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ABSTRACT

In a Machine Translation (MT) system, it is necessary to be able to determine the most

likely structure among the ambiguities. This can be accomplished by using the probability as
a selection basis for the well-formedness of each structure. However, this method requires a
very large set of training data for the probabilistic database in order to obtain an acceptable
degree of selection appropriateness.

In ArchTran English-Chinese Machine Translation System, a probability-based approach
to automatizing the structure selection process is adopted. Although this method performs
satisfactorily for structures already in the database, it performs rather poorly for structures
not in the database. This is the problem with a sparse database. Therefore, in this ﬁaper,
we propose to improve the prediction power of the database by a technique called Database
Smoothing. Briefly, there are two smoothing methods that can be adopted. The first method
is to employ a flattening constant to smooth the empty probability cells of the database. The
second method is to incorporate additional information from another database into the one to
be smoothed. We have conducted a simulation on the smoothed database and an improvement
of 13.1 percent is observed for the open test samples. This is very encouraging because it
shows improvements can be achieved for all database applications that employ a smoothed
probabilistic model.
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MOTIVATION

In a Machine Translation (MT) system, it is natural to have more than one interpretation
for most input sentences. These ambiguous interpretatioris are attributable not only to the
over-generative grammar adopted by the system but also to the inherent characteristics of the
source language. Since the main purpose of a MT system is to produce a single appropriate
interpretation for an input sentence in order to reduce the work for post editor, it is therefore
desirable that the system provides a fast and competent mechanism to single out the correct

interpretation.

In order to minimize the time spent on selecting the correct parse trees, we constructed
several statistical databases (SDBS) as the means to automatize the tree selecting process [SU
88]. These databases contain the tree structures that are successfully parsed and selected by
the linguist. With these databases, the well-formedness, in terms of score, of every ambiguous
parse tree can be calculated for an iriput sentence. Afterwards, the parse tree with the highest

score is selected as the preferred interpretation over all the other ambiguities.

We reported an experiment in regard to SDBS’s prediction accuracy in [SU 88]. We found
that with the database size of 1468 sentences, the accuracy rate for the close test can reach
as high as 85%. However, the result is less accurate for the open test. The reason for this
difference is because the training data for the database is not large enough. Consequently, the
variety of sub-structures that can be found in the database is not extensive enough. Because
of this, even if the structure is correct if its sub-structures do not match any corresponding
entry in the database, its likelihood probability approaches zero. This is a serious problem for
using database that is sparse in a MT system. In this paper, we propose to adopt the database
smoothing technique that maintains the high accuracy rate for the structures already in the

database and improves the prediction accuracy for structures outside the database.

There are two general approaches in smoothing a sparse database for improving the
selection result of an open test. The first method is to smooth the cells of a database by a
small flattening constant [FIEN 72]. The second method is to include information from a
database that might not perform as well as the database to be smoothed but is less sparse. In

the later sections, the approaches adopted for database smoothing will be presented.

Aside from structure selection, database smoothing can also be extended to other database
applications. For instance, the truncation parsing mechanism in ArchTran also employs
a probability database to direct the parsing of the input sentences. Information from this
database is used to predict whether a path will eventually succeed or not. If a path receives
a low prediction value, it will be truncated and the time will be saved. Similar to structure

336



selection, the truncation mechanism will also fall short of its function if its database is sparse
and database smoothing is not used. Therefore, it is obvious that database smoothing is

required for improving the reliability of the applications that use databases.

In the following sections, we will briefly discuss how the well-formedness of a structure
is measured; how the databases in ArchTran are constructed and their shortcomings. Then,
the mechanism of database smoothing will be described, followed by the result of our testing
on the smoothed database. Last but not least, we will discuss some limiting factors that will

affect the result of the database smoothing.

SCORE

The degree of well-formedness of a structure can be measured in terms of the syntactic
well-formedness (SCORE,y,), the semantic well-formedness (SCOREsem) and the lexical well-
formedness (SCORE},,) of the structure [SU 88]. According to [SU 88], for a structure
X, its score can be reduced to SCORE(X) = SCOREn (X) * SCOREsem (X) *
SCORE,; (X). So for a sentence with more than one ambiguous structure, the most
appropriate structure should be the one with the highest score. Since the semantic score and
the lexical score have similar formulation as the syntactic score, they will not be discussed

here.

