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ABSTRACT

Parsing is an important step in natural language processing. It involves tasks of
‘searching for applicable grammatical rules which can transform natural language sen-
tences into their corresponding parse trees. Therefore parsing can be viewed as prob-
lem solving. From this point of view, language acquisition can be generalized from
problem solving heuristics. In this paper we show how learning methods can be incor-
porated into a wait-and-see parser (WASP), the problem solver. We.call this -approach
parsing-driven generalization since learming (acquisition of parsing rules and
classification of lexicons) is basically derived from the parsing process.

Three generalization methods are reported in this paper: a simple generalization
mechanism, a mechanism of generalization by asking questions, and a mechanism of
generalization back-propagations. The simple generalization mechanism generalizes
‘from any two parsing rules whose action parts (right-hand sides) are the same while
whose condition parts (left-hand sides) have a single difference. The mechanism of
generalization by asking questions is triggered when a "climbing-up" move on a con-
cept hierarchical tree is attempted and is necessary in avoidance of over-
generalizations. The generalization back-propagation mechanism is to propagate a
confirmed generalization of some later parsing rule back to its precedent rules in a
parsing sequence and thus causes them to be generalized as well. This mechanism can
save many questions to be asked. With the three generalization methods and a
mechanism to maintain lexicon classification (the domain concept hierarchy), we have
been able to show a plausible natural language acquisition model.




1. Introduction

Natural language acquisition has been an interesting and challenging research
topic for both psycho-linguistists and computer scientists, although the former might be
more interested in studying on human subjects while the latter on man-made machines.
To understand how a natural languagé can be acquired by a machine can benefits from
both studies. The psycho-linguistical study might be able to reveal many clues, con-
straints, ahd limitations regarding to natural language acquisition tasks that human
actually face. These revelations may suggest us many gﬁidelines for building computer
- systems that can automaﬁcally acquire a natural language. Our purpose in this paper,
honever, is not to show psycho-linguistic evidence on human natural language acquisi-
tion, rather is to build a computer model using machine learning techniques from
artificial intelligence study [7] to demonstrate the feasibilities of natural language

acquisition on machines.

There are many reasons to study natural language acquisition on a machine. One
among them is to remove the current difficulty of having to construct and maintain a
large set of lexicons and grammatical parsing rules in a complex natural language pro-
cessing system. Since human natural language is ever-growing and evolutionary in
nature, no natural language processing system with a complete set of both lexicons and
grammatical rules can possibly be built. One solution to this is to seek ways of incre-
mentally acquiring grammatical rules from training examples of sentences while keep-
ing the coherence of the system. To achieve this, the system must have the capability
of performing generalization over training examples. Traditional artificial intelligence
researches have developed many techniques to perform generalizations [7].

Parsing involves tasks of searching fof applicable grammatical rules which can
transform natural language sentences into their corresponding parse trees. Therefore a
successful parsing sequence can be treated as a solution to a parsing problem. By

viewing natural language parsing as problem solving, the language acquisition tasks
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can be achieved to some extent by generaliiing from problem solving heuristics. We
call this approach parsing-driven generalization since learning (acquisition of parsing

rules and classification of lexicons) is basically derived from the parsing process.

1.1 Related Works

Berwick [3] uses word features to perform conservative generalizations (the Sub-
set Principle) but leaves their acquisition as an open problem. The acquisition of
semantic and syntactic features of lexicons is important for the languége development
of children (Selfridge [14], Pustejovsky and Bergler [12], Berwick [2] and Zernik
-[21]). In the system, lexicons are classified in a concept description hierarchy. How-
ever, such a concept hierarchy is not built priorly. Instead, it is constructed during the
learning process. This contrasts to Mitchell’s version space approach (Mitchell [8]),
where the domain  concept hierarchy must be built before a

_ generalization/specialization process can be carried out.

