

Computational Linguistics and Chinese Language Processing

Vol. 18, No. 4, December 2013, pp. 31-44 31

 The Association for Computational Linguistics and Chinese Language Processing

Correcting Serial Grammatical Errors based on

N-grams and Syntax

Jian-cheng Wu, Jim Chang, and Jason S. Chang

Abstract

In this paper, we present a new method based on machine translation for correcting

serial grammatical errors in a given sentence in learners’ writing. In our approach,

translation models are generated to translate the input into a grammatical sentence.

The method involves automatically learning two translation models that are based

on Web-scale n-grams. The first model translates trigrams containing serial

preposition-verb errors into correct ones. The second model is a back-off model,

used in the case where the trigram is not found in the training data. At run-time, the

phrases in the input are matched and translated, and ranking is performed on all

possible translations to produce a corrected sentence as output. Evaluation on a set

of sentences in a learner corpus shows that the method corrects serial errors

reasonably well. Our methodology exploits the state-of-the art in machine

translation, resulting in an effective system that can deal with many error types at

the same time.

Keywords: Grammatical Error Correction, Serial Errors, Machine Translation,
N-grams, Language Model

1. Introduction

Many people are learning English as a second or foreign language: it is estimated there are

375 million English as a Second Language (ESL) and 750 million English as a Foreign

Language (EFL) learners around the world, according to Graddol (2006). Three times as many

people speak English as a second language as there are native speakers of English.

Nevertheless, non-native speakers tend to make many kinds of errors in their writing, due to

the influence of their native languages (e.g., Chinese or Japanese). Therefore, automatic

grammar checkers are needed to help learners improve their writing. In the long run,

automatic grammar checkers also can help non-native writers learn from the corrections and

 Department of Computer Science, National Tsing Hua University

 E-mail: {wujc86; jim.chang.nthu; jason.jschang}@gmail.com

32 Jian-cheng Wu et al.

gradually gain better command of grammar and word choices.

The grammar checkers available in popular word processors have been developed with a

focus on native speaker errors, such as subject-verb agreement and pronoun reference.

Therefore, these word processors (e.g., Microsoft Word) often offer little or no help with

common errors causing problems for English learners (e.g., missing, unnecessary, or wrong

article, preposition, and verb form) as described in The Longman Dictionary of Common

Errors, second edition (LDOCE) by Heaton and Turton (1996). The LDOCE is the result of

analyzing errors encoded in the Longman Learners’ Corpus.

The LDOCE shows that grammatical errors in learners’ writing can either appear in

isolation (e.g., the wrong proposition in “I want to improve my ability of [in] English.”) or

consecutively (e.g., the unnecessary preposition immediately followed by a wrong verb form

in “These machines are destroying our ability of thinking [to think].”). We refer to two or

more errors appearing consecutively as serial errors.

Previous works on grammar checkers either have focused on handling one common type

of error exclusively or handling it independently in a sequence of errors. Nevertheless, when

an error is not isolated, it is difficult to correct the error when another related error is in the

immediate context. In other words, when serial errors occur in a sentence, a grammar checker

needs to correct the first error in the presence of the second error (or vice-versa), making

correction difficult to achieve. These errors could be corrected more effectively if the

corrector recognized them as serial errors and attempted to correct the serial errors at once.

Consider an erroneous sentence, “I have difficulty to understand English.” The correct

sentence should be “I have difficulty in understanding English.” It is hard to correct these two

errors one by one, since the errors are dependent on each other. Intuitively, by identifying

“difficulty to understand” as containing serial errors and correcting it to “difficulty in

understanding,” we can handle this kind of problem more effectively.

Input: I have difficulty to understand English. .

