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ABSTRACT

Phrase structure grammar is one of the most important components in a syntax-oriented
parsing system. However, constructing an adequate PSG is an arduous task. Either the traditional
linguistic approach or the fully automatic inference approach has encountered several difficulties.

Thus, a human-machine cooperative method is suggested in this papér as a better approach.
A statistical tool, Log-Likelihood Ratio, is proposed to enhance the productivity of human
grammar writers. The Log-Likelihood Ratio of co-occurring tags is automatically computed
by the computer to indicate the strength of linear association. The task of linguists is then to
verify the relevance of groupings based on their linguistic knowledge. The advantages of this
approach over other methods are pointed out, and the actual procedures are illustrated by a pilot,
experiment of constructing a Mandarin PSG. The experimental result shows the feasibility of
the proposed approach.

1. Introduction

In a syntax oriented parsing system, parsing usually amounts to consulting a phrase structure
grammar (PSG, hereafter) to check the well-formedness of the input strings and to generate
their corresponding syntactic structures accordingly. Thus, PSG is one of the most important
components of the whole parsing system.

However, constructing an adequate PSG is an arduous task. Traditional approaches resort
only to linguists’ own knowledge, and therefore are extremely labor-intensive and prone to in-
completeness and incoherence in practical large-scale systems. Recently, owing to the advance
of computer technology in providing cheap and fast computational power and the increasing
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availability of machine-readable corpora, corpus-based statistical approaches are gaining preva-
lence in the community of computational linguistics. Plenty of systems propose to use statistics
in their researches, including lexical analysis, category disambiguation, semantic models etc.!
However, as for PSG construction, there are still no satisfactory methods available, neither
traditional nor statistical.

Thus, a statistical tool, Log-Likelihood Ratio, is proposed in this paper to provide clues
for linear association and enhance the productivity of human grammar writers. This approach
intends to incorporate statistical information and linguistic knowledge in order to benefit from
both the simple, objective, consistent characteristics of statistics and the better deductive power
of ready-made linguistic analyses.

In the next section, two previous approaches of constructing a PSG are presented. Their
advantages and drawbacks are demonstrated in detail. Then the Log-Likelihood-Ratio statistic
is introduced. A fully automatic approach based on a so-called Generalized Mutual Information
will also be discussed, with its shortcomings. Finally, the proposed cooperative approach will
be presented. The actual procedures will be illustrated by a pilot experiment of constructing a
Mandarin PSG. The experimental result shows the feasibility of the proposed approach.

2. Previous Approaches

In this section, we will describe two extremely different approaches of constructing a PSG.
Their advantages and drawbacks will be discussed in detail.

2.1 Relying on Linguistic Knowledge Only

This approach has been traditionally used as a dominant way for constructing a PSG. In the
initial phase, the cost of this method is minimal, because no collection of a large machine-readable
database or preprocessing of the database is needed. A few linguists can build a preliminary PSG
of a language in a relatively short time, by incorporating the ready-made theoretical linguistic
analyses of this language. Since well-known linguistic analyses have gone through rigorous
argumentations and been well-tested by lots of empirical data, they provide much insight about
the language and their descriptive power is relatively strong.

However, theoretical linguistic researchers are apt to focus their attention on theoretically
interesting phenomena and sweep the residual problems under the carpet. Unfortunately, theo-
retically interesting phenomena do not necessarily correlate to frequently occurring phenomena
in real texts. Thus, although many aspects of grammatical structure are well-known and un-
controversial, authentic material still includes massive amounts of phenomena which have been

1 See [9], [12], and [16], etc.
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ignored or have not yet received consentient linguistic analyses. Especially in a language like
Mandarin Chinese, where the linguistic phenomena are poorly studied, the contribution of the
ready-made linguistic analyses to the construction of a Mandarin PSG is even more limited.

If ready-made linguistic analyses offer no guidance to the construction of a PSG, linguists
have to work based on their own linguistic knowledge. In most cases, linguists start with a small
set of data which is the basis for the first formulation of the grammar. Then, they gradually
expand the data under consideration, using new data to test their original hypothesis and make
decisions among competing analyses. The grammar is under reformulation until it covers most
of the sentences in consideration. This method works well in theoretical researches or for small
scale systems. However, when the set of data has been enlarged to thousands or millions of
sentences, human simply can no longer successfully handle all the trivial linguistic phenomena,
let alone the complicated interrelations among rules. Consequently, a purely linguistic approach
to grammar construction arouses several problems in large scale systems.

