INCREMENTAL ENVIRONMENT FOR
SCORED MACHINE TRANSLATION SYSTEMS

Jing-Shin Chang* and Keh-Yih Su®**

*BTC R&D Center
2F, No. 28, R&D Road II
Science-Based Industrial Park
Hsinchu, Taiwan, R.O.C.

**Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

In a Machine Translation System a wide variety of data and rule bases are involved.
‘Some of these data bases must be constructed, trained or learned from the well-formed output
of the system. Such data bases are sensitive to the changes in the other data bases in the
system, and the reconstruction of these data bases will be time-consuming if everything is
reconstructed from scratch.

In this paper, we propose an incremental strategy to this problem. The basic operations
in constructing an incremental interface are outlined and the associated topics are discussed.
An illustrative example will be given to show the basic methodology behind the philosophy
of incrementality. Some general consideration and extension about incremental approach will
be discussed as well. The same strategy can be extended to handle large data base which is
subject to change in a much more efficient way.

With an incremental approach, the data bases which are sensitive to changes can be
reconstructed by making only local change to the original ones. Thus, the time and cost for
reconstruction will be reduced significantly.

— 65—

Introduction

In a Machine Translation System (MTS), a wide variety of data and rule bases ("data
bases” for short) are involved. Typical data bases are the underlying grammar of the system
(possibly augmented), transformation rules, generation rules, knowledge-based heuristic rules
and the lexicon information for the lexicon items. They serve as the basis for driving the
parsing mechanism and other analysis modules. All these data bases are constructed by
linguists to solve most of the linguistic problems that can be generalized.

However, the linguists can not supply every subtle and detail information for the system.
For instance, the detailed co-occurrence restrictions on all combinations of the syntactic
categories may not be completely or explicitly described in the rules proposed by the linguists.
Furthermore, in many cases the preference for different interpretations in language processing
involves uncertainty such that even a distinguished linguists may have difficulty in providing
a precise decision rule. Determination of the preference for these cases may requires statistic
measurement instead of subjective judgement from linguists. Therefore, tuning the linguist-
constructed data bases is usually essential to the system.

One way to tune the linguist-constructed data bases is to introduce other components
capable of providing default information induced from the previous behavior of the system.
~This will create another type of data bases which are based on the well-formed output of the
system. Data bases of this type can be used as the feedback to the system for self-learning
or as the statistic data bases for decision making. Supplementary information for tuning
linguists’ rules can also be acquired from these data bases.

The scored parsing mechanism proposed by [Su 87], for example, uses the well-formed
syntax trees observed to take part in the score function [Su 88]. The score function is
then used for truncating potentially inappropriate parsing paths during scored parsing, or
for computing relative preference to the ambiguous parse trees after parsing. Under the
scoring mechanism proposed, it can be shown that the preference measurement (the score)
for ambiguous parse trees, which are semantically annotated, can be divided into syntactic
and semantic components in a statistic sense. While the semantic score is reflected in the
lexicon information, in the augmented part of the underlying grammar, in the heuristic rules
and in the associated subjective score assigned to them, the syntactic score corresponding to
the syntactic component of the score function can be extracted from the well-formed syntax
trees observed. A typical system involving such data base can be modeled as in Figure 1.

This model closely resembles a closed-loop control system with the Learner and the
Expert modules as the feedback components. The Expert Module corresponds to the linguists
(Linguistic Experts), who specify the grammar, linguistic knowledge, lexicon information and
heuristic rules based on their expertise. Because the Expert is likely to give inexact and

incomplete rules to the system, scored parsing, involving the management of uncertainty, -

is required for evaluating the preference to different parsing paths or the annotated trees
associated with the paths.

In such a system the Learner plays an important role in tuning the expertise of the
linguists. It learns the preferred syntactic construction, extracts the information required for
scored parsing from the well-formed output syntax trees and constructs a special data base
which is used for tuning. We shall call this data base a Self-Adaptive Data Base (SADB).
Probability is associated with the extracted information in this data base as a measurement

— 66 —

INPUT OUTPUT (to other modules)
— > PARSER >

: <>
LEARNER
Well - Formed Output
C (S T
][] o])i
' N

! 3 7

IDBMS <—>|HoC
' SN
History of Change
EXPERT
(Linguists) | ~
-IDBMS = Incremental DBMS
DIC=Dictionary GRDB = Grammar Rule Data Base
WFO=Well-Formed Output _ HRDB = Heuristic Rule Data Base
HOC = History Of Change SADB = Self-Adaptive Data Base

Figure 1 The Data Bases in a Scored MTS with Incremental Interface

of preference. The preference not explicitly specified over different syntactic structures is
then embedded in this data base in a statistic sense. In general a linguist would not specify
such data base entries explicitly in their rules, but they are required for the system to perform
default reasoning when expert-proposed rules are not available. They are also required when
competing interpretations are encountered such that these interpretations can be distinguished
only in statistic sense. Note that we have used three typical data bases to model expert-
constructed data bases just for simplicity. In a practical system, the number of data bases
should be much larger.

Motivation for an Incremental Interface
The special type of data base just mentioned may introduce a problem when the other

-related data bases are changed. This problem results from the ever-changing characteristics

of the data bases in an MTS. For a Machine Translation System, since the source language
to be handled is invariant as well as the parsing mechanism, the feedback components must
be changed gradually so as to obtain a stable system. However, the changes in the expert-
constructed data bases, especially that of the underlying grammar will change the output for

—67 —

the original input which is used to construct the SADB. Because the expert-constructed data
bases are subject to changes from time to time, any data base, such as the SADB, that is
output-dependent must be reconstructed each time the other related data bases are changed.
(The data bases which cause the output for the same input to be changed between two data
base versions will be called the change-inducing data bases hereafter.)

To reconstruct the SADB when the other data bases are changed, two approaches can
be adopted. The first approach is to reconstruct the data base from scratch; that is, the
associated input of the outdated output is re-parsed, the correct syntax trees are picked out
(by linguistic experts), and the required information is extracted from the new well-formed
output. After the tedious procedures, the new data base is reconstructed. This process is
quite time-consuming because human intervention is required. In addition, a lot of computing
power is wasted merely for re-computation. Moreover, the old data base becomes useless
once the other related data bases are changed, no matter how trivial the change may be.
Therefore this approach is impractical for a large-scaled system with large data bases.

An alternative solution to this process is to adopt an incremental interface between the
system output and the Learner module. The Learner can be switched between two modes,
the normal mode and the incremental mode. In the normal mode, the Learner takes the set
of output which is generated for the first time as its input, and constructs the required data
base under the directions of the linguists. In the incremental mode, existing well-formed
output which is previously used to construct the SADB is patched according to the history
of change (HOC) of the grammar. Under such circumstance, the reconstruction of the data
base will be much more efficient because only local patch is performed. This methodology
is termed incremental because all one has to do is to take the incremental change of the
- change-inducing data base into account and reshape part of the outdated output and data base
w1thout restarting from scratch.

Basic Operations of an Incremental Interface

To construct an incremental interface, one must define a set of primitive operations
to represent any possible change in the change-inducing data base before the incremental
interface is set up. The incremental approach then involves the execution of the following
basic operations when a local change is made in the change-inducing data base.

1. Compute the incremental change between the two versions of the changc-mducmg data
base. <

Identify the sequence of the primative operations involved in the change.

Compute the effects of the change on the output.

Find the range to be patched in the original output.

Patch the original output according to the predicted effects of the change and reconstruct

the required data base.

bl S

For example, when the underlying grammar is changed, the syntax trees previously
recognized as well-formed may change their syntax structures under the new grammar. To
reflect the change and patch the old output, we must first compute the difference between the
two versions of the grammar. The difference may show that the change is due to addition,
deletion or renaming of symbols. In this case, the substitution of a new symbol for the old
one is sufficient to patch up the original output. The change may also result from addition or

— 68 —

deletion of the Phrase Structure (PS) Rules. Such change may cause part of the state space
(or transition network) of the parsing mechanism to be changed. Under this circumstance,
the incremental change in the state space is predicted, the original output is inspected to see
whether it falls within the altered states, the range to be patched is then searched if necessary,
and the structure in the range is patched accordingly.

In general, the effect of the grammar change will only be local. They can be precomputed,
under certain type of closure operation, from the change in the grammar and a set of
associated productions. Therefore, the effort to reconstruct the data base is no more than
patching up the portion which has been changed. Time-saving is thus expected if the
incremental approach is adopted.

An Example

To show the above idea more explicitly, consider two different versions of the underlying
grammars named G and G/, respectively.

G: ' G : Difference (Delta-G)
S -> NP VP S -> NP VP G: NP -> DET n
NP -> DET n NP -> det n DET -> det
DET -> det VP -> v NP
VP -> v NP | G': NP->detn

In this example, the change in the grammar is simply the reformulation of the NP (Noun
Phrase) part of a sentence (S). This change can be viewed as a deletion of the two productions
in G followed by an insertion of a new production in G’ which also appear in Delta-G, the
difference between G and G'. (Note, however, this expression of the change in terms of the
sequence of insert/delete primitives is not unique.)

The goto-graphs [Aho 85] for G and G' are shown in Figure 2. The graphs consist of
a number of set of items, each corresponding to an internal state of the parser, and a set of
arcs which show the direction of transition for a specific input. The productions in a set of
items and the “dots” for the productions indicate the potential position of the input pointer
if the parser enter the corresponding state. In some sense, these graphs corresponds to the
transition networks in ATN Formalism [Woods 70].

These graphs do not show the effect of the individual insertion or deletion explicitly,
but the net effect of the grammar change is apparent. In this example, the incremental
change in the state space is the substitution of the portion labeled as NP sub-Grammar in
the goto-graph for G with its counterpart in G'. By examining these two graphs carefully,
one can also find that the portion labeled as NP sub-Grammar in either graph is closely
related to the closure of the set of items corresponding to the productions in Delta-G. More
specifically, th?portion deleted and the portion patched (after deletion) can be generated from
‘the corresponding productions in Delta-G. This observation confirms our previous intuition
that local change in the underlying state space of the parser can be precomputed from the

local change in the underlying grammar incrementally.
’ After the incremental change in the state space is patched, we will now examine how
incremental approach can be adopted to patch the old syntax tree for reuse. The syntax trees

I, S I,

5 > .8

S > .NPVP NP I, vp I,

NP -> .DETn s > NPVPM

DET > . det VP >.v NP ¥y I. I,

G’:

o

s > .8 A T,

S -NPVP}WHP § > NP.VP}——>F > NP VP)

NP > .det n VP > .v NP ¥ I Np 17
—>{VP > v NP.)

Figure 2 The GdlU-Gmphs('D'ansitimD'ngrams) for Gand G’

in Figure 3 show an instance of transformation from an old syntax tree to a new one, where
syntax tree T is for the original grammar G and T’ for G, respectively.

In Figure 3, the subtrees enclosed by the dashed lines are the parts to be or been patched.
To see how the scopes of patching are identified, let’s scan the terminal nodes from left to
right. At ty, the arrow in the figure for T is at the position preceding the nonterminals S, NP,
DET and the terminal node det. If we view the arrow in T as the “dot” in the set of LR(0)
items in the goto-graph for G, one can find without difficulty that this position corresponds to
the set of items Ip. Since this set of items no longer exists in the new goto-graph, we know
that this point is the starting point of the scope to be patched. At t;, the state corresponding
to the arrow position is also at an old state, namely Ig, not found in the new state space.
Hence, it is still in the range to be patched. When the arrow is moved further to the right at
t3, the state is exactly the same as that of I. This set of items also appears at the goto-graph
for G’ as I';. Hence the end of patching is found. It is also obvious, from the tree T, that
the target to be patched is an NP. Scanning further in the same manner, one can find another
scope to be patched in T, whose target is also an NP.

Keeping this information in mind, the remaining task is simply to reconstruct the NP
subtrees instead of the whole sentence. This task can be done by traversing the new statee
space of the new grammar from an appropriate entry, namely I, at the goto-graph for G*.
Any parser capable of partial parsing should serve well for this purpose. . '

—70 —

ts
Figure 3 Syntax Trees before and after patching with incremental method

Although we have demonstrate this examplei in terms of some observations at the state
space level, it is by no mean the sole and optimal way to address the methodology behind
incremental approaches. Trade-offs for implementation will be left to a later paragraph.

It is important not to get confused with the concept of incremental parser [Ghezzi 80]
when discussing the incremental interface just mentioned although both of them serve as
tools to patch syntax trees. An incremental parser is used to patch a parse tree when its input
(i.e., the program) is altered. The underlying grammar (or the state space of parsing) is kept
unchanged. The incremental interface, on the contrary, is used to patch a well-formed syntax
tree so that no re-parsing is required when the underlying grammar is changed. Therefore,
the incremental interface is much more complicated than an incremental parser.

Basic Components in the Incremental Interface

To implement the incremental interface in the previous example, two basic components
are required. The first is a grammar editor which records the incremental change in the
symbols, grammar rules, and so forth. The second component is a mini-parser with partial
parsing capability. It is used to predict the incremental change in the underlying state space
and the effect of the grammar change to the parse trees. It is also used to patch up the original
syntax trees if required. It is not necessary for the mini-parser to have the full power of the
parser of the MTS because it only performs local patch. Its function can be a subset of the
MTS parser, thus the name mini-parser. When possible, it can also be incorporated into the
MTS parser and toggled in different modes.

Although we have use the dependency between the GRDB (Grammar Rule Data Base)
and SADB as an example to show the idea of incrementality. This idea can be further extend
to other data bases. The roles of the GRDB and SADB in the model in Figure 1 can, in
fact, be played by any data bases in the model. For example, the deletion of a syntactic
category from the dictionary (DIC) may cause some of the productions of the underlying
grammar to become useless. In this case, an incremental approach can be adopted to modify

—71 —

the underlying grammar in a similar manner as long as it is cost-effective. The incremental
change in the grammar is then handled as mentioned previously.

Hence, for a more general and integrated scheme, the grammar editor is involved in an
incremental data base management system (IDBMS) which handles the access to the data
bases in the system and maintains the history of change of the whole data base system. The
components to patch up specific data bases are then incorporated into an incremental interface
in a module similar to the Learner module of the more general learning system.

General Consideration

From the previous discussion we can summarize the basic philosophy behind incremen-
tality for maintaining a large data base. The first point of greatest concern for incrementality
is to make old data base entries reusable, and the second is to reduce the cost of computation
for the reconstruction of the data base when local change arises.

To implement an efficient incremental interface, a few factors should be pointed out. The
first important factor to consider is the selection of the set of primitive operations of the.
grammar change. It is obviously that these primitives must be able to represent or synthesize
any sequence of modification to the underlying grammar. In addition, since the selection
of the primitives and the representation of the change are not unique, optimization on the
representation of the change in terms of the primitive operations would be significant when
the requirement for efficiency is crucial. For example, we can permute the sequence of
insertions and deletions in the demonstrative example without changing the result. But the
order of the sequence of primitives may be a matter of great concern when the incremental
change is patched on a production-by-production basis. Instead of using the deletion and
insertion of a single production as the primitives, one can also take the deletion and insertion
of a group of related productions as the primitives for incremental change. Closure operation
for these productions can be performed to compute the net effect of the total change. The
algorithm for patching in this way may be more complicated then the previous one, but the
efficiency may be more rewarding. In either case, the IDBMS should provide a user-friendly
interface for the linguists to specify the change in a linguistics-oriented manner.

Another important factor to consider is the efficiency of the mini-parser. Many strategies
can be adopted to implement the mini-parser. One can re-parse the required subtrees for the
original data base by making transition between the internal states of the mini-parser each time
a syntax tree is read in. An alternative way is to precompute the transformation for the subtrees
which are subject to change due to the local change of the grammar. The job of patching
old syntax trees is then simply a task of partern matching. While the first alternate requires
more computation, the second one requires larger storage if the number of transformation is
large. The choice is a trade-off between computing time and storage requirement. Thus a
third way by mixing these two strategies is also possible. With the mixed strategy one can
record the transformation when a new instance of transformation is found while re-parsing a
required subtree. On the other hand, the required subtree to be patched can be replaced by
the transformed pattern without re-parsing if the transformation has been recored.

Conclusion

In this paper, incremental strategy is proposed to resolve the problem of reconstructing.
the data base used in scored parsing. The algorithm for incremental patching of the data base

—72 —

~ is outlined. Fundamental components in the incremental interface are also discussed. We
have pointed out a few important factors to considered about the efficiency of the incremental
interface. With minor variation, the strategy can be easily extended to any self-adaptive
data base which uses the output of the system as the source of the data bases. The cost of
computation for reconstruction of the original data base can be reduced signiticantly with
incremental approach, and the original data base will be made reusable without much effort
for recomputation.

REFERENCES

[Aho 85] A. V. Aho, R. Sethi and J. D. Ullman, Compilers : Principles, Techniques and
Tools, Addison-Wesley Publishing Company, Reading, MA, 1985.

[Ghezzi 80] Carlo Ghezzi and Dino Mandrioli, “Augmenting Parsers to Support Incre-
mentality,” J. ACM, vol. 27, no. 3, pp. 564-579, July 1980. '

[Su 87] K.-Y. Su, J-N. Wang, W.-H. Li and J.-S. Chang,”A New Parsing Strategy in
Natural Language Processing Based on the Truncation Algorithm,” Proc. of Natl. Computer
Symposium (NCS) 1987, vol. 2, pp. 580-586, National Taiwan University, Taipei, R.O.C.,
Dec 17-18, 1987. ‘

[Su 88] K.-Y. Su and J.-S. Chang, "Semantic and Syntactic Aspects of Score Function,”
Proc. of the 12th Int. Conf. on Comput. ngutsncs, COLING-88, vol. 2, pp. 642-644,
Budapest, Hungary, 22-27 Aug. 1988.

[Woods 70] W.A. Woods, “"Transition Network Grammars for Natural Languagc Analy-
sis,” CACM, vol. 13., no. 10, pp. 591-606, ACM, Oct. 1970.

- 73—

% B0 M) SE d A3 T 2T

R # 5F

PRFARGEHE TS HIREBETH

WX HE

WHRAMAZREFPAREGARECA LRAGEE » BRESHFTRAINN
(parsing) 3 &8 » 4G R H# L L%t (argunent) » Tk #1474y
7GR AR GBI AR AL o HL » AXEREERBHMAS Y EMER
EHALR KPR RS OER TR M 300 38 A 54
Hoodhth » AXKEBEBNHWHMBEESTH » FERCAAYBABBARA
BRAOPHEEYHETRLE - FHTROGE o

1.47

Qn}-

RBIMEBEE HRAEARE QYT BEAHTF T RRE —EG T HHE
HEMA AWM EAIEENE[Chen et al. 88 Jo Wit » AE—1EEHEF L EHRT
(argument) » A FHB(parsing)ARBEETRE AEFTERHNL o
B » ARG TaELRL (constituents) EF HFAXREIFLERL » 40 ¢ &
FNBREFNRTE FHE o LEARMASTH R THIE LA TR » £RLF
HZEGFF o RBER—ARATEHGNT 0 BRNGAERE S RELKHAS
BARLFEGE () s FREF N REFAFTBRS TR BAHFLCMATL
$ELEHA TR TF FERANFFINER; a¥HIAEATFTERAEY
HhEMA RRGEE BRI RBUEAHFANLEHT » 2R TRENR T HEM
£ "EINIHRA 0 ARBRTARTT A 4B @) 938 AR » Ry LT VAR B B G 89 o
Plie"& TZMBAR» FRT—REX"» LG ZMBA"TRGHFANGLEHT
AR ERT"E—BEX"EEYEMFRGWNHE o R FRIME » Rl "= 18
A'ZWM%E lRXAHFA4T [1] EFRRGFAGLERT RTFRY
Ao $ 18 €) F oIR8 (matching) 8 TAE o X flde "HERRL R "EAEG T, 8%
WA RIBELEF, 4o R TRl "R "AWHE » RTUAAT "R EFTEAFLFEH
H| Y4548 (case frame) B & &M 4|(semantic restriction) » AR &E"#ER"
T o TALAEMATERNEG » BT LEMBESRBEBL—EESF R
AP LEAGHEERXG o AXBRREMRTETF » RATHREFHBQEHES] -

—77 —

P XIS LB R EEPEMGERATRALRS » HNFLR (Texi-
con) » MERSABERE ST A G E G T PORMAS AERT—3 84
FatrBfE A RFPETIEREGE o

2 . KRR HEBRAET A -

Wi KGR BBRE » H MRS RIS B ZAM - — R 1
ZE () SAKEME AT Z A% MEIF o AT RSN ERB%
B 2 H R R T M THR E A AT MRS o

2.1 WM 23 (4)
KA AR B %ﬁ :

a. i £ XK M5
¥—H9 —?%é’?%’i(;iiﬁl‘fﬂ’r#"ab)if’ﬁi‘ﬁﬁﬂﬂa‘iﬂ,
AR RI|GEG—F > €3

XKL w E~B~ A~ ...

EREL o do B FES .

TXEL % :FF AR ...
BR(KGEH)E » 4w LE~@®K BT PR ...
SlEERME) 4o RAENBEN AR ...