It has been argued by many researchers (Pinker [11], Wexler and Culicover [16],
and Berwick [3]) that no negative examples are necessary in a language acquisition
situation. That is, children usually acquire a language by imitating from parents’
conversation. It is rare the case that parents teach illegal sentences to their children.
However, children do sometimes generate illegal sentences due to overgeneralization
from incomplete language acquisition. To avoid overgeneralization, it is necessary for
a language acquisition system to be able to ask questions before performing generaliza-
tion. This is similar to MARVIN’s approach of learning (Sammut and Banerji [13]).
The generalizer performs experiments by generating sentences and testing their validity
by asking the trainer. When the system responses an ihvﬁlid sentence (might be syn-
tactically invalid such as He eat an apple, or might be semantically invalid such as An
apple runs), the possible generalizations are prohibited. This generalization method
shifts the burden of generating negative examples from trainers to learners. Trainers do

not have to care about the current state of learners.

355



Traditional EBL (Utgoff [15], Ellman [4] and Mitchell et. al. [9] [10]) uses high-
level domain knowiedge to guide correct generalizations. Since parsing is viewed as -
problem solving, the powerful learning methods such as the Explanation-Based Learn-
ing (EBL) can be incorporated into the language acquisition system. In language
acquisition, Zemik [20] and Zemik [19] employ the EBL method to acquire phrases
and idioms respectively. However, it seems to be impossible to construct a complete
knowledge base to perform EBL (Yu [18]). In our system, no such knowledge base is
aséumed. Rather, we incorporate the "back-propagation" concept of the EBL into the
generalizer. The generalizations of the last fired rule are back-propagated when they

are confirmed by the trainer.

2. The Parsing Device
The parsing device of this language acquisition system is based on the Wait-

And-See strategy.

2.1 The Wait-And-See Strategy

Marcus [6] proposed the Wait-And-See strategy to parse natural languages. It is
based on a "determinism hypothesis” which says that natural languages can be parsed
by a computationally simple mechanism without backtracking. A Wait-And-See Parser
(WASP) is like a production system, where the grammar and parsing heuristics are
expressed in terms of rules (parsing rules) which are composed of condition and action

parts. Two major data structures are required:
1. active node stack: a pushdown stack of incomplete constituents, and

2. lookahead buffer: a small constituent buffer containing constituents which are

complete, but whose higher grammatical function is as yet uncertain.

The rules in a WASP are partitioned into rule packets. Each rule packet contains
rules for a particular configuration of the constituent in the top of the node stack. For

example, if the top of the node stack contains a VP, the corresponding rule packet for
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the VP is activated. However, the selection of rules to fire may depend on the contents

of the lookahead buffer and the node stack.

The action operators in a WASP defined by Marcus [6] are:

1. ATTACH: attach the constituent at the top of the buffer stack (X) to the top of
the node stack (Y). X is popped from the buffer and becomes the rightmost
daughter of Y,

2. DROP: Y is popped from the node stack and pushed onto the buffer stack, and

3. CREATE: push a new active node onto the node stack.

More detailed descriptions for a WASP can be found ip Liu and Soo [5] and Marcus

[6].

2.2 Extending the WASP

In fact, the creation of an S, an 'NP, a VP, and a PP may be délayéd until its first
component is parsed and dropped. At that time, the creation action can be deterministi-
cally followed by an ATTACH action wﬁich attaches this parsed- and droppedr com-
ponent. For example, consider the sentence I ate an apple. At the beginning, before
cr_eating an S node, the parser might first create an NP node which will attach the houh
I and then be dropped to the buffer stack. Then, an S node is creéted, and the parser
automatically attach this NP as its first son. Thus, we have an improved version of the

action CREATE:

CREATE: push a new active node onto the node stack, and perform the

ATTACH action.

This improvement has two advantages:

1. when the first component is parsed and dropped, the parser can lookahead more

information, and
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2. since the creation action is followed by an attach action, the total number of
actions for transforming the input sentence to its parse tree is reduced.

For example, consider again the above sentence I ate an apple. If the traditional

mechanism (as described in the above section) is employed, there are 15 actions in the

solution path:

((CREATE S) (CREATE NP) (ATTACH) (DROP) (ATTACH)
(CREATE VP) (ATTACH) (CREATE NP) (ATTACH) (ATTACH)
(DROP) (ATTACH) (DROP) (ATTACH) (DROP)).

