrange the bookcase a little’

Thoug_h there 1s ‘a_little diffefenee in forms and number of syll_ables, iny one
rule is proposed.
'RDI —-> X ({yi, le}) X

conditions: (1) X = VA, VB, VC, VD, VE, VF
(Action Verb) '

3. The capltahzed X used here means that X may be a syllable or a word and X, y or
Z just represents a syllable. : :
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- (2) IF X is monosyllabic
THEN {yi, le} is allowed

However, from the data collected, we find that some disyllabic stative
verbs may also take this XX form. Closer investigation shows that their
reduplicated counterparts are more active-like. The interpretation of the
reduplicated (6c) is derived from the active reading of Kelian "to pity" in
(6b), not the stative reading in (6a). Thus the generalization that only action

verbs have tentative reduplicative forms is correct.

(6) a. ta shiangdang kelian
he quite pitiful
’He is quite pitiful.’

b. jingfang shiangdang kelian dueifang
police  quite pitiful other-side
"The police pity the other party very much.’

c. kelian kelian women
pitiful pitiful we
"Just pity us a little bit!’

2.1.2. xxy(z) Type

Only VO compounds are allowed to take this reduplicated type. After
reduplication, the result also has an additional meaning of ’doing a little bit’,

just like the tentative aspect reduplication of XX.

(7) a. ching ta lai ping ping li
please he come judge judge reason
’Just ask him to come (and try) to make a judgement.’

b. shiuang minjung lai kai kai yanjie
hope populace come open open view .
’(We) wish the people will come and have their perspectives

(somewhat) widened.’
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These VO compounds may be two or three syllables, so the reduplicated type
may either xxy or xxyz. ‘And the formation rule is expressed in the

following.

RDS5 =-> x ({le, yi}) xy(2)
conditions: xy(z) = VA13, VA3, VA4, VB

2.2. Reduplication to Express Vividness

The reduplicated process will impose a sense of vividness to stative
verbs, or to intensify the attributes described by them. The major types of

reduplicated stative verbs are presented below.
2.2.1. xx Type

Monosyllabic stative verbs can have this reduplication form. However,
unlike monosyllabic action verbs, only de ’DE’ or di ’-ly’ are allowed to
follow it, as in (8). To distinguish reduplicated stative from action verbs,

RD?2 is proposed.

(8) dutz kung kung (de)
belly empty empty
"The belly is empty.’

RD2 --> xx ({de, di})
conditions: x =VH (Stative Verb)

2.2.2. xxyy Type

- In general, only disyllabic’ stative verbs may undergo this kind of

reduplication, and except for few which take sentential complements, most of
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them fall under the category of intransitives.

(9) a. dajia dou hen kaishin
everybody all very happy
’Everybody is very happy.’

a’. dajia dou kai kai shin shin
everybody all ha- ha- ppy- ppy
’Everybody is very happy.’

~ b. ta hen gau&hing'tcutzren“ dou neng dacheng gungshr
he. very glad investor -all. able . attain concerns
’He is very glad that mvestors can reach concerns.’

b’. rang dajia dou neng gau gau shing shzng (de)
let everybody all able ha- ha- ppy- ppy
"Let everybody be very happy.’

The rule to form this typjei .'of redliplication is e){pressed in RD7.

RD7 --> xxyy
conditions: xy = VHI11, VH21, DH[+ onomatopoeic]

But, after examining more linguistic ‘data, we discovered that some of the
action verbs, whether intransitive or not, can also have this xxyy redupllcated

type. They spread sporadically over the whole active set.

(10) a. yin juntz - jin jin chu chu diauyu chang "~
addiction gentleman enter enter out out fish field
’(Addicted) smokers frequent fishing arenas.’

b. yau yau huang huang * bu chu fangjian
. shake shake wobble = wobble walk out room .. - -
’(S/he) walked out the room unsteadily.”

The semantic function of this reduplicated type also differs with respect to the

input: if the original word is stative, then thc:mofphclogical _pr_'oce"és will make
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it sound more vivid. Besides, the a_tt_:_ributes it describes may also be
intensified. But to those active input, only a sense of "doing a little bit’ is

added.

2.3. Reduplication of Onomatopoeic and Measure Words

Onomatopoeic words and measure: words can also have XX
reduplicated form. They are accounted for with RD4 and RD10, respectively.
The Kleene stars **’ in rules means that onomatopoeic or measure words can
be repeated twice or more to form reduplication. RD4 can be applied to both

monosyllabic and disyllabic onomatopoeia.

RD4 --> DH* ({de, di})
conditions: DH (manner adverb) which is specified with the
feature [+ onomatopoeic]

RD10 --> RNOP1 ((you)) RNOP1)*

RNOQOPI --> (IN1)(DESC) M*

It deserves mentioning that disyllabic onomatopoeia can undergo reduplication
of xxyy type. The input to xxyy-type onomatopoeic reduplication has already

been accounted for in RD7.
III. The Syntactic Constraints of Reduplication

Unlike typical morphological processes, Mandarin Chinese
reduplication does not change either the argument structure or the category.
This rule changes the semantics and some minor syntactic behavior, such as
the allowed adjuncts and syntactic patterns. This section concerns with these

reduplicated constructions and their representation in the Information-based

4. According to Mo et al. [7] "IN1’ in this rule represents numeral compounds
"DESC’ are descriptive words, such as da ’big’, or shiau ’small’.
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Case Grammar (ICG), which is proposed by Chen and Huang:[2].