Firstly, the PSG constructed in this way is prone to errors of omission. Human is not good
at managing massive amounts of data. Without the help of the computer, linguists may ignore
many trivial phenomena they do want to cover, and occasional mistakes are also inevitable.

Secondly, no simple and objective measure of the data is available for linguists to make
tradeoffs between the coverage and the efficiency of the PSG. Ideally, a good PSG should define
the class of "all and only" well-formed sentences of the language. But since authentic language
is much more complex than theoretical linguists’ descriptions commonly imply, this goal is hard
to be achieved in practical systems. It may be clearer from what Sampson says : " If the
activity of révising a generative grammar in response to recalcitrant authentic examples were
ever to terminate in a perfectly leak-free grammar, that grammar would surely be massively more
complicated than any extant grammar, and would thus pose correspondingly massive problems
with respect to incorporation into a system of automatic analysis."? That is to say, attempting to
construct a grammar accounting for all constructions in real-life texts is not feasible. Thus, some
"omissions” of data are required. Most practical NLP systems will define the subject domain
and style for their input texts and evaluate the importance of each construction according to the
frequency of its real occurrences. If certain constructions have few occurrences in their domain,
they will be discarded to avoid causing extra-complication of the system. However, without
statistical information as a reference, the tradeoffs are difficult to be made.

Thirdly, linguists in this way do not have a general view of the linguistic phenomena
involved during the process of grammar construction, and therefore modification shall very
likely have to be made on preceding decisions if new data triggers new arguments in favor of a
different solution. But without an objective measure of the real coverage of the PSG, grammar
2 See [12], Chap. 2, 20. '
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writers cannot predict the actual influences caused by the meodification of rules. Back-and-forth
modifications are therefore hard to be avoided because linguists cannot guarantee their successive
alterations of the rules lead to a global enhancement of the whole system. Consequently, the
revision process will be full of back-and-forth operations, and it would be hard to imagine how

the process should ever be concluded.

2.2 A Fully Automatic Approach Based on Grammatical Inference

Opposed to the purely linguistic approach mentioned above, a fully automatic approach based
on grammatical inference has also been proposed. The principle of grammatical inference is to
extract a grammar from a set of sentences, i.e. the sample or the learning set, which generates
a set of sentences containing the sample. This procedure is an important subject in the study
of syntactic pattern recognition because of its automatic learning capability. Several algorithms
have been proposed and discussed.> Potential engineering applications of grammatical inference
include areas of information retrieval, translation and compiling, and artificial intelligence, etc.

Generally speaking, the inferred grammar is a set of rules for describing the given finite set
of strings from L(G), the language generated by G, and predicting other strings which in some
sense are of the same nature as the given set. A model for the inference of string grammars
is shown in Figure 1. A set of sample terminal strings {x;} is fed into an adaptive learning
algorithm, represented by the box in Figure 1, and a grammar G which is compatible with the
given strings is obtained from the output.*

{xi)

Inference
sample

Algorithm

Grammar G

sentences

Figure 1 grammatical inference of string grammars

Thus, it is possible to directly infer a PSG from a set of sample sentences. In doing
grammatical inference, the most popular method is to deduce the grammar in Chomsky Normal-
Form. The Chomsky Normal-Form Theorem states that every context-free language can be
generated by a grammar in which all productions are of the form A — BC or A — a. Here A4,
B, and C are variables and q is a terminal. By the strategy of grammatical inference, a grammar
with Chomsky Normal Form can be automatically inferred from the sample corpus.

At the first step, a set of sentences is selected as the corpus. Then, the corpus is tagged
with lexical categories to reduce the number of terminal symbols of grammar rules. Finally,

Detailed discussions on grammatical inference can be found in [11].
4 See[11] and [17].
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the inference algorithm is performed by the computer to automatically infer a grammar from |
the tagged corpus.

