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ABSTRACT

This paper presents a design and an implementation of a unification grammar for
Chinese. Furthermore the Chinese grammar is designed as a reversible grammar which
serves both parsing and generation. The Chinese grammar is developed under the system
of Trace & Unification Grammar that compiles the grammar into an efficient parser and
an efficient generator. The implementation shows that a set of Chinese grammar rules
used for parsing and generation can be stated elegantly by the unification. Some examples

illustrate how to formulate Chinese sentences by reversible grammar rules.
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1 Introduction

During recent years there has been a growing interest in NL systems that can be used
for both parsing and generation. The ideas of a unification grammar that allows for a
declarative description of language have made it possible to use the same grammar for
both tasks. The main goal of designing a grammar then is to describe a relation between
normalized (semantic) representations and language strings. If a grammar can be used in

both directions of parsing and generation, we call it a “reversible grammar”.

This paper discusses the design of a Chinese reversible grammar and describes its
implementation in the system ”Linguistic Kernel Processor” developed by Siemens AG,
Corporate Research [3]. It has been tested as one component of a machine translation
system ”Multilingual Conversation Interpreter” which translates dialog-style texts between
any pair of languages among English, German, Chinese and Swedish [2].

The reversibility of a grammar requires consideration of two aspects. One is the different
procedural interpretations of a grammar in parsing and generation. This can be handled
by a mechanism which automatically associates a control interpretation with each of the
two opposite directions of computation (see [12], [11], [3] for detailed descriptions). The
other one is a way how to formulate a natural language sentence by a grammar so that
the grammar can be used both in a process of parsing and in a process of generation. This

paper focuses on the second aspect of designing a Chinese grammar.

The mechanism with which the reversible Chinese grammar is written is the ”Linguistic
Kernel Processor”. It provides natural language grammar writers with a tool for design-
ing a reversible grammar, which serves for both natural language sentence parsing and
generation. The formalism adopted by the “Linguistic Kernel Processor” is a variant of
Unification Gramimar combined with "movement rules” based on Government & Binding
Theory, called “Trace & Unification Grammar” (TUG). A set of Chinese grammar rules
written in this formalism are stated declaratively as context-free productions and PATR-II
style feature equations. Countext-free productions describe the surface structure of Chi-

nese language strings. A mechanism of "movement rules” is built into production rules to
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specify discontinuous dependencies within a language string. Feature equations specify a
relation among features of phrases within a production. Unification is prescribed as the
sole operation on the feature equations to make a bi-directional computation possible. The
equations play roles both in composition of a semantic representation of a phrase from its
children during parsing and in decomposition of a semantic representation of a phrase into
its children during generation. The mechanisms of feature typing, mixing of attribute-
value pairs and Prolog-terms uniﬁcatiom macros, and general disjunctions combine with
feature equations to increase flexibility in information-combining and information pass-
ing, as well as syntactical and semantical composition and decomposition. The written
Chinese reversible grammar is then compiled by the system into a LR parser [13] and a
semantic-head-driven generator [10] to enhance the dynamic performance of the parser
and the generator (See [3] for details of the introduction.) In the following chapters, we
will first give a description of the TUG Formalism, then describe the basic features of the
Chinese grammar and finally give some examples of paraphrases generated by the system

for Chinese sentence inputs.

2 The TUG Formalism

The design of Trace and Unification Grammmar has been guided by the following goals:

e Perspicuity. We are convinced that the generality, coverage, reliability and develop-
ment speed of a grammar are a direct function of its perspicuity, just as programming
in Pascal is less error-prone than programming in assembler. In the optimal case,
the grammar writer should be freed of reflections on how to code things best for pro-
cessing but should only be guided by linguistic criteria. These goals led for example

to the introduction of unrestricted disjunction into the TUG formalism.

e Compatibility to ¢B Theory. It was a major objective of the LKP to base the
grammar on well understood and motivated grounds. As TUG was originally ap-

plied to German and most of the newer linguistic descriptions on German are in the
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framework of GB theory, it was designed to be somehow compatible with this theory

thougl it was not our goal to “hardwire” every GB principle.

e Efficiency. As the LKP is supposed to be the basis of systems for interactive usage
of natural language, efficiency is a very important goal. Making efficiency a design
goal of the formalism led e.g. to the introduction of feature types and the separation

of the movement rules into head movement and argument movement.