However, if the improved mechanism is employed, there are ‘only 11 actions in the

solution path:

((CREATE NP) (DROP) (CREATE S) (CREATE VP) (CREATE NP)
(ATTACH) (DROP) (ATTACH) (DROP) (ATTACH) (DROP)).

This will certainly reduce the number of acquired rules.

Since the rules in a WASP are uniform and suitable for language acquisition sys-
tems, it is adopted as the parsing device of the learning system. The parsing operators
"(ATTACH, DROP and CREATE) become the key action operators in the system.

Each acquired rule contains one €and only one) of these operators as its action part.

3. The Léarning Module

Fig.1 shows the flowchart of the language acquisition system. After accepting an
input sentence and its corresponding parse tree, the system initially sets the node stack
to be empty, fills the cells in the lookahead buffer (the number of cells of the looka-
head buffer is discussed in later sections), and finds the solution path (sccju’encc of
actions that transforms the input sentence to its corresponding parse tree) detenninisﬁ-

cally.
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Fig. 1. The overview of the system.

Then, it iteratively pops up the first action in the solution path, tries to find a rule
whose RHS (Right Hand Side) matches the action, and LHS (Left Hand Side) condi-
tion matches the current configuration of the node stack and the lookahead buffer. If a
rule is found, it is fired, otherwise, a new rule is generated according to the current
configuration of the node stack and the lookahead buffer (as the LHS of this rule) and
the action (as the RHS of this rule). After trying to generalize this new rule, the
action is performed, and the iterative process continues until all actions in the solution
path are examined. At this time, the system will back-propagate the generalizations
froni the later acquired or fired rules to the previous acquired rules. Thus, the previous

acquired rules are further generalized without causing over-generalizations.

3.1 The input

The semantic bootstraping hypothesis, which is employed in many language
acquisition systems (Pinker [11] and Berwick [3]), states that when speaking to a child,
parents refer to physical objects using nouns, and actions, which cause the change of
the states, using verbs. Thus, although the child might not initially know what the

grammatical categories (such as noun, verb, ... etc.) are in the target language, he or
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she might also learn them accdrding to the syntax-semantic correspondences. Berwick
[3] uses the thematic representations for these correspondences, and in Anderson [1],
they are encoded as associated networks which describe the scene of the input sen-
tence. Thus, the trainer must provide not only the training sentences but also their
~ corresponding semantics. In our language acquisition model, the additional information
is expressed in the parse trees. For example, for the input sentence I eat an apple, thé

' correspondiﬁg parse tree is also input to the system:
(S (NP (N I)) (VP (V eat) (NP (DET an) (N apple)))).

In fact, the parse tree provides the learnér much information including the
categories of words and the structures of phrases. The provision of the category infor- '
mation is also a simplification made by Wexler and Culicovgr [16]. And as Pinker
[11] pointed out, it is bossible to. derive from the parsé tree the lexical entries and the
phrase structure rules that generate the input sentence. Howevcr, since the derived
phrase structure rules are too general, they might sometimes generate syntactically and
semantically illegal sentences. What the systefn wants to acquire are the critical
features of words in parsing situations to construct the correcf parsing rules without
causing over-generalizations. The derivations of general phrase structural rules are not

helpful in our problem domain.

Also, from the viewpoint of problem solving, the input sentence can be treated as
the initial state, while its corresponding parse tree as the goal state. By properly
defining parsing operators (ATTACH, DROP, ... etc.) and representing the parse tree,
we can design an algbn'thm to deterministically detect the whole solution path (the
solution path can transform the initial state to the goal state) without resorting to
searcﬁing or prior domain knowledge. Thus, the given parse tree is not only necessafy
(in the sense that it represents the syntax-semantic correspondences), but also powerful

for the language acquisition system.
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3.2 The Determination of a Solution Path