This automatic approach has some advantages. Firstly, since the inferred procedures are
performed by the computer, it can be proved that the inferred grammar will perfectly cover all
the sentences in the sample corpus.

Secondly, a fully automatic approach can reduce human intervention to a minimum. As
humans are recognized as the most precious, yet most costly, resources in NLP systems, reducing
human intervention will greatly enhance the cost-effectiveness of a system.

Nevertheless, this approach has several serious drawbacks. Firstly, since the the automatic
construction of PSG does not take semantic relevance into consideration, the constituents
constructed in this way are just ad hoc groupings which may not correspond to any traditional
semantic concept. For many applications of NLP, such as text understanding and machine
translation, semantic interpretation is an important process after syntactic parsing. Thus, the
mismatch between the automatically-trained syntactic model and the traditional semantic model
will cause difficulties for human linguists to attach semantic information to the syntactically
analyzed structures.

Secondly, since the syntactic grammar inferred by automatical procedures is dramatically
different from that of standard linguistic researches, the inferred grammar will not be able
to couple with existing linguistic theories and thus to take advantage of the achievements of
linguistic researches. As mentioned previously, most of the linguistic analyses are well-motivated
and well-tested. They are valuable resources for related researches. Thus, it is a mistake to
overlook the value of linguistic information and adopt a thoroughgoing automatic approach.

Thirdly, it is clear that the choice of the initial sample is critical in this approach. If the
sample is too small, since all the rules are acquired exclusively from the corpus, the grammar
may not be able to account for phenomena outside the sample space. But if the size of the sample
is large, the number of inferred rules may become astronomically large and greatly increase the
complexity of processing.

lll. Using Log-Likelihood Ratio to Construct a PSG

As we have discussed, previous approaches for constructing a PSG have encountered several
serious problems. Thus, a statistical tool, called Log-Likelihood Ratio, is proposed in this section
to fertilize the construction of a PSG.
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3.1 What Is Log-Likelihood Ratio

Log-Likelihood Ratio (LLR, hereafter) is a statistic measure of word associations. It
compares the probability of a group of tags to occur together (joint probability) to their probability
of occurring independently.

The bigram (with window size of 2) LLR, also called Mutual Information in the literatures,
is computed by the formula:’

LLRy(z,y) = I(2;y) = log, TD(xP)(i—’Z)(y)

where x and y are two tags in the corpus, and LLRy(x, y) (or I(x; y)) is the bigram Log-Likelihood
Ratio (or Mutual Information) of the two tags x and y (in this order). P(x) is evaluated as
the relative frequency of the number of occurrences of x with respect to the number of total
instances of singletons.

If there is a genuine association between x and y, then the joint probability P(x, y) will
be much larger than the chance P(x)xP(y), and consequently LLR(x, y) >> 0. If there is no
interesting relationship between x and y, then P(x, y) = P(x)xP(y), and thus LLR3(x, y) = 0.
If x and y are in complementary distribution, then P(x, y) will be much less than P(x)xP(y),
and thus LLR2(x; y) << 0.

3.2 An Automatic Approach Using Generalized Mutual Information

In the past few years, Mutual Information has been used in many areas of natural language
processing, and has shown its success in different applications.® Recently, based on so-called
Generalized Mutual Information (GMI, hereafter), an automatic constituent boundary parsing
algorithm has been developed, which can derive a syntactic (unlabelled) bracketing for input
tagged texts. In this approach, the tag sequences are processed using an n-ary-branching
recursive function which branches at the minimum GMI value of the given window. Besides,
for exceptional cases, a distituent grammar is constructed to specify a list of tag pairs which
cannot be adjacent within a constituent.

Unfortunately, this approach has some drawbacks. Firstly, the formula of the GMI is not
theoretically well-supported. It is heuristically expressed as a weighted sum of the Mutual
Information based on the substring of the given context.’

Secondly, as mentioned, the bracketing of sentences in this approach is majorily determined
by the value of GMI. A local minimum suggests the place to bracket. But this way of constructing

For more details, readers are referred to [9].
For example, [6], [7], [8], [9], and [18] have shown that Mutual Information is helpful in their researches.