3.1. Distribution of Reduplication
3.1.1. Reduplicated Stative Verbs

Though both reduplicated and unreduplicated forms can function’as
main predicates and manner adverbs, the usage of reduplicated stative verbs
is more restricted than their counterparts. ‘Words after being reduplicated can
neither co-occur- with degree adverbs nor. appear in the construction of
comparison. This suggests that reduplication assigns the semantic feature of
[-SCALE] because non-scaler predicates can neither occur in a comparative
construction nor: be modified by a degree adjunct [5]. - In other word,

reduplication turns a scaler predicate into an absolute predicate. -

- (11) a. yanjing shiau shiau de .
eye small small DE
’(His/her) eyes are very small.”

*a’, yénjing feichang shiau shiau de
- eye very  small small DE

b. tamen fuchi liang yishiang ping ping shuen shuen de
" "they couple both always flat flat smooth smooth DE
"They have always been going smoothly as a couple.’

*b*.tamen fuchi liang yishiang hen ping ping shuen shuen de
they couple both always very flat flat smooth smooth DE
c. wo gau ta'san gungfen
I tall he three centimeter

’l am three centimeter taller than he’

*c’. wo gau gau ta san gungfen
I tall tall he three centimeter

- 3.1.2..Reduplicated ‘Action Verbs .- -
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Though the categories and argument structures of action verbs after
reduplication remain the same, there are more syntactic limitations on
reduplicated forms. We observe that these reduplicatives are mutually
exclusive with the adjuncts of frequency, quantifier, duration, and postverbal
location. Moreover, they. are incompatible with the aspects, le
"PERFECTIVE’, je 'DURATIVE’, and guo ’TEXPERIENTIAL’ as well as the
bei construction. As described in section 2.1, reduplication of action verbs
denotes the tentative and delimitative aspects which mean some actions are
regarded as a piecemeal fashion internally, so any expressions to signal the
instantaneous completion of an action, such as the occurrence of aspect, ‘le
’PERFECTIVE’ and guo ’EXPERIENTIAL’ certainly violate the semantic
function of reduplication. Accordingly, a postverbal locative phrase which
refers to the place where an action is achieved is also forbidden. Again, the
incompatibility between bei construction and reduplication is because bei
constructions interpret the event in its totality, contrary to the internal event-
structure of the tentative aspect’. Beside the contradiction of semantic
effects, the exclusion of some expressions may be because of the redundancy
in meaning. For example, the‘ durative aspect, je ’DURATIVE’, is suggested
by Li and Thompson [6] to express "ongoing, or durative nature of an event’
which has been. conveyed by reduplicated forms. In addition, tentative
reduplicated éonstructions may also pertain the quantitative meaning of an
‘action which the adjuncts of frequency and quantifier tend to express. It is
not ‘necessary to contain two or more expressions which are the same.
Therefore, reduplicated forms do not occur with the durative aspect, adjuncts
of duration, frequency and quantifier. These restrictions of co-occurrence will

be illustrated by the following examples.

5. Li and Thompson [6] stipulates that a bei sentence "describes an event in which an
entity or person is dealt with, handled, or manipulated in some way." This
definition entails that the event is considered as a whole.

228



(12) a. ching rzuo yihuei (duration)
please sit a while
"Please sit for a while’

*a’. ching rzuo tzuo yihuei
please sit sit a while

b. fzuo tzai shrtou shang (postverbal location)
sit in stone above
’Sit on the stone’

*b’. tzuo tzuo tzai shrtou shang
sit sit in stone above -

c. tzou yi bian (frequency) ”
walk one time
’Walk once!’

*c’. tzou tzou Yyi bian
walk walk one time

d. tauluen guo je ge wenti
discuss EXP this CL question
*This question has been discussed’

*d’. tauluen tauluen guo je ge wenti
discuss discuss EXP this CL question

3.2. Representation of Reduplication in ICG

Following the above discussion of grammatical feature of reduplication,
this section proposes ICG representations of redﬁplication for efficient
parsing. The representation includes syntactic information, such as category,
basic patterns (BP) and adjunct precedence (AP), and semantic information,
such as semantic features. According to the observation described in section

3.1.1 and 3.1.2, the co-occurrence restriction.of adjuncts will be denoted with
AP, as in (13).
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(13) a. adjunct restriction in Stative verb .

syn : constraints: AP : Al : v[+rd] > < {de'gree, comparison}

b. adjunct restriction in Action Verb

syn: constraints: AP: A2: v[+rd] >-< {complement[ASP],
Jfrequency, quantifier, duration, -
agent[{PP/[bei],P[bei]}]}

As for the other informaﬁon, (a) 6née reéognized as reduplicated
constructions, reduplicatives will inherit the same syntactic categories as their
original forms, even though they are not stored in the lexicon; (b) reduplicated
stative verbs will acquire the feature [+ vivid] and reduplicated action verbs,
[+tentative]; (c) the feature [+rd] will be specified, while reduplication is
identified. Once the [+rd] is specified, Al in stative verb and A2 in action
verb will be applied during the process of parsing language. For further
explanation, the stative verb, kuaile *happy’ and the action verb, da *hit’ and

their reduplicated forms are taken as examples.