— WM E 4o FESFF S BE R AR BF
S NET NN XN

b5 § AW M3 (41)
R %) o b] F S AR AR R] 5] (RRL) 0 flde 0 "EER N " EARFA
VIREZR[E2] c KPR TRAEM AT HERBE—HHR) FE&
RATT oA %5 8o M & F VAR fe Aot] F 48 AR Fﬂj)'](ﬁﬂ)é’]z)'] °
4o T A

iﬁfﬁﬁiﬂ\ﬁ\%\%\ﬁw&\in\@\ﬁ\ R
Fix B3] o b B [RAT B E R
A E KN FIHFBEHE B HHo
R I AL A NS SO N NG N N ¥
A B R R R B () R
N IR AC INE S R N AN R
B(F) ()~ & - % FF 0]

—78 —

B RIBERLB (XNBHAXEM)— =~ =@ 2% B (K
R)BA—... nF ARBTAM ALK BERNGRM LETHES
B & LA RNFRF o

c. oy EIMAEME ()

BE—HTARLEE ARG T LT AR EATHMGRS
Plio : "RRZ" N "FEBBEE " "RAPIZHA " c A FEFMB LA TE
REATRTOBES LITHEREATWMAGEE » %o "2F L85 L — % 4%
TR 0 PN R — A RTWRE B KPIE2E S AN
HROTEFARLER AR AR T EMEROTEZFARIAR o i F &
FIRTAGZ LI —F o 4oy BN AN LW By A X8 YRR
VIR PANIP NN PR FP S R vAR 2 BN R
E MR NN £ o XAERHTEEAY AR LETHMF
O[26]; REMBMGLREER) AR FEIANHRS 402 1M EHa K
RFFHHB (event feature) 40 (VAT i #BEvent) » e Hfay 1254k
REYRE —EATREGRS o MEFF HHRAFE [B7]£5Z7F4E
DEERGTELFHGEEERES » 4o "2 " o Ty Event A B A ¥
ZEF B~ P PR FP s B AT R VAR Y AR AT XN K
RoflFH : "RERKBPEE "REF" N "EEPH " "EHAEP
"BRELR N R A BRIEET > "HEREA N RBRAEAR o

Joil TALZ AN EHFE ()T R RRTHRAGTEHAR LR
F(H)RTRGHFT o KMGAERARR LS K EANHFFELE(
Jlexical entry)Z T & -F #IvAB K HFE B (time feature) o B AT UE
B3 q T B A BREGRABT LGSR —EK S (constituent) » &
MBS ARTREHINCIALELATHEGRS » 22 (1) "L "5 "EX"HK—
B RS 0 (2) "T"~ "@"Fa" B "HRER KD o

(1) # L EH * £H o
T F3 v v
[+time] '
(2) #& T 18] A A o
N ¥ N v
[+ time]

—-79 —

FRF[AWERTAGKHEFAXNGH ZE A E AL TRMARS o

4o R A Event fokMF 2@ MA—ENMALY KFGELLRLES
A ¥ 83k 5B #| (feature coocurrence restriction)[Gazdar et al. 85]
' BAOWHBER W2 TAF:

[+Event] & [+TLOC] D [+Time] o
Blda (3) " £ "2 — AR FHEHRAGF T ZRBRYEMAS K F A

FEGFHEEHE o Adu(4)) F—BTFQEATRMGMET Y - £ — 1@
FTaxAqTesE&Taeo \

(3) & A% D K T —WAuETo
N v % 12+ Vv Asp NP
[+Event] [+TLOC]

(4) HEMHER » REARPES o

2.2 %ﬂ%i’fajé@ﬁ?ﬂ}?%é

Mt R M A S B — 3 AANEMIAGH LR A—H > TH3)
AWM B LA WRFBEAL 0 & TRTHEHIAEHM AL —1E
AFRMAAS KPR THAAREMRA A E RS BT 4
WM E () + R RAD LIEAR (pattern) s B FREEARFKKRS HAE
R4l o 5 BTALH FHTREEREAT :

a-{ﬁ}{%mzﬁ@m} BN LR AE N O AR B
7 Event B s Bl PR g A2 A
| RN BB LB ()% % o

(5) BEMAAREZE. ..
(6) BHLRBPEFATOHET...

MR R ERES NFR PN EE () o

b, {éljxﬁéljx} 'uéf'ra‘iz%“-ﬂ(.éﬂ)} {Hf\ (&Y)8 4E ~ 4 }
Z3| { Event LHENAE (H)E

—80 —

(7) EERAHHL. ..
(8) ¥ KL TvAK...

2 fo b EAMAA—EHARL + WA RRBTE RE—E "
1A K TR GRS RIERT A 1 40 (9)

(9) R ik » AIEMFE A o

c. {#]1 [wMg#E ()] fﬁxﬂﬁxzﬁ\ﬁ\}
Event | | (#4)w %

(10) %K EIAE . ..
(11) AT ...

d.fﬁ\ﬂ\ﬁﬂ}{%mZﬁ&m} {2} [wMas))
T*I\.irﬁt Event | Event |
(12) HARIIZIRA. ..

(13) iR s Bk E L. ..

e-{ﬁ‘ﬁ‘ﬂ}?%HZﬁ%M}{K\uﬁx&\m&
T AR Event || Z# & \HE 245

(14) # M EREHSHLE. ..
(15) FTH 19825 B P B R K E LR EARAE. ..

FooUH) [Event) (M ko Mk~ o (8)84E)

(16) BEMBTHAE—HPIREA T AERE K. ..
(17) EEERREFHAFAT RSB BE LRBTYRES. ..

g. { &%) | { H#Faiz%-ﬂ(&l)}

Event

(18) & EZFRBREBRA
(19) SRt & 7 — B %

HAvAe R MG AR A EGREEHFER > T 2R EBHRE TR
BEHWAEFT AT AR B ®E 5 BWHPIRZRUEFTHRAR L9 TR
RS » TEAFHF G L EHTEBR ARRAFRLRLEE AT 66 %
EATFH R RTRBERGTFHBRS (Adjunct)—RBZHMA o LHARE
AT RTHFARERZERFTARYNERIAMA L BERT

—81 —

Py \ﬁiiﬁﬁt"‘]ﬁfrﬂ%é’u‘é%ﬁ@ » Al ERL—FOBEEERTHER
REREMREE KRR EFHHERATAF) RFFRIA~—EEEAL
P Bt RFEBRLROXTHBAOANFAFEGR » TRE T A2 A4
BRRT » ARG A2 — 1R ARG © 4a(20)

(20) KEAR BT o
"RB'R—ERFHERAFL BRB A —EATEMGRS 0 X40(21)
(21) RedsIBM A 4TI —H o

"FEREREA—ELE LR ARGNFAFTERRTHEAAAGEF &S
o By STHEMIBM BT HEFR » L RANFAMININHREREHF () » LI1BZ
B RGEHRERL AL RENF WwRANFMFINAR Event s KFIATRRE
CPARBAERS > EERERH 2 THF

[—N —V [+TEMP]] & [+EVENT] © [+TINE]

R AFEARFAEMFR o ENNFEAGATGRAARS RET
HTRERBEEMATHOERRATTR » 40(22)) "HR"EENBARERB AR
—IBR R M 2R Y& o FVAET A AR "L T E LR R o

(22) a. AR BEAE HETHLT o
b. *RRBEULE » HRAELT o

2.3 M &

KRS FALKMGBEFTRFFFLR 2REMETLT'"H" ML £
TR [ERYVF 85] o e :

ATBENS - $HE TE N —A T ETFo
ERARWE 0 PH S5 B R o |
ATRAITHRE ¢ E(f2) o

BEREALHAREHEIRT LEBRATNG AR P AEIAB B MR
Al o BE#T Ak » EFAHANSMB|ER a0 KT E/FFETEOEK o &
» B) &) E R EAT A (productivity) » AR A FPREFIF LG —5 » M A LR
EELBARLE EIRRXAHFANG ZETHAR TEA—HHF o KL
ERAFIRTLAHAGHBERIT o |

—82—

3. WHBSHTHARH

WERMEL T TE AR AL > AEEHFRLRGEE L TLE
BR?HEMTHXER » BRRBS AR FALR LR EHIAIMN o —MA
HPRMOBESRATAS KL :

—R I (frequency) o R TEFMARENFMHRLENIE o CHEAHK
&ﬁ-u_ﬁ_uﬂaﬂ#rﬂ%%ﬂ ’ ‘ﬁa”'&‘k” N u_a__;-Fu : H%,rﬂ_%ﬁﬁ@f%% ’ *a_niiu N II_QF
15 EAAREF) k" FE I EEF o RIAAGRBAEHFIA 0 4w (22)

(23) R4+ EBER o

B TRAARBERERBTZRK " FH " ZR "HREHES &
BL CREXT'ZR"GEBE, "ZR"BEZEERIEF T ZRK"EBEEFHIELY
B RAE o -

—REFHREARM > TUAELWHER LR —F » LT AZKZ 4
— BRWHc COBARRTE : a. ARELFARETEE[RF 88]1 Hbew
M3 (48), 4o "SEM"~ "KF" "LERA"; b. AFRMHAE, o "#RERZ
AR c. B ARBRARRAE (), e "RER" ; d. BRERERRA
Wik, 4o "ZEATG" "1983F " o VALY M R Tk , MA L 458 0 L
A EREGHFIM (328] , 4a(24)

(24) a. HEHPSLRELFTBENE o
b. * MM ELRLF TS o

 ZABEAAEASHMARRESAMNMN o CHBABRLKARKTR
Fpath MER IS M AR, 'SR A AR AT BREE L X
S AP YR M A RE o B — TR R ASFNHE, 40 (25)-(27)

(25) RZK LT o
(26) R@IEARER T EIEIIE
(27) Moty F 4508 T HIEA o

Pt HWNHBSHES TEZANTHRAFIHIGH c BhEdy
H AP rAHRARGEHEE A TEFFMLOFHRNREFHHKM -
 REARHFATREAALTBEE o WHBMEHSH » AT PN THIH
R EAREAFCERTSEHG TR

_ 83—

4.4:3

wo ea

TERGBITEE » $VAFHPGRAEL T EIMTAE [Chen et al. 88] » vAH,
BB LEBABE —FH c ABHXOLAZREBENE LEZE » KMTBIM
TAREF T ARRATHELHOXT » 2AVHAMGMATE ’i’.ﬁL o Bk -
TR RFIFIAAER R THRGRT » TER g T ey L BHTHR o
HAXS 6 BT RER L TUR T @RAEEMRS

1. B E% () AW M &5) B S0 a4 sAd o

2. BEMRBATEAFMEFTEF 0 HRFRA AR
([+EVENTJ&[TLOC] D [+TIME])% %a o

3. AT+ FFHI AT 0 BB AR H
([—N —V [+TEMP]] & [+EVENT] D[+ TINE])fF%a o

B TR REEFAFERDT K KAV 86 H e R 3E R — 18
RE» FE %ﬁlﬁxﬁéﬁﬁ’ﬂﬁﬁyxkﬁzﬁéﬂiﬁ » B —F A FH B E I E E K
RETEORAEG FR AZ BB REZLATEBLMITHGEHIEL
' RFRE R flhe "RERBZEF"EBYH AL (idion) » FREBHERE
R (heuristics)RARIE » KPIRT 5 154 o Eib) AXZLANREMIMET
BOHLE,) RFITLEERMHNKY » MEEARERF T HMA o

RUAXLFARA P EARLRNF T SH I EFRFAARET T ERELASMEXL
b X FE 4k £ £ (Chinese Knowledge Information Processing CKIP)
ZAhY BARRLAE N RECREZABASHIURAF RIS FI-H KR
EFFFHEL FAAGKENH /3 #HHMHRS Y FEEREIDBATE
FHEITEERAX ©

—84 —

ey

1.

BHE AT HEZEY AARLHFE—H(4o "THR" "hKF")
B E3E (P LFimL) R HF o |

L BB G HEEGEF o A AERREE N "SR KFR T 0 AR

RER P THA—E XM K= 4&]1{’7#'2’1%)&5{%5\ » B E FHa
5 F g 34 B[R] FLIR % (1988:12) o

MRS NN By A'RETHRAFREFRETAR - 28T E%

PHLE S RIS BEANEE T o

LR da S AR B RE) A —RAFANLYEE N [_FH] 4o

P ENER —ARAARCERANEE [HAXH THE_(HHZL
F)] 4ot ZFF S ZMEER o

PR FE A EM A IR BFHORRZFMORE o

THN X S AR S AR X P X B B R
Ed A2 ROAEMTEE flde " 2TFW " KEE o

BPAR SEER G F R B F R
G RURAEHEMEATRERESART » L RA L LA R

AGTR(KE) o " —RERG, TREY BRI 0 AXY
Tt —F a9 4R3t o

[% #%# % H]J

. a®#n (1984) %ﬁ/ﬁ ENTH HRBHFGEH o
R B (1985} RREZBEFABGH LXK FhRiLo

BRAE » BREME > ARER (1986) "FREATHHFF R --B= KAES" > &
frdd TR-86-004 » |AB T RAFRILERAT ©

CRBREF (1988) BEMFH LM (BITR) HERE 0002 @B FRFRE

AR

— 85—

10.

11.

12.

13.

- XA BB (1988) "Xy Ma " (FFIF) o
. Chao, Yuen Ren (1968) A Grammar of Spoken Chinese. Berkeley and

Los Angeles: University of California Press.

Chen, C.D., K.J. Chen & L.S. Lee (1986) " A Model for Lexical
Analysis and Parsing of Chinese Sentences, " Proceedings of 1986
ICCC, Singapore, PP. 33-44.

. Chen, K.Jd., L.L. Chanj, C.R. Huang, C.C. Hsieh (1988) " A Classi-—

fication of Chinese Verbs for Language Parsing, " CPCOL , Toronto.

Gazdar, G., E. Klein, G. Pullum, I. SAG (1985) " Generalized Phrase
Structure Grammar, " Cambridge : Harvard University Press .

Li, Charles N. & Sandra A. Thompson (1982) Mandarin Chinese: A
Functional Reference Grammar. Berkeley and Los Angeles: Univer—
sity of California Press.

Paris, M.C. (1988) " Durational Complements and Verb Copying in
Chinese, " Tsing Hua Journal of Chinese Studies, New Series XVIII,
No2, Hsinchu.

Sé]ls, Peter (1985) "Lectures on Contemporary Syntactic Theories,”
Stanford : CSLI . |

\
Tai, James H.Y. (1984) " Verbs and Times in Chinese : Vendler’s
Four Categories, " Lexical Semantics, pp.289-296, Chicago: Chicago
Linguistic Society.

— 86 —

The Processing of English
Compound and Complex
Words in an English-Chinese
Machine Translation System

Shu-Chuan Chen® and Keh-Yih Su™

*BTC R&D Center
2F, 28 R&D Road 1
Science-based Industrial Park
Hsinchu, Taiwan, R.O.C.

**Department of Electrical Engineering
National Tsing Hua university
Hsinchu, Taiwan, R.O.C.

ABSTRACT

In a machine translation system the information of the words of the source language
should be available before any translation process can begin. The information of simple
words can be obtained only by entering a word with all its relevant information into the
lexicon. On the other hand, compound words and complex words, it seems, can be handled
-in a satisfactory way by lexical redundancy rules, and will thus help keep down the size of
the lexicon. This paper argues that lexical redundancy rules are not as useful as they may
seem to be for a machine translation system, and both their limitations and functions will be
examined in depth. In addition, detailed discussions on the various problems that may arise
during analyzing and translating of compound and complex words are presented.

— 89 —

1. Introduction

In a machine translation (MT) system the information of the words of the source language
should be available before any translation process can begin. The information of simple words
can be obtained by entering a word with all its relevant information into the lexicon. On
the other hand, compound words and complex words at one extreme may be expected to be
exhaustively listed in the lexicon [Zhan87] or at the other extreme be handled in a satisfactory
way by lexical redundancy rules. However, it is obvious that since new compounds and
complex words are created from day to day, they are impossible to be exhaustively listed.
 And as it would be made clear in the following discussions that the predictability, or regularity,
of derivational words, inflectional words, or compounds is of limited use as far as translation
is concerned, the lexical redundancy rules used to account for these words often fall short of
their functions when applied in a MT system. Competent strategies are needed to successfully
handle these two types of words to guarantee correct parsing and translation, and also help
keep down the size of the lexicon.

In this paper, the various problems encountered in the morphological analysis module
of the BTC English-Chinese MT system are discussed and possible solutions are proposed.
The discussion will focus on the role of lexical redundancy rules in a MT system; and the
issue as to whether English compound and complex words used in such a system should be
derived from their stems solely through lexical redundancy rules. At last, we will look into
the problems of processing multi-affix words and compounds of different formations.

2. English Compound Words, Compléx Words, and
Lexical Redundancy Rules

In English, new words may come into being through the process of derivation, inflection,
or compounding. These processes, distinct from other less productive word formation devices,
e.g. clipping, acronym, etc., create new words by adding new morphemes. Compounding
creates words by adding one base to another and the forms created are called compounds.
Derivation and inflection produce words by adding an affix to a base. Complex words,
often used by linguists to mean exclusively for formations by the addition of derivational
affixes to compounds, will be used in this paper to cover forms with either derivational or
inflectional affixes for the reason that they are both created by affixation and thus require
similar operations in a MT system. Words formed by these processes are large in number and
bear a fixed phonological, syntactic!, and semantic relation either to the stem of the complex
word or to the grammatical head of the compound word.

For a MT system like ours whose input is written strings rather than spoken words, the
syntactic and semantic predictability of compound words and complex words is of special
interest. Due to the predictability, it appears that these words can be recognized and analyzed
by lexical redundancy rules, and need not be listed as separate lexical items in order to reduce
the memory space of lexicon. Lexical redundancy rules are intended to assign default form
class, semantics, and other attributes to a group of words that share formal and functional
resemblance. As an example, complex words ending in the suffix -ment, such as arrangement,
puzzlement, etc., are all nouns and have a common meaning of “the result of ‘-the action
indicated by the verb base, and so on [Quir85]. And these words can be generated (in a

~90 —

language generation system) or analyzed (in a language analysis system) by a redundancy
rule of the following simplified form: '

Y + -ment —> N
Meaning : the result of V
Chinese translation : same as V

The arrow indicates that the word created by adding the suffix —ment to a verb is a noun
with its Chinese translation identical to the base. An example involving compounds can -
readily be cited as well. However, lexical redundancy rules are not as useful as they appear
in a MT system for the reasons to be discussed in the following section.

3. Limitations of Lexical Redundancy Rules in a MT System

Ideally, the use of lexical redundancy rules in a MT system will help restrict the lexicon
_to a reasonable size, and thus keep down the space allocated for storing lexical items.
Nevertheless, the question as to whether a compound or complex word should be entered
into lexicon, or whether they should be analyzed by rules, is not merely a matter of the size
of lexicon, especially when the time spent on searching and analyzing a lexical item and
the memory taken up by lexicon is trivial. (It is observed that in our system morphological
analysis, including I/O, takes up less than 5% of the total processing time.)

The main concern of a MT system is to render a suitable translation from the source
language to the target language. To this end, several conditions have to be satisfied, and
they are the determining factors as to whether a compound or complex word should be built
into lexicon or not.

1. Compositionality of translation. The translation of a multi-affix word is not necessary
compositional, meaning the translation of such a word is not necessarily the composite
of the respective translations of the affixes plus that of the stem [Zhan87]. For one
thing, the suitable translation is subject to Chinese word-formation rules?; for the other,
if there already exists in Chinese an established term for the same idea expressed by a
given English word, the established word are most likely to be used as the corresponding
translation. In the absence of compositionality, correct translation can not be obtained
by general rules. In this case, the multi-affix word has to be entered into the lexicon.
As an example, the derivational word reconfigurability is formed by attaching re- to the
100t configure; then -able to reconfigure; and finally -ity to reconfigurable. Provided that
re- is given the default translation “ Eg “, —able ” BILA. 7, -ity ” ¥ and configure ”
FE 7, the Chinese translation of reconfigurability is not likely to be the composite of
the translations of re-, -able,, and -ity plus that of configure, that is ” T\ EFEEHL". A
potential candidate is ” E## ”3. The same criterion goes for compounds. An example of
it is flesh-and-blood. When translated compositionally, it would be “ FS¥1IL “, However,
the corresponding institutionalized translation of the compound is “ : fppy: 58 “

2. Adequate information for rendering correct translation. A variety of morphological, syn-
tactic, and semantic information is needed for an English word to be correctly translated
into Chinese. If any single.piece of information of an English lexical item failed to be
obtained through default assignment by lexical redundancy rules, this word has to be

-91—-

entered into the lexicon. For example, it is necessary to consult the subcategorization re-
strictions of the Chinese words (Mandarin, to be more precise, since the BTC MT system
is actually English to Mandarin) “ # “ and “ % “ to determine which word the English
word old should be translated. The rule is basically that if o/d modifies an animate noun,
it should be translated as ” % and never ” ¥ ”. Suppose that the word dancer is
generated by a redundancy rule that derives nouns by adding -er to verbs and stipulates
that the derived noun must indiscriminately be of the attribute “inanimate” (which can be
animate as well), dancer will be erroneously labeled as an inanimate object. This will
result in the translation of old dancer into ” 1 %£98% ” , and not the correct 7 #gyEE
» Therefore, words like dancer must be listed in the lexicon.

3. Ability to identify elements in a compound. Compounds may take the form of two separate
words, such as hard copy, or a hyphenated word, such as hard-copy. The elements of a
compound can also be combined together as a single word, such as hardcopy. The last
form proves to be very difficult in identifying its composite morphemes. In this case,
despite the regular syntactic and semantic ties between a compound and its elements,
compounds of this makeup have to be built into the lexicon.

4. Productivity of affixes. The productivity of an affix also plays a role in the admlssablhty
of a word into the lexicon. Words derived by an affixation of limited productivity should
be entered as separate lexical items, because they are very few in number. Otherwise,
the addition of a non-productive morphological rule may increase the complexity of the
system and the processing time as well. For example, the prefix step, denoting kinship,
is no longer productive [Baue83], and we should enter all the words with this prefix* into
the lexicon. However, a risk in deciding to leave out a marginally productive affixation
rule is that as it is not actually extinct, occasional coinings are still possible. There is a
tradeoff to be made in this regard.

4. Functions of Morphological Redundancy Rules in a MT System

The above criteria will eliminate most compound words and some complex words from
the possibility of being analyzed by lexical redundancy rules. Although the use of redundancy
rules is restricted by the concern for rendering a correct translation, they are still important
in three areas. First, since inflectional morphemes preserve the category of their stems, and
the corresponding Chinese translations of inflected forms are highly regular, the majority of
them should be handled by rules.

Second, redundancy rules can be used to predict the possible category for a word not in the
lexicon by examining just the affixes attached to it. For example, if the word absentmindedness
is not in the lexicon, while absentminded is, a rule that identifies a word which is made up
of an adjective plus the suffix -ness is a noun, the word absentmindedness will be given the
correct category. This makes it possible to assign a correct category to a word, and which is
one of the prerequisites in producing a correct parse tree for a given construction. Once the
right structure is obtained, the whole construction will be correctly translated as a result.

Third, redundancy rules are of avail in giving a suitable translation to words not in the
lexicon by considering the semantic relation they bear to the stem of a complex word or to the
head of a compound word. In line with the rule that gives category to absentmindedness, the
Chinese translation of the same word can be obtained by giving -ness a default translation.