The syntactic score of a structure can be generalized as the product of the conditional
probability of its reduction sequences. Take the syntax tree in Fig.1 as an example. In this tree,
n and v are the lexical categories of the input words, and S, NP and VP are the grammatical
symbols. For this tree, written in the form of context sensitive rules with one right lookahead
and one left context symbol, the reduction sequences of a LR derivation are : (¢ nv => ¢
NP v), (NPv ¢ => NP VP ¢), and (¢ NP VP ¢ => ¢ S ¢), where ¢ is the null symbol.

S
NP VP
n v

Fg. 1 A syntax tree

For these reduction sequénccs, the conditional probabilities are : P(NP/ ¢ nv), P(VP/ NP
v ¢) and P(S/ ¢ NP VP ¢), respectively. From [SU 88], the syntactic score for S is
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SCORE,y, (S) = P(S|¢ NP VP $)« P(VPINP v ¢ )« P(NP|¢ n v ).

Based on the structural well-formedness defined above, we can construct probability

databases for selecting the most likely structure among the ambiguities for an input sentence.

DATABASES AND THEIR SPARSE DATA PROBLEM

In this section, we will first briefly describe the databases constructed for structure
selection in ArchTran. Next, the sparse data problem of these databases will be discussed

and the possible solutions will be presented.

Currently, we have ten independent databases that store the conditional probabilities of
different types of reduction sequence. They are : L3, L2R1, L2, L1R2, L1R1, L1, R3, R2, R1
and N (no context information), where the numbers following L and R designate the number
of left context symbols and right lookahead symbols referenced. These databases differ
in that they incorporate different scopes of context information during their construction.
For example, the L2R1 database is constructed with two left context symbols and a right

lookahead symbol.

The problem with using a probability-based approach to select the most appropriate
structure is that it can not do well for structure that is outside the scope of the database. This
sparse data problem which can be decomposed into two parts. The first is the proliferation
of empty cells (every possible reduction sequence occupies a cell in a database) because the
training sample is small relative to all possible reduction sequence in the analysis grammar.
The second is a special instance of the sparse data problem [JELI 80] when the samples in a
set of databases are not large enough. As a result, some databases will be more reliable but
have less statistics support, while other databases, are less reliable but have more samples to
produée significant statistics. Under such circumstances, one database may perform better in

some cases but less favorably in other cases.

The empty cell problem will affect the prediction performance of the database when most
cells in the database are essentially empty. And the effect is that most of the cell queries will
be zero during structure selection. Since the probability estimation of small values will not
reflect the true probabilistic model, it could hot be trusted as noted in [NADA 85]. Therefore,
these cells must be filled. The most obvious solution is to enter as much sampling data into
the SDBS as possible. But this is a very time-consuming long-term task whose affect is not
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immediately felt. The reason is that the man power needed to find those correct sampling
structures that will completely cover all possible derivations of an analysis grammar for a
natural language is simply too enormous to even consider. A more feasible alternative is to
adopt the flattening constant method suggested in [FIEN 72]. A more detailed description of

this method will be presented in the next section.

Next, we will address the second aspect of the sparse data problem. The performance
of different databases differs because the context reference in building a database also serves
as a constraining factor in building the entries and in matching the sub-structures of a parse
tree during structure selection. For example, the L2R1 database might support the linguistic
model more accurately than the L1R1 database, but the variance of L2R1 is larger than L1R1.
Therefore, L2R1 has less statistics for the open test samples and the prediction on of these

samples is lowered. The following example will demonstrate this problem more concretely.