We view language parsing as a problem-solving task which is to transform the
input sentence (the initial state) to its corresponding parse tree (the goal state). The
- LEX systerh (Mitchell et. al. [10] and Utgoff [15]) formulates the solving of the cal-
culus as a search problem. After a solution is found, specializations and generalizations
are then conducted to enhance the pe_xformance of the problem solver. The similar idea
~ is used in our language acquisition system. However, by using the input parse tree
and the parsing device described above, we can easily determine a solution path
without resorting to searching the entire solution space or relying on the high-lével
domain knowledge (such as the X-bar theory used in Berwick [3]). For example, con-
sider the sentence I know the beautiful girl and its parse tree (S (NP (N I)) (VP (V
know) (NP (DET the) (ADJ beautiful) (N girl)))). A corresponding ‘sdlution path can

be easily determined (recall the parsing device described in section 2.2)

((CREATE NP) (DROP) (CREATE S) (CREATE VP) (CREATE NP)
(ATTACH) (ATTACH) (DROP) (ATTACH) (DROP) (A’ITACH) (DROP)).

'The determination algorithm scans the parse tree from left to right. When a right
parenthesis is encountered, a DROP operator is output, and when‘a left parenthesis is
encountered, a CREATE operator should be output. However, this output of CREATE
operator is delayed until its first component is parsed and dropped (section 2.2). The

algorithm is as follows:

DetectAction (P)
Input: the parse tree P which is represented as a list.
Output: the solution path for constructing P.
Algorithm:

1. Let C = Car(P); D = Cdr(P).

2. If Cis S, NP, VP, PP, ADJP, or ADVP then
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2.1. Let CC = (pop D).
2.2. DetectAction (CC).
2.3. Output the action CREATE C.
2.4. For each element CC in D do
2.4.1. DetectAction (CC).
2.4.2. Output the action ATTACH.
2.5. Output the action DROP.

3. Return.

It should be noted that, when the first element (C) of the input tree (P) is not a phrase
such as an S (Sentence), NP (Noun Phrase) , VP (Verb Phrase), PP (Prepositional
Phrase), ADJP (Adjective Phrase), or ADVP (Adverbial Phrase), no action is output
for constructing this e¢lement. For example, in step 2.4.1, When CC is "(N D", the
recursive call "DetectAction (CC)" produces nothing, and after this call, an ATTACH
action is output in step 2.4.2. The structure "(N I)" only gives category information
’N’ to the word ’I’. Since it is not a phrase, no actions are needed to construct it. The
parser simply attaches it to the constituent at the top of the node stack. It should also
be noted that, by the definition of the action CREATE in section 2.2, when a consti-
- tuent C is created (step 2.3), it .will automatically attach its first son (the constituent

CCin step 2.2).

3.3 Generalizations

There are three types of generalizations in the system: simple generalizations,
‘generalization by asking questions, and generalization back-propagations. We will

describe them subsequently in this section.

3.3.1 Simple Generalizations

When a new rule is generated, the system will try to generalize it to its largest

extent according to the current concept description. Initially, the concept description
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(the lexicon) is empty as shown in Fig.2.a. thn training examples are provided, the
concept description will accumulate the features of each word. For example, after the
first sentence I see the man and its parse tree (S (NP (N I)) (VP (V see) (NP (DET
the) (N man)))) are entered, there are 11 actions detected in its solution path, and ‘thus
11 specific rules (one action for each rule) are acquired. Fig.2.b shows the current con-

cept description.

? |
() — ] T (c)

DET
/
N1
/l
You | .man see the
- G e
N \ DET N \ DET
v ~ AN
_ N1 vi1 \
| man see the Ycu i man see saw the

Fig. 2. The concept description.

Since the cénception description currently has only specific information, no generaliza-
tions are possible in this case. When another sentence You see the man is entered,
there is only one difference between the previously acquired rule in Fig.3.a and the
newly generated rule in Fig.3.b. These two rules are deterministically generalized to
the rule shown in Fig.3.c. Fig.2.c illustrates the current concept description (N1 is the
acquired general node). Next, suppose the sentence / séw the man is entered, the gen-
erﬂizer will generalize from both the rule shown in Fig.3.c and the newly generated
rule shown in Fig.3.d. Since there exists a difference ( see and saw ) and a more-
general relationship (N1 is more general than I) between them, a questi}on You saw the
man will be asked to ensure the validity of the generalization shown in Fig.3.e. In this

case, since this generated sentence is a valid one (confirmed by the trainer), the rule in
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Fig. 3. Generalizations between two rules.