Phrase table of translation model:

difficulty of understanding ||| difficulty in understanding ||| 0.86

difficulty to understand ||| difficulty in understanding ||| 0.86

difficulty with understanding ||| difficulty in understanding ||| 0.86

difficulty in understand ||| difficulty in understanding ||| 0.86

difficulty for understanding ||| difficulty in understanding ||| 0.86

difficulty about understand ||| difficulty in understanding ||| 0.86

Back-off translation model:

difficulty of VERB+ing ||| difficulty in VERB+ing ||| 0.34

difficulty to VERB ||| difficulty in VERB+ing ||| 0.34

difficulty with VERB+ing||| difficulty in VERB+ing ||| 0.34

difficulty in VERB ||| difficulty in VERB+ing ||| 0.34

difficulty for VERB+ing ||| difficulty in VERB+ing ||| 0.34

difficulty about VERB+ing ||| difficulty in VERB+ing ||| 0.34

Output: I have difficulty in understanding English.

Figure 1. Example session of correcting the sentence, “I have difficulty to
understand English.”

 Correcting Serial Grammatical Errors based on N-grams and Syntax 33

We present a new system that automatically generates a statistical machine translation

model based on a trigram containing a word followed by preposition and verb or by an

infinitive in web-scale n-gram data. At run-time, the system generates multiple possible

trigrams by changing a word’s lexical form and preposition in the original trigram. Example

trigrams generated for “difficulty to understand” are shown in Figure 1. The system then ranks

all of these generated sentences and use the highest ranking sentence as suggestion.

The rest of the paper is organized as follows. We review the related work in the next

section. Then, we describe our method for automatically learning to translate a sentence that

may contain preposition-verb serial errors into a grammatical sentence (Section 3). In our

evaluation, we describe how to measure the precision and recall of producing grammatical

sentences (Section 4) in an automatic evaluation (Section 5) over a set of marked sentences in

a learner corpus.

2. Related Work

Grammatical Error Detection (GED) for language learners has been an area of active research.

GED involves pinpointing some words in a given sentence as ungrammatical and offering

correction if necessary. Common errors in learners’ writing include misuse of articles,

prepositions, noun number, and verb form. Recently, the state-of-the-art research on GED has

been surveyed by Leacock et al. (2010). In our work, we address serial errors in English

learners’ writing which are simultaneously related to the preposition and verb form, an aspect

that has not been dealt with in most GED research. We also consider the issues of broadening

the training data for better coverage and coping with data sparseness when unseen events

happen.

Although there are over a billion people estimated to be using or learning English as a

second or foreign language, common English proofreading tools do not target specifically the

most common errors made by second language learners. Many widely-used grammar checking

tools are based on pattern matching and at least some linguistic analysis, based on hand-coded

grammar rules (Leacock et al., 2010). In the 1990s, data-driven, statistical methods began to

emerge. Statistical systems have the advantage of being more intolerant of ill-form,

interlanguage, and unknown words produced by the learners than the rule-based systems.

Knight and Chander (1994) proposed a method based on a decision tree classifier to

correct article errors in the output of machine translation systems. Articles were selected based

on contextual similarity to the same noun phrase in the training data. Atwell (1987) used a

language model of a language to represent correct usage for that language. He used the

language model to detect errors that tend to have a low language model score.

34 Jian-cheng Wu et al.

More recently, researchers have looked at grammatical errors related to the most

common prepositions (9 to 34 prepositions, depending on the percentage of coverage).

Eeg-Olofsson and Knuttson (2003) described a rule-based system to detect preposition errors

for learners of Swedish. Based on part-of-speech tags assigned by a statistical trigram tagger,

31 rules were written for very specific preposition errors. Tetreault and Chodorow (2008),

Gamon et al. (2008), and Gamon (2010) developed statistical classifiers for preposition error

detection. De Felice and Pulman (2007) trained a voted perceptron classifier on features of

grammatical relations and WordNet categories in an automatic parse of a sentence. Han et al.

(2010) found that a preposition error detection model trained on correct and incorrect usage in

a learner corpus works better than using well-formed text in a reference corpus.

In the research area of detecting verb form errors, Heidorn (2000) and Bender et al.

(2004) proposed methods based on parse tree and error templates. Lee and Seneff (2008)

focused on three cases of verb form errors: subject-verb agreement, auxiliary agreement, and

verb complement. The first two types are isolated verb form errors, while the third type may

involve serial errors related to preposition and verb. Izumi et al. (2003) proposed a maximum

entropy model, using lexical and POS features, to recognize a variety of errors, including verb

form errors. Lee and Seneff (2008) used a database of irregular parsing caused by verb form

misuse to detect and correct verb form errors. In addition, they also used the Google n-gram

corpus to filter out improbable detections. Both Izumi et al. (2003) and Lee and Seneff (2008)

obtained a high error correction rate, but they did not report serial errors separately, making

comparison with our approach is impossible.