(14) a. kuaile

sem : meaning : happy
feature : +manner
adjuncts : ...

syn : class  : VH2I
features |
constraints: form
BP Bl : experiencer < * ;

a’. kuai kuai le le
sem : meaning : be very happy

feature : +manner, +vivid
adjuncts : ...
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syn : class : VH21
features : +rd
constraints: form ¢
BP Bl : experiencer < * ;

AP Al : v[+rd] > < {degree, comparison}

b. da
sem : meaning : hit.
feature
adjuncts : ...
syn : class : VC2
- features

constraints: form
BP BIl: agent[{NP,PP[you]}] < * < goal[NP];
B2: agent[{NP,PP[you]}] < goal[PP] <*;
B3: goal[NP] < agent[{PP,P[bei]}] < *;

b’. da (yi) da

sem : meaning : hit a little
feature : +tentative
adjuncts

syn : class : VC2
features : +rd

constraints : form
BP Bl: agent[{NP,PP[you]}] <*< goal[NP];
B2: agent[{NP,PP[you]}] < goal[PP] < *;

AP A2: v[+rd] > < {complement[ASP],
frequency, quantifier, duration,
ager_lt[{ PP[bei],P[bei]}1}

From the above examples, both reduplicated expressions are specified by the
feature [+rd] in the syntactic feature. And, try to compare (14b) and (14b’):
accofding to the co-occurrence restriction of adjuncts, action verbs with the
feature [+rd] are incompatible with bei construction, thus example (14b’)

does not contain the third basic pattern.
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IV. Concluding Remarks

In this paper, we present not only the scope and types of reduplicatives
but also a set of formation rules to enhance our word segmentation module.
Based' on the syntactic constraints of reduplicated constructions, we express
the co-occurrence restriction of adjuncts in ICG to help parsing. In addition
to context-free rules as in the formation of determinative-measure compounds,
context-sensitive rules to construct reduplication are réquired. However, these
context-sensitive rules for reduplicatives are now implemented by context-free
rule augmented with conditional checks and do not pose any problem for

parsing efficiency.
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Abstract

Parsing efficiency is one of the important issues in building practical natural langilage
processing systems. This paper proposes a design and an implementation of a parallel
augmented context-free parsing system for natural language analysis. Natural language
grammars are more than context-free, so that unification formalisms are adopted to
enforce the linguistic constraints and to transfer the linguistic information. Lexical and
structural ambiguities are the famous problems in parsing natural language sentences.
Traditional LR approaches to deal with these problems are pseudo parallelism or blind
parallelism. They fork many processes to take care of parsing. Appé.rently, it results in
the scheduling problem in shared-memory model or the communication problem in
distributed-memory model. This paper presents a merge mechanism to compose the
same jobs into one. It can not only eliminate the duplications, but also reduce the
number of forked processes to the great extent. The gapping problems are also treated
in this parallel parsing system. Currently, it is implemented in Prolog and in Strand,
and running on Sun-series workstations. ' |

1. Introduction

There is a growing interest in applying parallel computation techniques to natural
language processing (NLP) [1-2]. Two approaches may be adopted: massively parallel
systems and non-massively parallel systems [3]. These papers [4-8] show the typical
examples for the former systems. They try to map natural language grammars into
connectionist networks. Because the functionality of the nodes in the network is very
primitive, they are involved in the following problems: (1) Is the network independent
of the length of input sentence? (2) Does the network accept recursive grammar rules?
(3) What threshold values and weights are assigned to nodes and links in the network?
On the other side, these papers [9-15] deal with the design of non-massively parallel
parsing systems. Most of the papers touch on parallelizing CYK Parsing algorithm,
LR Parsing algorithm, Chart Parsing algorithm, ezc., however, only few presented
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methods to capture the specific linguistic phenomena. To evaluate these types of
parallel parsing systems, besides the performance criteria, i.e., scheduling of the
processes in the shared-memory model [16] or the communication cost among
processes in the distributed-memory model [17], the expressive capability is also an
important issue. This paper will propose a parallel augmented context-free parsing
system for natural language analysis. The linguistic phenomena are considered in depth
in our design, gapping problem in particular. From the comparisons among different
parsing strategies [18], Tomita's extended LR parser [19] is a better selection in
computational linguistics. This paper will also follow the concept to design the parallel
parsing system. ' '

2. LR Parsing )

Shift and reduce are two. basic operations in LR parsing. LR parser uses two tables
(Action and Goto tables) and one stack to control the parsing procedure. The Action
table shows when to shift, to reduce, to terminate successfully, or to signal a syntactic
error. The Goto table defines the next state after a nonterminal is matched and shifted.
The stack contains a sequence of parse states. The following is a sample grammar:

(1) S-->NPVP

2) S->SPP
(3) NP-->n
- (4) NP-->detn

(5). NP-->NPPP
(6) VP-->t1NP
(7 VP->828
8) VP-->iv
(9) PP -->prep NP
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Table 1 shows its corresponding Action and Goto tables.