—92 —

Thus lexical redundancy rules are helpful in providing as much information as possible
in both parsing and transfer phases. This is the general idea and technique behind the “fail-
soft” in a MT system [Benn85]. The conclusion to be drawn regarding the use of lexical
redundancy rules is that: Compound words and complex words should be built into lexicon
if good translation is not available through default assignment by lexical redundancy rules.
On the other hand, since new words are constantly created, lexical redundancy rules are
indispensable.

In Sections 5 and 6, we will examine the internal structure of compound and complex
words, and the effect it has on the processing of these words in a MT system.

5. Processing of Compound Words

Among the three types of corhpounds noted in section 3, only compounds with elements
separated by a space or hyphen are of interest as far as processing is concerned. The type of
compounds spelt as a single word will all be listed as lexical items in our system, because
they are difficult to process. '

As with compounds composed of elements separated by a space, quite a few are estab-
lished compounds, and this type of compounds is rather productive in coining new ones,
found particularly in the terminology used in a specific field of study. As for the kind of
rules needed to analyze these compounds, it can be either a morphological rule or a syntactic
rule. The former will recognize the compounds at the phase of morphological analysis, which
is prior to syntactic analysis. But this can alternatively be done during syntactic analysis;
that is, compounds of separate elements are treated like a phrase in order to eliminate the
need of an extra operation during morphological analysis. Thus, the processing of a noun
compound like prototype development system can be left until syntactic analysis phase to be
parsed as a noun phrase. This can be done because phrases and compounds share quite a
lot of common ground in their internal structure; in other words, word syntax is on a par
with phrase structure [Tang88].

The most frequently encountered compounds are the hyphenated compounds, and it is this
type of compounds for which lexical redundancy rules are of the greatest use. Hyphenated
compounds used as adjectives are extremely productive and most of them are the instances
of occasional coinage. Established ones are fewer in comparison to occasional creations. For
instance, compounds made of cardinal plus noun, such as 40-word in 40-word lexicon, are
extremely productive.

Formally, several individualities of hyphenated compounds are noteworthy. First of all,
they may take an entire phrase as its elements, e.g. higher-than-average (an adjective phrase)
in higher-than-average wages, and do-it-yourself (a verb phrase) in do-it-yourself approach.
Second, suffixes may be attached to the last element of a compound which does not normally
take such suffixes when used as an independent word. For example, the noun in a compound
expressing physical atiribute might take the past participle ending, e.g. leg in three-legged
table. And in compounds that express fraction, ordinals might take the plural ending, e.g.
third in two-thirds®. In addition, a number of grammatical relationships are possible between
the components in a compound, and different types of meaning and translation will thus result.
For example, in a noun-verb compound, the grammatical relation between noun and verb may
be instrument-action, such as petrol-lighter, in which petrol is the instrument the lighter uses.
Whereas, in fire-lighter, fire is the object of the action light.

— 93 —

The formal and semantic attributes of hyphenated compounds observed above have the
following effects on processing and translating these words. First, for words like three-legged
and rwo-thirds, special rules have to be constructed for handling the irregular inflection.

Second, detailed rules have to be worked out to pinpoint the grammatical relation between
the elements of hyphenated compounds in order for them to be correctly translated into
Chinese. For instance, the corresponding translation of the instrument-verb compound voice-
controlled may employ ” B ” to express the instrumental case, such as ” HEHZEH .
* While the corresponding translation of the object-verb compound letter-writing is simply
placing the object after the verb ” wfx ™.

In view of the fact that the grammatical relationship of the elements within a compound
is difficult to define, and the translation is far from certain even if the precise relation can
be identified, therefore, the vast majority of these words have to be built into the lexicon.
Nevertheless, there are two cases in which correct translation is possible without resort to
lexicon. For a group of compounds that have the same stem and the stem also has a fixed
translation in Chinese, translation rules can be constructed specifically for this stem. For
example, there are a lot of compounds involving the stem oriented in their formation, such
as screen-oriented, row-oriented, column-oriented, to name just a few. A rule to the effect
that noun-oriented will be translated to “noun- i@ “ will be sufficient. On the other
hand, compounds like three-legged which contains the same items and word order as in
a corresponding noun phrase three legs can be handled by the very set of transfer rules
constructed for translating English phrases into Chinese. So, the phrase three legs when
translated into Chinese needs a classifier ” % ” before ” § ” to give ” =% ”. The
same holds for a compound containing identical elements and functioning as a modifier of
another noun, i.e. three-legged as in three-legged table, whose translation will thus be “
ZHIERT “ '

Third, English phrase compounds are phrase in nature and, when used as a modifier of
nouns, correspond closely to the structure of Chinese noun phrases: when modifying a noun,
phrasal modifier and clausal modifier, are pre-modifier rather than post-modifier of nouns in
Chinese. For example, in English three-year-old can be a noun or a modifier of noun, as in
a three-year-old girl, which is equivalent to a girl who is three years old. Both the phrase
compound three-year-old or the noun phrase three years old will be translated identically
as ” =g ”. Hence, the translation of phrase compound can be taken care of by transfer
rules as well. (:

6. Processing of Complex Words

An English complex word exhibits several characteristics that are pertain to the processing .
of complex words in a MT system. First, English inflectional affixes are all suffixes, while
derivational affixes can be either prefixes or suffixes. Second, in terms of the number
of derivational and inflectional affixes, a complex word may consist of more than one
derivational affix, with an additional inflectional suffix outside these derivational affixes.
For example, configurabilities is formed by adding derivational suffixes —able to configure,
-ity to configurable, and the inflectional suffix —s to configurability. Third, in terms of the
number of prefixes or suffixes, a complex word may have more than one prefix or suffix. For
example, unrerunability has two prefixes un- and re- and two suffixes —able and -ity. Fourth,
suffixation, but not prefixation, may cause changes in the orthography of the stem forms®

—94 —

For example, the suffix -able when attached to a verb ending in e, will sometimes delete the
final e, e.g. consume becomes consumable. :

Based on the characteristics of complex words observed above, the processing of words
with only prefixes, words with only suffixes, and word with both prefixes and suffixes each
requires different operations. For words with prefixes alone, de-prefixation is followed by
dictionary look-up to check if the stem can be found in the lexicon. If the word is found then
no prefix should be further removed. If a stem can not be located in the lexicon, two things
are possible. First, there is no such word in the lexicon and thus it should be assigned the
category specified by the rule in order for the sentence in which it occurs to be successfully
parsed. Second, if there is another prefix after the current one, further de-prefixation will
unravel the stem. The operations de-prefixation requires are depicted in Figure 1:

DICTIONARY
LOOK-UP

NO DEFAULT
ASSIGNMENT

DEPREFIXATION

Fig 1 THE FLOW OF DEPREFIXATION

For words with suffixes alone, de-suffixation is likewise followed by dictionary look-up
to check if the stem can be found in the lexicon . However, if a stem can not be found in
- the lexicon, three things are possible. First, it may due to the fact that there is no such word
in the lexicon and a suitable category should be assigned. Second, it may be that there is
another suffix before the current suffix. In this case, further de-suffixation is needed. Third, it
is also possible that suffixation process has altered the orthography of the stem; and only after
the original form has been restored, can dictionary loop-up be performed to see if another
suffix should be removed. For example, after -able is removed from consumable, the form
consum is not a word, and an e has to be restored. De-suffixation requires the following
operations in Figure 2:

—95 —

DICTIONARY
LOOKUP

RESTORATION #-

DEFAULT

DE-SUFFIXATION ASSIGNMENT

Fig 2° THE FLOW OF DESUFFIXATION

To make the situation more complicated, words containing prefixes in addition to suffixes
call for both.de-prefixation and de-affixation. This involves a back-and-forth check on both
ends of a word. The check can be initiated at either end. Once the category matches the
specification in a prefixation rule or that in a suffixation rule, de-affixation has to be done. For
example, to de-affixize reconfigurable, either de-prefixation or de-suffixation can be tried first.
If we start with the prefix, de-prefixation will fail since re- is a prefix that must be attached to
a verb, but configurable is an adjective. At this point, we have to restart with de-suffixation,
—able will be removed to yield reconfigure. After -able is removed the remaining form is
reconfigure, de-prefixation can now be executed to remove re- and leaves configure

De-suffixation, and de-affixation in general, includes a check in category. If the stem
does not match the category specified by the rule concerned, de-suffixation should not be
carried out. The importance of matching category in the process of de-suffixation lies in the
fact that it helps determine if restoration is in order. For example, after taking off the ending
-ing, using will become us, which is not a verb and cannot be the right stem. Therefore it
is obvious that a final ¢ must be missing.

The processing of complex word, especially multi-affix complex words, may pose a
number of problems:

1. The major problem is that for words that are not in the lexicon, there is no way of
telling if they contain affixes or not. For a newly-coined word prerechit , we are not sure
whether it contains a prefix, pre-; or two prefixes, pre- and re-; or no prefix at all. In this
case, the principles of assigning default category and default Chinese translation may result
in wrong guesses.

2. As pointed out above, after a suffix has been removed, if the remaining part cannot
be found in the lexicon, it is likely that there is another suffix before the current suffix. In
this case, if there is no change in orthography, further de-suffixation will unravel the stem.
On the other hand, if there is a change in spelling, it is hard to detect if the remaining part
is a word not in the lexicon or a word with more suffixes. There are, however, two possible
ways to Solve this problem. For instance, after -ity is detached, the remaining part of the

—96 —

word executability is executabil, because the suffix -able has been transformed. In this case,
we can either stipulate that if there is a string abil occurs before -ity, then abil should be
restored to -able. The other way is simply to treat ability as a single suffix. Thus no further
analysis of the internal structure of ability is necessary. The latter is a better solution for the
sake of simplicity in processing.

3. The restoration of base words can be time-consuming. For example, the rule that
derives nouns by adding the suffix -sion to a verb can cause a base form to lose its final e,
such as confusion; or t, such as conversion; or de, such as explosion, etc. Every possibility
has to be tried to restore the verb. To remedy this problem, if a given operation applicable
to only a handful of words, these words might as well be listed in the lexicon. If we choose
to do so, however, new words can not be accounted for if they happen to need restoration of
this sort. Here, we are faced with another tradeoff.

7. Conclusions

In this paper, we provide a comprehensive look at the functions and limitations of
lexical redundancy rules used in analyzing compound and complex words in a MT system.
The conclusion is that since redundancy rules most of the time cannot guarantee correct
translation of compound and complex words, it is suggested that redundancy rules be reserved
for analyzing words that are occasionally coined in order for the construction to be parsed
successfully. In the paper, various problems concerning the processing of compound words
and complex words are examined, and possible solutions are proposed. Nevertheless, the
. problems presented in this paper are by no means exhaustive, and there are other difficulties
in processing compound and complex words that are worth noting, such as the treatment
of words like passers-by, which has an inflected form as the first element, and so on. In
addition, idioms or collocations can also be regarded as a special case of compounds and
are needed to be studied further. These issues, however profound they may be, are out of
the scope of the current paper.

8. Acknowledgement

We are grateful to Professor Ting-Chi Tang at Foreign Languages Department of National
Tsing Hua University for his helpful discussions and critical comments on this paper. Special
thanks are due to the colleagues in BTC R&D Center for their support and encouragement.

NOTES

1. What we mean by syntactic relationship is mainly about the relationship in the word
class between the composite elements and the whole compound or complex word.

2. Discussion of Chinese morphological rules is beyond the scope of this paper. For
detailed discussions of Chinese morphological rules, please refer to [Tang88].

3. The Chinese translation of configure given in the English-Chinese Dictionary of
Computing Technique is ” gE& ”, and one of the translation of reconfiguration is ” EF oL E.
”. However in the compound reconfiguration system, reconfiguration is translated as ” &

—97 —

2

. This is also true for five other compounds containing reconfiguration. Based on this,
reconfigurability is given the translation of “ ZEftt «

4. There are only eight of them: stepbrother, stepchild, stepdaughter, stepfather, step-
mother, stepparent, stepsister, and stepson.

5. Strictly speaking, the suffixes are added to the compound as a whole when functioning
as an adjective , not to an individual component.

6. The prefix in also causes changes in spelling to the initial consonant of the base through
an assimilation in pronunciation, e.g. in becomes il before the lateral / as in illegal; in becomes
im before a labial as in impossible, etc. Since the prefix is no longer in productive use due
to the competing prefix un, it is safe to state that prefixation does not cause any changes in
the spelling of the base.

REFERENCES

[Baue83] Bauer, L., English Word-Formation, Cambridge University Press, Cambridge,
Great Britain, 1983.

[Benn85] Bennett, W.S., "The LRC Machine Translation System,” Computational Lin-
guistics, Yol. 11, NOs. 2-3, pp. 111-119, April-September 1985.

[Biss85] Bissantz, A.S. and K.A. Johnson ed., “The Minimal Units of Meaning: Mor-
phemes”, Languages Files, The Ohio State University Department of Linguistics, 3rd ed.,
Advocate Publishing Group, Ohio, U.S.A., 1985.

[Hutc86] Hutchins, W.J., Machine Translation: Past, Present, Future, Market Cross
House, West Sussex, England, 1986.

[Quir85] Quirk, R., S. Greenbaum, G. Leech, and J. Svartvik, A Comprehensive Grammar
of the English Language, Longman Group Limited, Essex, England, 1985.

[Tang88] Tang, T-C., Studies on Chinese Morphology and Syntax, Student Book Co.,
Ltd., Taipei, Taiwan, 1988.

[Vasc85] Vasconcellos, M. and M. Leon, "SPANAM and ENGSPAN: Machine Translation

at the Pan American Health Organization” Computational Linguistics, Vol. 11, Numbers 2-3,
pp. 122-136, April-September 1985.

[Zhan87] Zhang, Liangping, and Shengxin Chen, "Ambiguity Processing in English-
Chinese Machine Translation”, Conference on Translation Today, Hong Kong, 1987.

LR (EEH, EHETEH) BREBEFABSBHA (English-Chinese Dictionary of

Computing Technique (Data & Information)), 2Ejt, 1983.

—98 —

DISAMBIGUATION OF PHONETIC CHINESE INPUT BY
RELAXATION-BASED WORD IDENTIFICATION

Charng-Kang Fan and - Wen-Hsiang Tsai
National Chiao Tung University
Hsinchu, Taiwan 30050
Republic of China

I. INTRODUCTION

Among the various Chinese input methods for computers, the national phonetic input
method is the most favored one by casual users in Taiwan. Possible reﬁsons include the
following: (1) users need not decompose each character into parts which in most cases are
puzzling non—conventional Chinese radicals; (2) ex}eryone learns the national phonetic
symbols in primary school; and (3) the number of the national phonetic symbols is only 37.
Also, there exists a well-known ordering among the symbols. Hence it is easy for most
 people to memorize them well, which facilitates the finding of proper symbol keys, in
contrast with the difficulty of searching the unnatural radical keys required by radical-based
inpu'ﬁ methods.

Since Chinese characters are monosyllabic, a character can be represented by a syllable
which ﬁsually consists of one or two vowels and an optional consonant plus a tone marker.
The phonetic input method is to key in the syllables and convert them into" corresponding
characters.

Though the national phonetic input method is convenient for casual users, an inherited
drawback does exist. Since only about 1300 distinct syllables are used for more than ten

times of Chinese characters, the number of homonyms per syllable is quite large. Hence

—~147 —

ambiguities exist in determining the correct character for a given syllable.
II. KNOWN APPROACHES FOR PHONETIC INPUT

According to whether the processing is performed with or without human intervention;
whether the processing unit is a character, a word, or a sentence; and whether the contextual
relationship of adjacent syllables are used or not, existing methods are briefly surveyed as
follows.

(1) Most available Chinese systems [1] require a user to input phonetic symbols, syllable by
syllable, and leave the homonym resolution to the user. The user is required to select
manua,ll'y the desired character for an input syllable among a list of homonyms displayed on
the computer screen. .

(2) Wan, Saiton, and Mori [2] described a method by which users manually inserted a word
break in a continuously entered Pinyin string and issued the conversion command to have
the computer cohvert the‘sequence of syllables between two breaks into characters.

(3) Ho et al. [3] describéd a method for segmenting a sentence into segments. It uses three
special classes (the ’pure word head,’ the ’pure word tail,” and the *pure monosyllabic word’)
of words as segment markers. The syila.bles between the markers can then be converted into
characters automatically by matching against the stored word dictionary. But emphasis was
not put on the use of the method for ambiguity fesolution. |

(4) Chen etal. [4] proposed an automatic continuous conversion algorithm to convert a .
string of syllables into characters word by word. The systém has a dictionary for word look
up, and a file to handlé exceptions. Several ad hoc rules (such as "previous word ﬁrst,"
"preference for'hi_ghest usage frequency," etc.) are also employed to resolve the ambiguous
cases. It did not use more general contextual information existing in a sentence.

(5) Lin and Tsai [5] proposed an automatic ambiguity resolution method by a relaxation

process. It regards the phonetic input method as a task of assigning each individual syllable

—148 —

to a properrcharacter. Relaxation iterations are applied to reduce the ambiguities in the.
_assignments, using the cd—occuirehce'Statistics of syllable pairs to compute the initial
probability vaiues and the compatibility coefficients needed in the relaxation process. The
contextual information of a sentence is utilized, but only pairwise neighboring character

relationships are explored; word relationships are not utilized.

III. PROPOSED APPROACH TO DISAMBIGUATION OF PHONETIC
INPUT BY WORD IDENTIFICATION

A new approach to automatic disambiguation of phonetic input by a relaxation—based
word identification process is proposed. This approach is applied to a string of phonetic
symbols or syllables which constitute a sentence. The apprdach is based on the folloWing
consideration: (1) the smallest meaningful unit of Chinese is word; (2) there are very few or
even no homonym for each multi—syllabic word in contrast to a large number of homonyms
for each monosyllabic word; and (3) there exists useful contextual relationship among the
words in a sentencé, which will be described later. Compared with Lin and Tsai’s method [5]

which assigns syllables to characters and utilizes the co—occurrence relationships of pairs of

characters, the proposed approach assigns syllables to words and utilizes the adjacency
relationships of neighboring words. Thus it is a word—oriented approach which employs the
more meaningful contextual constraint information among the words in an input sentence.
By regarding the phonetic input text as a string of syllables, fhe proposed approach
basically is a process of word identification which assigns syllable.s to words. For example, in

the sentence

—~ 149 —

TN, G
"you gu wun ti rcu jien yi bi jiau hau."!

(It is better that the sugeestions be proposed by the consultant.),

although the numbers of homonyms are 11, 8, 7, 7, 3, 26, 50, 7, 8, and 2 respectively for the
syllables according to the Eten Chinese system, the sentence is composed of (or should be

7 ~N ~N rd
segmented into) the words as "you" (by), "gu wun" (the consultant), "ti rcu" (propose),
g g

" jign y?" (the suggestions), "bi j?au"- (comparatively), and "hau" (good, better), regardless
of the number of the enormous combinations of homonyms (approximately 109 for this
sentence). The essence of -the proposed approach is to apply the word identification
technique to the syllables of a sentence so that the goal of converting the syllables into
characters can be accomplished simultaneously when the segmentation of the sentence into
words is completed. | |

Relaxation is a problem solving paradigm which is used in a lot of class assignment or
labelling problems to handle the situations of ambiguities. It iteratively' employs the
contextual information to rhodjfy the previous judgefnent, which lessens the ambiguities and
finally converges to the most likely choice. The applicétion problems to which relaxation has
been applied includes noise removal, edge detection, scene labelling, image analysis,

handwritten character recognition, etc. [6—15].

B. Thé Syllable—to—Word Assighment Problem

Let S represent an input sentence and Wj be an arbitrary Chinese word which are

composed of n and m syllables, respectively, as follows:

IThe Suen’s phonefic symbols [17] are used to facilitate the pronunciation and reading of the

Chinese characters.

— 150 —

where s. or s denotes a syllable. Let
i Wik

Q = {5y, 89,8, },
W = {all Chinese words},

then a syllable—to—word assignment A is defined as a mapping from Q to W:
A:Q-W

such that the expression Wj=A(si) means to assign s, 1<i<n, to the word

l)

W.=s_s_ ..8 , indicating s. as one of the composing syllables of W. (i.e., there exists
W Wi Wy i j

an integer k, 1<k<m, such that s =s;). We will also use si—»Wj or A(i,j) to denote the
Jk '

meaning of Wj=A(si)' Word identification is thus a consistent syllable—to—word assignment
problem such that each syllable in a sentence is cdrrectly assigned to the composing words of

the sentence, and the assignment of each syllable is compatible with one another.

C. Initigl Probability Values for Relaxation

There usually exist, in a sentence S, multiple words to which a syllable s, may be assigned.

- Let AAi denote the set of all assignments which assigns s to such words, i.e.,

AA; = { A(,)) | Wj isin S and Wj=A(si) }.

— 151 —

Let Pij denote the probability estimate that s, is assigned to ‘Wj, and Piq the initial

J
- probability value of Pij' It is proposed to define Pi(j) as

Pi(.]=count(W.) /| = count(W,)
I Vow eaw,

where count(Wk) is the usage frequency count of word W, which can be collected in

advance, and AWi is the set of all possible words in a sentence S containing syllable 8:» ie.,

AW, = { W | AL)eAA; }.

D. The Relationships Among Neighboring Words

Following Fan and Tsai [15], the relationship between two neighboring words W, and W
in a sentence can be categorized into five classes.
(1) Interleaving, that is,
a. W a*wb and ‘
b. there exists a W, such that W c=Sufﬁx(Wa) and W c=preﬁx(Wb), or
W c=$ufﬁx(Wb) and W c=preﬁx(W a.)’ where the terms prefix and suffix represent the
leading’and the trailing strings of syllables in a word reépectively. '
(2) Containment, that is,
a. W #W, and . v
b. W_=suffix(W,) or W =prefix(W,) or Wb=sufﬁ)§(W 5) Or W, =prefix(W 2)-
(3) Identity, i.e., W,=W,.
(4) Adja.cencL. ie., sﬁfﬁx(Wa) and preﬁx(Wb) are a.djacent’ in the sentence (assuming

- W, isin front of Wb)‘ This can further be classified into two cases as follows.

—152 -

a. Loose adjacency such that suffix(W a)-preﬁx(Wb) is not a word.
'b. Intimate adjacency such that there exists another word W c which is formed with

suffix(W_) and prefix(W,).