Fig.3.c and the rule in Fig.3.d are generalized to the rule in Fig.3.e. The conception

description is also updated as shown in Fig.2.d (V1 is the newly acquired general

node). The algorithm of this simple generalization mechanism is as follows:

SimpleGeneralization (R K)

Input: the new rule R and the activated rule packet K.

Output: the resulting rule after generalizing R.

Algorithm:

1. VIn the rule packet K, find a rule T which has the same action

w1th R’s, and there is only one difference between their LHSs.

If found then

2.1. If a more-general relationship is possible, ask a question to
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justify the generalization.

2.1.1. If the answer is "Yes" then
2.1.1.1. Generalize R and T. Denote the resulting rule by P.
2.1.1.2. Remove T from the rule packet K.
2.1.1.3. Return SimpleGeneralization (P K).

2.1.2. Otherwise, go to step 1 to find another rule.

2.2. Otherwise,

2.2.1. Generalize rule R and T. Denote the resulting rule by P.

2.2.2. Remove rule T from the rule packet K.

2.2.3. Return SimpleGeneralization (P K). |

3. Otherwise, return R.

The above simple generalizations have the following features:

1. Generalizations are possible only when the action parts of the two rules are ident-
ical and there is at most one difference between their LHSs. If there are more-
general relationships between them, questions must be asked to justify the gen-

eralizations.

2.  When the asked sentences are indeed syntactically invalid (such as He eat an
apple ) or semantically invalid (such as The apple runs), the generalizations will
be prohibited. With the capability to ask questions, it shifts the burden of generat-

ing near-miss (Winston [17]). examples from the trainer to the learner.

3. If a rule is successfully generalized to a new rule, this new rule will be general-

ized again by the same simple generalization mechanism.

4. There can be no over-generalizations. Each generaﬁzaﬁdn is carefully-justified.

3.3.2 Generalizations by Asking Questions

Another type of generalization is to climb up the existing concept description

hierarchy by asking questions. It is performed based on a single rule. For example,
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after the sentence I give the man an apple is processed, the concept description
becomes a hierarchy as shown in Fig.4.a. Fig.4.b shows an acquired rule that can not
be generalized by the above methods (since there are more than one differences

setween this new i'ule and the old ones).

(a)

V DET
You man apple see saw g|ve the an
(b) . LHS RHS
I I

S0 -0 T (R T I ATTACH
np give np an apple -

N\
I the man

Fig. 4. Generalizations based on single rule.

The generalizer tries to generalize it by climbing the concept description hierarchy.
Here, see and saw must be tested, and thus two questions are asked: I see the man an
apple and I saw the man an apple which are all ungrammatical ones (since the verb
give is dative, but the verb see and saw are not). The trainer answers "no" to the sys-
tem, and thus, no generalizations are performed. The concept description remains

unchanged.

Note that the learning system does not know what the newly generated nodes
actually "mean". For example, syntactically, there may be Subject-Verb agreements
between N1 and V1 in Fig.4.a, and semantically, the system can distinguish apple (eat-

able) from desk (un-eatable) by accepting eat an apple and not accepting eat a desk.

3.3.3 Generalization Back-Propagations

The above generalization by asking question mechanism, employed to climb the

366



concept hierarchy, is very powerful. However, if the generalizer is allowed to climb
the concept hierarchy each time when a new rule is generated, too ﬁlany questions will
be asked. The last type Qf generalizations is introduced to release this difficulty. It is
performed when all necessary rules for parsing the current input sentence are fired.
The system will generalize the latest fired rule by climbing the concept hierarchy; and
then back-propagate the results of this generalization to previously fired rules. Con-
sider the foilowing example: I give the man I like an apple. Assume that the current

concept description is shown in Fig.5.a.