 Table 1. The Parsin

Table for the Sample Grammar

det n t1 t2 iv lprep] $ S NP | VP | PP
-0 | s2 ] s1 S | 4"
1 13| 13 13 .| 3
2 s5 v
3 s6 | acc 7
4 s10 | s11 | s12 | s6 13 9
5 4 4 4 | 4 4
6 s2 sl o ' 8
T _ 1. 2.l 2 .
8 19 9 | 9 |s69] 19 9
9 | 15 | 15 5 r5 | 5
10 s2 | sl . 1 ] 14
11 s2 sl 15 4
12 ' 8 1
13 r1 | 1l :
14 s6/16 9
15 s6/r7 | 17 7

Table 2 demonstrates the parsing steps for the sentence "I saw her duck”.

Table 2. The Detailed Steps for Parsing the Sentence "I saw her duck"

step stack comment input string -
1 |[.,0]" initial state {n}{t1,22}{n,det}{n,iv]$
2 1101 [n 1] . - | action(Q,n)=s1 . {0122} {ndet} {n,iv]$
3.1 L,O] [NP4] [t1, 10] action(1,t1)=r13, goto(0,NP)=4 (n,det} {n,iv}$
- action(4,t1)=s10 -
3.2 | 0] [NP,4] [t2,11] action(1,t2)=r3, goto(0,NP)=4 {n,det} {n,iv}$
e action(4,12)=s11
4.1 | [L,0]1 [NP4] (t1,10] [n,1] “ | action(10,n)=s1 - - [n,iv}$
4.2 | L,0] [NP4] [t1,10] [det,2] action(10,det)=s2 {n,iv}$
4.3 | [L,0] [NP4][t2,11] [n,1] action(11,n)=s1 {n,iv}$
4.4 |.[ 0] [NP4].[12,11] [det2] - - -] action(11,det)=s2 .- [n,iv}$
5.1 | [,0] [NP4] [t1,10] [n,1] 7 action(1,n)=fail
5.2°| 0] [NP4] [t1,10] [NP,14] action(1;iv)=r3, goto(lO,NP)-14 '
_ L - .| action(14,iv)=fail . .
5.3 ] .01 INP,4] [t1,10] [det,2] [n,5] action(2,n)=s5 $
54 | [,0] [NP4] [t1,10] [det,2] . - . |action(2,iv)=fail =
5.5 | L,0] [NP4] [t2,11] [n,1] | action(1,n)=fail
5.6 | [,0] [INP4] [t2,11] [NP4] [iv,12] | action(1,iv)=r3, goto(ll,NP)-4 $
action(4,iv)=s12
5.7 | L,0] [NP,4] [t2,11] {det,2] [n,5] action(2,n)=s5 $
5.8} [ .,0]1 INPA4] [12,11] [det,2] action(2,det)=fail : '
6.1 | [,0] [NP,4] [t1,10] [NP,14] action(5,$)=r4, goto(10NP)=14 | $
6.2 | [L,0] [NPA4] [t2,11] [NP,4] [VP,13] | action(4,$)=r8, goto(4,VP)=13 $
6.3 | [ 0] [NP4] [t2,11] [NP 4] action(5,9)=r4, goto(11NP)=4 | $
7.1 | L,0] [NPA4] [VP,13] action(14,$)=16, goto(4,VP)=13. |$
7.2 | L,0] [NP4] [2,11] [S,15] action(13,$)=r1, goto(ll s)-15 B
7.3 | [ O] [NP 4] [t2,11] [NP,4] action(4,$)=fail .- . ,
8.1 {L.01[S,3] action(13,$)=r1, goto(0,S)=3 . $
8.2 | [ ,0] INP4][VP,13] action(15.%)=r7, goto(4 VP)=1'3‘ $
9.1 | [,0]1[8,3] action(3,$)=acc = - - .
9.2 | [ ,0][S.3] action(13,$)=rl, goto(O S)=3 $
10 1 [ .01]S.,3] action(3,$)=acc .- ‘ '
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The words "I", "saw", "her" and "duck" have categories {n}, {t1,t2}, {det,n} and
{n,iv} respectively. The last three have more than one category. The effect is
multiplicative rather than additive. Four stacks are generated at steps (4.1) - “4.4).
Besides multi-category problem, the conflict entry in the action table also introduces
nondeterminism. For example, parse the sentence "I saw her duck with a telescope”.
When the preposition "with" is inspected, a conflict entry (shift 6/reduce 6) will be met.
The knowledge to resolve PP-attachment problem is originated from diverse resources
[20]. Even if the knowledge is encoded, which action is selected correctly must be
deferred to the later stage(s). Conventional approach to deal with these problems is
pseudo parallelism or blind parallelism. The former explores the alternatives in a
special sequence, e.g. breadth-first in our example. The latter forks many processes to
take care of the subsequent actions. These processes may spend much time doing the
same jobs. That decreases the significance of the parallelism. Synchronizing by shift
operation [12] or data availability [13] was proposed to avoid the duplications. They
tried to merge the stacks generated by different processes into tree-structured stacks
(TSSs). Subsequently, Tanaka and Suresh [21] took another view on the interpretation
of the elements in the pushdown stacks. These elements are called dot reverse items
(drits). A drit is a dotted rule {A -> X1 X2 ... Xk @ Xk+I ... Xm, i], which is similar to
the Earley's item. waever, its meaning is reverse. In Earley parsing [22], we plan to -
construct a sequence of item lists, I1, 12, ..., In such that a dotted rule [A -> 0t o _B, i]
€ iff S * YA $, Yy =" 01 2 ... i, and o0 = Wi+ 0i+2 ... ®j. The item drit
means [A -> 0 e B, jle Liff S =>*YA 3, p =" 0i+] wi+2 ... wj, and 3 =" wj+1
Wj+2 ... ®n. A sentence is recognizable l;y a grammar iff [s -> e ¥, n] € I0.