(5) Irrelevancy, that is, Wa#wb and they are positionally apart from each other in the
sentence.
Classes (1) through (4) will also be called relevancy relationships, in contrast to the
irrelevancy relationship. | |
The relationship befween two assignments can be deﬁned in terms of the relatidnship
between the involved words. Assignments A(i,j) and A(h,k) are said to be mutually
(1) {1e_utr_a.1, if Wj and W, are irrelevant or if Wj and W, are loosely adjacent;
(2) supportive, if W f and W, are identical;

(3) opposing, if Wj' and W, are of the relationship of containment or interleaving;

(4) quasi—opposing, otherwise (i.e., if Wj and W, are intimately adjacent).

E. Compatibility Coefficients of Syllable Assignments for Relaxation

Different relationships between assignments result in different effects of the relaxation
iterations. Given two assignments A(i,j) and A(h,k), if they are mutua’lv neutral, then
neither of them wili affect the other. If they are mutually supportive, then both of syllables
s and sh are assigned to the same word Wj, thus both supporting the identification of word
Wj' If the assignments are mutually opposing, then either the two words Wj and Wk are
interleaving, or one of them is contained in the other, either case reflecting a conflict
situatiqn. Finally, if the assignments a,re_mutually quasi—opposing, they may or may not
oppose each other, depending on the effect of the intermediate words constructible from the
syllables in Wj and ka

Thus the compatibility coefficients C(ij;hk), indicating the degree of supporting or

opposing by A(h,k) to A(i,j), can be derived based on the relationship of A(h,k) with respect

—153 —

to A(i,j). The supportive ones are given positive C(ij;hk) values; the opposing ones, negative
values; and the neutral ones, the values of zero. More speéiﬁcally, the compatibility
coefficients are defined in this approach as follows:
C(ijhk) =

(1) 1, if A(i,j) and A(h,k) are mutually supportive;

(2) 0, if A(i,j) and A(h,k) are mutually neutral;

(3) —0.5, if A(i,j) and A(h,k) are mutually quasi—opposing;

(4) -1, if A(i,j) and A(h,k) are mutually opposing.

F. The Relaxation Iteration

0
ij
supporting or opposing information from its neighboring assignments, the probability

P.7 is the initial estimate of the probability value for Assignment A(i,j). With the

estimate Pij is modified in each iteration in the relaxation process to reflect the contextual
constraints among the words in the sentence. Let the probability estimate for A(i,j) after the

rth iteration be denoted as Pi}’ then it is proposed to compute the updéted probability

1+1

estimate P; i after the (r+1)th iteration as follows:

pitl_ Pij (4) (1)
' Ai Pig (1+qi§)
i
with _
r
i sh?ENS(i,j)(A(E,k) eENA(i,j)C(lJ’hk)*Phk)
T ENN(i, j) ’ @)

where ENS(i,j) is the set of effective syllables which are relevant to A(i,j), ENA(i,j) is the

set of effective neighboring assignments for A(i,j), and ENN(1,j) the cardinality of ENS(i,j).

—154 —

.More specifically,

ENS(i,j) = { sy, | h#i, and there exists an A(h,k)eAA; such that A(hk) and A‘(i,j)

are not mutually neutral };
ENA(i,j) = { A(h,k) | sheENS(i,j) };
ENN(i,j) = || ENS(i,j) |

The inner summation (em‘braced by the parenthesis) in the numerator of Eq. (2) is the
effect oi: a certain effective neighboring syllable s, on the probability distribution Pij during
the (r+1)th iteration. The outer summation (the whole numerator part) in Eq. (2) is the
total effect of the effective neighboring syllables of A(i,j) on Pij' This total effect is
normalized by the number of effective neighboring syllables ENN(i,j) of A(i,j) to keep the

value of q." within the range [-1,1]. Note that PItlyoand n PrHlan
1j 1] AA. 1)
i

The termination condition for the relaxation process must be defined. The most frequently
used one is to set an upper limit on the process iteration times or to define a threshold value
for the Pij values. Fan and Tsai [15] proposed another condition which is adopted in this
study. The condition requires that the Pij' value of any desired assignment of each syllable
become ;;greater than a pre—defined threshold value and that this Pij value be increased for
the last tv;ro iterations.

When the termination condition is satisfied, for each syllable within the sentence, the word
of the assigninent with the highest Pij value is denoted as the word the syllable is assigned

to, and then the corresponding characters are determined, too.

—155 —

IV. EXPERIMENTAL RESULTS-

- A prototype system is built to test the applicability of the proposed approach. The
computer is an IBM PC/AT compatible machine, with 640K RAM and 20M hard disk. A
computer dictionary which includes about 4100 word entries is used for the experiment.
Each word entry contains its length, phonetic codes, Chinese internal codes (Big 5 codes),
and its usage frequency count. The word usage frequency counts recorded in [16] are directly
used in the dictionary. The phonetic codes of the characters in a word are used as the index
to search for the word in the word dictionary. The dictionary occupies 320K bytes of disk

space.

VRN

Test data are selected from the articles in the " gwo yu ri b;u." They are coded in
phonetic codes. Each phonetic code represents a syllable and occupies two bytes. The test
data include 1318 sentences and 16347 syllables in total.

The processing procedure for each sentence is as follows. First, the dictionary is checked to
find all possible words (each word being a string of syllables) correspo.nding to the syllables
of the sentence. Then the syllable~to—word assignment is made. With the usage frequency
counts of the words, the initial probability values of the assignments can be computed, and
the adjacency relationships of the words can be analyzed to compute the compatibility
coefficients between the assignments. Finally, relaxation iterations are performed until the
termination condition is met. The result is printed as a segmented sentence with syllables
convertéd into characters and words identified with spaces as markers between them.

The experimental result is summarized as follows. With the termination condition
described as in Section III.F, and the threshold value of 0.8, the correct conversion
(converting the syllables to Chinese characters) rate is 96.91%; the average processing speed
is 0.97 second per syllable; and the average number of iterations per sentence is 17.2. Some

examples of the results are shown in Figure 1. The underlined characters are errors.

- 156 — -

V. CONCLUSIONS AND SUGGESTIONS

A new approach to Chinése phonetic input is proposed. The input method is regarded as a
problem of assigning syllables to words. The advantages of the proposed method are that
there are very few or even no homonyms for multi—syllabic words and that the adjacency
relationships among words can be utilized for word identification based on the relaxation
technique. The feasibility of this approach is proved by its high character conversion rate.

The following are some suggestions for further study.

(1). collection of more word entries in the dictionary to improve the syllable
conversion rate. However, the contents of the dictionary essentially v-ill still be limited. Also
there exists trade—off between the dictionary volume and the processing speed.

(2). inclusion of the formation rules of compound words and word groups. Such rules
may link lots of single syllables to form multi—syllabic strings, and so reduce syllable

conversion ambiguity.

REFERENCES

1] "Evaluation Report of Chinese Input Methods and Input Devices," Institute for
Information Industry, Taipei, Taiwan, R. O. C., June 1987.
[2]- S. K. 'Wa,n, H. Saiton, and K. Mori, "Experiment on Pinyin—Hanzi Conversion

Chinese Word Processor," Computer Processing of Chinese and Oriental Languages,

Vol. 1, No. 4, pp. 213224, Nov. 1984.
[3]. W. H. Ho, C. C. Hsieh, K. Mei and C. T. Chang, Automatic Recgnition of Chinese

Words, National Taiwan Institute of Technology, Taipei, Taiwan, R. O. C., 1983.
[4]. S.L Chen, C. T. Chang, J. J. Kuo,.and M. S. Hsieh, "The Continuous Conversion

—157 —

[5]-

[6]-

[7].

[8].

[9].

[10]

[11].

[12].

[13].

[14].

Algorithm of Chinese Character’s Phonetic Symbols to Chinese Character,"

Proceedings of 1987 National Computer Symposium, Taipei, Taiwan, R. O. C., Dec.

1987, pp. 437-442.
M. Y. Lin and W. H. Tsai, "Removing the Ambiguity of phonetic Chinese input by

the Relaxation technique," Computer Processing of Chinese and Oriental

Languages, Vol. 3, No. 1, pp. 1-24, May 1987.

A. Rosenfeld and A. C. Kak, Digital Picture Processing, Vol. 2, Academic Press,

New York, 2nd ed., 1982.
A. Rsoenfeld, R. A. Hummel and S. W. Zucker, "Scene Labelling by Relaxation
Operations," IEEE Tran. Syst., Man, Cybern., Vol. SMC—6, pp. 420-431, 1976.

A. Rosenfeld, "Iterative Methods in Image Analysis," Pattern Recognition, Vol. 10,

pp. 181—187, 1978.
W. S. Rutkowsky, "Recognition of Occluded Shapes Using Relaxation," Computer
Graphics and Image Processing, Vol. 19, pp. 111-128, 1982.

S. Peleg, "A New Probabilistic Relaxation Scheme," IEEE Tran. PAMI, Vol

PAMI-2, No. 4, pp. 362-369, 1980.
O. D. Faugeras and K. Price, "Improving Consistency and Reducing Ambiguity in

Stochastic Labelling: an Optimization Approach," IEEE Tran. PAMI, Vol.

PAMI-3, pp. 412424, 1981.

R. A. Hummel and S. W. Zucker, "On the Foundations of Relaxation Labelling

Processing," IEEE Tran. PAMI, Vol. PAMI-S5, pp. 267—287, 1983.

M. Y. Lin, and W. H. Tsai, "A New Approach to On—line Chinese Character

Recognition by Sentence Contextual Information using the Relaxation Technique,"

Proceedings of International Conference on Computer Processing of Chinese and

Oriental Languages, Toronto, Canada, August 1988.

S. I. Hanaki and T. Yamazaki, "On-line Recognition of Handprinted Kanji

Characters," Pattern Recognition, Vol. 12, pp. 421—429.

~158 —

[15]. C. K. Fan, and W. H. Tsai, "Automatic Word Identification in Chinese Sentences

by the Relaxation Technique," to appear in Computer processing of Chinese and

Qriental Languages.

[16]. I. M. Liu, et al., Frequency Counts of Frequently Used Chinese Words, Lucky Book
Co., Taipei, Taiwan, R. O. C. 1975.

[17]. C. Y. Suen, Computational Studies of the Most Frequent Chinese Words and

Sounds, World Scientific Publishing Co., Singapore, 1986.

—155 —

sentenee &

HY B ®mY O A A %

sentence 84

Ll BB A AR & % &8 &
sentence 85

B HEEE 5 |

sentence 86

% o— @ B R ko8 F W
sentence - 87

2% E 85 TR GH

sentence 88

WE & B RIE & & S 2% M BH s+
sentence 89

MW R X B % A BE

sentence 147

 EFE M LE &

‘sentence 148

B H N B B%R EE FH
sentence 149

f &% B & H fEF
sentence 150

5 H —8@ 5 ,

sentence 151

®oIEE O 2EE M AR L RM EE B R K

sentence 17
5 g MR M Ry
sentence 18 :

AR F & B R £

sentence 19

RE BH & 8 F 0 g
sentence 20 :
B B BT £— &% —8 .
sentence 21

BR BEZ fEm 0 E®H ,

Sentence 22

-k BB W OB B,

sentence 162
ME B & BWE
sentence 163

Figure 1. Some testing results. Underlined ones are errors.

—160 —

A NEW APPROACH TO QUALITY TEXT GENERATION

Jyun-Sheng Chang
Hwei-Ming Kou

Institute of Computer Science

National Tsing Hua University
Hinchu, Taiwan, Republic of China

1. INTRODUCTION

The need to study text generation is obvious. It is one of the two
ways in which people communiéate with one another. Thus, if we can
simulate this capability computationally, we would be able to use
the techniques in many applicaxiqné such as (1) automatic
generation of'reports, manuals, and'lettefé, (2) providing é
natural language interface from a system to its users, (3 an
nature language interpreter for reading and debugging infofmatiqn
encoded in sdme formal notation such as a knowledge base and 43

software specification.

Text generation is already established as a research area within
computétional liﬁguistics [Mann 1982].' It has a rather late start
compared to other areas in computational lingustics; Dufing
1870’s, out of disatific#tion for pre-prepared text (canned fext),
researchers began to study ways of generating sentences
automatically [Goldman 1975, Grishman_1979‘and‘Spapiro 1979]. 1In
the 1980’s, tbe focus _ has shifted toward the generation of
. discourse (cohesive téxt with many sentenées, either in producing

a monologue or engaging in a dialogue) [Der:—McKeown 1984! Man

—163 -

1934, McDénald—Pustejovesky 1985 and McKeowﬁ 1985] and the
methodology used in text generation [Danlos: 1984 and Vaughan-'"
McDonald 1986]. Thus far, there have been only.a few experimental
systems that generate text in a technically interesting way or are
based on sound linguistiq{theories. However the progress in
bettering the understanding of human text production and

techniques for simulating this capabiliy, is considerable.

2. PREVIOUS WORK

~The generally accepted model of text generation consists of mainly

two phases: ' deep generation and surface generation. The deep
generation phase takes the representation of meaning or knowledge
and produces a sequence of ordered messages. The surface

generation phase then convert each of these messages into a

sentence.
The deep generation phase determines what to say (content
determination) and when to say what (discourse structure). There

are two major tasks in surface generation: syntactical choice and
lexical choice. A syntactical pattern must be chosen to realize
the sentence. And.each entity in the message must have a proper

wording for it.

Systems requiring text generation include dialogue systems,
question-answering systems, systems that validate natural language
input by paraphrasing,lexperf systems with explanation-capability,

story and document generation systems.

—164 —

2.1 CONTENT DETERMINATION

The first task in text generation is to determine what to say
which generally depends on the context and purpose of the systenm.
A randon sentence generator obviously could not care less about
the content that it produces [Fredman 1969 and Parisi-Giorgi
1985]. The content of a paraphrase is whatever the user has just
input [Goldman 1975 and McKeown 1979]. 1In a question-énswering
system, the question is parsed, tranformed into some kind of query
for the underlaying database. And the résulf of the query is the
content of the answer [Grishman 1979]. McDonal and Conklin pointed
out that in describing a picture, a good' stategy 4is to say
whatever are most salient [Conklin~ﬁcDonald 1982]. Sometimes, the
content is diminishable when the purpose of téxt_ generation is

merely to say something and passes as a person [Boden 1976].

The informatioﬁ resulting from this phase may be. represented ih
various forms: predicate calculus [Grishman 1979], conceptual
dependency stfuéfures (CD) [Goldman 1975], = semantic nets [Minsky
1981, Simmons-Slocum 1972 and McKeown'1985]; or frames [Woods 1975

and Mauldin 1984].
.2.2 DISCOURSE SThUCTURE

There are many systems in the literature capable of generating
multi-sentence text: Simmons and Slocum built a system to generate
English sentences from semantic networks [Simmons-Slocum 1972].

Davey’s- PROTEUS takes the sequence of moves played\in a fio-tac—

— 165 —

toe game and produces a paragraph of commentary of the game [Davey
1975, Mann 1982, and Richie 19841; The BLAH system) generates
multi-sentence explanation’of the reasoning process taken by the
"system [Weiner 1980]. Meehén’SJTALESPIN produces multi-paragraph
stories [Meehan 1977]. However these systems focus on knowledge
-needed for generation and its representation. The organization of

text is either given (as in PROTEUS) or fixed (as in TALESPIN).

The systems that have.a module determining discourse structure and
represent the .knowledge about discourse structure explicitly,
include the Knowledge Delivery System (KDS) [Mann-Moore 1979 and
1981], BLAH, thé explanation module for an expert system [Weiner
1980], and TEXT, a system that answers questions gbout thq

structure of a database [McKeown 1985].

BLAH mimics the simple way that people use to explain something or
Justify a statement to organize the text for explanation. TEXT

goes considerably behind BLAH’s simple formulation of discourse

structure in the three ways: (1) TEXT includes discourse
strategies in the form of ATN graphs, for many more _discourse
goals in addition to explanation. (2) These discourse straiegies

are based on naturally occurring text. Thus they reflect the
discourse patterns which are effective and most often used. (3)
Due to the nondeterminism of ATN’s, these discourse strategies
capture a notion of variability which is resolved by focus of
attention and semantic felations in the text.'.The text generated

in a top—down, goal-directed fashion, looks well-structured,

— 166 —

cohesive, and with a purpose.

Unlike BLAH and TEXT, KDS lacks an explicit representation of
knowledge about discourse structure. It employs a rule-based
planning strategy to organize information into discourse. The

rules used have a strong bottom-up, data-driven flavor.

Finally there is the Rhetoric Structure Theory (RST) [Mann 1983],
a descriptive theory on discourse structure. The author claimed
that it can be turned into a constructive process through the use
.of a planning strategy with various rhetoric structures reguarded
as means of realizing the goal of text generation. But that

remains to be seen.
2.3 SEMI-SURFACE GENERATION

Going from deep generation to sqrface generation, there is an
issue that needs to be resolved. That is the problem.of how muéh
information to put in a sentence: Whether to put a 1lot of
information in one complex sentence 6r put them in 2 or 3 simple

sentences. We call this consideration the semi-surface generation.

Davey used a fixed strategy in this regard [Davey 1975]. Derr and
McKeown recognized the ihterplay of this decision and shiffing in
"focus of attension in the. text [Derr-McKeown 1981]. McDonald
studied the encyclopedia articals on African tribes and found. that
this decision has a lot to do with the prose style of the text

- generated [McDonald 1985].

— 167 —

2.4 SURFACE GENERATION

There are essential three methods for surface generation: canned
text, template, and direct translation. Error message generated by
compilers is typical example of canned text. Early expert systems
use templates to generate explanations; a template is associated
‘with each rule and the explanation consists of the templates
associated with the rules fired. Canned text and templates are
fast, easy to construct but must be anticipated in advanced.

Consistency and closure are difficult to achieve.

In order to generate sentences of higher quality consistently and
to ensure closure, oné needs to translate directly a message into
a sentence using séme form of grammar. Three components are needed
for this process: (1) a formal representation of the sentence
structure in the'languége, (2) a dictionary containing various
information such that proper words may be chosen to represent
concepts and entity conveyed in the message, (3) a way of doing

syntactical and lexical choice.

Several grammar formalisms have been used for surface generation:
(1) Systemic grammar [Halliday 1973, 1976, and 19851, (2)
Transformational grammar founded by Noam Chomsky, (3) ATN grammar

[Woods 1970], (4) The Linear String Parser (LSP) [Sager 1981].

The BABEL paraphrasing system uses discriminate nets to help
select lexical items and rely on an ATN grammar to generate

sentence structure [Goldman'1975]. The The question-answering

- 168 —

system by Grishman uses LSP [Grishman 1979] as the grammartical

formalism for generation as well as parsing. The sentence

generator Kafka ‘[Mauldin 1984] in the XCON/XSEL system uses
transformaéi;nal grammar [Mauldin 1984]. So do the CO-0P
paraphraser [McKéown '1979] and a system that generates English
sentences for instructional burpose [Bates-Ingria 1981i; An
"explanation module for a student advisor expert system uses

functional grammar [Winograd 1983], which a grammatical formalism

based on many ideas from systemic grammar.

System grammar is used by the sentence génerators in PROTEUS, the
PENMAN/Nigel system, and Patten’s-system [Davey 1975, Mann 1983,
Matthiessen 1983, and Patten 1885]. There is a growing Qonsensus
among researchers that systemic grammar is the grammar of choice

for text generation.
2.5 METHODOLOGY FOR TEXT GENERATION

Most text generation systems are a oné-pass process through the
content determination, deep generation, semi-surface generation,
and surface generation phases. Vaughan and McDcnald observed that
people write and then rewrite again and again; revision seem to be
a lafge part of writing process for people; Thus they propose a
revisional model of text generation to simulate this human

strategy of writing [Vaughan-McDonald 198€6].

Within this model, text is first generated in a straightforward

fashion, without attempting much global arrangement. Then the

- 169 —

system iterates through a process of recognition, editing, and

" regeneration. The recognition phase essentially finds out the

- places where changes can be made to enhance cohesion of the text.

The editing and regeneration’ phases implement these changes. The

authors argued that using this kind of model will reduce the

complexity of the text generator. The KDS system follows the

revisional model. A revisional module is also planned for the
Penman system. However, the feasibility of this model is difficult

to assess at this point of time.

Danlos observed that the syntactical choice is sometimesinfluenced
by the choice of 1lexical items and suggest&iagainst strict

separation of lexical andrsyntactigal choices [Danlos 1984].
3. A MODEL FOR TEXT GENERATION

This section presents the newk approach taken in our text
generation system. The system "isrintended as a test bed for
experimenting with new ideas and 'for understanding the text
generation needs in different environments and for different

languages.

Our objectives in implementing the system_include (1) to base the
system in solid linguistic theories [Halliday 1973, Halliday-Hasan

1976, and Hudson 19711, (2) .the ability to handle situatigns where

the information needed for text generatiQn‘vis not pre-stored’

within "but rather needs to be acquired from the wuser, (3) the

.ability to generate text whose pattern may be determined more or

-170 —

less beforehand (goal-driven) [McKeown 1985] or may be dictated by
the information available (data-driven), (4) the adaptability to
different styles intended for different kinds of users or purposes

[McDonald-Pustejovesky 1985].

Currently, we are considering the following as our domains for
~text generation: (1) English business letters [keshi 1987], (2)
User’s manualé fof computer sy§tem$ in English and Chinese, and
(3) A paragraph-level target language {Chinese or English)

generator for a machine translation system.

In order to achieve the above goals, we take the following
approach to implement our sysfem: (1) The system uses a
representation which can reflect existence as well as the lack of
information. (2) 1In stead of producing an ordered sequence of
messages, the deep generator produées a partilly ordered sequence
of propositions with functiénal marking representing the
rhoritical or cohesive relation among the elements in the
propositions. (3) The system uses a hybrid strategy which covers
the whole spgcfrum of goal-driven and data-driven strategies. (4)
An intermediate phase, called semi-surface generation, between
deep generation and surface géneration, is included, to serve the
purpose of reflecting different prose styles. (5) The surface
generator produQes sentencesAusiné a systemic grammar [quson

1971].

3.1 CONTENT DETERMINATION

=171 -

We prbpose using a frame-based knowledge base to represent

knowledge known a priori and as a information acquisition scheme.