Ly L, ARy - Ly, Ly BRy

Let the above equation be a sub-structure included in the SDBS, where A is the symbol
that reduces to B; L, and L; are the left context symbols; and R; is the right context symbol.
Then, there will be an entry of L, L1 A Ry — L, Ly B R; in the L2R1 database. At
the same time, there will be an entry of Ly A Ry — Ly B R; in the L1R1 database.
If a given sub-structure to be matched is L'2 1A R — L'2 L B R;, this will not
match any entry in L2R1 but it will match Ly A R; — Ly B R; in L1R1. This means
with L1R1, this sub-structure will have a value for its likelihood but not so with the L2R1.
This shows that with a small training sample, L1R1 has more matchable entries than L2R1.
In other words, for a structure outside a database’s training data, it is more likely to obtain

some usable information from database that is not as context-sensitive.

Following this logic, we can claim that if there is a database with no context restriction,
any sub-structure will be most likely to match some entry in this database. But from [SU
88], it is shown that the accuracy rate for less restrictive database is lowered for selecting
structures already in the database. The reason for this is the context-sensitiveness of the
natural language. As the context information is discarded, the prediction power deteriorates.
Therefore, switching a database to a less restrictive one (i.e. from L2R1 into L1R1 ) will

not improve the selection result in general.

There are two ways to resolve this problem. The first method, is to enter as much

sampling data into the SDBS as possible. Again, the required man power and time are the
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limiting factors for adopting this method. The second method, an extension of an existing
technique in signal processing [LEE 88], is to smooth the database with information from
another database that is less context restricted. This technique of the database smoothing will

be discussed in the next section.

SMOOTHING

To compensate for the inadequacy of not well-trained database in selecting structures
outside database, we are adopting two methods of database smoothing to improve the

prediction accuracy of a database.

The first is to smooth the databases with a flattening constants. In order to explore the
extent of empty cells in the database, we did a tentative check. With 182 English sentences
from the open test sample, all the ambiguity structures are broken down into database queries.

And the result is tabulated in the following table.

Numbe Databases L2R1 N
of Queries
Total Queries 53019 53019
Total Empty Cells Queried 20329 6401

Table 1. Database queries of the open test sentences

It is obvious from the table above that most cell queries from sentences in the open test
sample are empty and therefore flattening constant is needed. The inclusion of flattening
constant can be summarized in three simple steps. If we let the flattening constant be «, then

the steps for smoothing entries with empty cells are as follows :

[1] For every empty cell, let the cell value be equal to a.
[2] For every non-empty cell, increment the cell value by a.

[3] For every cell, calculate the probability of each cell by cell value / total occur-

rences in the entry.

From [FIEN 72], we choose to set « equal to 1/2 and we will demonstrate these steps
with the following example. Let two original entries in a database be that shown in Fig. 2.
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Left Context Curent State Lookahead Reduced To Occurrences  Probability

A 500 500/501
1, L2 L1 S R1 é:: B 1 1/501

Total Occurrences = 501
e A 1 1/1
2. L2 LY g R1' {---m-- B’ 0 0
R 0 0

Total Occurrences = 1

Fig. 2 Two Entries in L2R1 Database

In the above figure, each entry consists of three cells (or the number of possible reduction
sequences) and each cell is followed by its number of occurrences and its conditional

probability.

From this example, an additional problem of using a simple probability model can be
observed. In Fig.2, the first reduction cell of the first entry has a probability value of 500/501
and the first reduction cell of the second entry has a value of 1/1. Consider the number of
occurrences, it is obvious that the first instance of the first entry should be more likely than
the first instance of the second entry. But the values of 500/501 vs. 1/1 do not reflect this
observation. We will see that with the flattening constant added, this will be remedied. In

the following figure, the entries are modified with the flattening constant.

Left Cortext Current State Lookahead Reduced To Occurrences  Probability

A 500+1/2 1001/1005

1. L2 L1 S R1 @: B 1+1/2 3/1005
e C 1/2 1 /1005

Total Occurrences = 502+1/2

;’W A 1+1/2 3/5
2. L2 L1 s’ R & B 112 1/3
S ’ 112 1/3

Total Occurrences = 2+1/2
Fig. 3 Two Entries in L2R1Database with o

Now, the empty cells of these entries are filled with values relative to the total number

of occurrences of the entry. It should be noted that, the original value of 500/501 is replaced
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by 1001/1005 and the original value of 1/1 is replaced by 3/5. This new set of values now

reflects their real relative probability state.