Such an interpretation matches the direction of reduction, so that the merge can be
done to the most depth. Consider the following two stacks pOSSessed by two
processes respectively. Each eleinent_in the"'stacks has two arguments. The first ’-
denotes a set of position numbers and the second is a state. | '

(@) ++« [{a},S1] [{b},52] [{c},S3] [{e}.S4]

(b) * [{a},S1] [{d},S2] {{c}.S3] [{e},S4] _
If the next action is a "reduce x" whcfe X1is "A-> B CD", we will gét six dirts shown
as follows: - _ '

(D[A->BCeD,e]le L. .

2)[A->BCeD,ele I

B3 [A>BeCD,ele ]y

4 [A->BeCD,ele Iy

(5)[A->eBCD,ele I,

6 [A->eBCD,ele Il
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We can observe that (1) and (2), (5) and (6) have the same drits, i.e, the two processes
do the same jobs. If we merge these two stacks into a TSS with the principle "merging
the positioh numbers of those items with the same state from top of stacks", we can get
a TSS like: "sos [{a},S1] [{b,d},S2] [{c},S3] [{e},S4]". Reducing the TSS by the
same rule generates the same drits as before, however, it avoids the redundancy and
decreases the number of processes to the great extent . Thus, the scheme can not only
achieve the effects of chart parsing [23], but also is suitable to develop a new parallel
parsing model.

3. A Parallel Parsing System
3.1 Parallel Recognizer _
The fundamental concept of the recognizer is like the convent10na1 LR algorithm except
that the position numbers are used in the stacks. The following describes the basic
recognizer:
(1) Initialize the stack to [{0},0], where the ﬁrst 0 represents the word position
and the next O denotes the initial state. ‘ _
(2) Look up the first word of the remaining sentence in the dictionary, and return
the feature structure(s)! of the word.
(3) Look up LR table by word category and the current state, and return a list of
actions.
4 Perform each action in the list.
(@) accept: Terminate with success.
(b) error: Terminate with failure. , _
(c) shift: The position number is increased by 1 and go to step (5).
(d) reduce: Do the reduce operation without changing the position number,
and and try step (3) again. ‘ | ‘
(5) Merge the stacks with the same shift operation.
(6) Consume this word. -
(7) If there are words left then go to step (2) else halt
There are several places to enforce the parallelism:
(1) The table look-up at step (2) can be done in parallel.
| (2) The actions in the action list can be performed in parallel. ,
(3). The merge operation at step (5) can be performed in parallel with the reduce
- ‘operatlon atstep (4.d).
(@) The new state created by the shift operatlon can be forwarded beforehand
- (5) The parse tree generation is overlapped with other actions (see next section). . .
Flgure 1 demonstrates the architecture of the new parallel recognizer.

1 Unification is adopted. The unification-based fortnalisxh refets to. .[20].
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Figure 1. System Architecture of a Parallel Recognizer

A word process is initiated for each word to control all of its operations, i.e. shift
and/or reduce operations. These processes are linked in a pipeline and communicate
with each other by channels. The channel can transfer two kinds of information:
merged stacks and a global table (see next section). When a word process receives the
information (not necessary complete information) from its left neighbor word process,
it begins its parsing steps immediately. Current system is developed by the language
Strand88 [24], which is a parallel programming language. It can be run on parallel
environments like transputers or be simulated on Unix systems. Strand provides a
concise notation to describe process interactions. If a word process receives an
- incomplete information, it proceeds the parsing as possible as it can until it meets a
variable. Itis the characteristics of Strand language. The following shows the setup of
the pipeline mechanism:
pglr(Sentence) :-
pglr(0,Sentence,[[elt([0],0)]1,_).
pglr(Pos,[],_, ).
- pglr(Pos,[WordIWords],InStream,OutStream) :-

dict:word(Word,WordStream),

Pos1 is Pos + 1,

goal(Pos1,Word,WordStream,InStream,MidStream),

pglr(Pos1,Words,MidStream,OutStream).