If all there is to say is known before text éeneration, then the
 \representation will be all filled up. On the other hand, if thére
is information yet unknown at generation time, ‘there will Dbe
unfilled slots in the frame system. Then this knowledge base can
be used. to drive an input module to acquire needed information
from the user. Thus we can use.a uniform representation for
situations bwhepe the information needed to generate the text is
either pre—stofed in the system or needed to Be acquired. from the

user.
. 3.2 DEEP GENERATION

We propose a deep generation method which is inspired Gy Discoufse
Strategies (DS) in - McKeown's TEXT systém and Mann’s Rhetoric
Structure Theory (RST). There are two processes in. our deeb
generatioﬁ.phase: a top-down, goal-directed process and bottom-up,

‘data-driven process.

The top-down process uses an ATN—liké representation of overall
strategy of determine content and organization of the text and go
through the recursive representation like trévelling a free from
the root (the goal or purbosé of the text) down_to its lea?es. A

leaf vof the tree is either a single propositién (pessage)v to be
-converted to a sentence.or a demo to start an ipstance of the

bottom-up process.

-172—

The Bottom-up process uses>rules_based on (1) fgcus of attention,
(2) identities améng tﬁe elements of _propositions, and (3)
semantic felavance between propositions, to picE*oUt propositions
and give_.tﬁem a partial ofder._ This is not only a pfbcess of
finding :what proéositions should be included in a('sentenec but
also a process. finding and ﬁarking the cohesive links~ in the
>content. These markings are’ subsequently used in = surface
generation for such activitie as pronomial, demonstractiﬁé,
verbgl, and clausal substitutions; ellipsis, selection of
copjunction, qnd lexical'choice [Halliday-Hasan 1976]. The'résuit
of this phase i§ an totally ordere&_seqﬁence of packages where
each package contains ‘a set of marked propositipns in partial

order.

This 2-phase , mixed-strategy approach covers the wole spectrum
from the strictly goal-directed strategies to the strictly data-
driven strategies. Thus the system can be tuned to adapt to

diiferent text generation situations.
3.3 SEMI-SURFACE GENERATION

The'partially drderéd‘propositions produced in the deep generation
‘phase subsequently go through a filtering phase. We propose a
rule-based apprddch to determine whether to pack propositions in a
sentence or to leave them along so one proposition will . produce

one sentence in the final surface generation phase.

There should be two kinds of rules: A(l) rules 'that pack

—-173 —

propositions based on shifting of focus of attention and degree of
identity among propositions (2) meta rules that assign priorities

to the first kind of rules.

The first kind of rules will enhance loqal cohesion in the text,

while the second kind of rules can be used to reflect prose style.

3.4 SURFACE GENERATION

Systemié grammar is used in the surface .generation \for the
foliowing ‘reasons: ~ (1) It is based on function of language and
emphasizes the mechanism of choicé accofding to function. That
correépohds-closely to the nature of thé generation process. (2)
Thé phaseé befbre surface generatioﬁ produce a lot of functional
feactures on which the system grammar is mainly structured. (3)

Systemic grammar'encbde lexical choice and syntactial choice in

one notation. Thus the problem pointed out by Danlos can be handle

more easily using systemic grammar.

-4. CONCLUSION

We have prdposed in this paper a framework for text generation
which is based the system in solid linguistic theories. The system

can handle -différent situations and generate text either by

‘follbwihg a pre-determined pattern or by adjusting to what is

present to be conveyed. And it is possible to tune the system so
that text of different styles can be generafed_to serve different

kinds of users or purposes..

—174—

References

Appelt 1983 Telegrem: A Grammar Formalism for Language
Planning, Proceedings of the 21st Annual Meeting
of the ACL pp. 74-78.

Bates.1981 Controlled Transformational Sentence Generation,
Proceedings of the 19th Annual Meeting of the ACL,
pp. 133 158.

Boden 1976 Artificial Intelligehceland Natural Man, Basic

. Books, New York,-pp. 95 111.

Davey 1975 Discourse Product1on, Edinburgh University Press;
Edinburgh. -
Danlos 1984 Conceptual and Linquistic Decisions in Generation,

Proceedings of the 22nd Annual Meeting of the ACL,
(COLING 84), pp. 501-504. '

Derr-McKeown 1984
Using Focus to Generate Complex and Simple

Sentences, Proceedings of the 22nd Annual Meetlng
of the ACL, (COLING 84), pp. 319-326.

Goldman 1975 Sentence Paraphr551ng from a Conceptual Database,
Comm. ACM 18:2, pp. 96 106.

Granville 1984 Controlling Lexical Substitution in Computer Text
.Generation, Proceedings of the 22nd Annual Meeting

Grishman 1979 Response Generation in Question-Answering Systems,
Proceedings of the 17th Annual Meetlng of the ACL,

pp. 99-101.

Halliday 1973 Explorations in the Functions of Language,
~ Edward Arnold, London.

Halliday 1975 'System-and.Function_in Language, Oxford University
Press, London.

Halliday 1985 An Introduction to Functional Grammar, Edward
. Arnold, London.

Halliday-Hasan 1976
Cohesion ip English, Longman, London.

Hudson 1971 English Complex Sentences: an introduction to
systemic grammar, North-Holland, Amsterdam.

=175 -

Keshi 1987 A Knowledge-based Framework in an Intelligent
Assistant for Making Document, Abstracts
of the International Conference on AI,
(AI 87 JAPAN), Osaka, Japan, pp. 286-294.

Mann-Moore 1979
A Snapshot of KDS: A hknownledge Delivery System,

Proceedings of the 17th Annual Meeting of the ACL,
pp. 51-52.

Mann-Moore 1981 -
Computer Generation of Multiparagraph English

Text, AJCL 7:1, pp. 17-29.

Mann 1982 Applied Computational Linguistics in Perspective:
Proceedings of the Worhshop -~ Text Generation,

AJCL 8, pp. 62-89.

- Mann 1983 An Overview of the Nigel Text Geheratidn Grammar,
Proceedings of the 21st Annual Meeting of the ACL,
pp. 79-84.
Mann 1984 Discourse Structures for Text Generation,

Proceedings of the 22nd Annual Meeting of the ACL,
(COLING 84), pp. 367-375.

Matthiessen 1983 v
Systemic Grammar in Computation: The Nigel Case,
Proceedings of the 22nd Annual Meetlnd of the ACL

(COLING 84), pp. 155-164.

Mauldin 1984 Semantic Rule Based Text Generation,
Proceedings of the 21st Annual Meeting of the ACL

(COLING 84), pp. 376-380.

McCoy 1982 Augmenting a Database Knowledge Representation for
Natural Language Generation, Proceedings of the
20th Annual Meeting of the ACL, pp. 121-128.

McDonald 1985 A Computation Theory of Prose Style for Natural
Generation, Proceedings of the 2nd Conference of

the European Chapter of the ACL, pp.187-193.

McDonald-Conklin 1982 _ .
Salience: The Key to the Selection Problem in

Natural Language Generation, Proceeding of the
20th Annual Meeting of the ACL, pp. 129-135,

McDonald-Pustejovesky 1985
A Computational Theory of Prose Style for Natural

Language Generation, Proceedings of the 2nd
Conference of the European Chapter of the ACL, pp.

—176 —

McKeown 1985

Minsky 1981

187-193.

Discourse Strategies for Generating English Text,

‘Artificial Intelligence 27, pp. 1-41.

A Framework for Representing Knowledge, in Mind
Design, edited by J. Haugeland, MIT Press, pp. 95-
128,

Parisi-Giorgi 1985

Patten 1985

Ritchie 1984

Sager 1981

Shapiro 1979

Simmons-Slocum

GEMS: A Model of Sentence Production, Proceedings cof
the 2nd Conference of the European Chapter of the
ACL, pp. 258-262.

A Problem Sol&ing Approach to Generatin Text from
Systemic Grammar, Proceedings of the 2nd Conference
of the European Chapter of the ACL, pp. 187-193.

A Rational Reconstruction of the Proteus Sentence
Planner, Proceedings of the 21st Annual Meeting of
the ACL, (COLING 84), pp. 327-329.

Natural Language Information Processing, Addison-
Wesley, Reading.

Generalized Augmented Transition Network Grammars
for Generation from Semantic Networks,
Proceedings of the 17th Annual Meeting of the ACL
pp. 25-30.

1972 ,
Generating English Discourse from Semantic
Networmks, Comm. ACM 13:1, pp. 15-30.

Vaughan-McDonald 1986

Weiner 1980
Winograd 1983
Woods 1970

Woods 1975

A Model of Revision in Natural .Language Generation
Proceedings of the 24th Annual Meeting of the ACL,
pp. 90-96.

BLAH, A System Which Explains its Reasoning,
Artificial Intelligence 15, pp. 19-48.

Language as a Cognitive Process, Volume 1: Syntax,
Addison-Wesley, Reading.

Transition Network Grammars for Natural Language
Analysis, Comm. ACM 13:10, pp. 591-606.

What is in a Link: Foundation for Semantic Network,
in Studies in Cognitive Science, D.G. Bobrow and

A.M. Collins, eds., Acdemic Press, New York, pp.
35-82.

—177 —

functional Representation'of'Query Sentences and

Meaning Determination of Elliptical Sentehces

Hsi-Jian Lee & Shfn—Jiang Hwang
F 4B RFE

National Chiao Tung University

BN AE AR

Proceedings of ROCLING I1(1988))
R.0.C. Computational Linguistics Workshops I pp 179-210

hEREE—EHEESRHRE 179-210

Functional Representation of Query Sentences and

Meaning Determination of Elliptical Sentences

Abstract: A dialogue model is provided to déscribe the contents of a dialogue process
between a user and a database management system. This model can be used as an
intermediate representation between query‘ sentences in a natural language and the
underlying database query language. It is also. capable of keeping the dialogue infor-
mation, including user query sentences and the associated responsés, for later process-

ing of elliptical sentences.

A query séntence is deéomposcd into two components, a query phrase and a data
description phrase. The functional representations of both components are analyzed in
detail. Five types of representations for elliptical sentences, including subsetting, ordi- -
nal, remaining, projection, and substitution, are presented. We also detailedly discuss
~ the determination of full meanings of elliptical sentences based on both the dialogue

convention and functional representations.

Keywords: dialogue model, query sentence, functional representation, elliptical sen-

tence

—181 —

1. Introduction

To provide a friendly user interface in a database management system for infor-
mation retrieval is an important task. Database query languagcs[l] are commonly
adopted for information retrieval. They do provide rigid notations for a user to state
his query sentences précisely without worrying about t‘hé physical structure of the data-
base. But in order to express query sentences skillfully, the user must have some
knowledge about query languages and the structure of the underlying datébase systems.
It is som'etimes very inconvenient'f'or a novice. Therefore, it is necessary to provide a
presentation more intuitive than database quéry languages. According to the experi-
ments of Hendrix er al.[2], natural languages as user interfaces for information
retrieval can satisfy this need. They can also shorten learning time and thué
encourages the using of database systems. In addition to providing more intuitive
expressing method, natural languages can save the user from the trouble of dealing

with the physical and even logical structure of the database.

When we use natural languages, it is necessary to provide a model to describe the
meaning of a query sentences in a natural language and to organize the dialogue infor-
mation so that query sentences and system responses can be kept. In this paper, we
present a dialogue model to describe the information involved in a dialogue process in
a Chinese Intelligent Database Assistant (CIDA) for retrieving library information.
This model contains a list of items composed of user query sentences and system
responses. The purpose of keeping information of the dialogue process is to enable
the user to state query sentences referring either to previous responses or to elliptical
sentences, whose meaning can be determined from a previous query sentence. | For

example, after the user issues the following query,

1) qing xianshi A.I. fangmian de gikan.
(Pleasé display the title of journals related to Artificial Intelligence.)

he can state the following elliptical query sentence,

—-182 —

2 DBMS?

instead of

3) ang xianshi DBMS fangmian de gikan.

The problem about representation of sentences, usually very éomplicatcd, is a typical
issue in natural language processing. So long as the universe of discourse is limited in
a special domain, it is possible to devise a compact, precise and perspicuous represen-
tation. In the model proposed in this paper, the representation of a query sentence is
called a functional fortfz, which takes into account mainly the function of a query sen-
tence. The syntactic structure is also reserved for resolving the full meaning of an

elliptical query, which can be exemplified as follows.

4) qing xianshi ACM chiiban de qikan zhong yu A.L you guan de.

(Please display the title of journals published by ACM and related with A.L)
&) ACM chuban de qikan zhSng you naxi€ yu A.L youguan ?
6) yu AL you guan de qikan zhong you naxi€ shi ACM chuban de ?
The semantics of these three sentences are the's'ame. For the representations in func-
tional form, abbreviated as functional representatiohs hereafter, sentenées (4) and (5)
should have the same representation since the processing about either the current sen-
tence or subsequént sentences are all the same. However, they should have‘ different

representation from sentence (6). It can be seen from the situation when sentence (7)

below follows them. -

D naxie shi IEEE chuiban de ?
(Which are published by IEEE ?)

If sentence (7) follows sentence (6), it means

(8) yu AI youguan de qikan zhong you naxi€ shi IEEE chuiban de ?
(Among the journals related to A.L, which ones are published by IEEE ?)

—183 —

But it is meaningless if sentence (7) follows sentences (4) and (5).

All sample sentences in CIDA, as shown in Fig. 1, are classified into two classes:
basic sentences and elliptical sentences. In the class of basic sentences, those without
"e" in the sentence number, their meanings can be interpreted from themselves. On the
other hand, in the clasé of elliptical sentences, those with "e" attached to the sentence

number, their meanings must be interpreted by rcfefring to the previous context.

(1) liechu sudyou ACM chiiban de qikan.
(2) licch¥ 3 zhong IEEE chuban de zizhi zhong yu réngdng zhihugi youguan de.
(3) qing xianshi zhiliaokuxitong fangmian de shifji de jiaqian ji chibanshang.
(4e) liechT naxi€ ju zhuanjia xitong youguan de zdzhi de chiiban niéndai.
(5e) liechw qizhong Knuth xie de.
(6e) liechu tamende neirong.
(7e) liechu qizhong di 4 ben de neirdng.
(8¢) qing liechT qiyfde.
(9e) liechi qiyn yu réngong zhihugi youguan de.
(10) y‘c’m naxie Winston xie de shi ?
(11) naxi€ zizhi shi ACM chiban de ?
(12) North Holland chiiban de zdzhi zhong you naxi€ yu réngdng zhihugi youguan ?
(13e) gizhong you naxie IEEE chuiban de zézhi ? :
(14¢) qizhong you naxi€ zazhi shi IEEE chuban de ?
- (15¢) haiyou naxie shi Knuth xie de ?
(16€) hiiyou naxi€ réngong zhihugi fangmian de zizhi shi IEEE chuban de ?
(17) The Art of Computer Programming de zhudzhe shi shef ?
(18e) neirong shi shéme ? '
(19) The Art of Computer Programming shi shef xie de ?
(20) The Art of Computer Programming fangzai nali ?
(21e) chuiban dau dijigi ?

Fig. 1. Sample Sentences in CIDA

The intelligent information systems incorpO{ating natural languages as a front end
of database systems include GUS[3], TEAM[4], KID[5], LUNARJ[6], LDC[7],
FRED[8] and LADDER[2]. Among all the aspects of the above systems, we are
interested in the meaning representations and their treatments of elliptical inputs. Only

‘GUS, LUNAR and LADDER, among these Systéms,'éan accept elliptical inputs.

—184 —

LADDER uses syntax tree based on the semantic grammar as its meaning
representation. An elliptical input can be accepted only if its syntax tree is analogdus
with a partial tree of a previous sentence. This is the most common type of ellipses.
GUS uses frames to represent query sentences and controls the processings. The sys-
tem asks the user a planned sequence of questions in order to obtain the full
specifications of user query sentences. Though it can understand a few mixed initiated
utterances by key-word matching, the overall interaction is guided by the system.
LUNAR uses extended notational variants of the ordinéry predicate calculus as a
meaning representation language; it determines the meanings of elliptical and ana-
phoric expressions according to both syntactic structure and the language, which is in

logical form.

There are some researches, though not ‘real systems, | focusing on meaning
representation for information retrieval and on appropriateness of the meaning
representation for determination of ellipses. Nash-Webber[9] proposed a formal mean-
ing representation, and argued that logical meaning representation is superior to seman-
tic network, especially in determination of ellipses. Horrigan[10] tested his dialogue
model for the real dialogue Between passengers and a clerk at an information booth in
a train station. Spiegler[11] proposed avnotation to represent user query sehtences but

he did not address the problems of ellipses and anaphora.

For an elliptical sentence, we should determine its full méani_ng by applying the
syntactic and semantic information of both previous and current sentences and the
domain knowledge. The approaches for the determination problem can ‘be classified
into three kinds. The/ﬁrst approach, adopted in GUS[3], is to construct the complete
sentence from a sentence fragment and then parse it. The second one, adopted in
LADDER a'nd INLANDI2], is to match the elliptical syntactic structure of an elliptical
sentence with that of a previous meaning complete sentence. After an analogous pat-

tern is found, it is used to replace the current syntactic structure to construct a com-

—185 —

plete syntactic structure. The last one, adopted in this system as well as LUNAR[6],
infers the meaning of an elliptical sentence from the functional representations of the
context and the current input. In the determination process, source sentences and syn-

tactic trees are not involved.

Sec. 2 describes the method to represent query sentences in the functional form.
The analysis of utterances based on their functions is also presented. Sec. 3 shows the
functional representations of ellipical sentences. Sec. 4 describes the determination of
elliptical sentences according to their fuﬁction types. The fuli meaning of an elliptical
sentence is evaluated by taking into account the structures of the current and previous

context, responses and the dialogue convention. Some conclusions are given in Sec. 5.

2. The Dialogue Model

The dialogue model is actually a representation of the dialogue process. A typi-
cal dialogué process contains a series of exchéngcs, each of which composed of a
query sentence and its corresponding response. Following the principle in the design
of functional form, two sentences should be mapped into the same meaning representa-
tion if there is no difference in the processings of subsequent query sentences; con-

versely, they should be mapped into different representations.

2.1 Overall Description

The full specification of the dialogue model is givén in Appendix. The top level
specifications are :

DialogProcess == [Exches]

Exches == Exch | Exch, Exches

Exch == [Query, Response]
That means a dialogue process is composed of a series of exchanges and each
exchange contains a query part and a response part. The response part, containing

responsed information of the query sentence, is used to reduce the need of repetitive

— 186 —

access to the database and to resolve elliptical expressions with numeric deternmniners.

This can be seen from the following two successive query sentences.

©9) qing xianshi shuoyou ACM chiiban de qgikan.
(Please display all titles of journals published by ACM.)
(10) gingwen di 3 bén i‘ang-zai nal} ? |
(Where does the third one put?)
In this paper, we focus mainly on the representation of the query part. It is
specified as
Query == basic(Complete) | elliptical (Ellipsis, Complete).
It means that a query sentence may be either a basic sentence or an elliptical sentence.
There are two constituents in the functional representation of an elliptical sentence,
"Ellipsis" and "Complete". "Ellipsis" denotes the original meaning-incomplete
representation of an elliptical sentence and "Complete'; represents its corresponding

meaning-complete representation, derived from "Ellipsis" and the context.

Generally speaking, a query sentence is composed of two Components: a query
phrase and a data description phrase, where the latter phrase determines entities from
which some information should be retrieved, and the former phrase determines the
query type of the sentence; that is, it determines the information which should be
retrieved from entities described by the data description phrase. For example, in the

following sentences :

(11 Artificial Intelligence céng na—yi—qf ding—qi ?

(What is the issue number from which Journal of Artificial Intelligence is

subscribed ?)

(12) On Conceptual Modelling fang—zai nali ?

(Where does *On Conceptual Modelling’ put ?7)

(13) you ji zhong réngbngzhihui fangmian de z4zhi ?

— 187 —

(How many kinds of journals. are related to Artificial Intelligence ?)
the underlined phrases are query phrases and the others are data description phrases.
In the design of functional form, it is very important to decompose a sentence into a

query phrase and a data description phrase.

2.2 Representations of Query Phrases

As mentioned above, the functional form is mainly used for describing the func-
tion of a query sentence. In the following, we will describe three functional types of

query phrases: presentation, aggregation and predicate.

2.2.1 Presentation Query Type.

A presentation query phrase is spéciﬁed to show some information on line. This
is the most typical of qliery phrases for information retrieval. Some examples of the
presentation query type are "qing xianshi" (please display), "qing liechu” (please list),
"you naxie" (which ones), “you na ji zhong" (which kinds), "you na j‘f_b‘én" (how
many books), etc. This type of query sentences can be specified as

Complete == p_r@sent(DataSetDes_cﬁptqr,_ Attributes), -
where "DataSetDescriptor” -denotes the representation of the data description phrase
and will be described in. the next subsection, and "Attributes”, denotes the. information
1o be .rr:el_tric_yed from,itcms of the data constrained by "DataSetDescriptor'... The fol-b

lowing sentences are typical examples.

(14) qingwen Natural Language Processing shi shéi ‘xi‘é‘,dq‘?_«_; R
(Who is the author .of Natural Language Processing ?). ..

(15) qing xianshi Natural Language Processing de zhuzuo .

(Please display the author of Natural Language Processing ?)

(16) yu Computer Graphics youguande zézhi yZ)»uxn‘é)‘(ié" ?

(How many journals are related to Cc;rriﬁutér Gréphiés N

a7 yBu naxie guEny‘ﬁ Computer Graphics fangmian de z4zhi ?

(18) qing lizch@ yu Computer Graphics youguan de zzhi.

2.2.2 Aggregation Query Type

An aggregation query phrases is usually used to enquire the number of items in a
data set. It is specified as

Complete == count(DataSétDescriptor, Unit),
where "Unit" may be an element of the set { zhong, ben, qf, I&i, . . . }. Query sen-
tences of this type include, for example, "you ji ben", "you ﬂ zhong" and "you ji qi".
The following sentence is a typical example: |
(19) you jizhong A.L fangmian de shi ?

(How many -kinds of books are related to A.L 1))

2.2.3 Predicate Query Type

Predicate query phrases usually appear in Yes/No qu¢stions, and are represented
as predicates in functional form. In this paper, we provide only a few predicates
because most Yes/No questions can be replaced pragmatically by WH questions[2].
This fact will be explained in Sec. 3 in more detail. A sentence containing
"youméiyou" is represented as "exist(DataSetDescriptor)”, "shibashi Borrower jie de"
as "lentBy(DataSetDescrithr, Borrower)", and "y‘éuméiy‘éu bei jiezéu" 6r

"shibashi bei jie le" as "lent(DataSetDescriptor)". The following is a typical example:

(20) youméiyou A.I. fangmian de shi ?