In a study more closely related to our work, Alla Rozovskaya and Dan Roth (2013)

introduced a joint learning scheme to jointly resolve pairs of interacting errors related to

subject-verb and article-noun agreements. They showed that the overall error correction rate is

improved by learning a model that jointly learns each of these interacting errors.

3. Method

Correcting serial errors (e.g., “I have difficulty to understand English.”) one error at a time in

the traditional way may not work very well, but previous works typically have dealt with one

type of error at a time. Unfortunately, it may be difficult to correct an error in the context of

another error, because an error could only be corrected successfully within the correct context.

Besides, such systems need to correct a sentence multiple times, which is time-consuming and

more error-prone. To handle serial errors, a promising approach is to treat serial errors

together as one single error.

 Correcting Serial Grammatical Errors based on N-grams and Syntax 35

3.1 Problem Statement

We focus on correcting serial errors in learners’ writing using the context of trigrams in a

sentence. We train a statistical machine translation model to correct learners’ errors of the

types of a content word followed by a preposition and a verb using web-scale n-grams.

Problem Statement: We are given a sentence S = w1, w2, …, wn, and web-scale n-gram,

webgram. Our goal is to train two statistical machine translation model TM and back-off

model TMbo to correct learners’ writing. At run-time, trigrams (wi , wi+1, wi+2) in S (i =1, n-2)

are matched and replaced using TM and the back-off model TMbo to translate S into a correct

sentence T.

In the rest of this section, we describe our solution to this problem. First, we describe the

strategy to train TM (Section 3.2) and TMbo (Section 3.3) using webgrams. Finally, we show

how our system corrects a sentence at run-time using TM, TMbo, and a language model LM

(Section 3.4).

3.2 Generating TM

We attempt to identify trigrams that fit the pattern of serial errors and correction we are

dealing with in webngram, and we group the selected trigrams by their content words and verb

lemmas. Our learning process is shown in Figure 2. We assume that, within each group, the

low frequency trigrams are probably errors that should be replaced by the most frequent

trigram: a one construction per collocation constraint. For example, when expressing

“difficulty” and “to understand,” any NPV constructs with low frequency (e.g., “difficulty for

understanding” and “difficulty about understanding”) are erroneous forms of the most

frequent trigram “difficulty in understanding”. Therefore, we generate TM with such phrase to

phrase translations accordingly.

(1) Select trigrams related to serial errors and corrections from webngram (Section 3.2.1)

(2) Group the selected trigrams by the first and last word in the trigrams (Section 3.2.2)

(3) Generate a phrase table for the statistical machine translation models for each group

(Section 3.2.3)

Figure 2. Outline of the process used to generate TM.

3.2.1 Select and Annotate Trigrams

We select four types of trigrams (t1, t2, t3) from webngram, including noun-prep-verb (NPV),

verb-prep-verb (VPV), adj-prep-verb (APV), and adverb-prep-verb (RPV). We then annotate

the trigrams with types and lemmas of content words t1 and t3 (e.g., “accused of being 230633”

becomes “VPV, accuse be, accused of being 230633). Figure 3 shows some sample annotated

trigrams.

36 Jian-cheng Wu et al.

VPV, accuse be, accused of being 230,600

VPV, accuse kill, accused of killing 83,100

VPV, accuse have, accused of having 78,500

VPV, accuse use, accuse of using 45,200

VPV, accuse murder, accused of murdering 40,032

VPV, accuse be, accused to be 10,200

VPV, accuse prove, accused to prove 3,600

Figure 3. Sample annotated trigrams

VPV, accuse be, accused of being 230,600

VPV, accuse be, accused to be 10,200

VPV, accuse be, accused of is 2,841

VPV, accuse be, accuse of being 2,837

VPV, accuse be, accused as being 929

VPV, accuse be, accused of was 676

VPV, accuse be, accused from being 535

Figure 4. Sample trigram group

accused to be ||| accused of being ||| 0.93

accused of is ||| accused of being ||| 0.93

accuse of being ||| accused of being ||| 0.93

accused as being ||| accused of being ||| 0.93

accuse of was ||| accused of being ||| 0.93

accused from being ||| accused of being ||| 0.93

Figure 5. Sample phrase translations for a trigram group

3.2.2 Group Trigrams

We then group the trigrams by types, the first words, and the verb lemmas. See Figure 4 for a

