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ABSTRACT

We are investigating to what extent can neural networks learn to parse a natural language. In particu-
lar, we present a recurrent neural network architecture and the learning experiments used to train
the neural network. We train the recurrent neural network using the extended error backpropagation
method by giving a sequence of lexicons as input whose categories may be ambiguous (more than
one category is possible). Instead of encoding the parse tree within the neural network, the correct
phrasal links as well as the lexical categories are clamped at the output layer of the network at the -
training phase while lexical categories are being fed into the neural network. With phrasal links,
however, a complete parse tree can be easily reconstructed. Ourresults indicate that with a few train-
ing examples, the neural network can parse not only syntactically ambiguous sentences but also
some ill-formed sentences that it has never seen before.
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1. Introduction

Parsing is an important Step in natural language processing. The main function of parsing
is to produce the structural relationships among lexicons from a given input sentence. Traditional
syntactic parsing methods such as chart—parsing, WASP (Wait—And—See parser), ATN (Augmented
Transition Network), etc. [1,7], were somewhat successful in parsing well-formed sentences. How-
ever, they all encountered the difficulty in dealing with high complexity of ambiguities and poten-
tially ill-formed sentences. This can be due to the reason that traditional methods are so restricted
in their accuracy constraints that they do not accept any noise in their input. Nevertheless, in natural
language processing, ambiguity and ill-formness are ubiquitous and unavoidable. New parsing
techniques seem to be desirable to overcome these problems. This motivates us to look for more flex-

ible parsing models that can achieve high efficiency and adaptability.

Artificial neural networks have recently raised much attention in its capabilities of carrying
out computation of parallel constraint satisfaction and learning[6,9,10]. From a problem solving
standpoint, parsing can be viewed as a constraint satisfaction process which must reconcile with con-
straints coming from both data (bottom-up from lexicons) and models (top—down from syntactic
grammars). Therefore, training a neural network to perform parsing can be viewed as a process of
incrementally encoding the structural relationships between lexicons and grammar rules in the in-
ter—connections of the neural network. In this paper, we propose a system called SPARK (Syntactic
PArser with Recurrent neural networK) to shbw the process of training a recurrent neural network
to parse a subset of natural language from a context—free grammar. In section 2, we briefly summa-
rize previous neural network approaches dealing with the problems of natural language parsing. In
section 3, we describe the architecture of SPARK and the extended error backpropagation method
that it adopts to achieve learning. In section 4, we explain the learning experiments that were used
to train SPARK in order to make it acquire syntactic parsing skills. In section 5, we show the perform-
ance of the trained neural network by testing several different cases and discuss their implications.

In section 6, we give our conclusions, discuss the limitations of SPARK and future work.
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2. Previous work

Fanty [3] proposed a connectionist model which used neural networks to parse an English
sentence in terms of a sequence of syntactic categories. His approach is to embed all possible parse
trees in the neural network by pre—encoding a huge number of all pbssible phrasal links (which he
called matching units). His parsing model can only handle sentences with a fixed number of lexi-
cons. The disadvantage of this model is that the number of interconnections can be quite large for
even a simple grammar. Santos [11] proposed a system called PALS which used a seven—by—six ma-
trix of cells to represent the partial structure of a parse tree. Each cell in the matrix consists of all
possible phrasal nodes. PALS needs additional rule nodes to represent the linking relationships be-
tween constituents in two adjacent cells of the same column in the matrix. PALS used the idea of
snapshots with a size of seven constituents to break a long sentence into several chuncks. The disad-
vantages of PALS, however, are two folds: (1) its learning ability is locally restricted which can be
difficult when handling embedding clauses and (2) its built—in rules prohibit the possibility of rule
acquisition. Giles [4] trained a second—order single-layer recurrent neural network to recognize the
languages produced by a regular grammar and a pushdown automata. Although Giles’s work is not
related with parsiﬁ g alanguage, using acti\;ation patterns of context units in a recurrent network to
réprescnt the transition states seems to reflect a similar situation encountered in learning language
parsing where intermediate parsing statuses are often needed to be trained and retained for subse-
quent parsing processes. St. John and McClelland [12] trained recurrent neural networks to achieve
semantic comprehension of a natural language. Their neural network consisted of two stages of pro-
cessing: a Gestalt—pattern building process which accumulates the syntactic and lexical information
of a given input sentence and a role—filling process which assigns semantic roles to the correspond-
ing constituents based on the Gestalt—patterns. The Gestalt—patterns can achieve the expectation and
prediction on the semantic roles for the incoming constituents at a certain parsing context and situa-
tion. Other works such as Cottrel [2], Jain et. al. [5], McClelland et. al.[8] and Wermter [14] also