(Is there any book related to A.L. ?)

2.3 Representations of Data Description Phrases

There is a difference between the representation of a data description phrase and
that of a query phrase: the mapping from a query phrase onto its representation in

functional form ignores the syntactic structure information while the mapping from a

— 189 —

data description phrase preserves some syntactic structure information. The data

description phrases are divided into five types as illustrated below.

2.3.1 Restriction Type

The restriction type of data description phrases is the most common type which
can be. specified as

DataSetDescriptor = restrict(DataSetDescriptor, Constraint) | cida | dataSet(N),
where "DataSetDescriptor” is defined recursively and may denote either the overall
database, "cida", or a data set corresponding to a previous sentence specified by a
number, "dataSet(N)"; "Constraint" denotes the conditions derived from the data
description .phrasc. For a basic sentence, the typical "DataSetDescriptor" is
"restrict(cida, Constraint)", which means the daia in the underlying database satisfying
the constraint "Constraint”. If a "DataSetDescriptor” contains "dataSet(N)", it denotes
an elliptical sentence; for example, "restrict(dataSet(5), Constraint)" denotes the data in
the data set of the fifth é1uery sentence satisfying "Constraint”. The full specification
of constraints is given in Appendix. Two phrases of this type and their corresponding

representations are shown as follows.
(1) "suoyou ACM chiuiban de zézhi *
(All journals published by ACM)
restrict(cida, and([publisher(ACM), bookType(journal)]))

(22) "yu A.lL youguan de shii zhong 1980 nian hou chiiban de "
(All books related to A.l. and published after 1980)
restrict(restrict(cida, and([field(ai), bookType(book)])),
gt(publishedYear, year(1980)))

Compare the following two phrases and their corresponding representations.

(23) yu A.L youguan de zizhi zhong ACM _sué chﬁb‘én de

-~ 190 —

(Among the journals related to A.IL, which are published by ACM?)
restrict(restrict(cida, and([field(A.L.), bookType(journal)])),
publisher(ACM)),

(24) ACM su0 chitban de zizhi zhong yu A.l youguande
(Among the journals published by ACM, which are related to AL ?)
restrict(restrict(cida, and([publisher("ACM"), bookType(journal)])),
field(ai)).
From this comparison, we can see that the syntactic structure of data description
phrases is preserved. The reason why the two phrases Have been-.. mapped onto

different representations has already been explained in Sec. 1.

2.3.2 Indefinite Specification Type

In English, "some" is used to express indefinite specification. In this paper an
indefinite specification phrase is defined syntactically as

<Indef-Spec> :== ji <unit> | <Number> <Unit>,

<Unit> :== ben | zhong | c& | qf,
Phrases like "5 ben", "3 zhong" and "4 qi" belong to this catogory. In functional
form, it is specified as

DataSetDescriptor == some(DataSetDescriptor, Unit, Number),
where "DataSetDescriptor” in the right hand side denotes the data set modified by the
indefinite spéciﬁcation phrase. For example,
(25) qing xianshi 5 bén Knuth sudxie de sh.

(Please show 5 Knuth’s books.)

is represented as

DataSetDescriptor = some(restrict(cida, and([autho_r(Knuth), _

bookType(book)])), ben, 5).

—-191 —

2.3.3 Ordinal Specification Type

An ordinal specification phrase appears only in an clliptik_:al sentence and is used
to specify one or more definite items of the responsed part of a previous sentence. It
is described as

DataSetDescriptor == ordinal(DataSetDescriptor, Unit, Orders)
where "Orders" is a list of numbers, each of which denotes an ordinal or an index of
the referred sentence in context, and "DataSetDescriptor” is derived by considering the
context and will be explained in Sec. 4. The phrase, for example,

(26) di 3 bén yu AL youguan de shil.
(The third book related to A.L)
is represented as

ordinal(dataSet(N), ben, [3]),
and the phrase
(27) qizhdng di 4 bén

(Among these, the forth one)
is represented as -

ordinal(dataSet(N), ben, [4]).

2.3.4 Remaining Type

A remaining data description phrase also appears only in an elliptical séntence
and is used to specify the data which would be determined from previous sentences. It
is specified as

DataSetDescriptor == diff(BaseSet, Complements)

BaseSet == DataSetDescriptor

Complements == dataSet([Numbers]).

This specification means that the remaining data description phrase specifies the data

derived by substracting the data in "Complements" from "BaseSet". Some phrases of

—-192 —

this type are shown as follows.
(28) hai you naxie

(How many remained ?7)
(29). qiyn yu A.L youguan de

(Others related to A.I. ?)
(30) qiya de

(Others ?)

Let us look at the following scenario.

(31) A.L fangmian de zdzhi zhong you naxie shi ACM chuban de ?
(Among the journals related to A.IL, which are published by ACM ?)

(32) naxi€ shi IEEE chuiban de ?

(Which are published by IEEE ?)
(33) nixie shi NorthHolland chibin de ?

(Which are published by North Holland ?)
34) qiya de ne ?

(How about the others)
The remaining phrase of sentence (34) obviously means all the journals related with
A.l. except those published by ACM, IEEE and North Holland. Thus it is represented
as

diff(restrict(cida, and([field(A.L), bookType(journal)])),
dataSet([31,32,33])).

3. Functional Form of Elliptical Sentences

The strategy for representing an elliptical sentence is to map it onto an elliptical
functional form with partial meaning and then construct its complete functional form
from the functional forms of the context. There are five classes of ellipses in CIDA,

including subsetting, ordinal, remaining, projection, and substitution. They are

—193 —

categorized according to their functions.

3.1 Subsetting Ellipses

A subsetting ellipsis speciﬁes a subset of the responses of a previous sentence.
The subset satisfies the additional constraints in the elliptical sentence. For instance,
the phrase "qizhong naxie shi ACM chuban de" (Which are published by ACM?)
designates the books or journals published by ACM in the responses of a previous sen-

tence.

The representations of subsetting ellipses are derived from the cllipticai sentences
containing such subpatterns as "qizhong naxi€ ...yu ... youguan" (Among these,
which are related to ... ?) or "qizhong . . . suo0 xie de shi naxie" (Among these, which
are written by ...?). The phrases are represented as |

RefExp == subset(Constraint, Attributes),

where "Constraint" and "Attributes” mean the same as before.

Two sample phrases and their corresponding functional representations are shown

as follows.
(35) qizhong naxie yu A.L youguan ?
(Among these, which are related to AL ?)

subset(field(A.L), ?Attributes),

where "7Attributes” denotes omitted specification.

(36) qizhong ACM sud chubin de fang—zai nali ?
(Among these, where do the ones published by ACM put 7)
subset(publisher(ACM), location),

3.2 Ordinal Ellipses

Ordinal ellipses are derived from elliptical sentences containing such subpatterns

as "di N ben" (the nth one), "di N zhong" (the nth kind) and "gizhong di N I&i" (the

—194 —

nth type among these). Phrases of this type identify one or more items in the
responses of a previous sentence, either basic or elliptical. They are represented as
RefExp == ordinal(Constraint, Orders, Attributes, Unit).
In the following, some sample phrases and their representations are shown.
(37) qizhdng di 3 zhong fang zai nali ?
(Where is the third kind put on ?)

ordinal(?Constraint, [3], location, kind)

(38) di 4 ben A.L fangmian de sht
(The 4th book related to A.L ?)
ordinal(and([field(A.L.), bookType(book)]), [4], ?Attributes, ben)
(39) di 3,4,6 beén
(The third, four‘th and sixth books)

ordinal(?Constraint, [3, 4, 6], ?Attributes, ben)
2.4.3 Remaining Ellipses

Remaining ellipses are the elliptical sentences cdntaining such subpatterns as
"qiylide" (others), "qita (others), "héiyéu naxie", (others ?),etc.. A remaining phrase
specifies the differences of two sets. It is formally represented as

RefExp == complement(Constraint, Attn'butes). |
A case in which the phrases of remaining type appear has been illustrated in Sec.
2.34. Other cases will be illustrated in Sec. 4. Here we show some sample phrases
and their representations.

(40) qiyade zudzhe
(Other authors ?)

complement(?Constraint, author)

(41) héiydu nixie DBMS fangmian de shu

- 195 -

(How many other books related to DBMS ?)
complement(and([field(DBMS), bookType(book)]), ?Attributes)

3.4 Projection Ellipses

A projection ellipsis projects an attribute of an item of a previous response. The
function of this type of phrases is analogous to the projection in relational algebra, a
data base model. The representation is specified as

RefExp == atriName(Attribute).
Some sample phrases and their representations are shown as follows.
(42) fangzai nall

(Where are they ?)

attriName(location)

(43) shi shéi xie de
(Who write it ?)

attriName(author)

3.5 Substitution Ellipses

Any sentence of this type consists of just a noun phrase which denotes an

. instance of an attribute. This phenomenon is very common in most natural languages,

such as English and Chinese. It is the type of ellipses which ¢an be processed in
LADDER[2]. To give an example, if an ellipsis, "ACM n€", follows the sentence
"you naxie IEEE chban de zizhi," it means "you naxie ACM chuban de zdzhi." The
representations are specified as

instanceOf(Attribute, Val).

Two typical sentences and their representations are shown as follows.

(44) Knuth

instanceOf(author, Knuth)

- 196 —

(45) 1986 nién 8§ yue
instanceOf(date, date(1986, 8))

4. Determination of Elliptical Sentences

vWe have divided the elliptical functional form into five classes. Here, we follow
this classification to discuss the dctermination.of the full meanings of elliptical sen-
tences. Since a query sentence can be decomposed into a query f)hrase and a data
description phrase, the determination of the full meaning also employs two processes
to determine these two phrases. In this paper we mainly focus on the determination of
the data description phraées, which are based on both the dialogue convention and |

functional representations.

4.1 Subsetting Type
Case 1.

Consider the following sequence of query sentences.
(46) Knuth su0 xie de shu zhong you n‘z’ud € yu Algorithm youguan ?
(Among the books written by Knuth, which are related to algrithms ?)
47) nixie yi DBMS ybuguan ? |
(Which are related to DBMS ?)

s

Sentence (46) is a basic sentence while (46) is an elliptical one. According to the
dialogue convention, the elliptical sentence is interpreted by replacing the constraint
phrase with that of the corresponding basic sentence because both sentences are analo-

gous syntactically. As an example, the sentence (47) is interpreted as

(48) Knuth su0 xie de sh@ zhGng you naxi€ yu DBMS yougua ?

(Among the books written by Knuth, which are related to compiler ?)
Formally, sentence (46) is represented as

presqnt(restrict(restrict(cida, and([author(Knuth), bookType(book)])),

— 197 —

field(Algorithm), ?Attributes),
and sentence (47) is originally represented as
subset(fieldDBMS), ?Attributes),
From the substructure of the representation of sentence (46), it can be seen that
“field(Algorithm)" is the representation of the additional constraint phrase, "yu Algo-
rithm yOuguan". Thus we can replace it with "field(DBMS)" to construct the complete
representation of sentence (46) because they are analogous. In summary, the con-
structed complete representation of sentence (46) is
present(restrict(restrict(cida, and([author(Knuth), bookType(book)])),
field(DBMS)), ?Attributes).

Case 2.
Consider the following sequence of query sentences.
(49) youméiyou A.I. fangmian de shiji ?
(Are there books related to Al?
(50) ybu il bén shi Rich xi& de ?
(How many books are written by Rich?)
In the above, sentence (49) is a basic sentence while (50) is an elliptical one. This
case is different from case 1 in that no constraint in sentence (49) can be replaced with
that of the elliptical sentence. Ideally, the complete ‘data description may be con-
structed by concatenating the data description phrase of sentence (49) with the con-
straint phraSc of sentence (50) such as
count(restrict(restrict(cida, and([field(A.l.), bookType(book)]))
author(Rich)), aBook)
* In practice, however, the complete representation of sentence (50) is
count(restrict(dataSet(49), author(Rich)), ben).

It is because the former representation is not efficient during the period of retrieving

— 198 —

the data from the underlying database.

Case 3.

Now, we illustrate a more complicated case which will indicate the necessity of

matching analogous patterns. Consider the following scenario:
(51) you naxi€ A.L fangmian de shuji ?

(Which books are related to A.L?)
(52) yu Expert System youguan de you naxie ?

(Among these, which ones are related to expert system?)
(53) qizhdng nixie shi 1980 ni4n hou chuban de ?

(Which ones are published after 19807?)
(54) naxie shi 1980 ni4n yliqi4n chiban de ?

(Which ones are published before 19807)
(55) yu Natural Language Processing youguan de you naxie ?

(Which ones are related to natural language processing?)

According to the domain hierarchy, sentence (52) refers to sentence (51). By the
dialogue convention, the sentence that sentences (53) and (54) refer to is (52) rather
than (51). Formally speaking, the constraint of sentence (52) is represented as
"field(Expert System)" while those sentences (53) and (54) are "gt(publishedDate,
year(1980))" and "lt(publishedDate, year(1980))" respectively. Thus, the latter con-
straint is concatenated with the former one to form a new complete functional
representation. As for sentence (55), it refers td sentence (51) according to the domain
hierarchy. The above illustrates that the semantics and domain knowledge may affect

. the results of the determination.

4.2 Remaining Type

The intuitive meaning of an elliptical sentence of remaining type is analous to

that of sentences containing the subpattern of "<primary data description phrase>

- 199 —

except <some others>". Formally speaking, an elliptical sentence of this type is deter-
mined as the reéresentation containing a partial representation of "diff(BaseSet, Com-
plements)", where "BaseSet" Ais the representation of “<primary data description
phrase>" and "Complements" is that of "<some others>". Acordingly, the processing
of this type of elliptical sentences is to determine the two data sets, "BaseSet" and
"Complements".
Case 1.

Consider the following sequence of query sentences:
(46) Knuth sud xi¢ de shi zhong you naxie yu Algorithm yOuguan ?
(47) naxi€ yu DBMS youguan ?
(56) qiytide ne ?

(Others)

This case is extension of Case 1 in Sec. 4.1; the structure we will discuss here is sen-
tence -(56). By the dialogue convention, sentence (56) asks in what other fields than
Algorithm and DBMS the books written by Knuth are. Ideally, tﬁe data of this type
include | the data comresponding to the primary data description phrase,
'_'Knuth suoxie de shi™ except the data responsed for either the basic sentence (46) or
the elliptical sentence (47). Formally, the context pattern can be recognized from the
functional representations of these sentences. For example, the representations of sen-
tences (46) and (47) afe |

preSent(restﬂct(rcstrict(cida, and([author(Knuth), bookType(book)])),

| field(Algorithm)), ?Attributes)
present(restrict(restrict(cida, and([author(Knuth), bookType(book)])),
field(DBMS)), ?Attributes).

The author restricted in both the representations indicates this fact. So far, we can_
determine that the "DataSetDescriptor" of the functional representation of the current

elliptical sentence is

— 200 —

DataSetDescriptor = diff(restrict(cida, and([author(Knuth), bookType(book)])),
dataSet([46, 47]). |

where ‘"restrict(cida, and([author(Knuth), bookType(book)]))" is "BaseSet" and
"dataSet([46, 47])" is "Complements". As for the query phrase, we can easily decide
~ that the queried data is the fields because there is a constraint - field(Field), where
"Field" is either "Algorithm" or "DBMS",'in_‘the representation of each sentence. Thus
the complete functional representation of sentence (56) is determined as

present(DataSetDescriptor, field),
where "DatéSetDescriptor" is described as above. |
Case 2.

Consider the query sentence followixig sentences (49) and (50):
(579 qiyade ng ?

(Others?)

The "dataSetDescriptor” of sentence (57) is determined as

DataSetDescriptor = diff(dataSet(49), dataSet(50).
where "dataSet(49)" is "BaseSet" and "dataSet(50)" is "Complements". "Fo.r the query
phrase, it is determined that the queried data is about the authors because the represen-
ta_tion of sentence (50) contains the constraint phrase representation: "author(Rich)".g
Thus the complete representation of sentence (57) is determined as

present(DataSetDescriptor, author),

4.3 Substitution Type

An elliptical sentence of the éubstitution type usually contains only a short noun
phrase or even just a noun. It is also a very common type in 'natural languages such
as English or Chinese. Consider the following sequence of query sentences:

(58) youaxi€ 1980 nisn gdurh de shuji

(Which books are bought in 19807)

- 201 —

(59.a) 1981 nian n€ ?
(How about 1981?)
Intuitively, the second sentence means
(59.b) younaxie 1981 ni4n gouru de shuji
(Which books are bought in 19817)
Formally, sentence (58)' is represented as
present(restrict(cida, and([eq(boughtDate, year(1980)),
" bookType(book)])), ?Attributes),
and (59.a) is originally represented as |
instanceOf(year, 1981),
By matching "year" in the two representations, we can determine the second sentence
as |
present(restrict(cida, and([eq(boughtDate, year(1981)),
| bookType(book)])), ?Attributes).

Next, compare the following two sequences of sentences.

(60) younaxie Codd suo xie de shi ?

(Which are the books written by Codd ?)

(61) Ullman ?

(60) younaxie Codd sub xit de shi ?
| (62) gizhong naxi€ yu DBMS youguan
| (Among phese, which are related to DBMS ?)
(63) naxie yu Expert System vaugl.fain |

(Which are related to Expert System ?)

The elliptical sentence in the first sequence belongs to the subsetting type and that in

‘the second case belongs to the subsetting type. It can be seen easily that the elliptical

sentences in the first sequence can not be stated in the way as those in the second

—202 —

sequence and vice versa.

4.4 Ordinal Specification Type

Ordinal ellipses are very useful as a user interface in a natural language. By
using these ellipses, a user can briefly state the constraints about his interested data
and then query about them closely. Consider the following sequence of query sen-
tences:

(64) qing xianshi youguany@ Natural Language Processing fangmian de sh.

(Pléasc display the titles of books related to natural language processing.)
(65) qizhong di 5, 6 , 8 ben fang—zai nall ?

(Where are the fifth, sixth and eighth ones ?)
(66) qing xianshi di 3 ben de mulu.

(Please show the table of contents of the third one.)
For the sentence (65), the: ordinals specify the items in the data responsed for sentence
(64). By the dialogue convention, sentence (66) specifies the third item in sentence
(64).

Consider another sequence of query sentences vshown as follows:

(67) qing xianshi youguanya Expert System fangmian de shi.

(Please display the titles of books related to Expert System.)
(68) qing xi‘é‘nshi‘yéuguﬁnyﬁ Natural Language Processing fangmian de shi.

(Please display the titles of books related to Natural Language Processing.)
(69) qing xianshi di 3 bén Expert System de shi.

(Please display the third one about Expert System.)
Obviously, sentence (69) specifies the third item in sentence (67) rather than sentence
(68). Comparing this example with the preceding one, we find that if an ordinal
specification is not followed by a constraint phrase, it is determined as referring to the

item in the most recent sentence without the ordinal specification. By matching the

— 203 —

constraint of an elliptical sentence with that of the referred sentence, we can determine

correctly the ordinal specification.

Another convention about the ordinal specification should be addressed also.

Consider the following sequence of query sentences:

(70) younaxie N,,atﬁral Language Processing ﬁngmiﬁn de shﬁ.
(How many books are related to Natural Language Processing?)
(71) di 1 ben fang—zai nall ?
(Where is the first one?)
(72) qing xianshi qf ji2qian.
(How about the price?)
(73) diSbénne?
(How about the fifth one?)
(74) di7benne?
(How about the seventh one?)
The query phrases of sentences (73) and (74) are orhitted. By the dialogue convention,
the user must desire to know the locations and prices of the fifth and seventh books in
sentence (70). That is, sentences (73) and (74) must inherit the queried information or

attributes of the books mentioned in the previous sentence.

4.5 Projection Type

An elliptical sentence of the projection type may be just a predicate or a noun
- phrase which is the name of an attribute. It describes a new data set different from
any previous data. It is used primarily to incrementally query about interested data.
This type of sentences is always determined as referring to the most rccently.,activated
data set. /

The following sentences show some examples and their corresponding functional

representations.

— 204 —

(75) - zudze shi shéi ?
(Who is the author?)

attriName(author)
(76) shi shéi xie de ?

attriName(authbr)
(77) zudze ?

attriName(author)
Though the above sentences have different syntactic structures, they have a common

function; that is, they all project an attribute of the data of a previous sentence.

It is easy to determine the full meaning of elliptical sentences of this type since
they refer to the most recent data set. Consider the following sequence of query sen-
tences: |
(78) younaxi€ A.L fangmian de shu ?

(What are the books related to Al ?)
(79) shi shéi chl ban de ?
(Who are the- publishers ?)
(80) héshi chuban de ?
(What are they published 7)
The constructed complete functional representation has the format of
present(dataSet(N), Attribute),
where "N" denotes the index of the referred sentence in the dialogue model and "Attri-

bute" denotes the attribute name in the elliptical sentence.

S. Conclusions

In this paper, we have presented functional representations of query sentences.
The representations describe the semantics of query sentences and reserve some mes-

sages of syntactic structures. The problem of determining the data description phrase

— 205 —

of an elliptical sentence based on the functional representation in Chinese dialogue has
been exploited. During the process of discussion, it is demonstrated that determining
the missing components in an elliptical sentence must consider both the semantic attri-
butes and the syntactic structure. The determination of query phrases remains to be a

topic for further research.

In summary, a friendly and high level user interface should conform to the fol-

lowing guidelines.
e It must be able to be accepted like a natural language.

e It should provide the mechanism to express rigid combination of logical con-

nectives.

e It should provide the mechanism for stating elliptical sentences to incremen-

tally query objects.

e The logical structure of database must be transparent and the knowledge

about task domain should be built into the user interface.

For the design of a good dialogue model, some conclusions are listed below.
First, the responses should be kept in the model so that the elliptical sentences can be
resolved correctly and repetitive access to the underlying database system can be
avoided. Second, the meaning representation muSt be able to describe the necessary
syntactic and semantic messages. Third, the ﬁlcaning representation must be powerful
-enough so that the dialogue convention can be easily implemented into the determina-
tion processes. Fourth, the meaning representation should be database independent and
language dependent so that the implementation can be independent of the underlying
database system. Finally, the dialogue model should provide a mechanism so that the

determined elliptical sentences can be expressed.