The basis of TUG 1s formed by a context free grammar that is augmented by PATR 1I-style
feature equations. Besides this basis, the main features of TUG are feature typing, mix-
ing of attribute-value-pair and (PROLOG-) term unification, flexible macros, unrestricted

disjunction and special rule types for argument and head movement.

2.1 The framework
As a very simple example we will look at the TUG version of the example grammar in [§].

% type definition

s => f.

np => f(agr:agrmnt).
vp => f(agr:agrmnt).
v => f(agr:agrmnt).

agrmnt => f(number:number,person:person).

number => {singular,plural}.

person => {first,second,third}.
% rules
s ---> np, vp |

np:agr = vp:.agr.
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vp --=> v, np |

Vpiagr = v:iagr.

% lexicon

lexicon(’Uther’,np) |

agr:number singular,

third.

agr:person
lexicon(’Arthur’ ,np) |
agr:number = singular,

third.

agr:person
lexicon(knights,v) |

agr:number = singular,

agr:person = third.
lexicon(knight,v) |
( agr:number = singular,
( agr:person = first

; agr:person = second

)

agr:number = plural

There are two main differences from PATR 11 in the basic framework. First, TUG is less
flexible in that it has a “hard” context free backbone, whereas in PATR 1II categories of the
context free part are placcholders for feature structures, their names being taken as the
value of the cat feature in the structure. Second, TUG has a strict typing. For a feature

path to be well defined, each of its attributes has to be declared in the type definition.
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Besides defined attribute-value-pairs, TUG allows for the mixing of attribute-value-pair
unification with arbitrary structures like PROLOG terms using a back-quote notation. This
can be regarded as the unificational variant of the BUILDQ operation known from ATNs. As
an example consider the following lexicon entry of each that constructs a predicate logic

notation out of det:base, det:scope and det:var.

lexicon(each,det) |
det:sem =
‘all(det:var,det:base ->

det:scope)

The usefulness of this feature for the construction of semantic forms will be shown in

the section on the Chinese grammar.

TUG provides templates for a clearer organization of the grammar. The agreement in

the above mentioned grammar might have been formulated like the following;:

agree(X,Y) short_for

X:agr = Y:agr.

s ---> np, vp |

agree(np,vp).

TUG allows for arbitrary disjunction of feature equations. Disjunctions and Conjunction
may be mixed freely. Besides well known cases as in the entry for knight above, we found
many cases where disjunctions of path equations are useful, e.g. for the description of the

extraposed relative clauses!.

114] describes our processing technique for disjunctions.
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2.2 Features

Features are defined at the beginning of the grammar. Features of a noun phrase (np) can

e.g. be defined as:
np => f(semantics:sem, class:npclass, cmw).

By this definition, a noun phrase has three features. The feature semantics carries a
semantic representation of the noun phrase. The feature class indicates a user defined
semantic classification to which the noun phrase belongs, which helps to disambiguate
syntactic structures of sentences. The feature cmw specifies that a designated classifier
(see the discussion of 3.2. 1) is required by the noun phrase. Strict typing is used for the
definitions of semantics and class. In operations on features, values of semantics and class

are restricted to be an element of the pre-defined set sem and npclass correspondingly.

Features are used in grammar rules. The symbol ¢ “:?? is used as an infix operator for
feature indexing. For example, np:class should be read as a value of the feature class of

the noun phrase np.

2.3 Movement rules

Besides these more standard UG-features, TUG provides special rule formats for the de-
scription of discontinuous dependencies, so called “movement rules”. Two main types of
movement are distinguished: argument movement and head movement. The format and
processing of argument movement rules is greatly inspired by [5] and [6], the processing of

head movement is based on GPSG like slash features.

2.3.1 Head Movement

A head movement rule defines a relation between two positions in a parse tree, one is the

landing site, the other the trace position. Head movement is constrained by the condition

)
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that the trace is the head of a specified sister (the root node) of the landing site?. Trace and
Antecedent are identical with the exception that the landing site contains overt material,
the trace doesn’t. Suppose, that v is the head of vk, vk the head of vp and vp the head of
s, then only the first of the following structures is a correct head movement, the second is

excluded because np is not head of vp, the third because antecedent and trace are unequal.

] [s’ v [s [vp
vk ... trace(v); ...1...1...1...]
[¢ np; [s ... [vp trace(np);

vk +-- v ...1...7...]
e np; [s ... [y
vk ... trace(v); ...J...1...7...]