discussed several different proposals and techniques to apply neural networks to problems at differ-
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ent levels of language parsing. We were motivated by previous work and decided to choose the re-

current neural network model to investigate the natural language parsing problems.

3. The Architecture of SPARK and The Extended Error Backpropagation

Learning Method

SPARK’s architecture consists of four units: the input units, output units, hidden units and
the context units which are shownin Fig. 3.1. The input layer for this feedforward network consists
of 8 category input units (CIU), i. e. “noun”,”pronoun”, "aux”, “verb—i”, “verb—t”, “det”, ”adj” and
”prep”. Each unit represents a syntactic category of the input lexicon. We assume that all lexicons
in a sentence have been assigned to their corresponding categories before the sentence is given to
the recurrent neural network. For example, the sentence “The young boy will go with her” would
be converted to its categorial form “det adj noun aux verb—i prep pronoun”. When a given input
lexicon has more than one syntactic category, more than one unit can be activated. When the first
word category, say “’det”, is read in, the weight of the det—CIU will be set to 0.7 and all weights of
the rest of CIU’s will be set to 0.2. When a syntactic ambiguous lexicon is read in, more than one

CIU’s will be set to 0.7 depending on the corresponding categories of the lexicon. The output layer

of the recurrent neural network also has 8 category output units (COU) which correspond to CIU’s

(COU) (PLU) o
Category Output Units|| Phrasal Link Units utput layer

\/

Hidden Units

(CIU) Input layer

Context Units Category Input Units

Fig. 3.1 The structure of the recurrent neural network
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Fig. 3.2 The parsing tree and its corresponding phrasal link representation

as well as 6 phrasal link units (PLU), i. e., ”S-NP” (§-N), ”S-VP” (§-V), ”VP-NP” (V-N),”VP-
PP” (V--P),”PP-NP” (P-N) and "NP-PP”” (N-P), each of which represents a piece of partial parse—
treé information. An parse tree can be represented in terms of these phrasal links. For example, in
Fig. 3.2, a parse tree of a sentence with five lexicons on the left can be represented by five phrasal
links on the right and each of the link corresponds to a lexicon. The number of the hidden units and

that of the context units are the same and can be varied.

The extended error backpropagation differs from conventional error backpropagation of Ru-
melhart in that there is a feedback connections from hidden units to context units [ 14]. This feedback
mechanism in SPARK is to temporalily store the current parsing status in terms of activation patterns
of hidden units into the context units so that the subsequent parsiﬁg step can take it into account.
The learning algorithm for training SPARK can be derived by unfolding the temporal sequence of
feedforward passes into a multi-layer feedforward network that grows one layer at each pass as
shown at the right hand side of Fig. 3.3. To carry out the extended error backpropagation learning
procedure, we let first the network run through the time interval [ty, t] and save all inputs, activation
patterns of hidden units, and target vectors at each time step into a history buffer. Then the temporal
error backpropagation according to the history proceeds. The process is described in terms of a set

of equations that are defined in Fig. 3.3. First, we define the error generated over time as E(t) which
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Fig. 3.3 Equations used in the extended error backpropagation and the unfolded
neural network architecture for a temporal sequence