— 206 —

References

1.

2.

10.

11.

C. . Date, An Introduction To Database Systems, vol. 1, 1985.

G. G. Hendrix, ‘‘Developing a natural language interface to complex data,”” ACM
Transactions on Database Systems, vol. 3, i)p. 105-147, 1978.

D. G. Bobrow, R. M. Kaplan , M. Kay , D. A. Norman , H. Thompson, and T.
Wir_xogra'd,‘ “GUS, a frame-driven dialog system,”’ Artificial Intelligence, vol. 8§,
pp. 155-173, 1977.

B. J. Grosz, “TEAM : an experiment in the design of transportable natural-
language interfaces,’’ Artzﬁciql Intelligence, vol. 32, pp. 173-243, 1987.

H. Ishikawa, Y. Izumidé, T. Yoshino , T. Hoshiai , and A. Makinouchi, ‘‘KID
designing a knowledge-based natural language interface,”” IEEE EXPERT, pp.
57-71, 1987.

W. A. Woods, ‘‘Semantics and quantification in natural language question
answering,”’ Advances in Computers, vol. 17, pp. 1-87, 1978.

B. W. Ballﬁrd, J. C. Lusth, and N. L. Tinkham, ‘“LDC-1: a. transportable,
knowledge-based ‘natural language processor for office environments,”” ACM
Transactions on Office Information Systems, vol. 2, pp. 1-25, 1984.

G. Jakobson, C. Lafond, E. Nyberg, and G. Piatetsky-Shapiro, ‘‘An Intelligent
Database Assistant,”’ IEEE Expert, pp. 65-79, GTE Laboratory, Inc., Summer
1986.

B. Nash-Webber and R. Reiter, ‘‘Anaphora and logical form:on formal meaning
representations for natural language,”” IJCAI, vol. 1, pp. 121-131, 1977.

Horrigan, ‘‘Modelling Simple Dialogs,”’ IJCAI, vol. vol. 1,.p. 88, 1977.

I. Spiegler, ‘“Modelling man-machine interface in a data base environment,”

International Journal of Man-Machine Studies, vol. 18, pp. 55-70, 1983.

- 207 —

Appendix Logical Specification of the Dialogue Model
DialogProcess == [Exches] |
Exches == Exch | Exch, Exches
Exch == [Query, Response] _
Query == basic(Complete) | elliptical (Ellipsis, Complete)

' Complete == present(DataSetDescriptor, Attributes) |

count(DataSetDescriptor, Unit) | exist(DataSetDescriptor) |
lentB-y(DataSetDescriptor, Borrower) | lendable(DataSetDescriptor) |
lent(DataSetDescriptor) |

DataSetDescriptor == cida | DataSetPointer | RefExp
some(DataSetDescriptor, Unit, Number) |
restﬁct(DataSetDescﬁptor, Constraint) |

diff(BaseSxet, Complements) | ordinal(DataSetPointer, Orders)

" DataSetPointer == dataSet(Number)

RefExp ==
complement(Constraint, Attributes) |
ordinal(Constraint, Orders, Attributes, Unit) |
subset(Constraint, Attributes) |
instanceOf(Attribute, Val) | attriName(A.ttribute)

Unit == ben | aJournal | kind | year

Constraint == ?Constraint’ | not(Constraint) | and(Constraints) |

or(Constraints) | RelOp(Attribute, Val)

Constraints == [Constraints0]

ConstraintsQ == Constraint | Constraint, ConstraintsQ

RelOp==eqlnelgelgtllellt

Attributes == [Attributes0]

AttributesQ == *?Attributes’ | Attribute | Attribute, AttributesO -

- 208 —

Attribute == bookType | author | cost | contentTable | donator |
field | publisher | publishedDate | locatioh | id | borrower
bookNam¢ | journalName | beginDate | endDate
donatedDate | vol | journalNo | lentDate | date

Val == ?Val’ | Number | String | Date | Vol | JournalNo | Year | Month

Date == date(Year, Month)

Year == Number

Month == Number

JOumalNo == journalNo(Year, AjournalNo)

Val == Number

AjournalNo == Number

BaseSet == DataSetDescriptor

Subsets == dataSet([Numbers])

Numbers == Number,| Number, Numbers

Complements == dataSet([Numbers])

Orders == Order | Order, Orders

Order == OneOrder | OrderRange

OneOrder == Number

OrderRange == (SltartN umber, EndNumber)

StartNumber == Number

EndNumber == Number

Borrower == String

ElliQuery == Complete

Ellipses == Ellipsis | Ellipsis, Ellipses

Ellipsis == RefExp | ElliQuery

Attributes == Attribute | Attribute, Attributes

Response == [Informations]

— 209 —

Informations == Information | Information, Informations
Information == (DataDescriptor, DataLisf)
DataDescriptor == [Attributes]

DataList == [ValLists]

ValLists == ValList | ValList, ValLists

‘ValList == [Vals]

Vals == Val | Val, Vals

Ackhowledgement

This research work was supported by ERSO, ITRI, Hsinchu, Taiwan, under contract,

MIST-E76006(1987) and by Taiwan International Standard Electronics Ltd..

—210 -

The Parsing Environment

for Mandarin Syntax

I-Peng Lin, Shuan-Fan Huang,
Hsin-Hsi Chen & Ka-Wai Chui

H—W REE REHF BELE

National Taiwan University

BN AR

Proceedings of ROCLING 1(1988)- .
R.0.C. Computational Linguistics Workshops I pp 211-214

PEREF-EHHEESEMEERXE 211-214 FH

The Parsing Environment for Mandarin Syntax

I-Peng Lin, Shuan-fan Huang, Hsin-Hsi Chen and Ka-Wai Chui

Department of Computer Science and Information Engineerihg

abstract -

'Syntax' is the sentence-formation component in grammar, specifying how sentences are
constructed out of phrases, and phrases out of words. It is necessary to set up a parsing
environment to implement the Mandarin syntax in computer. This paper thus attempts to
introduce this parsing enviroment . '

There are three types of sentences in total: declarative sentences, imperative sentences and
questions. The declaratives can further be divided into simple, complex and compound
constructions. Simple sentences are defined as those consisting of a single predicate. When
there are more than one predicate within a sentence, it is called complex sentence. We
classify 3 types of complex constructions. The first of which results from subcategorization.
The second and the third types are the verb-reduplicated and the serial-verb constructions.
Compound sentences presuppose the presence of conjunctions to link up two or more
phrases or clauses. As imperative constructions are concerned, they have their basis on their
declarative counterparts, yet with a number of restrictions, e.g. the optional subject has to be
the second person, the construction has to be unmarked aspectually. Finally, the different
types of questions in Mandarin include question-word.questions, yes/no questions, choice
questions, A-not-A questions, tag-questions, embedded questions. The linguistic device to
geherate all of them is the context-free X-bar Phrase Structure Rules. ,

The parsing environment for Mandarin syntax is indeed based on the data analyses of the
various types of sentences discussed above. The Prolog-based bottom-up parser can even
tackle the problems of movement transformation by means of three principles in the
Government-Binding theory, namely the Empty Category Principle, the C-Command
Principle and the Subjacency Principle. A sequence of translation rules is given to add these
linguistic principles to the general grammar rules, the leftward movement grammar rules, and
the rightward movement grammar rules, respectively. The empty constituent problem is
solved to allow the trace to be the first element in the grammar rule body. A special data
structure for extraposition list is proposed to transfer the movement information from the

bottom to the top. Based upon this structure, the fastest merge algorithm is designed. Those

—-213 -

unnecessary merge predicates can be eliminated with the help of the transitive relation. Thus,
the new design not only extends the original bottom-up parsing system with the movement
facility, but it also preserves the parsing efficiency.

—214 —

Criteria for the Classification
of Lexical Categories in a
Syntax-Oriented Parsing System

Yu-Ling Una Shiu® and Keh-Yih Su™

* Institute of Linguistics
National Tsing Hua University
- Hsinchu, Taiwan, R.O.C.

** Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

In Natural Language Processing systems, different classification of lexical categories will
lead to different set of rules, and thus different kinds of analyses, therefore the choice of a
good category system is very important to the efficiency and to the memory load of the overall
parsing system. Unfortunately, although every parsing system has a set of lexical categories,
the issues as to whether these category systems are properly chosen, and the factors for
evaluating the adequacy of the classification of lexical categories has generally been ignored.
Especially, things go worse in research areas, such as Mandarin NLP field, where many
fundamental issues are just beginning to be explored, the lack of a good category system apts
to obstruct an in-depth research. _ .

In this paper, we propose eight criteria for the classification of lexical categories in a
syntax-oriented parsing system.. These criteria are syntax dominance, descriptive power,
simplicity, explicitness, mutual exclusion, collective exhaustiveness, applicational effi-
ciency, and conventionality. Each of them is clearly defined and illustrated by Mandarin
examples. Furthermore, the_tradeoffs among these criteria are also taken into considera-
tion. These criteria and the discussions of tradeoffs will be helpful in serving as a guide for
designing and evaluating a category system.

-217 —

I. Introduction

In Natural Language Processing (NLP) systems, the classification of lexical categories
is the fundamental work. NLP first takes a lexical analysis which reads and converts the
input into a stream of tokens, which are then analyzed by the parser. So the choice of the

inventory of tokens and the assignment of tokens to words, i.e., the classification of lexical -

categories, are the very jobs of lexical analysis. Since the quality of such classification will
* usually affect the performance of its following stages (such as syntactic analysis, semantic
analysis), a good category system is indispensible to NLP.

Although there are some existing Mandarin lexical category systems, most of them are not
proposed for computcf parsing (such as [Chao 68], [Lyu 80]). Their adequacy in NLP is quite
doubtful. At the mean time, though a variety of parsing algorithms have been proposed, the
syntax-oriented parsing algorithm is still a very popular one within the NLP community ([Su
871, [Char 1986]).] Because syntax-orientded parsing systems and non-syntax-oriented ones
may have different requirements on their lexical categories, even if some category systems are
constructed mainly for parsing (such as [CKIP 86, 88]), further examination is still needed to
ensure their suitability for syntax-oriented parsing systems. However, it is quite surprising that
there are still no objective, explicit, and rigorous criteria available in literatures to judge the
quality of a category system. The lack of a set of clearly-defined criteria makes the comparison
and examination of different lexical category systems a very hard task, if possible at all.

In response to such demand, we propose eight criteria in this paper to evaluate different
category systems within the syntax-oriented parsing framework. Each criterion is clearly
defined and illustrated by Mandarin examples. Furthermore, tradeoffs among these criteria
are also discussed. These criteria and the d1scuss1ons of tradeoffs can serve as a helpful guide
for analysis and evaluation of a category system. :

IL. Criteria for the Classification of Lexical Categories

In order to facilitate the analysis and comparison of different category systems within the
syntax-oriented parsing framework, eight criteria are set up as follows: '

1. Syntax Dominance : considering only the phenomena
of syntactic distribution

In a syntax-oriented parsing system, words should be classified only according to their -

syntactic distribution. To make this criterion more clear, we can regard each lexical entry as
a set of attribute-value pairs [Gazd 85]. Each pair encodes a piece of linguistically significant
information, such as its character(s), its phonological representation, its possible position(s) in
the sentence, its semantic meaning(s), its pragmatic function(s), etc.. Then, this criteria in fact
says that, the only attributes we should take into consideration at the stage of lexical category
classification are those capable of informing us what positions in the sentence a given entry
can occupy. The reason is that if we intend to encode every pieces of information by the
classification of lexical categories, the resultant consequence will be that we have to assign
every word an independent lexical category. Such classification is certainly meaningless
and useless. Thus, our consideration must be selective. While, in a syntax-oriented parsing

— 218 —

system, the main purpose of its analysis is to render correct syntactic structures for input
sentences. Naturally, under this approach, any non-syntactic information is irrelevant.

Take Mandarin sentential particles as an example.? This set of items, such as *incoative’ le,
"presuppositional’ de, ’friendly reminding’ o, etc., always occur in the sentence-final position.
If we recognize Mandarin sentential particles as an independent lexical category, say PART,
their characteristic syntactic distribution can be nicely captured by a rule, as shown in (1):

(1) 8 —> S (PART)

However, among these particles, three of them carry interrogative information, namely,
’Yes-No question’ ma, ’expecting addressee’s participation’ ne, and ’conjectual’ ba. Although
these interrogative particles obviously have a special semantic meaning (or pragmatic function)
which can turn declaratives into questions, they do not differ with other sentential particles
in their syntactic distribution. Thus, according to the criterion of Syntax Dominance,
interrogative particles should not form a separate lexical category.

However, one point worth noting here. Systems using a syntax-oriented parsing algorithm
are not unable to manage semantic information at all. But they always handle semantic
messages by checking semantic attributes in lexical entries rather than by the classification
of lexical categories.

2. Descriptive Power : adequate descriptions of linguistic
phenomena provided by a category system

Generally speaking, a category system which can adequately account for more syntactic
phenomena is better than one which can do-less. Consider Mandarin sentential particles again.
Two of their detailed distributional phenomena are observed. First, in a simple sentence, two
sentential particles may co-occur in succession, with le and de alternating in penultimate
position and other sentential particles absolute sentence-final position. Second, in a complex
sentence, only /e and de can be attached to an embedded clause, others must have a scope over
the whole matrix sentence ([Shiu 88]). Following the above observation, category systems
- which contain only one sentential particle category like (2) will fail to capture these empirical
facts. The best solution they could offer is shown in (3):

(2) PART : le, de, ma, ne, ba, o, etc.
3 a S — §' (PART)
b. S —> S (PART)

c. VP —> V (§)

However, this analysis allows too many ungrammatical sentences, such-as below:
*(4) Da-shiung shiantzai bu du-buo ba le ?
Da-shiung ‘now not gamble BA LE
*(5) Yi-jing yi-ding huei sheng-chi o de !
Yi-jing surely will get angry O DE!
—219 —

A more powerful Mandarin category system should have' two separate categories for
sentential particles, as shown below:

(6) a. PART : le, de

b. PART" : ma, ne, ba, o, etc.

With the two separate lexical categories in (6), we can came up with a more adequate
analysis, presented in (7), which can correctly rule out ungrammatical sentences , like (4),
(5), and sanction grammatical sentences, such as (8), and (9).

(7) a. 8" —> S’ (PART2)
b. 8 —> S (PARTI)
c. VP —> V (8)

(8) Da-shiung shiantzai bu du-buo le ba ?
Da-shiung now not gamble LE BA :
> (I suppose) Now, Da-shiung won’t go gambling (any more), will he ? ’

(9) Yi-jing yi-ding huei sheng-chi de o !
Yi-jing surely will get angry DE O !
’ (Let me tell you) Surely, Yi-jing will get angry ! ’

However, we have to mention that the criterion of Descriptive Power must balance with
the next criterion Simplicity. Their tradeoffs will be discussed in Section III.

3. Simplicity : using as few categories as possible; avoiding
any redundant classification

This criterion is supported by both computational and linguistic considerations. Com-
putationally, the set of lexical categories is relevant to the set of grammar rules. Usually,
an increase in the number of lexical categories implies the simultaneous need of a larger set
of grammar rules. In a syntax-oriented parsing system, the parsing.table is constructed by
expanding the grammar rules, therefore, the growth of rules will certainly lead to the en-
largement of the parsing table, and thus the increase of memory load. The number of lexical
categories is therefore preferred to be as few as possible. Linguistically, simplicity usually
correlates with maximal degree of generalization. Any redundancy will certainly destroy the
elegance of an approach. Thus, the most economical solution is usually the best choice.

For illustration, consider Mandarin common nouns and proper names. Many category
systems make distinction between them for the reason that only common nouns can be
preceded by determiner-measure compounds (D-M compounds). However, this observation
is not entirely right. Consider the following counterexamples: '

(10) Na wei Li shiaujie tzou guo lai le.
That M Li Miss walk along LE
’ That woman called Miss Li are walking along.

, .

(11) Women ban shang you liang ge Wang-shiau-wu.
' We class LOC have two M Wang-shiau-wu

- 220 —

2

> There are two persons named Wang-shiau-wu in our class.

Sentence (10) and (11) show that there is no problem for proper names to co-occur
with D-M compounds. Removing this distinction, proper names and common nouns in fact
have the same possible syntactic positions. Thus, they should be combined into one single
category according to the criterion of simplicity.

4. Explicitness : defining precise scope for each category
by using rigorous definitions

The definition of each lexical category must be rigorous enough to yield desirable
classification. Since NLP system is usually a teamwork, the use of vague or ambiguous
definitions for lexical categories will result in a lot of mis-labeling which will destroy the
consistency of the overall category system.

For example, if nouns are vaguelly defined as ’names of entities’, it will be hard to judge
whether ’linguistics’yu yian shiue or ’dragon’lung should be considered as nouns or not,
because yu yian shiue is not a concrete object, and lung does not exist at all. But they indeed
share similar syntactic distribution with other nouns. Thus, a more explicit classification of
lexical categories should define Mandarin nouns as 'what can be modified by D-M compounds
or possessive expressions’. Such definition can then correctly assign the category noun to
lung and yu yian shiue without confusions.

5. Mutual Exclusion : complementary classification; avoiding overlapping

If the domains of different categories overlap within a category system, it implies that
words in the overlapping areas will be assigned with more than one category labels. Such
multi-categoried words are the main source of lexical ambiguities. Except for some homo-
graphs which will be inevitable in raising such parsing difficulty, a good lexical category
system should avoid this type of ambiguity with mutual exclusive classification.

For instance, some Mandarin category systems follow the traditional classification of En-
glish and recognize verbs and adjectives as two separate categories. But, in fact the so-called
adjectives can be further divided into two groups (Figure 1), namely, predicative adjectives
and non-predicative adjectives. Predicative adjectives, like piauliang, gau, gaushing, etc., are
very similar to verbs in their syntactic behaviors in that they can form A-NOT-A construc-
tions, be modified by adverbs, act as the main predicates of sentences, etc. (Figure 2). This
is exemplified as follows:

(12) a. Yi-jing lai-bu-lai ?
Yi-jing come-not-come
’ Does Yi-jing come or not come ? ’

b. Yi-jing piauliang-bu-piauliang ?
Yi-jing . pretty-not-pretty
> Is Yi-jing pretty or not pretty ? ’
(13) a. Da-shiung hen shihuan Yi-jing.
Da-shiung very like Yi-jing
> Da-shiung likes Yi-jing very much.

?

- 221 -

intransitive

predicative, verbs
adjectives qure 1
non-predicative transitive
adjectives verbs
non-predicative L
. predicative Figure 2
adjectives | ,gjectives
- intransitive transitive . \
verbs -igure

adjectives

verbs

b. Da-shiung hen gau .
Da-shiung very tall
 Da-shiung is very tall. ’
(14) a. Da-shiung bu shuohua
Da-shiung not talk
> Da-shiung does not talk.

2

b. Da-shiung bu gaushing .
- Da-shiung not happy
’ Da-shiung is not happy.

’

If the above syntactic positions are specified both in the definitions of verbs and adjectives,
all predicative adjectives will unfortunately bear two category lables. Such analysis greatly
increases the load of a syntax-oriented parsing system.

A better solution is to classify non-predicative adjectives, like ’the most important’
shouyau, ’chronic’ manshing, etc. as a single category. Further, since non-predicative

—222 -

adjectives are usually intransitive, they can combine with intransitive verbs to form another
lexical category. Thus, according to the criterion of Mutural Exclusion, the plausible
classification of verbs and adjectives may be like as shown in Figure 3.

Careful readers may notice that this criterion may also contradict with the criterion of
Simplicity. Their tradeoffs will also be discussed later.

6. Collective Exhaustiveness : thorough classification; the union of
every classes should be equal to the whole set of data

This criterion requires that each word must be classified into at least one class. Words
without category labels will fail to be accessed by the parser. Thus, even a small set of
words, like Mandarin particles, which do not occur in English at all, should not be neglected
in a Mandarin category system.

7. Applicational Efflclency yielding the most desirable and economical
processing with regard to its special application domain

A sophisticated category system should also take its application domain into consideration.
Different application fields may have different requirements for their category systems. For
example, in a Machine Translation System (MTS), the categories of a source language and
those of a target language may had better carry some kind of correspondance. The MTS
with this kind of lexical category classification can deal with its transfer rules better. Under
this consideration, a Chinese-to-English MTS may prefer Mandarin predicative adjectives,
separated from intransitive verbs, also form an independent category. Since adjectives and
verbs really distinct in English, such separation in Mandarin will make the interlanguage
corresponse easier to be captured and is helpful in render correct translations.

8. Conventionality : followmg established conventlons

If the above criteria are equally satisfied, a category system with more conventional
notations, and more standard definitions will be more transparent to the linguists and have
better mnemonic quality. For instance, the notations of lexical categories such as noun,
verb, adjective ... etc. have been widely-adopted. And most people in linguistics or NLP
community have a general idea about their scope of classification. Thus, a catgory system
following this way of classification will be conceptually easier and make more ready-made
analyses available. This criteria is therefore proposed as the last point.

III. Tradeoffs among the Criteria

So far, we have explained and illustrated the proposed criteria. Ideally, a good category
system should closely obey all of them. However, the complicated linguistic phenomena of
natural languages and the inherent limitations ofcomputational devices preclude them from
coexisting optimally within most category system. Thus, we will briefly discuss the main
tradeoffs among them. The considerations are separately represented as follows:

- 223 —

1. Descriptive Power & Simplicity

~ With the same number of lexical categories, a category system having more descriptive
power is superior; with the same descriptive power, a category system having a smaller set of
lexical categories is more desirable. But if there are contradictions between these two criteria,
~ the tradeoffs between them should be carefully considered.

For example, there are dependences between Mandarin measures and nouns. Different
classes of nouns require different classes of measures, such as plants can be preceded by ke,
Jju, tsung, etc., animals by jr, chiun, wo, etc., and furnitures by tau, tsu, jian, etc.. If we classify
nouns and measures into various categories according to their co-occurrence, the descriptive
power of the category system will be increased. But such classification is trivial and will
create numerous additional lexical categories which rersults in a plenty of additional rules.
For the sake of memory load, this analysis is not welcome. The preferred alternative is to
encode such co-occurrence restrictions by using attributes. By virtues of checking attributes,
we can still correctly constrain the co-occurrence between measures and nouns, and reach a
desirable consequence without using a clumsy set of grammar rules.