To formulate head movement in TUG the following format is used. First, a head defi-

nition defines which category is the head of which other.

v is_head_of vk.
vk is_head_of vp.

vp is_head_of s.
Second, the landing site is defined by a rule like
s’ -=-=> v+s |

To include recursive rules in the head path, heads are defined by the following head def-
initions. In a structure [y D, ... D,] D; is the head of M if either D; is_head_of M is
defined or D; has the same category as M and either D; is_head-of X or X is_head_of D;
is defined for any category X.

Head movement rules are very well suited for a concise description of the positions of

the finite verb in German (sentence initial, second and final) as in

I}

2Here, “head of” is a transitive relation s.t. if x is head of y and y is head of z then x is head of z.
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Hat; der Mann der Frau das Buch gegeben t;?
Has; the man the woman the book given t;

Der Mann hat; der Frau das Buch gegeben t;
The man has; the woman the book given t;

... daf$ der Mann der Frau das Buch gegeben hat
... that the man the woman the book given has

All that is needed are the head definitions and the rule that introduces the landing

site?.

2.3.2 Argument Movement

Argument movement rules describe a relation between a landing site and a trace. The trace
is always c-commanded by the landing site, its antecedent. Two different traces are distin-
guished, anaphoric traces and variable traces. Anaphoric traces must find their antecedent
within the same bounding node, variable trace binding is constrained by subjacency, e.a.
the binding of the trace to its antecedent must not cross two bounding nodes. Anaphoric
traces are found for example n English passive constructions
s [ip The book of this author]; was read t;] whereas variable traces are usually found
in wh-constructions and topicalization. Similar to the proposal in [5], argument movement

is coded in TUG by a rule that describes the landing site, as for example in

s2 ---> np:ante<trace(var,np:trace), si |

ante:fx = trace:fx,

30n a first glance, one might be tempted to consider head movement. as a speciality of German syntax.

This is not necessarily true, as it can e.g. also be used for the description of English Subj-Aux inversion.
Peter has been reading a book
Has; Peler t; been rcading a book

As to Chinese syntax, the existence ol head movement remains unclear at the moment.
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This rule states that np:ante* is the antecedent of an np-trace that is dominated by sl.
This rule describes a leftward movement. Following Chen’s proposal, TUG also provides

for rightward movement rules. A rightward movement rule might look like this.

s2 ---> sl, trace(var,np:trace)>np:ante |

ante{fx = trace:fx,

The first argument in the trace-term indicates whether the landing site is for a variable
(var) or for an anaphoric (ana) trace. Other than head movement, where trace and
antecedent are by definition identical, the feature sharing of argument traces with their
antecedents has to be defined in the grammar by feature equations (ante:fx = trace:fx,
...). Furthermore, it is not necessary that the antecedent and the trace have the same

syntactic category. This is important for e.g. the rule for pronoun fronting in German

might which can be stated along with rules like the following;:
spr ---> pron<trace(ana,np), s |

The current version of the formalisms requires that the grammar contains a declaration on
which categories are possible traces. In such a declaration it is possible to assign features

to a trace, for example marking it as empty:
trace(np) | np:empty = yes.
Bounding nodes have to be declared as such in the grammar by statements of the form

bounding_node(np).

bounding_node(s) | s:tense = yes.

“The notation Cat : Index is used to distinguish two or more occurrences of the same category in the same
rule in the equation part. :ante and :trace are arbitrary names used as index to refer to the two different

nps.
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As in the second case, bounding nodes may be defined in terms of category symbols and
features®. Typical long distance movement phenomena are described within this formalism
as in GB by trace hopping. Below is a grammar fragment to describe the sentence Which

books; do you think t; John knows t; Mary didn’t understand t;:

bounding_node(s) .

bounding_node(np) .

sl ---> np<trace(var,np), s
s --=> np, vp |

s ---> aux, np, vp |

np ---> propernoun |

np ---> det, n |

vp --=> v, si1 |
vp ---> v, np |
trace(np) .

The main difference of argument movement to other approaches for the description of
discontinuities like extraposition grammars [7] is that argument movement is not restricted
to nested rule application. This makes the approach especially attractive for a scrambling

analysis of the relative free word order in the German Mittelfeld as in

Ihm; hat; das DBuchy keiner t; 1, gegeben t;. The usefulness of this feature for the

description of Chinese is described in [5] and [6].

3 Description of Chinese

In designing a reversible grammar, it is important to find an adequate description of

linguistic knowledge that we would like to use for both parsing and generation. To accom-

SCurrently, only conjunction of equations is allowed in the definition of bounding nodes.
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plish this, it is necessary to have a grammar formalism be completely declarative and its
interpretation order-independent. On the other hand, grammar rules should be tailored
accurately, not only to provide large coverage for a sentence analysis but also to restrict

overgeneration of language strings.