is a sum of square of the difference between desired target di(t) and output yx(t) [eq. (1) and (2)].
The learning goal of SPARK is to minimize the total error function E©tl(ty, t) [eq. (3)]. The wei ght
updating formula is computed by taking the negative gradient of E'°2(ty, t) with respect to weights
[eq. (4) & (5)]. Since the errors are propagated through the whole time sequence, the error at hidden
layer must take into account both errors from the output layer at current time step and those from
subsequent step [eq. (6)]. Once the temporal error backpropagation has been propagated to the time

to+1, the actual connection weights can then be updated by the generalized delta rule [eq. (7)].
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4. The Training Experiments

In this section, we show how to train a recurrent neural network to acquire the parsing skills
given a set of training sentences. We create training sentences according to a set of context—free
grammar rules as shown in Table 4-1. Note that the (adj)* represents that the number of adjectives ‘

can vary from zero to several while (aux) represents that an auxiliary is optional.

Table 4.1 A set of phrase structure rules

S &« NP VP

NP « det (adj)* noun PP VP « (aux) verb—t NP
NP « pronoun VP « (aux) verb—t NP PP
NP « det (adj)* noun VP « (aux) verb—i PP

We tentatively prepare two training sets S1 and S2. S1 consists of 16 sentences shown in
Table 4.2 whose lexicon categories are all uniquely assigned while the number of the input lexicons
ranges from 2 to 11. Training set S2 includes S1 and has additional 9 sentences shown in Table 4.3
whose lexical categories can be ambiguous. For example, ’n/v” represents a word whose category
can be either a noun, an intransitive verb (vi) or a transitive verb (vt). In the second columns of Table
4.2 and Table 4.3, the corresponding partial parse—tree information in terms of phrasal links for each

sentence is also shown.

Table 4.2 Training set 1

Training sentences with lexicon categories partial parse tree information (phrasal links)
1. det noun vi S-N S-N S-V
The child laughed.
2. det noun vt det noun S-N S-N S-V V-N V-N
The girl saw every movie.
3. det noun vi prep det noun S-N SN S-V V-P P-N P-N
The baby cried in the bedroom.
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4. det noun prep det noun vi S-N S-N N-P PN S-V
The stranger with a hat disappeared.

5. det noun prep det noun vt det noun S-N S-N N-P P-N P-N S-V V-N V-N
The girl with the unbrella broke her leg. '

6. det noun prep pron vt det noun prep det noun |S-N S-N N-P P-N S-V V-N V-NV-P P-N P-N
The man over there drank some wine in the afternoon.

7. pron vi S-N S-V
He succeeded.
8. pron vt pron S-N S-V VN
I like you,
9. det adj noun vt det adj noun S-N S-N S-N S-V V-N V-N V-N

A young girl found this little cat.

10. det adj noun prep det adj noun vt det adj noun | S-N S-N- S-N N-P P-N P-N P-N S-V V-N V-N
The old man with the wooden stick discovered a newlife. | V-N

11. pron vt pron prep pron S-N S-V V-N V-P P-N
He saw her with me.
12. pron vi prep pron S-N S-V V-P P-N
He sat over there.
13. det noun prep pron aux vi S-N S-N N-P P-N S-V S-V
The clerk over there will manage.
14. det noun aux vi S-N S-N S§-V S-Vv
Their dog won't bite.
15. det noun aux vt det noun S-N S-N S-V S-V V-N VN

The students must read this textbook.

16. det noun prep det noun aux vt det noun S-N S-N N-P P-N S-V S-V V-N V-N
The studentsinthe classroommust tookan examination.