(c) , LHS : RHS
(a) /\ I }5{ l rl N [ t" i DROP
N B DET npvp
. N\ I - :
N1/\\ V1 N | s /I\
~\ | SN— give np np
You | man apple see saw like V2 the an th/ : _
T € S an “apple
give present . man / \ .
np vp
! \
1 like
b LH

we_| S ] vp[ np| 5—|.V3| [an[ apple] * | DROP :
w 1S | velnp[ S [ve [an[apple] " | DROP
nlp/ ga/\ \inlike np7 V{/\‘\np }ke

| theman | |
I theman

=/

Fig. 5. Generalization Back-Propagations.

After processing this sentence, the set of fired rules for parsing this sentence will con-
tain the rules shown in Fig.S.b and Fig.5.c. The rulé shown in Fig.5.c is the last fired
rule. The generalizer will try to generalize this rule by f:limbing the concept hierarchy.
In this case, it try to climb the hierarchy from "give" to "V2". Thus, a question is
asked: I present the man I like an apple. Since this sentence is syntactically and
semantically valid (the trainer might answer "yes" to the system), the generalization

from give to V2 is confirmed and back-propagated to the former one and the give in
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Fig.5.b will be generalized to V2 which contains give and present as shown in Fig.5.a.

Fig.5.d shows the result of this rule generalization by back-propagations.

Note that, by this method, all generalizations may be back-propagated to many
rules. Since the generalizations of the last fired rules have been justified, the back-
propagated generalizations will inherently be justified, and therefore will not cause
over-generalizations. The number of differences between rules becc;mes irrelevant in
this type of generalizations. This generalization mechanism is one kind of EBL. How-
ever, the generalizations are confirmed interactively by trainers (answering "yes" or
"no" to the system), rather than justified by predefined domain knowledge. .'I"hus, It is
not limited by incomplete prior domain knowledge. Also, by this method, the number
of questions asked by the system can be reduced. Thus, this is a very powerful

method for conducting generalizatio_ns.

3.3.4 The Maintenance of The Concept Description

As described aboye, the concept description is simultaneously acquired while the
system perforrhs rule generalization. The system retrieves and updates the concept
description very frequently. Therefore, as the concept description grows larger and
larger, to efficiently maintain it becomes very important.

Currently, the concept description is represented as a hierarchy. When perform-
ing the generalization process, some concept nodes (such as "N1" and "V1" in Fig.5.a)

might be created. The system keeps two information items for each node:
1. a list for recording its father nodes, and

2. a counter for recording how many times a node is referenced by rules.

The father list of a node is updated as follows:

If a rule, which references a node T in its LHS, is generalized by the simple
generalization mechanism, the corresponding new node F row referenced by

the rule will be a father of the node T.
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While the counter of a node is updated as follows:

It is incremented by one when a rule, which does not reference the node
before, references the node now. On the other hand, it is decremented by
one when a rule, which references the node before, does not reference the

node any more.

In fact, the counters of concept nodes is updated only when the system generalizes

rules:

1. If the system performs simple generalization, two rules are generalized to a more
" general rule. All concept nodes referenced by these two rules are not referenced
by them now, thus their counters should be decremented by one. While for the

nodes referenced by. the new rule, their counters should be incremented by one.

2. If the system climbs the concept hierarchy from a node M to a node N, it will
back-propagate the generalization. Each time a rule is generalized by this back-
wropagation, the counter of the node M is decremented by one, while the counter
of the node N is incremented by one.

If the counter of a node is equal to zero (i.e. no rule references it), this node can be

removed, and all its children nodes become the sons of all its father nodes.

4. Implementation

‘The language acquisition system proposed in this paper is implemented in
GCLISP on an PC386 computer. There are about 1000 lines of lisp codes.

For efficiency, abquired rules are classified into the following rule packets: Srule,
Nrule, Vrule, Prule, and Orule packets. If the first cell of the node stack in the condi-
tion part of a rule is an S, this rule is classified into the Srule packet. If this cell is a
VP, it is classified into the Vrule packet, ... etc. Otherwise (such as the node stack is

NIL), it is classified into the Orule packet. When searching for appropriate rules to
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fire, only those rules in the activated packets are examined.