Concerning the Chinese language, its sentences are less structured than those of western

languages. There are no relative pronouns or inflections. Sometimes, an active sentence
‘

and a passive sentence may share the same surface structure. Compare the following two

sentences:

1. The English sentence “I walked.” has a Chinese sentence equivalence:

wo zou le.

“I walk”
2. The English sentence “The book is bought.” has a Chinese sentence equivalence:

shu mai le.

“book buy”

In these two sentences, correct constructions of the syntactic trees and the semantic repre-
sentations are mainly derived from the lexical semantics within the sentences. Word order
in a sentence can be very flexible, though the average length of a sentence is shorter than
that in western languages. An object without any inflected marker in a sentence is dislo-
cated frequently. To disambiguate syntactic structures and to build up correct semantic
representations, semantic information in lexicon and word orders in sentences play very

important roles.

In the Chinese grammar, features and feature structures are defined for each phrase.
They carry necessary syntactic, semantic and pragmatic information for parsing and gen-
eration. These features are instantiated or passed through feature equations. Furthermore

those feature structure are composed or decomposed level by level by feature equations.
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3.1 A semantic representation

In our Chinese language processing, Quasi Logical Form, which is a contextually-sensitive
logical form language [1], is chosen for the semantic representation of a sentence. Several
sentences with different surface structures may be mapped into the same semantic repre-

sentation. For example, Chinese yes/no questions appear regularly in different sentential

forms:

e ni mai shu ma?
*you buy book”

e ni mai hu mai shu?

“you buy not buy book™

e ni mai shu bu mai?

“you buy book not buy”

e ni mai shu bu mai shu?

“you buy book not buy book”

In the analysis, the samne semantic representation is produced from any of the above four
sentences. In the generation, all of these four sentences are produced from the semantic
representation. A tendency in the analysis of sentences is to discard some information
which is not related to syntactic and semantic representations. In the above case, informa-
tion about certain sentential style in a Chinese question is ignored while the information

is necessary to designate whicli one of the above should be generated.
3.2 Selected examples

3.2.1 Classifiers

In Chinese, when a quantity word is used to describe a quantity of a noun, a classifier which
is also called a count measure word must be inserted in between the quantity word and

he noun. For an English phrase “one book”, its Chinese equivalency is “yi (one n shu
tl F English pl book”, its Cl | “ ben sh
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(book)”. Here, ben is a classifier associated with a quantity word for describing a quantity
of the noun “shu” (book). For another English phrase “one car”, its Chinese equivalency
is “yi (one) liang che (car)”. Here, liang is a classifier associated with a quantity word for
describing a quantity of the noun “che (car)”. Classifiers vary with nouns. Each classifier
has to match the noun which a quantity word modifies. A selection of a classifier is not

determined by s surface structure of a phrase, but by a lexical item of nouns.

The following fragment of grammar rules is used for parsing and generating a noun

phrase with a quantity modifier.

np ---> cmwp, noun | (1)
cmwp:form = noun:cmw,
np:sem = Cmwp:sem,
cmwp:restr = noun:sem.
cmwp ---> quantity, cmw | (2)
cmwp:form = cmw:form,

cmwp:sem = ‘qterm(quantity:sem,cmwp:restr).

lexicon(yi, quantity)| quantity:sem = 1.

lexicon(ben, cmw) | cmw:form = ben.
lexicon(shu, noun) | noun:sem = shu,
noun:cmw = ben.

Two points can be observed from the fragment of grammar rules.

1. feature passing and equality testing:
In order to enforce a semantic restriction upon a classifier and a noun, we use the
equation “cmwp:form = noun:cmw”, which checks whether a value of the feature form
of cmwp is the same as a value of feature cmw of noun in rule (1). The value of the
feature form of cmwp represents the value of the feature form of cmw. It is defined in
the lexical item “lexicon(ben,cmw) | cmw:form = ben” and is passed to cmwp through

the equation “cmwp:form = cmw:form’’ in rule (2).
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2. classifier generation:
Since a classifier is not coded into the semantic representation, a classifier generation
can not be done with the input semantic representation. The solution in the fragment
of grammar rules is to use lexical information. A value of the feature cmw is found in
a lexical item of noun after the noun is selected. It is then passed to cmw through the
two equations “cmwp:form = noun:cmw” and “cmwp:form = cmw:form”. Some values
which are discarded in a process of parsing but are useful to select a lexical item in

a process of generation can be recovered correctly.