In Table 4.4 and 4.5, we show the effects of learning speed (in terms of epochs) versus various num-
ber of hidden/context units. It can be seen that when the number of hidden units reach around 30’s,
the efficiency of learning seems to become stable. Since the number of the hidden/context units
might slightly affect the performance, for comparing the testing results in this paper, however, we

kept the number at 10.
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Table 4.3 Additional sentences with ambiguous lexicon categories for Training set 2

Training sentences with lexicon categories

partial parse tree information (phrase links)

1. det nfv vi
The program halted.

S-N S-N S-v

2. det noun vi/n
The animals escaped.

S-N SN §-v

3. det noun vt det nfv
The boy caught one fish.

S-N S-N S-V V-N V-N

4. det noun vt/n det noun
The tanks attacked the city.

S-N S-N S-V V-N V-N

S. det noun vi/n prep det noun
His wife worked in the company.

S-N S-N S-V V-P P-N P-N

6.det noun prep det n/v vi

The book with no cover disappeared.

S-N S-N N-P P-N P-N S-V

7. pron vi/n S-N S-v
He danced.
8. pron vt/n pron S-N S-V S-N

She helped me.

9.det adj/v noun vt det adj n/v
Her close friend told a funny joke.

S-N S-N S-N S-V V-N V-N V-N

10. det n/v aux vt/n det nfv

This report may influence his score.

S-N S-N S-V S-V V-N V-N

Table 4.4 The convergence rates in terms of number of training epochs vs number of hidden

units for Training set S1. The threshold is set at 0.7 for total sum of square error.

No.of hidden units

8

10

15

20

30

40

50

Epochs

>3000

575

187

84

62

56

56

Table 4.5 The convergence rates in terms of number of training epochs vs number of hidden

units for Training set S2. The threshold is set at 1.0 for total sum of square error.

No.of hidden units

10

15

20

30

40

50

60

Epochs

814

158

117

86

79

78

56
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5. Testing Results

After training, we used several testing sentences to evaluate the performance of SPARK. We
found that SPARK could successfully parse many sentences with ambiguous categories. In particu-
lar, SPARK can tolerate syntactic ill-formed sentences and can produce a plausible parsing structure
to account for a given input sentence. Since it is impossible to explore all possible legal and illegal
sentences to evaluate the performance of SPARK, we show only a few testing cases to explain how
SPARK performs parsing. This will be discussed from three different aspects in (A), (B) and (C)

respectively.
(A) Testing Results Using New and Syntactic Ambiguous Sentences

SPARK can parse successfully those sentences with ambiguous categories which it has never
seen before. Although SPARK can handle many sentences of this kind, we only illustrate one exam-
pleindetail. InFig. 5. 1, we show the activation patterns which were taken from run—time execution
results for sentence “det adj/v n/v aux vi prep det n/v”.

We found that the ambiguous categories for three lexicons were assigned correctly and the corre-

sponding parse tree directly constructed from the PLU patterns shown in Fig. 5.2. Similarly, for the

COou PLU
npnaxvivtdap S-N S-V V-N V-P P-N N-P

1 C#HL #

2 L #

3 0# .. . ... # .

4 # #

5 # #

6 .. # . . . # .

7 I L.

8 # . . . ... . . . . #

Fig. 5.1 The activation patterns for the sentence “det adj/v n/v aux vi prep det n/v”,
the # represents the activation values 2 0.8 and the . represents values < 0.2.
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det adj noun aux Vi /PP\E P_N

Fig. 5.2 The corresponding parse tree for the sentence “det adj/v n/v aux vi prep det n/v”.
The dashed arrows point to the corresponding phrasal links.

sentence with more categorial ambiguities like ”det adj/v n/v vt/n det adj/v n/v”, SPARK also pro-
duced the correct category assignment “det adj noun vt det adj noun” és well as a correct parsing
tree. For a longer sentence such as det adj/v adj adj n/v prep det adj adj noun vi prep det adj noun”
SPARK also performed well and produced “’det adj adj adj n prep det adj adj noun vi prep det adj

noun” as a result as we desired.
(B) Testing Results Using Sentences with Syntactic Noises

In this experiment, we show that SPARK can tolerate some syntactic ill-formed sentences.