A sequence of TSSs is transmitted from the left hand side to the right hand side
via the special communication channel stream. The sequence is generated by the word
prdcess i (1 <£i<n). We adopt the data structure for the stream: [TSSil, TSSi2, ...,
TSSim]. Each stack TSSij (1 <j <m) is represented as a list of elements of the form
elt(a list of position numbers,state number). Initially, the stream is: [[elt([0],0)]].
Because a word process may generate more than one TSS, a merger is used to merge m
TSSs into a stream, and send them in sequence to its right neighbor. Figure 2
demonstrates a sample communication channel.
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word(i-1)

word(i+1)

streami stream(i+1) '

.. TSSi,j+1 TSSi,j

reduce shift s1 -
TSSi,j TSSi,j |
reduce shift s2
TSS'i,j TSS',j
merge
' operation
reduce shift sl
TSS"i,j TSS"i,j
shift s3
TSS"i,j

Figure 2. Communication Channel

The following shows the detailed Step:
(@) s1: Keep {<sl, stackij, Tail(i+1)1>} and Stream(i+1)1, and
send out [[elt([i],s1)ITail¢i+1)1]IStream(i+1)1].
That is, Stream(i+1) := [[elt([i],s1)ITail(i+1)1]IStream+1)1].
(b)' s2: Keep {<sl, stackij, Tail(i+1)1>, <s2, stack'ij, Tail(i+1)2>} and
‘ Stream(1+1)2 and send out [[elt([i],s2)I Tail(i+1)2]IS treamgi+ 1)2] |
That i is, Stpeam(1+1)1 = [[elt([i],s2)I Tail(i+1)2]IStream(i+1)2].
(c) s1: Merge stackij and stack™jj into nstack. Keep {<sl1, nstack, Tail(i+1')1>,
<82, stack'ij, Tail(i+1)2>} and Stream((i+l)2.
(d) s3: Keep {<si,‘nstéck; Tail(i+1)1>; <s2, Stack'ij, Tail(i+1)2>,
<s3, stack™ij, Tail(i+1)3>} and Stream(i+1)3, and
send out [[elt([i], s3)|Ta11(1+1)3]ISt1eam(1+1)3]
That is, Stream(i+1)2 := [[elt([i], s3)ITa11(1+1)3JIStpeam(1+1)3]
If the left stream is exhausted, let
Tail(i+1)1 := nstack, Tail(i+1)2 := stack'u, Ta11(1+1)3 = stack"'q and
Stream(1+l)3 =1l
Otherwise, do the same JOb agam Strand language prov1des a predeﬁned process
merger. It allows many processes to write on a single stream. This approach has an
adyantage. the different shift message can be forwarded to next process before the
reduce operation is terminated. It results in a better performance. - The definition of .
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goal for a word process is given below. The process pathval retrieves the category
information from a feature structure. - The process subgoal transforms the TSSs in
InStream into a merge list according to the LR parsing table. The list MergeList is a
communication channel between processes subgoal and dispatcher. The process
dispatcher sends the merged TSS into the right hand side neighbor one at a time via the
channel OutStream.
goal(Pos,Word,[H],InStream,OutStream) :-
pathval(H,[cat],Cat),
subgoal(Pos,Cat,InStream,MergeList),
dispatcher(OutStream,MergeList).
goal(Pos,Word,[HIT],InStream,OutStream) :-
T =2=[]!
pathval(H,[cat],Cat),
subgoal(Pos,Cat,InStream,MergeList),
dispatcher(OutStream1,MergeList),
goal(Pos,Word,T,InStream,OutStream?2),
merger([merge(OutStream1),merge(0utStream2)],OutStream).
In natural languages, a word may have more than one category. This problem can be
treated easily in the parallel parsing. Assume a word has N categories. The system can
fork N processes and copy TSSs to each process to deal with those N categories.
Theory 1 tell us: "Given any two stacks, no matter what states of their top of stacks are,
if they receive different categories, they will not shift to the same state." That is, the
new stacks cannot be merged. Based on the theory, the TSSs generated by any process
can be sent to the next word process immediately without waiting for the generation of
other TSSs. This can reduce the merge time. Table 3 lists the TSSs generated by word
processes for the sentence "I saw her duck."