4.1 A Simple Trai'ning Case

Table 1 shows a simple training case. Twelve training examples (12 pairs of input
sentences and parse trees) are entered to the system.

Table 1. The training examples for illustrating
the learning process.

sl: . (It is a book)

tl: (S (NP (N It)) (VP (V is) (NP (DET a) (N book))))
s2: (It'is a desk)

©2: (S (NP (N It)) (VP (V is) (NP (DET a) (N desk))))

s3: (That is a pen)

3: (S (NP (N That)) (VP (V is) (NP (DET a) (N pen))))
s4: (That is a chair)

t4: (S (NP (N That) (VP (V is) (NP (DET a) (N chair))))
s5: (Itis a pencil)

t5: (S (NP (N It)) (VP (V is) (NP (DET a) (N pencil))))
s6: (It is a pen)

t6: (S (NP (N It)) (VP (V is) (NP (DET a) (N pen))))

s7: (That is a desk)

t7: (S (NP (N That)) (VP (V is) (NP (DET a) (N desk))))
s8: (That is a pencil)

t8: (S (NP (N That)) (VP (V is) (NP (DET a) (N pencil))))
s9: (This is a pencil)

t9: (S (NP (N This)) (VP (V is) (NP (DET a) (N pencil))))
s10: (This is a book)

t10: (S (NP (N This)) (VP (V is) (NP (DET a) (N book))))
pll: (This is a pen)

t11: (S (NP (N This)) (VP (V is) (NP (DET a) (N pen))))
s12: (This is a desk)

t12: (S (NP (N This)) (VP (V is) (NP (DET a) (N desk))))

The learner totally performs 1 time of climbing the concept hierarchy and back-
propagating the generalization, and 4 times of simple generalization with asking ques-
tions. It successfully acquires 11 rules and classifies "THIS", "THAT", and "IT" into
one category, and "PENCIL", "CHAIR", "PEN", "DESK", and "BOOK" into another
category. Since the system is allowed to ask questions, it responses additional sen-
tences which are confirmed by the trainer. In this case, the system has learned to parse

15 sentences.
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It is interesting to note that:

1. If the learner is only allowed to perform simple generalization process without
asking any questions, there are totally 20 rules acquired, and there are more con-

cept nodes in the concept description.

2. If it is allowed to perform simple generalization process with asking questions,
only 11 rules are écquired. And during processing these 12 training examples,
training examples (s8, t8), (s10, t10), (s11, t11), and (s12, t12) a(_:tually contribute
nothing to further generalization. That is, before processing them, the learner has
already acquired capability to parse them. Thus, the learner éould learn .to parse

" 15 sentences from the given 8 (=12-4) training examples.

3. If it is also allowed to climb the concept hierarchy and back-propagate the gen-
eralization, training examples (s6 t6), (s7, t7), (s8, t8), (s\lO t10), (s11, t11), and
(s12, t12) would contribute nothing to further generalization. Thus, the learner

actually learns to parse 15 sentences from the given 6 (=12-6) training examples.

42 A More Complex Training Case

We illustrate a more complex training case in Table 2 which is to show how the
system learn proper PP-attachments (Prepositional phrases attachments). For process-
ing these training examples, éhe system asked nine questions to perform simple gen-
eralizations, among which four were confirmed with "Yes", while five were denied
with "No". Also, the system asked six quesﬁons to climb the concept hierarchy and to
back-propagate generalizations, all of them are confirmed. There are totally 95 rules
acquired. |

After giving these 13 training examples, the systefn learned how to determine the
proper attachment of the prepositional phrases (headed with in, on, and with) for the
verbs put, keep, want and see. For verbs put and keep, if the prepositions are in or on

(training sentence sl, s2, s3, and s4), the prepositional phrases should, although not
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Table 2. More complex. training examples (their
corresponding parse trees are not listed).

sl: (I put the dog in the box)

s2: (I keep the dog on the box)

s3:. (You put the dog in-the house)
s4: (I put the dog on the table)

s5: (I want the dog in the house)
s6: (I want the dog on the house)
s7: (I see the dog with a telescope)

s8: (I see the dog with a bell)

necessary, be attached to the corresponding verb phrases (VP). On the other hand, if
the verb is want (training sentence s5 and s6), it is better to attach these prepositional
phrases to the corresponding noun phrases. For the verb see (training sentence s7 and
s8), the way of attaching prepositional phrases depénds on the object of this preposi-
tional phrases. For example, in training sentence .s7, ihe prepositional phrase with a
telescope should be attached to the verb phrase see the dog. While for training sen-
tence s8, the prepositional phrase with a bell should be attached to the noun phrase the
dog.