The second smoothing method is to smooth the database with another database that is
less sparse. So, the score of a tree is not the conditional probability calculated from just a

single database. Instead, it is the interpolated conditional probability calculated from several
databases.

In order to acquire a modeling for our databases, we devised a reward function y that
rates how well the correct structures are sélected. The reward function is such that after all
the ambiguities of a sentence are ranked by the score from a database, if the correct structure
falls at the first place, a reward of 5 is added. If the correct structure falls at the second
place, a reward of 2 is added. For any place beyond, no reward is added. Now, we can show
how different databases perform with this reward function. In the following figure, the open
test sentences are grouped according to the percentage of empty cells they have queried. The
numbers in the square brackets are the number of sentences in each group. For each group,

the average reward is found and plotted against the group.

L2R1 N
5 — 5 —
Ee) { Re)
§ 4] 3.63[261 g 3.40[10]
& 3 2.51/39] &
& 2| 2.3132]*2,5149] o
Z 1 1.Lo[s] z
oL 00(2| ol 1 1 ) \poolf )
0 01 02 03 04 05 06 0.7 0D 01 02 03 04 05 06 0.7
Null Entries / Total Queries Null Entries / Total Queries

Fig. 4 Ave. Reward vs. Null Entries

From the figure above, it can be seen that the performance of L2R1 database deteriorates
as the percentage of empty cells increases. But it is actually the opposite for the N database.
Therefore, if we smooth the L2R1 database with the N database, the prediction of those

sentences whose database queries are mostly zero will improve.
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If we let P; be the interpolated sum and P; be the conditional probability calculated from
the ith database, then Py=c;P;+c2P3, with P; from L2R1 and P, from N. The coefficients
are subject to c;+c2=1. The reason L2R1 database is selected as the one to be smoothed is
because it exhibits the highest prediction rate for the close test. As for the N database, the

reason why it is selected for smoothing is because it has most entries.

The P; equation can be further modified with additionail weighting functions. The
reason for these functions is that the trustworthiness of a probability should be dependent
on the total occurrences of all cells within the same entry. Therefore, the new equation is
Ps=chj(x)P1+c2hy(x)P2, where hj(x) and hy(x) are the weighting functions such that x=n/t
(nis ‘thc number of total occurrences for this entry; ¢ is the number of cells in this entry).

The need for the weighting functions can be justified from the curve in Fig.5.

5_ L2R1
4 |
o
(4]
=z 3
[<b}
[a e
g 2
x
1 -
0 | | | | 1
0 20 40 60 80 100

n/t (n=total occurrences, t=number of cells)

Fig. 5 Ave. Reward vs. n/t

In Fig. 5, the test sentences are divided into several groups according to the average of
total occurrences divided by the number of cells of each database query (n/t). Afterwards,
each group is plotted against the the average reward value of the group. From the curve,
it can be seen that as the n/t value increases, the corresponding average reward increases.
Therefore, there is a direct link between the accuracy of a probability and its n/t. With this
curve, we can define the weighting function for L as Aj(x)=a( l-e* )+1, where a and b are
tunable variables for matching the current state of the database. For simplicity’s sake, the
weighting function for N database is set to 1. The final equation for Py is as follows :
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P, = c1h (2) P + 2P,
Where ¢ +c¢p =1,
h(x)=a(1—e_bz) +1,z=

n
?7
n = number of occurrences, t

= number of cells,

a and b are tunning vartables,

Py and P are probabilities from two dif ferent databases.

In the following section, we will present the result of the simulation we conducted for

testing the new Ps equation derived above.

TEST

We conducted a simulation with 182 sentences as the open test samples. For these test
sentences, the reward value for using L2R1 database is 428 and for using N database is 418.
The purpose of the simulation is to find out to what degree the reward value increases for

the smoothed database.