7 Tnterested Readers are referred to [2] for more details.
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constituents still deviates from that of the standard linguistic researches. Conventionally, linguists
determine the constituency of words not only by the strength of their linear co-occurrences, but
more importantly also by their semantic relevance, or their substitutability and movability. It
should be noted that tags in the same constituents should have higher GMI, but tags with higher
GMI do not necessarily imply they are belonging to the same constituents. For example, verbs
and determiners frequently occur together in sentences, thus the GMI for verb-determiner pair
will be relatively high. However, linguists will never group verbs and determiners into the same
constituent because they do not correspond to.any semantic concept and do not act as a unit in
syntactic operations (€.g. movément). Although the distituent grammar is constructed to make up
this shortcoming, the adequate list of distituents is hard to be defined and is nevertheless source
of inaccuracies.® As a consequence, a cooperative approach which incorporate both linguistic
knowledge and statistical information is proposed in this paper to construct a PSG.

3.3 A Cooperative Approach Combining Linguistic Knowledge and LLR

This approach combines the advantages of the conventional linguistic knowledge-based
method and those of the corpus-based, statistical approach. Firstly, a corpus with lexical tags
is still required. Secondly, the LLR of co-occurring tags is automatically computed by the
computer. The task of linguists is then to decide whether the linearly highly associated tags
are belonging to the same constituents, or to highly associated but distinct constituents. That
is, the grouping of tags indicated by the computer is further confirmed by linguists’ knowledge
about the syntactic constituency.

On the one hand, the advantage of incorporating linguists’ knowledge about constituency is
to eliminate the drawbacks of the automatic construction of PSG, so as to couple the syntactic
model with traditional linguistic analyses.

On the other hand, the advantage of using LLR is manyfold. Although the strength of linear
co-occurrence does not necessarily correspond to the membership of syntactic constituents, a list
of co-occurring tags with their statistical LLR is extremely helpful for grammar writers.

Firstly, the list focuses grammar writers’ attention on really occurring phenomena. Thus,
the PSG constructed in this way will not result from abstract invention of examples, but from
quantifiable facts in the real corpus.

Secondly, the list provides an overview of all the distributional phenomena involved before
linguists start to write the PSG. The list of all co-occurring tags can prevent linguists from
committing manual omissions or errors. The relevant statistical information equips linguists
with a simple and objective measure. The values of LLR highlight the strongly associated tags,

8 The distituent grammar in [2] contains only four rules of two tokens each. And these distituent rules do not

remain accurate in every pass (or level) of construction.
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providing a good set of candidates to form constituents. The values of probability (count) enable
linguists to focus on phenomena which are statistically significant (i.e. with frequent occurrence).

Thirdly, when corpus are enlarged, the tag sequences and their LLR can be automatically
reconstructed and compared with the old ones to show what new phenomena need to be handled
in the PSG. If some modifications of rules should be made, the influences of modifications can
be predicted from relevant statistical information of relevant tag sequences.

This approach, of course, may have some weak points similar to those of other corpus-
based approaches. Firstly, the deduction power of the PSG will be poor with a small corpus.
However, with the increasing availability of machine readable corpora, this kind of capability
can be easily improved by enlarging the corpus. Moreover, if there are indeed well-known
linguistic phenomena which fail to occur in the small corpus, it will be adequate for linguists to
add the corresponding rules to the PSG in order to increase the descriptive power of the PSG
in testing sets. Since the orginal set of constituents has been confirmed by linguists, the manual
addition or modification of syntactic rules is easier to be accomplished.

Secondly, the manual category-tagging process is still too time-consuming. However, with
the aid of computer tools, the tagging process can be more conveniently and systematically
undertaken.’ Besides, once the tagged corpus is constructed, many useful models can be trained
from the same corpus.

IV. Incorporating Linguistic Knowledge and Statistical LLR

In this section, our proposed cooperative approach will be illustrated by a pilot experiment
of constructing a Mandarin PSG. The actual procedures are demonstrated as follows:

4.1 Constructing a Tagset

Appropriately classifying the lexical items and constructing an adequate tagset are important
tasks for the whole tagging process. However, owing to the brevity of this paper, we will not
pursue this issue any further, but simply present our tagset in the Appendix as a reference.