4.3 A Chinese Training Case
In this training case, the following Chinese training sentences are entered to the

system:

oz — @3 R. (Ieatanapple) (S1)
B — @ % F. (Ieata pear) (S2)
BY% — % ok #.  (leataicerod) (53)
BH — @33R (Ihave an apple) (S4)
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B — 4 H . (etacane)  (S5)
i1z — @ R F. (He eats a pear)  (S6)

The system totally asked ten questions, and among which five questions are confirmed.
After training with these sentences, the §ystem has acquired 23 rules and ‘successfully
classified '35 2 (apple) and %1 F (pear) into a category whose associable unit is e
, and ¥ # (ice-rod) and ‘H B (cane) into a category whose associable unit is 'H
Besides, it has learned that the subject '$ (I) and 4 - (He) share the same
verbs 7 (eat, eats) and * 5  (has, have). That is, unlike in English, these subjects
and verbs can agree in Chinese. These associable relationships are acquired implicitly
in parsing rules. Thus, in general, the system can be ai)plicd to not only English but

also Chinese language acquisition situations.

5. Conclusion and Discussion

We have proposed a computationally plausible model for natural language
acquisition by viewing natural language parsing as a problem solving task. The sys-
tem can.acquire parsing rules and classify lexicons simultaneously without saving
‘training examples. The proposed language acquisition model has 5 major features
including:1
1. No negative examples are provided by trainers.

2. None of lexicon features are given. This language acquisition model does not
require to define a concept hierarchy (the lexicons) priorly, rather, this hierarchy

is built incrementally.

3. Since the parse trees are given as input, with the operators for constructing the
parse trees, the solution path can be deterministically found.

4. Combining the mechanisms of the generalization by asking question and generali-
zation back-propagation, the number of questions can be reduced, and the learn-

ing system is ‘more flexible in the sense that it is not restricted by incomplete
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prior domain knowledge.

Allowing the learner to ask questions can shifts the burden of generating negative

examples from the trainer to the learner.

Since natural language acquisition involves more tasks than merely those in pars-

ing, the parsing-driven generalization approach in this paper only emphasizes on

parsing-related learning issues. Even this, there are still many future works remain to

be explored:

1.

This system has acquired lexicons and parsing rules from the input statement sen-
tences. Other types of sentences (such as command sentences, wh-quesﬁon sen-
tences, ... etc.) are not yet considered.

Since the size of lexicons in a concept hierarchy might grow significantly, to
effectively maintain it is an interesting and important problem.

Currently, the system cannot acquire the concept of inflections among lexicons.
This is due to its incapability to distiguish the inflection relation between lexi-
cons, for example, the lexiéon "went" is an inflection of "go". To acquire this,

features of inflections among lexicons should be provided.

There might be a trade-off in choosing the number of cells in the node stack and

~the lookahead buffer. Too many cells will cause too specific rules, while too few

'cel'ls_will cause many over-generalizations in rules. Although the Wait-And-See

strategy is modified (section 2.2) to promote its ability for resolving ambiguities,
the three-celled buffer might still be inadequate. In case this situation is encoun-
tered, other mechanisms such as suspension (Liu and Soo [5]) should be intro-

duced.

Although the system is allowed to ask questions, the trainer might not answer it,
and in this case, the learner can just give up the possible generalizations. How to

ask smarter questions is one of the future extensions of our work, and in addition,
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how to incorporate more sophisticated generalization back-propagation mechan-

isms into the learning system is also an interesting problem.
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