Table 3. TSSs Produced by Word Processes for the Sentence "I saw her duck”

node tree-structured stacks (TSSs) : input string
1 [ ,0][n,1] {n}
2 [_.0] [NP4] [t1,10] {t1,22}
[.0] [NPA4] [2,11]
3 | LL,0] [NP4] [t1,10]---[n,1] {ndet}

[L.0] [NP4] [t2,11]4

[_.0] [NP.4] [t1,10]---[det,2]
[,0] [NPA] [t2,11]4

4 [_.0] [NP4] [t2,11] [NP4] [iv,12] {n,iv}
[_.0] [NPA4] [t1,10]---[det,2] [n,5]
[,0] [NPA] [t2,11]4

Theorem 1. Given two stacks in a word process, no matter what states of their top of
stacks are, they will not shift to the same state if they receive different t:ategoﬁes.
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Proof:

When the LR parser reads a word, it may execute reduce actions successively. At
the end, it will meet a shift action, an accept action or an unacceptable signal. Assume
the states of the top of two stacks are S1 and S2 respectively. Two cases are shown as
follows. ' ‘

(1) S1=9S2. Itis trivial that the two stacks will not go into the same state.

(2) S1#8S2. Assume the state S1 receives category cl and the state S2 receives
category c2. The configuration set of S1 can be divided into two groups:
those configurations have the form "Pn -> Rn e c1 Un" and those do not.
The configuration set of S2 can also be divided into "Pm -> Rm e ¢2 Um" and
those do not. According to S1, the next state which receives c1 can be
divided into two groups: "Pn -> Rn c1 @ Un" and the prediction set of Un.
According to S2, the next state which receives c2 can be divided into two
groups: "Pm -> Rm c2 ¢ Um" and prediction set of Um. Because {Pn -> Rn
cl e Un} # {Pm ->Rm c2 ¢ U2} and {Pn ->Rn cl e Un} # the prediction set

- of Um, the next states after receiving c1 and c2 cannot be the same. m

3.2 Parsing Tree Generator

The conventional LR parsing algorithm keeps partial parse trees in the stacks. In the
current implementation, only position numbers are recorded. This is because the
interpretation of drits is from right to left, and it avoids the overheads during the merge
and split operations. Under such a situation, if there does not exist an efficient parsing
tree generation algorithm, the benefits from merge operation are lost. This section
presents a parsing tree generator. It is active when any reduce action is performed. It
will lookup tables, extract the Rhs of the production rule, apply_' the unification formulas
and produce Lhs. There are two tables used: one is a global table received from the
previous word process and the other is a delta table produced from its parent action
process. The global table is the union of delta tables prodilced by the left-hand side
word processes. Given a sentence "I saw her duck”, Table 4 lists the delta tables

generated by the word processes.

Table 4. The Delta Tables Produced by Word Processes for ,"_I saw her duck"

node word partial trees produced by the node global table
1 1 Al={1.<n0,1>) I : : 1 '
2 - saw . | A2={2.<t1,1,2>,3.<12,1,2>.4.<NP(1).0,1>} Al
3 her A3={5.<n,2,3>,6.<det,2,3>}) A1UA2
4 dck | A4={7.<n,3,4>8.<iv,3,4>9<NP(5),23>} - = - A1UA2UA3
5 ~.$ - | A5={10.<NP(6,7),2,4>,11.<VP(8),3.4>,12.<VP(2,10),1,4>, . ATUA2UA3UA
13.<§(9,11),2,4>,14.<5(4,12),0,4>,15.<VP(3,13),1.4>,

16.<8(4,15).,04>}
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Each entry with a unique index has three arguments: the first is a partial tree, and the
last two denote the left and the right positions respectively. For the performance issue,
all the two tables are sorted and packed. The system uses the merge sort to arrange the
partial trees. The right position is regarded as a primary key, and the left is a secondary
key. The primary key is in descendant order and the secondary key is in ascendant
order. This is the most efficient arrangement. Observe the delta tables in Table 4. The
delta table created by each word process has a very interesting feature: "The right
positions of all partial trees equal to the node number minus one except the leaf node."
This is because the action process performs the reduce action until it meets a shift
action, and each reduction will promote a partial tree up one level. Under the
arrangement, we just append the global table to the delta table without applying the
merge sort to these two tables. There is an important result in sorting the delta table: to
keep the table entries unredundant. Because the system records the partial trees by a
global table, it cannot distinguish which partial trees were produced by which processes
when reduce action occurs. In fact, the distinction is not necessary. If the system
cannot manage the tables efficiently, it will take a lot of time to search tables and will
also have redundant solutions. Thus, we put an ambiguous forest [19] in the same
table item and keep only one copy of subtrees that have the same structure and range.
Figure 3 summarizes the flow of table constructions.

global merge new
table sort —®| append |—> gt::;:;:l

Figure 3. Table Management

4. Resolving Gapping Problem

Gapping is a common phenomenon in natural language sentences. Topicalization and
relativization are two famous examples. In the sentence "The apples, I like", the
constituent "The apples"” is displaced from the object position to the topic position.
These phenomena are regarded as movement transformations. To capture them, these
papers [25-26] extended the conventional augmcntcd context-free grammar formalism
with two extra symbols ">>>" and "<<<" shown as follows:
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(1) C-->Cl, C2, ..., C(i-1), Ci <<< trace, C(i+1), ..., Cn.

This rule can be interpreted as "C is composed of C1, C2, ..., Ci, ..., Cn,
where Ci is moved from the position dominated by C(i+1), ...,or Cnand a
trace is left at that position”. The position of Ci is called a landing site.