4.2 Tagging the Corpus

The sample sentences of this experiment are selected from computer technical manuals. In
order to retrieve syntactical LLR from this corpus, all the sentences in this corpus have to be
preprocessed. A tag will be associated to each word, representing. the category (part of speech)
it belongs. The LLR will be computed from the tag sequences thus obtained.

% For example, the stochastic tagger proposed in [6] is an automatic tagger.
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4.3 Bootstrapping

Because tagging the corpus is still a time-consuming task, we decided to start our pilot
experiment with a relatively small database (2,000 sentences). In order to reduce the estimation
error for sparse data, a statistical method, called "bootstrapping", is applied before LLR is
computed.!® The bootstrapping method calculates the statistics over much more samples of data
created by resampling from the original database. Each sample is taken independently from the
original sample in order to be fair or representative of the population. In this experiment, 20,000
sentences were randomly drawn with replacement from the original 2,000 sentences to form a
new database. During the sampling process, each sentence has equal chance to be selected. The
new bootstrapping sample ( with total number of 20,000 sentences) serves as the database for
LLR calculation.

4.4 Calculating LLR from the Corpus

After applying the bootstrapping technique, the LLR of tags is automatically calculated with
three different window sizes. The window size parameter allows us to look at different scales.
Enlarging the window size enables linguists to build constituents with more elements. However,
for the sake of reliability, the larger the window size is, the larger the corpus must be. To be
compromised with the size of our database, the window sizes we chose in this experiment are
2, 3, and 4.

The formula of bigram LLR has been presented in section II. Intuitively, the original bigram
LLR measure can be regarded as a measure function for a hypothesis testing problem of two
events. The probability in the numerator corresponds to the event that the observed (z,y) are
generated by a random source in which z and y are generated as an atom. The probability
in the denominator, on the other hand, corresponds to the event that (z,y) are generated by a
random source in which the generation of z and y is independent. By the same argument, the
general n-gram LLR measure can also be treated as a measure function of a hypothesis testing

problem. The numerator corresponds to the hypothesis that the observed data (21, z2,- -, z,) is
generated by a source in which (z,z2,---, 2, ) is generated as an atom. And, the denominator
corresponds to the hypothesis that (2,22, --,z,) are generated by the other sources in which

the sequence zi, z2,...2,, is generated in coincidence. The formulas with window size of 3 and
4 can thus be defined as follows:

Pp(z,y,2)

LLR3(z,y,2) = log, Pr(2,0,2)

10 Readers are referred to [10] for a review of the nonparametric estimation of statistical errors.
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Pp (w,2,y,2)

LLR4(w,2,9,2) = logy 750 = =5

where Pp(x, y, z) is definided as the probability for x, y, z to occur jointly, and Py(x, y, z) is
defined as the probability for x, y, z to occur by chance. That is:

PD ("Evy’z) = P(w7y72)

Pr(z,y,2)= P(2) x P(y) X P(2)
+P(2) % P(y,2)+ P(2,0) X P(2)

Similarly, the formula for Pp(w, x, y, z) and Py(w, x, y, z) are shown below:
Pp(w,z,y,z)= P(w,2,y,2)

Pr(w,z,y,2) = P(w) X P(z) X P(y) x P(2)
+ P(w) X P(z,y,2)+ P(w,z) X P(y,2)
+ P(w,z,y) x P(z)+ P(w) X P(z) x P(y,2)
+ P(w) X P(z;y) X P(z2)
+ P(w,z) X P(y) X P(z)

We can interpret P; as the chances that (z;,z9,---,2,) is generated by sources which
happen to be able to generate the n-gram by chance.

After computation, the number of patterns obtained with window size of 2, 3, and 4 is 451,
1893, and 4828, respectively.