Thus, based on the consideration of descriptive power and simplicity, we suggest that only
general syntactic phenomena should be handled by the classification of lexical categories.

2. Simplicity & Mutual Exclusion

If two classes of words share some possible syntactlc posmons we suggcst the following
solutions : '

A If the syntactic distribution of two classes overlaps a lot, these' two classes should be
combined into one lexical category, and using condition check in grammar rules to specify
their distinction (Figure 4. a). For example, some pronouns really cannot be preceded by
D-M compounds, such as ’(politely) your father’ lin-tzuen, ’(modestly) my son’ shiau-chiuan.
But their other position are just similar to thosc of nouns. Thus, more efficiently, we should
regard them as a single lexical category, and using condition check to prevent pronouns co-
occurring with measures.

B If the distribution of two classes of words overlaps just in a few cases, they should
be classified into two separate lexical categories, and with the few words appeared in the
overlapping positions labeled two category lables (Figure 4. b). .

C If the overlapping section of the distribution of two classes of words is approximately
equal in size to the two distinct non-intersecting sections, then the most efficient way is to
classify all three of them into independent categories (Figure 4. c). This is the method
suggesting for handling traditional adjectives and verbs.

— 224 —

a b. C.

Figure4 Overlapping between the distribution of two classes of words

3. Simplicity & Applicational Efficiency

If some important applicational advantages can be captured by further classification of
lexical categories, the criterion of Simplicity has to give way to such special demand. For
example, as we have mentioned above, though the adjective category in Mandarin is not
theoretically needed and will add the number of lexical categories, however, in a Chinese-to-
English MTS, this category is still preferred for the efficiency of overall processing.

4. Descriptive Power & Applicational Efficiency

Generally speaking, a category system with more descriptive power is favored. But
if concerning applicational efficiency, some reservation about descriptive power may be
made. Some classification of lexical categories may really add to the descriptive power,
however, if such information is of little use or even irrelevant to its applicational domain,
such classification is just useless and not worthy of implementation.

IV. Conclusion

Before a satisfactory category system can be determined, a good set of criteria for
evaluating them should be set up first. This paper proposes eight criteria for the classification
of lexical categories in a syntax-oriented parsing system. Each of them is examplified by
Mandarin data. Since there are no standard lexical category system in Mandarin NLP as yet,
this set of criteria can helpfully serve as a guide for designing a good category system and
as a reference for examining existing category systems. Further, some tradeoffs among these
criteria are indicated. Since there are still too many controversies in Mandarin syntax, it is
beyond our ability to provide a detailed quantification of these tradeoffs. Nevertheless, the
general direction is pointed out. '

— 225 —

NOTES

1 The distinction between syntax and semantics is not a clear-cut matter, thus we use
the term Syntax-oriented. ' '

2 The Romanization system adopted in this paper is Mandarin Phonetic Symbols II
(MPS II), which is formally announced by the Ministry of Education in 1986.

ACKNOWLEDGEMENTS

We are indebted to Prof. Keh-Jiann Chen for making valuable advices on an earlier draft
of this paper, to Prof. Ting-Chi Tang for helpful comments on Mandarin examples, and to
Prof. Chu-Ren Huang and Prof. Samuel Wang for useful suggestions. We are also grateful to
all the members in BTC R&D Center and CKIP, for their discussions and goodwill. Special
thanks are due to Behavior Tech. Computer Corp. (BTC), for her full financial support.
Responsibility of errors is, of course, ours.

REFERENCES

[Chao 68] Chao, Yuen-Ren. A Grammar of Spoken Chinese. Berkeley : University of
California Press (1968). ,

[Char 86] Charniak, Eugene & Drew Mcdermott. Introduction to Artifical Intelligence.
Addison-Wesley Publishing Company, Inc. (1986).

[CKIP 86] w"Gaizstbig, BESHETEIOY, BliirkTo02, HEEtEhO : StEnE (1986).

[CKIP 87] Chang, Li-li, Huang, juei-chu, Chang, Li-ping, Wei, Wen-chen, Cheng,
Ya-hsia, Chen, Keh-jiann, Tseng, Shih-shyeng, Hsieh, Ching-chun. “Classification and Co-
occurrence Restrictions in Chinese Simple Noun Phrases”. The Chinese Language Society.
(1987) _
[CKIP 88] Hgaasstai N, BEECEEEIOT (821), HUBEErhD « Bitdag (1983).

[Gazd 85] Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, an& Ivan Sag. Generalized
Phrase Structure Grammar. Oxford : Blackwell. (1985)

[Lyu 80] 24, BYRESE/\Gi, RStrEEme st (1950).

[Lyu 81] =5GH, SEFRIAN, HEBEEL, 1981, no. 2, (1981).

[Nire 87] Nireburg, Sergei. ed. Machine Translation : Theoretical and Methodological

Issues. Cambridge : Cambridge University Press. (1987)

[Shiu 88] Shiu, Yu-Ling & Chu-Ren Huang. “Unification-based Analysis and Parsing
Strategy of Mandarin Particle Questions”. To appear in 1988 Proc. of International Computer
Symposium, Taipei, Taiwan, Dec. 15-17, 1988. (1988)

[Su 87] Su, Keh-Yih, Jing-Shin Chang, & Hsue-Hueh Hsu. “A Powerful Language
Processing System for English-Chinese Machine Translation.” 1987 Proc. of Int. Conf. on
Chinese and Oriental Language Computing, pp. 260-264, Chicago, June 15-17, 1987. (1987)

[Tang 77] p#se, SRisdpaeleld, 3R, 1977, 9 : pp. 3040, also in BEEEHIIZEE,

— 226 —

1979, pp. 161-167. &t : BUEBR. (1977

[Wilk 75] Wilks, Yorick. “An Intelligent Analyzer and Understander of English®,
Communications of the ACM, Vol 18, no 5, pp. 264-274, May 1975. (1975)

— 227 -

Descriptive Language as a Linguistic Tool

Mei-Hui Su® and Keh-Yih Su™

*BTC R&D Center
2F, 28 R&D Road 1I
Science-Based Industrial Park
Hsinchu, Taiwan, R.O.C.

“*Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

In developing a natural 1anguages processing system, the linguist needs to transfer a
large amount of linguistic knowledge into the system. Therefore, the transferring and the
maintaining of the linguistic knowledge in a working system become a crucial issue. If
the linguist transfers the linguistic knowledge indirectly through the computer engineer, the
productivity of both the linguist and the computer engineer might be lowered. So it is better
for the linguist to transfer the knowledge directly into the system.

In this paper, we propose a descriptive language that is tailored specifically for direct
transferring and maintaining of the linguistic knowledge needed in our system by our linguists.
We will also discuss the criterions for designing the descriptive language and the design
-experiences gained from a completed descriptive language and its environment. In addition
to offering a simple and direct way to express linguistic knowledge, descriptive language
unifies the knowledge into a clear and definite form. As a direct consequence, it is easier to
build an environment that can maintain the global knowledge consistency needed in a natural
language processing system.

— 231 -

Introduction

In a natural language processing (NL.P) system, after a research topic is completed by the
linguist, the knowledge obtained must be transferred into the working system in order to be
utilized during the natural language processing. The traditional approach of transferring the

~ knowledge to the system indirectly is depicted in the following figure.

a general lingusitic
rule

computer engineer

coding into rules or

for testing and
refinement

procedures

Figure 1. Indirect knowledge transferring approach

In this figure, the linguist passes the rule to the computer engineer after a research topic
is completed. Then, after the rules are implemented by the computer engineer, the linguist
will test the system to see if it works as expected. Several places can go wrong in this
process. In the first place, the linguist might have concluded an incorrect knowledge and
so the system will not work as expected. In the second place, the computer engineer might
have misunderstood the request and implement the wrong rules. As a result, the linguist will
get an incorrect response from the system. And in the third place, the computer engineer
might implement the request erroneously and so the linguist will get a wrong feedback from
the system.

This indirect approach introduces two extra error sources in comparison to that of a direct
approach in which the linguist would interact directly with the system. Above all, the more

—232 — o

severe problem of using the indirect approach is that if an error occurred, it is hard to pinpoint
the source of error. Therefore numerous looping through the flow is likely before the initial
request is correctly implemented. As a result, the productivity of both computer engineer
and linguist is lowered. Hence, it is essential to have the linguist interact directly with the
system instead of through the computer engineer. This can be solved by providing a tool
that is designed specifically for handling linguistic knowledge and so that the linguist can
interact with the system directly.

This linguistic tool might be an user-friendly support environment or it might go as far as’
a complete high-level linguistics-oriented programming language like LINGOL [PRAT 73],
MUIR [WINO 86] and PERIPHRASE [BEES 88]. For our machine translation system, we
developed a descriptive language which is a high level declarative language for the linguist to
develop and to maintain the linguistic modules we have, to minimize the computer engineer’s
involvement during the knowledge transferring process and to provide a friendly knowledge
transferring environment for the linguist. The purpose of developing this descriptive language
is not to create a metalanguage [SHIE 86] which is intended to handle different linguistic
grammar formalisms but as a tool that meets the specific needs of our linguists and their
knowledge.

In addition to the reasons mentioned above, descriptive language has another advantage.
The advantage is that it allows the linguistic knowledge to be represented and maintained in
a clear and definite way. This is very important in a natural language processing system with
an on-going research in linguistic phenomena. The reason is that to maintain a consistent
view of all linguistic knowledge for the NLP system is not a simple task. But a complete
and consistent view is necessary if the output quality of the working system is to be at its
best. Therefore, It will be of advantage if the linguistic knowledgé are kept in a definite
form. In this way the descriptive language will make it-easier to build the environment for
the computer to support the knowledge consistency needed by the working system.

Criterions of Descriptive Language

- In designing a descriptive language it is important to keep the following three criterions
in mind. The first criterion is that its interface must be user-friendly and the format should
be declarative. The rule format should be declarative because declarative rule is easier to
write and it screens the knowledge representation from the issues of the underlying system.
This is important because the user will be the linguist instead of the computer engineer.
Therefore the user should not be hindered with any detail of the system. The second criterion
is that it should be linguistic felicitous [SHIE 85][SHIE 86]. This implies that the descriptive
language should be flexible and powerful enough to let the linguist represent their knowledge
and it should also be natural in the linguistic sense. This will make the maintaining of the
knowledge easier for the linguist. The third criterion is that the linguistic information stored
internally should be in a form such that a runtime efficient driving mechanism is possible to
implement. This is a must if we do not want to slow down the speed of the natural language
processing system. :

Format of a Descriptive Language

In our system, we have a linguistic module called the condition and action. The linguistic
rules in this module place condition tests on grammar rules being applied and adopt some

—233 —

actions if the conditions are satisfied. It is similar in idea to the condition and action used in
the ATN [WINO 83]. Following is a subset of the syntax of the descriptive language defined
for the condition and action rules.

test2 : ASSIGN what TO wherel
ftype . TERMINALWORD (wherel . < aRVARIABLE >) . wpropty
wherel : PARENT | CHILD | aCVARIABLE

In the above, the lower case terms are the non-terminals and the upper case terms are
the terminals or the reserved words in our grammar. This syntax is a context-free grammar
with a total of 57 grammar rules. Following are some of the condition and action rules in
our system written according to the descriptive language defined above.

1: [assign (parent.<R_Head>).<A;Aspt>. to parent |

This is an example of attribute percolation from a child to its parent. This rule assigns
the aspect attribute of the child, which is the head in the current node’s role register [WINO
83], to the current node.

2: [terminalword(parent.<R_Head>).stem is ("more”)]

This is an example of a condition test that determines whether the terminal word governed
by the head attribute of the current node is the word “more”. If the condition test fails, the
current grammar rule being applied will be blocked and the next grammar rule will be tried.

3: if [terminalword(parent.<R_Head>).Morf is ("er”)]
then [assign (”cprt”) to parent |

This is an example of doing a conditional check before a direct assignment of an attribute
to the current node.

Although each of the three rules mentioned above has different functions, their formats
are similar. The rule format for this descriptive language was designed after several meeting
with our linguist to make sure that it will give the expressive power they need and that it
will be easy for them to understand and write the rules. ‘

Design Experience

_ There are several linguistic modules that can be implemented using the descriptive
language. They are the Condition and Action module, the Transfer Rule module, the Grammar
Rule module, and the Knowledge module. Every module’s knowledge is distinctly represented
because their functions during the translation process are different. For example, the transfer
rules are used in the transferring phase and the condition and action rules are used in the
analyzing phase. .Therefore the descriptive language will have different format for each
module if we want to retain the properties that are best suited for their functions. As a result,
each module will become an individual linguistic kernel within the descriptive language
support system. A block diagram of this support system is shown in Figure 2. ‘

In Figure 2 , each linguistic kernel in this support system will maintain their own
independent rule base as their private data. If the linguists want to make changes to a
kernel’s rule base, they will have to interact directly with that kernel. At the present, one of

—234 —

linguistic kernel # 1

Linguists

4 linguistic kernel # 2

linguistic kernel #n

descriptive language support systmi

Figu 2. Descriptive language support system

the linguistic kernels is completed in our system and it is the condition and action kernel. A
simple block diagram which shows how this kernel is implemented is in Figure 3.

The condition and action kernel is separated into two main distinct parts according to their
basic intended purposes. The first is the user interface and rule base maintainer. The second .
is the code generator. The user interface will process the linguist’s request to. insert, update
or delete rules. It will also make a quick syntactic check on the rule format and prompt the
user if the rule is not in the correct format. This part also does the housekeeping chores like
updating database’s general information. The task of code generator is to take legal rules and
generate procedures in C for each of the rules.

The condition and action rules written by the linguist through the descriptive language
are very rigid in construction and rarely altered once they are written. Therefore developing
a kernel for the Condition and Action module can be seen similar to that of developing a
compiler which in this case will accept the linguistic knowledge rules as its input and produce
codes recognizable by the system as its output.

Looking at the block diagram of Figure 3, if the user interface and the code generator
blocks are combined, it is similar to the conventional compiler that takes in condition and
action rules and produces the corresponding routines in C language. But there are several
features in this kernel’s approach that makes it different from the traditional compiler. The
first feature is that the rules can be changed incrementally and are kept in a private rule base.
The second feature is that this kernel has an on-line interactive user interface (it also has a
batch-mode). The third feature is that this kernel will give immediate feedbacks to user on
ill-formed rules. All three features mentioned above are intended to make this kernel user
friendly and .easy to use. And the last feature is that the object code is in C instead of in any
lower level language. The reason for this is because the good readability of C procedures

— 235 —

Linguists

ﬁm%iﬁé%éﬂ%%ﬁ% i

rules

. provided by the
user interface lexical analyz
& system progranmer
rule base interface parser
maintanance utilities
prc-déﬂnod rule
| logal rul ;
g’ rutes grammar of the
‘ : condition & action
code gen.
code _ parser
generator [wtiities |
kernel .
R SR e
: condition & action’s
'V ‘
primitivas :
C routines X provided
transiated from the by the
knowladge rules "
user defined k_ system
revtines ‘ programmer

Figure 3. The condition and action kernel

which will be of advantage during debugging. The one extra step of compiling the C program
will not matter much since it will not affect the working system at the runtime.

In this kernel, YACC is used in creating parsers for the user interface block and for
the code generator block. The reason for having two parsers is because their functions are
different and so their syntax rule grammars for the YACC are different. The parser for the
user interface is for doing the syntax check and the parser for the code generator is for
driving the code generation. With the rigid form of the condition and action rules, the parser
produced by YACC is more than adequate. With the procedures translated automatically from
the linguistic rules, this compiler solution frees the computer engineers from hand-coding each
new procedure as rules are added or updated. Figure 4 shows how the condition and action
module’s knowledge is mcorporated into the working system. In the figure, the C routines
are first compiled into machine executable codes and then included into the working system.

Several design decisions were made in des1gnmg this kernel. First, at the user’s level the
condition and action rule remains in their declarative rule form for the linguistic friendliness.

— 236 —

the condition and
action kernel
: ¢ routines transiated
from the knowledge rules
C compiler
machine exet‘:ulablc
code
it parser syniax

ﬁ ‘—
. sentence trees

- Figure 4. The incoporating of linguistic
knowledge into the parser

But at the system’s level, rules are translated into procedures to improve the run-time efficiency
of the system. This is possible because of the stable nature of the condition and action rule.
Rules of other kernels might not exhibit such property and so different design choice must
be made. Another design decision is in allowing the inclusion of user-defined routines in
contrast to expanding the rule grammar format to include exceptional and rare cases.

An actual session of this kernel accepting a condition and action rule is in appendix.
Note, If a rule is ill-formed the system will let the user be aware of and immediately asks
for a correct one.

Consistency Controller

With all the linguistic knowledge organized into rigid formats by using the descriptive
language, it is simpler to construct the consistency controller, whose purpose is to maintain
~ a consistent logical view of knowledge for our working system. Figure 5 is a general block
diagram of the relation between the descriptive language support system and the consistency
controller.

In Figure 5, The globally shared data and primitives are controlled by the consistency
controller. For example, the category table which is referenced by every linguistic module
will be kept here. When requested by the linguist through the descriptive language support
system, the consistency controller will do all the global changes and updates the shared data.
~ For example, if a grammar rule is altered, all the rules in other kernels that are dependent
on that grammar rule will have to be checked for validity. It is the consistency controller’s
job to let the linguist know which one might need to be altered. The reason for this is
to avoid missing any of the changes needed. in other related kernels when the linguistic
knowledge is altered in one of the kernels. With all linguistic modules integrated into one
descriptive language support system, and with a centralized consistency controller the chance
of inconsistency will be small. ')

— 237 —

Linguists

1l

global data
descrip tive g
longuage
support

N global
- primitives

Figure 5. Consistency controller

Conclusion

In a natural language processing system, it is essential to have the linguist transfer and
maintain the linguistic knowledge directly with the system. The descriptive language proposed
is a linguistic tool that will support the linguists in transferring their linguistic knowledge
directly into the system. Moreover, as a diréct consequence of having a descriptive language
and its support system, the linguistic knowledge will be organized into a clear and definite
form. With this, a consistency controller can be constructed for maintaining the knowledge
consistency needed in a natural language processing system.

For our machine translation system, a descriptive language is provided and the linguistic
kernel for one linguistic module, the Condition and Action, is completed. This descriptive
language will allow our linguist to write condition and action rules and transferring them
into the system directly.

Appendix

This is an actual session of running the condition and action module.

[WELCOME TO CONDITION AND ACTION MODULE Il

your name :mei

Select one .. 0 - to exit,

1 - to lookup,

2 - to change condition and action,
3

- to change user. defined routine,

— 238 -

4 - to initialize condition and action,
5 - to initialize routines,
0 to 5 => 2

%k %k sk Kk Kk ok k ok Kk Kk ok Kk Kk Kk ok k Kk ok k Kk ok ok kK Kk ok ok ok ok ok ok Kk ok ok ok sk ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok ok ke Kk

* % Condition and Action , * %
% %k Kk Kk Kk Kk k Kk Kk Kk Kk Kk k k k k k ok k k Kk k Kk Kk Kk k Kk %k %k k Kk %k k sk k %k sk %k %k Kk k Kk %k kK Kk ok ok ok ok kb ke k ko ok ok ok ok

- to exit,

- to add new condition and action,
- to update condition and action,
- to delete condition and action,

Select one

w N = o

0 to 3 =>1

Name of the condition or action => testl

definition : (type "end" or return to exit)
>>[assign (parent.<R_head>) to barent]

>>

comment : (return to end)

>>test rule

>>

/* If the input’s format is incorrect, the */
/* system will show the erroneous input and*/
/* ask the user to try it again. *x/

following is an erroneous input -- lets do it again

/* system show the bad input to the user x/
-- temporary file --
[assign (parent.<R_head>) to parent]

definition : ' (type "end" or return to exit)
>>[assign (parent.<R_head>).<A_aspt> to parent]
accept !

Select one .. 0 - to exit,
1 - to add new condition and action,
2 - to update condition and action,

— 239 —

, 3 - to delete condition and action,
0 to 3 =>0

are you sure of the changes? (y/n) y

References

[AHO 86] Aho, A.V., R. Sethi and J.D. Ullman, 1986. Compilers, principles, techniques
and tools, Addison-Wesley, Massachusetts. ,

[BEES 88] Beesley, K.R. and D. Hefner, 1988. "PERIPHRASE: A High-Level Language
for Linguistic Parsing”, company communication note from Automated Language Processing
Systems, Utah. A

[BOGU 88] Boguraev, B., J. Carroll, E. Briscoe, and C. Grover, 1988. Software Support
for Practical Grammar Development,” Proceedings of the 12th International Conference on
Computational Linguistics, vol. 1, Budapest, Hungary. PP. 54-58.

[PERE 84] Pereira, F.C.N. and S.M. Shieber, 1984. “The Semantics of Grammar
Formalisms seem as Computer Languages”, Proceedings of the Tenth International Conference
on Computational Linguistics, Stanford University, California. PP. 123-129.

[PRAT 73] Pratt, Vaughan R., 1973. A Linguistics Oriented Programming Language”,
Proceedings of the Third International joint Conference on Artificial Intelligence, Stanford
University, California. :

[SHIE 84] Shieber, S.M., 1984. *The Design of a Computer Language for Linguistic
Information”, Proceedings of the Tenth International Conference on Computational Linguistics,
Stanford University, California. PP. 362-366.

[SHIE 85] Shieber, S.M., 1985. “Criteria for designing computer facilities for linguistic
analysis”, Linguistics, pp. 189-211.

[SHIE 86] Shieber, S.M., 1986. An Introduction to Unification-Based Approaches to
Grammar, CSLI, Stanford University, California.

[WINO 86] Winograd, T., 1986. "MUIR: A Tool for Language Design”, technical report
of CSLI , Report No. CSLI-87-81, CSLI, Stanford University, California. '

[WINO 83] Winograd, T., 1983. Language as a cognitive process, Yol. 1, Addison-
Wesley, Massachusetts.

_ 240 —

	R88-1001.pdf
	R88-1002.pdf
	R88-1003.pdf
	R88-1004.pdf
	R88-1005.pdf
	R88-1006.pdf
	R88-1007.pdf
	R88-1008.pdf
	R88-1009.pdf