In Fig. 5.3, we illustrate three sentences and their activation patterns of the output units generated
by SPARK. The first sentence is a well-formed sentence with respect to the context—free grammar
in Table 4.1, while the second and the third sentences are ill-formed. In the second sentence, a noun
follows a determiner is tentatively omitted, SPARK can still produce the plausible parse tree with
an expectation for a noun after the determiner. In the third sentence, both a noun and a preposition
are omitted, the most plausible parse tree shows an expectation of a noun after the determiner, how-
ever with a erroneous preprositional link which shows up as indicated in the right bottom parse tree

in Fig. 5.3.
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#i 1- det noun vt det noun prep det noun

npnaxvividap SNS-VV-NVPPNNP S
1. o kL # 7\
NP VP
2# . . . . ... # e .o \ / \
I (énom 4 \P o
4. . . . . #. . . # . .. _
54# . #
6 # # det noun NP
prep
7 # # N\
8# # det noun
#i# 2— det noun vt det prep det noun S
VRN
1. . . . . #.. # . . . .o NP VP
24 .. .. # L d/ \ / \
3. L #L L el nmoun vt PP
4 # # /\
5= # #
6 # # det Tnoun prep /N{
7# . . . PR . . . . . . # . det noun
S .
## 3— det noun vt det det noun :
7\
A 2 NP VP
S 2 / / \r\
S S det noun vt PP

AW b W=
E-3

)

Fig. 5.3 ## 2 and ## 3 are examples of syntactic ill-formed sentences derived from sentence ## 1.

The notations for "#”, "*” ,”=" ™"  and ™ represent ranges of activation values [0.8,1], [0.6, 0.8),
[0.4, 0.6), [0.2, 0.4), and [0, 0.2) respectively. On the right hand side, the corresponding parse trees are
shown. The ? in the parse tree represents the expectation of a constituent reflected in the activation
patterns of COU.

(C) The Limitations and Problematic Cases

Of course, when there is too much noise involved, SPARK might fail too. However, we could
argue that for certain bad data even human experts might be confused too. SPARK would maintain
those that were successfully parsed and only fail at places where troubles got in. Here we illustrate
a case to explain how SPARK might fail. For example, the sentence illustrated in Fig. 5.4 has "n/v”

ambiguities at three places. As we can see in Fig. 5.4, SPARK handled well on the first entry of
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##15 det n/vn/v prep det n/v |
npnaxvivtdap S-N S~V V-N V-P P-N N-P

1 . # #

2 # #

3 * # #

4 , # ,

5 ... L #L . . = . *
6 # . . . . ... . . . *

Fig. 54 A case where SPARK cannot produce a complete parse tree.

”n/v” (row 2)which it predicted as a noun. However, SPARK hesitated as for whether the second
entry of ”n/v” (row 3) was a transitive or an intransitive verb. This influenced the next entry when
a lexical category “’prep”’ was entered (row 4), SPARK got loss and could not predict any plausible

phrasal link (no high enough activation values for PLU in row 4 ).
6. Discussions and Conlcﬁéions

We have demonstrated a way of using recurrent neural network to perform syntatic parsing.
Although we cannot claim that current SPARK can outperform traditional parsing methods, we do
show the potentials of the approach. The advantages of SPARK are its ability to cope with ambigui-
ties and ill-formness and its ability of learning (without explicitly specifying the grammar rules).
Using only a few training sentences, we have obtained a plausible parser to parse many sentences
that are generated by a context—free grammar. There are several extensions that can further enhance
SPARK to become a truly natural language parser. First, the classification of categories and the
phrasal links can be further elaborated. Second, semantic features or case roles can be included in

the training in order toresolve those ambiguities such as a prepositional phrase attachment problem.
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