4.5 Veriflcation of the Relevance of the Groupings by Linguists

Once groups of tags have been attested with LLR, linguists will use their linguistic knowledge
to decide whether these groups really form constituents or not. The information obtained in the
bigram model is presented in two different forms. One is ranking the tag pairs containing the
same first tag (T1) by the value of LLR, called Bigram LLR Form 1. The other is ranking all
the tag pairs by the value of LLR, called Bigram LLR Form II. For illustration, part of these
tables are shown in Table 1 and Table 2.
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Tl T2 Tlent | T2ent | T1-T2_cmt P(T1) P(12) P(T1, T2) LLR(T1, T2)
d cl 6299 7480 3221 0.0201 0.0239 0.01028 4.420385
d q 6299 5844 863 0.0201 0.0187 0.00276 2.876390
d vr 6299 270 15 0.0201 0.0009 0.00005 1.465989
d nc 6299 72194 2110 0.0201 0.2305 0.00674 0.539350
d a 6299 2390 12 0.0201 0.0076 0.00004 2001918
d vi 6299 7171 34 0.0201 0.0229 0.00011 -2.084581
d d 6299 6299 13 0.0201 0.0201 0.00004 -3.284553
d adv 6299 16187 12 0.0201 0.0517 0.00004 4761671
d w 6299 13532 10 0.0201 0.0432 0.00003 -4.766245
d vn 6299 9 9 0.0201 0.1131 0.00003 -6.307170
Table 1 A part of the Bigram LLR Form I
(Ranking tag pairs with the same first tag by the value of LLR)
Tl T2 Tlent | T2ent | TI-T2.cent P(T1) P(T2) P(T1, T2) - LLR(T1, T2)
q cl 5844 7480 4241 0.0187 0.0239 001354 4925447
vp P 1275 12892 1275 0.0041 0.0412 0.00407 4.602633
vxnp P 1488 12892 1469 0.0048 00412 * 0.00469 4.584093
d c 6299 7480 3221 0.0201 00239 001028 4420385
vov np 1073 7403 479 0.0034 0.0236 0.00153 4239375
, cjs 16556 10964 6239 0.0529 0.0350 001992 3428368
w vov 13532 1073 407 0.0432 0.0034 0.00130 3.134185
np w 7403 13532 2417 0.0236 0.0432 0.00772 2917841
a am 2390 21415 1210 0.0076 0.0236 0.00386 2.888484
d q 6299 5844 863 0.0201 0.0076 0.00276 2.876390

Table 2 Top ten tag patterns in Bigram LLR Form II
(Ranking all the tag pairs by the value of LLR)

Table 1 provides an overview of which tags may accompany which tags in the corpus, and
equips linguists with associated statistical information. If necessary, linguists can make tradeoffs
between the coverage of the grammar and the efficiency of the system by consulting the joint
probabilities (or co-occurrence counts) of tag pairs. When the value of the joint probability is
small, which means the real occurrences of the tag pair are few, it will be relatively adequate
to ignore the distribution of the tag pair in order to reduce the complexity of the grammar and
simplify the processing of the system. This table is also helpful for identifying errors in the
tagged corpus or finding some important phenomena which have been overlooked by theoretical
studies.

Table 2 can focus linguists’ attention on strongly associated tag pairs which are more likely
to be combined into constituents. To indicate tags with genuine association, patterns with LLR
less than 1.0 are automatically discarded. Furthermore, because LLR becomes unreliable when
the real occurrences are few, patterns with joint probabilities less than 0.0005 are also ignored.

Besides, according to linguists’ intuition, certain constructions will more naturally be ana-
lyzed as tri-branching or quadri-branching instead of bi-branching. (e.g. the bi-transitive con-
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struction). Thus, the trigram model (with window size of 3) and quadrigram model (with window

size of 4) will serve as convenient guides for linguists to construct constituents with more than

two members. Since the list of patterns obtained in trigram and quadrigram models is too long
(1893 and 4828 respectively), thresholds are also set on LLR (1.0) and joint probability (0.0005).
The number of patterns thus obtained is 78 and 60 for trigram and quadrigram models respec-

tively. These patterns are also ranked by the value of LLR. Top ten tag patterns in the trigram

model and the quadrigram model are shown in Table 3 and Table 4, respectively.!! It is clear

that many meaningful groupings do appear in the top of these tables.!? So, these LLR tables

provide valuable clues for linguists to form constituents and help making the analyses quicker

and more accurate.