3.2.2 Topicalization

An usual word order of a Chinese declarative sentence is similar to that in English,
that is, subject-verb-objects. Quite frequently, an object can be topicalized. The
topicalized object is preceded by a syntactic marker “ba” (“ba” is called a “virtual
particle” in Chinese) and is placed between a subject and a verb. The English

sentence “I have bought a book.” can be interpreted as:

e wo mai shu le.

(usual): subject_verb_object

e wo ba shu mai le.

(topicalized): subject_ba-object_verb

Overgeneration may arise. The problem is that an object topicalization sentence
is allowed when the verb in the sentence has two objects or an adjunct such as the

’ is not

particle “le” (completed). For instance, a topicalized sentence “wo ba shu mai.’
adequate in daily dialog except in a Peking opera. To overcome the overgeneration, a
feature is set up to detect an appropriate form. The following fragment of grammar

rules shows how the feature play the role.

s -=-> np, vp. (1)
vp ---> db. (2)
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vp ---> ba, np<trace(ana,np:np_trace),db | (3

db:weight = heavy.

db ---> v, np | (4)
db:weight = v:weight.

db ---> v, np, np | (5)
db:weight = heavy.

v ---> verb | (6)
v:weight = light.

v ---> verb, le | (7
v:weight = heavy.

Here, a left movement rule gives the landing site of the np in rule (3). The similar
treatment of the movement transforination has been proposed in [6]. An interesting
point in this grammar rule is that the same movement rule used for parsing a ba-
structure sentence is used for generating a surface structure of ba-sentence. In order
to overcome the overgeneration mentioned above, the feature “weight” is created in a
verb phrase. A value of the feature “weight” indicates the adequate surface structure
that should be generated from a quasi-logic form. When the value of the feature
“werght” is “light”, the possibility of generating a ba-structure is eliminated. Only
when the value of the feature “weight” is “heavy”, a ba-structure can be derived from

an internal semantic representation, that is, a quasi-logic form in our grammar.

4 Using a Paraphraser for grammar testing

In the above system, the declarative content of the Chinese grammar is shared by
both the parser and the generator. The Chinese grammar is compiled dually into a
] . _ _ .
parser and a generator automatically. The parser transforms a Chinese sentence into
a quasi-logic form which we use for our internal semantic representations of languages

in our machine translation system. The generator produces a Chinese sentence from
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a quasi-logic form. We define the predicate paraphrase(X,Y) to show the reversible
computation. The first argument X of the predicate paraphrase is bound to an input
of a Chinese sentence. The second argument Y of the predicate paraphrase is any
output of a Chinese sentence generated from the quasi-logic form to which the input

Chinese sentence is transformed.

?- paraphrase([’wo"~’,’ke"yi’,’bangzhu’,’ni~’,’ma’],0).

SEMANTTIK:

ynqg (ke3yi(bangzhu(qterm(qcat(-,-,ex,sg) ,X, [event,X]),
a_term(ref(_,th,perspron,1,_,sg,_),Y, [personal,Y]),

a_term(ref(_,rh,perspron,2,_,sg,_),Z, [personal,Z]))))

0 = [’wo~?,’ke"yi’, ’bangzhu’,’ni"’,’ma’];

0 = [’wo~?,’ke"yi’,’bu‘’,’ke"yi’, bangzhu’,’ni~’];

0 = [’wo~?,’ke"yi’,’bangzhu’,’ni"’,’bu‘’,’ke"yi’];

0 = [’wo~’,’ke"yi’, ’bangzhu’,’ni~’,’bu‘’,’ke"yi’,’bangzhu’,’ni~’];
no

This example shows how the sentence

¢ wo keyi bangzhu ni ma?

“Can I help you?”

is analysed and is generated from its semantic representation. The generator enu-
merates all possible paraphrases that are covered by the grammar for one semantic

structure.

5 Conclusion

We have discussed some issues in designing a reversible grammar. We have shown

how a reversible Chinese grammar can be designed under the formalism of Trace
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& Unification Grammar. The examples illustrate how some Chinese language phe-
nomena can be handled by the Chinese grammar. There are about one hundred
grammar rules in our current Chinese grammar. It takes 0.2 to 1.2 seconds to parse
and generate a sentence up to 10 words. The result shows that a reversible Chinese

grammar not only is possible but also performs effectively in practical applications.
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