During the simulation, we encountered two problems. First, our original databases did
not record the empty cells because they will take up too much space. So, we have to expand
the databases to include the empty cells for adding the flattening constant. But, it is simply
impossible to generate ‘all possible sub-structure of an over-generative analysis grammar for
a natural language. As a result, we resort to expand the databases with just the ambiguous
structures we have collected in the past. The second problem we encountered is that the
reward function y does not have an analytic formula. So, all we can do is to observe the
improvement of y as ¢; and ¢, make small deviations. Note that the reward function is not
the same as the smoothed score function. The reward function is a measuring function of
how well the smoothed score function is, that is, how well it predicts the correct structure

of an input sentence.

Now, it is the question of finding a best set of a, b, c;, and ¢, for the smoothed database
such that the reward value is the greatest. This can be seen as an optimization problem for the
nonlinear reward function with certain constraints. We have devised an iteration method for
finding these coefﬁcients. Bﬁeﬂy, with some pre-selected values for a and b, we start with a
set of initial coefficients, C%=[c;, c2]. The next set of coefficients are found by shifting each
coefficient slightly in a direction such that the reward function increases, C**/=C’ + AC.
This iteration process continues until an optimal value is found for the reward function.
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In the simulation, we selected several sets of initial values for a, b, ¢;, and c2. The results

after several iterations are tabulated in the following table.

Inputs & Final
Data Sets Results | @ b ct c2 Improvement (%)
Reward

1 0 - 08 | 0.2 475 11%

2 1 1 0.8 0.2 476 11.2%

3 1 0.6 | 04 483 12.8%

4 1 2 09 | 0.1 482 12.6%

5 1 100 | 0.7 | 03 475 11%

6 100 1 08 | 0.2 484 13.1%
Table 2. Open test results of the smoothed L2R1 database with different sets of ‘

inputs

As can be seen, the highest value we have achieved so far is 484. Compared with 428,
it is an improvement of 13.1 percent. We also conducted a close test which consists of 50
sentences on the smoothed database. The open test results are tabulated in Table 3 with

entries corresponding to the data sets in Table 2.

, Results Reward Deterioration

Data Sets Value (%)

1 208 3%

2 210 2.5%

3 207 3.7%

4 210 2.5%

5 208 3%

6 213 0.9%

Table 3 Close test results on smoothed L2R1
database

Comparing the results in Table 3 with the reward value of 215 for the original L2R1
database, it is obvious that the result of the close test has not deteriorate much. All in all,
the result of the open test is very encouraging with the few points we tried. In the future, we

would like to conduct a more extensive search for a even better set of values.
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LIMITING FACTORS IN DATABASE SMOOTHING

In this section, we would like to discuss three factors that might influence the outcome

of a smoothed database.

First, if the number of iterations is not large enough in looking for ¢;s, it is questionable
whether or not we have arrived at the best choice of all maximums. The embedded problem
is that the analytic reward function is not known and its stability is dependent on the training
sample of the databases. But there is an additional action that can be taken to minimize
the effect of this problem. One can take some coefficient vectors that are more distant from
the current maximum and start other searching iterations. When different end results are
compared, if the current point is still the maximum then it can be certain that it is a relatively
good maximum.

Second, if the test sentence sample is not large or random enough, then not every sentence
type outside the database is compiled into the sample. As a consequence, the prediction power
might not have improved for some sentences outside the database. Ideally, if it is possible to
compile every possible sentence structure into the test sample, then a nearly perfect database

can be constructed.

Third, if the test sample for the smoothing mechanism is too small then the variance in
the smoothed database will be so large that it will affect the selection of structures that are
within the database. Therefore, it is better to do the smoothing iteration with a test sentence

sample consists of sentences from both inside and outside the database.

These factors are intended to serve as a reminder when employing the technique of

database smoothing.

CONCLUSION

In a MT system, it is a time-consuming task to manually select the correct interpretation
for a sentence among all generated ambiguities. Therefore, the idea of employing a statistic
database as a tool to automatizing the structure selection evolves. But when the database
has a small training sample, its prediction accuracy is not good enough for the open test.
In this paper, we proposed to overcome this deficiency with the technique of database
smoothing. This includes the adding of a flattening constant and the incorporating of additional
information from another database.

We have conducted an open test of 182 sentences on the smoothed database. The result of
a few trial tests shows an improvement of 13.1 percent. This encouraging result has prompted
a more extensive testing planned in the near future.
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