2 C-->0QC1,C,..,C(i-1), trace >>> Ci , C(i+1), ..., Cn. .
The interpretation of this rule is similar to the above except that the
constituent Ci is moved from its left hand side.

3) C->C1,cC2,..,C(i-1), trace, C(i+1), ..., Cn.

This rule can be read as "C is composed of C1, C2, ..., C(i-1), C(i+1), ...,
Cn, and an empty constituent is left between C(i-/) and C(i+1)". The
position of trace is called an empty site.
Under this grammar formalism, only the landing site and the empty site are specified.
It is different from the slash technique in that no explicit slash feature is specified in the
grammar. Consider a sample grammar shown below:
(1) syn_rule S1Bar --> TOPIC <<< TRACE, S:
[TOPIC,head] === [TRACE,head].
(2) syn_rule S1Bar --> S.
(3) syn_rule S --> NP, VP:
[NP,head] === [VP,subj].
(4) syn_rule NP --> *Det, *N:
[NP,head] === [N,head].
(5) syn_rule NP --> *N:
[NP,head] === [N,head].
(6) syn_rule VP --> *TV, NP:
[VP,subj] === [TV,subj],
[TV,obj] === [NP,head].
(7) syn_rule VP --> *TV, TRACE:
[VP,subj] === [TV,subj],
[TV,obj] === [TRACE,head]. .
Rule (1) deals with the topicalization and the others are the normal grammar rules. An
empty constituent appears in rule (7). -

Figure 4 shows one of the relationships between the displaced'cdhstitucnt and its

corresponding empty constituent, which is a leftward movement. Rightward
movement is symmetric, so their treatments are the same.
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the moved constituen X0 _

AAANA A
c1 .. B .. C
< T '
trace
(the empty constituent)

Figure 4. Leftward Movement

Before the grammar is translated, a preprocessing procedure computes the domination
path, e.g. Yj dominates C and C dominates B. The empty constituent is raised up to
the level dominated by X0 via C and Yj. For example, the above grammar is
preprocessed like:
(1') syn_rule S1Bar --> TOPIC, S:
[TOPIC,head] === [S,trace,head].
(2") syn_rule S1Bar --> S:
[S1Bar,trace] === [S,trace].
(3") syn_rule S --> NP, VP:
[NP,head] === [VP,subj],
[S,trace] === [VP,trace].
(4") syn_rule NP --> *Det, *N:
[NP,head] === [N,head],
[NP,trace] === none.
(5") syn_rule NP --> *N:
[NP,head] === [N,head],
[NP,trace] === n'one‘
(6") syn_rule VP --> *TV, NP:
[VP,subj] === [TV,subj],
[TV,obj] === [NP,head],
[VP,trace] === none.
(7") syn_rule VP --> *TV.:
[VP,subj] === [TV,subj],
[TV,obj] === [VP,trace,head].

300



Rule (7') specifies that all the information about the empty constituent in the original
rule is inherited by the mother category, i.e., VP.  Because S dominates VP, rule (3)
shows this information is also passed to S. Rule (1") depicts that the information is
unified to the moved constituent. Rules (4'), (5") and (6') do not dominate any trace
category, so the formulas "[FS,trace] === none" are added. The preprocessor
automatically generates the trace feature for rules. It not only avoids the burden of
grammar writing, but also detects the grammar errors beforehand. Finally, con51der
two general cases for preprocessing. .

(a) For a rule C --> CI1, C2, ..., C(i-1), Ci <<< trace, C(i+1), ..., Cn, if there
exists more than one Ck ((i+1) <k < n) that dominates trace, trace may be transferred
up from different paths. During preprocessing, we split such a rule into several rules
with the same Lhs and Rhs, and different sets of unification formulas. Because our
parsing system can handle the conflict condition, these rules can be tried in parallel.

(b) For arule C-->Cl1, C2, ..., Cn, if there exists more than one Ct (1 £k <n)
that dominates trace, trace may be transferred up through the mother category. In this
way, trace is considered as a disjunction feature to transfer all the possible information

up.

5. Concluding Remarks

This paper proposes a design and an implementation of a parallel parsing system for
natural language analysis based on LR parsing algorithm. It adopts dot reverse items
instead of the conventional Earley items. This interpretation can not only achieve the
same effect as Chart parsing, but also reduce the number of processes to the great
extent. An efficient table management algorithm is also presented to construct the
parsing trees. A global table for parse tree generation is set up incrementally. It is
transferred from the leftmost word process to the rightmost process. Because the delta
table generated by an intermediate word process is mutual exclusive of the global table
sent from its left hand side word process, and the former is much. smaller than the
latter, it is easy to keep tables sorted and packed.  For the well-treatment of the gapping
phenomena, the formalism to specify the landing site and the empty site is introduced.
A grammar translator adds disjunctive trace features to unification formulas
automatically. Currently, it can capture the relationship of serial binding. The parallel
parsing system is implemented with Prolog and with Strand, and running on Sun-series
workstations.
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