T1 T2 T3 T1-T2-T3_cnt P(T1,T2,T3) LLR(T1,T2,T3)
{ ne } 5832 0.018619 4.582876
\ ne \ 877 0.002800 4.469508
} cjs 1885 0.006018 3.232748
\ N cjw 656 0.002094 2.950891
p nc vxnp 726 0.002318 2.883788
d q cl 744 0.002375 2.774897
P nc loc 202 0.007030 2219192
adv vp P 389 0.001242 2200802
np w P 724 0.002311 2.082381
P K vxn 240 0.000766 2.057487
Table 3 Top ten tag patterns in the Trigram LLR Table
(Ranking all the trigram tag patterns by the value of LLR)
Tl ‘T2 T3 T4 T1-T2-T3-T4_cnt P(T1,T2,T3,T4) LLR(T1,T2,T3,T4)
\ nc \ Gw 293 0.000935 3485713
P ne vxnp P 726 0.002318 2462845
np adv vn ctm 1105 0.003528 2417586
vxnp p nc loc 363 0.001159 2413632
\%% p nc vxnp 284 0.000907 2.397562
{ nc } . 2086 0.006660 2354226
q o vi am 412 0.001315 2148030
} , cjs wn 1353 0.004320 2132438
vp p nc loc 240 0.000766 2.055334
vn { ne } 3352 0.010702 2.018944

Table 4 Top ten tag patterns in the Quadrigram LLR Table
(Ranking all the Quadrigram lag patterns by the value of LLR)

11

qutation marks """ and "] ", respectively.

12
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The tag "\" stands for the Chinese punctuation mark "~", and the tags "{"

For example, d-q-cl is a good candidate for forming a quantifier phrase.

and "}" stand for the Chinese



After having checked over the tag patterns, linguists pick out groups which should be treated
as constituents, and assign phrasal tags to them. A substitution tool will automatically replace
all the relevant tag patterns with new tags, or automatically locate the relevant tag patterns for
linguists to confirm the substitution. Then LLR is computed again with the newly changed corpus
(with new phrasal tags), yielding new LLR tables. In this experiment, we firstly constructed the
quantiﬁcatidnal phrases (Q1, consisting of ”(d) (q) (c1)"), the low level coordinate phrases, and
substituted "{ nc }" with NO. Part of the resulting new tag patterns in different n-gram models
are shown in Table 5, Table 6, and Table 7.

Tl T2 Tl cnt T2_ent T1-T2_cnt P(T1) P(T2) P(T1, T2) LLR(T1, T2)
cl 281 417 271 0.0010 0.0015 0.00098 9.323793
d cl 296 417 146 0.0011 0.0015 0.00053 8.356441
NJ ctn 3894 205 141 0.0141 0.0007 0.00051 5.613008
vp p 1275 12892 1275 0.0046 0.0465 0.00460 4425786
vxnp p 1488 12892 1469 0.0054 0.0465 0.00530 4.407246
vnv np 1073 7403 479 0.0039 0.0267 0.00173 4.062527
vnp p 259 12892 163 0.0009 0.0465 0.00059 3.7157706
adv vns 16209 222 175 0.0585 0.0008 0.00063 3.752262
, cjs 16485 10945 6233 0.0595 0.0395 - 0.02249 3258835
VNO Q1 496 10467 148 0.0018 0.0378 0.00053 2.981671

Table 5 LEVEL II Top ten tag patterns in Bigram LLR Form II
(Ranking all the tag pairs by the value of LLR)

Tl T2 T3 T1-T2-T3_cnt P(T1,T2,T3) LLR(T1,T2,T3)
cjs vv VNJ 342 | 0.001234 3.253585
NO , cjs 1922 0.006936 3.062737
vp P No 229 0.000826 2.838479
P nc vxnp 726 0.002620 2.829509
p NoO loc 419 0.001512 2.738720
vV vnv np 230 0.000830 2.688979
adv vp 206 0.000743 2.271391
P nc loc 2202 0.007947 ’ 2.178622
P nc vxn 240 0.000866 2.095507
vn NO . 2086 0.007528 2.085268

Table 6 LEVEL II Top ten tag patterns in the Trigram LLR Table
(Ranking all the trigram tag patterns by the value of LLR)

Linguists then check the new tag patterns to look for higher level constituents. This procedure
is recursively applied until there is only one phrasal tag (S) left in every sentence. A complete
PSG for this corpus is thus obtained.

When the size of the corpus is small, many constructions may not be included in this
corpus. Thus, they will fail to appear in the LLR tables. However, if linguists are aware of their
importance in the applicational domain, and there are indeed well-justified linguistic analyses

269



Tl T2 T3 T4 T1-T2-T3-T4_cnt P(T1,T2,T3,T4) LLR(T1,T2,T3,T4)
NO - \ cjs VNJ 193 0.000697 3.424608
adv vp p NO 149 0.000538 2.573180
p Q1 nc vxnp 141 0.000509 2.434070
p nc vxnp p 726 - 0.002620 2.374187
vxnp p nc loc 363 0.001310 2.335425
VNJ nc , adv 232 0.000837 2.284488
w P nc | wvxop 284 ©0.001025 2.257929
np adv vn ctm 1105 0.003988 2.233253
vn NO . cjs 1885 0.006803 2.184932
vp p nc loc 240 0.000866 1.975087

Table 7 LEVEL II Top ten tag patterns in the Quadrigram LLR Table
(Ranking all the Quadrigram tag patterns by the value of LLR)

for them, it will be convenient for linguists to directly incorporate the existing analyses into

the PSG. The descriptive power of the PSG for testing sets can be enlarged by incorporating

linguistic knowledge in this way.

V. Conclusion

This paper discusses several methods of constructing a PSG, including the purely linguistic

approach, the purely automatic approach, and the proposed human-machine cooperative ap-

proach. The advantages of the proposed approach over other methods are briefly summarized

as follows:

1.

The corpus-based statistical approach focuses linguists’ attention on authentic material
instead of invented examples.

The LLR tables equip linguists with an overview of the distributional phenomena involved,
preventing linguists from committing manual errors or omissions.

The LLR statistic highlights the strongly associated tag sequences, providing a good set of
candidates for forming constituents.

The statistical information provides an objective measure for linguists to make tradeoffs, and
enables linguists to focus on phenomena of statistical importance rather than of theoretical
interest.

When modifications are made, the tagged corpus and the relevant statistical information can
be automatically and systematically reconstructed.

The syntactic model can be coupled with traditional semantic models.
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7. The grammar is able to incorporate achievements of linguistic researches.

According to our experience in the pilot experiment, the LLR statistic really helps making
the analyses quicker and more accurate. As most of us believe, human grammar writers could
do a better job if they had access to better tools. LLR statistic is suggested in this paper as
the right tool.
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APPENDIX

The tagset used in this experiment is listed below (punctuation marks are not included).
Readers are referred to [4], [5], [14], and [15] for detailed discussions on lexical categorization.

3 3k b e 3k 3 e 3k ok e ke Sk e ok sk sk ok sk e ok ok sk ok ok ok sk ok

nc : common nouns

np : proper names Or pronouns

d : determiners

q : quantifiers

cl : classifiers

p : prepositions

loc : locatives

ref : reflexives

vi : intransitive verbs

vn : verbs followed by a single nominal argument

vnn : verbs followed by double nominal arguments

vs : verbs followed by a sentential argument

vv : verbs followed by a verbal argument

vp : verbs followed by a prepositional phrase argument

vr ;- verbs introducing an obligatory relative clause

vns : verbs followed by nominal and sentential arguments

vnv : verbs followed by nominal and verbal arguments

vnp : verbs followed by a nominal object and a prepositional clause argument

vxn : verbs preceded by a preposed nominal object

vxnn : verbs preceded by a preposed nominal object and followed by a second object

vxnp : verbs preceded by a preposed nominal object and followed by a prepositional
phrase argument

vxnv : verbs preceded by a preposed nominal object and followed by a verbal object

vxns : verbs preceded by a preposed nominal object and followed by a sentential object

a . adjectives

asp : aspect markers

adv : adverbs

cjs : conjunctions for sentences

cjv . conjunctions for verb phrases
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cjw : conjunctions for words or other phrases
ctm : modifier clitics

cts : sentential clitics

ctn : noun clitics

excl : exclamatives

ks sk ke dde ok ok sk ok ok ke ke Sk Sk S Sk Sk S ke dhe e ke Sk e ke ke ke
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