sample VPV group of trigrams. This step should bring together the trigrams containing serial

errors and their correction. Note that we assume certain serial errors will have a correction of

the same length here, which is true in most cases.

3.2.3 Generate Rules

For each group of annotated trigrams, we then generate phrase and translation pairs with

 Correcting Serial Grammatical Errors based on N-grams and Syntax 37

probability as follows. Recall that we assume that the higher the count of the trigram, the more

likely the trigram is to be correct. So, we generate “l1, l2, l3 ||| h1, h2, h3 ||| p ,” where h1, h2, h3

is the trigram with the highest frequency count; l1, l2, l3 is one of the trigrams with lower

frequency count; and p denotes the probability of l1, l2, l3 translating into h1, h2, h3. We define

p=(highest frequency count)/(group frequency count).

3.3 Generating TMbo

In addition to the surface-level translation model TM, we also build a back-off model as a way

of coping with cases where the trigram (t1, t2, t3) is unseen in TM. The idea is to assume the

complement (t2, t3) of t1 tends to be in a certain syntactic form regardless of the verb t3, as

dictionaries typically would describe the usage of “accuse” in terms of “accuse somebody of

doing something.” Our learning process for TMbo is shown in Figure 9.

VPV, accuse VERB, accused of VERB-ing 230,600

VPV, accuse VERB, accused of VERB-ing 83,100

VPV, accuse VERB, accused of VERB-ing 78,500

VPV, accuse VERB, accuse of VERB-ing 45,200

VPV, accuse VERB, accused of VERB-ing 40,032

VPV, accuse VERB, accused to VERB 10,200

VPV, accuse VERB, accused to VERB 3,600

Figure 6. Sample annotated trigrams

VPV, accuse VERB, accused of VERB-ing 870,600

VPV, accuse VERB, accused to VERB 50,200

VPV, accuse VERB, accuse to VERB 20,200

Figure 7. Sample trigram group

accused to VERB ||| accused of VERB-ing ||| 0.47

accused of VERB ||| accused of VERB-ing ||| 0.47

Figure 8. Sample back-off translations

(1) Select trigrams with specific forms from Web 1T n-gram

(2) Reform trigrams W3 to W3’s lexical

(3) Group the selected trigrams using the first word

(4) Group the selected trigrams using the first word

Figure 9. Outline of the process used to generate TMbo

38 Jian-cheng Wu et al.

3.3.1 Generalize Trigrams

First, we generalize the annotated trigrams (see Section 3.2.1) by replacing the verb form with

its part of speech designator (i.e., replace “accuse” with VERB, and replace “accusing” with

VERB-ing).

3.3.2 Sum Counts

In this step, we group the identically transformed trigrams and sum up the frequency counts.

See Figure 6 for sample results.

3.3.3 Group Trigrams of the Same Context

We then group the trigrams by type and by the first word (context). See Figure 7 for a sample

“accuse P V” group of trigrams.

3.3.4 Generate Rules

For each group of generalized trigrams, we then generate the phrase and translation pair with

the probability as described in Section 3.2.3. See Figure 8 for a sample of back-off

translations.

3.4 Run-time Correction

If one loads TM and TMbo into memory before the decoding process (generating, ranking, and

selecting translations), that would take up a lot of memory and slow the process of matching

phrases to find translations. Therefore, we generate phrase translations on the fly for the given

sentence before decoding. Our process of decoding to correct grammatical errors is shown in

Figure 10.

(1) Tag the input sentence with part of speech information in order to find trigrams that

fit the type of serial errors

(2) Search TM and generate translations for the input phrases

(3) Search TMbo and generate translations for the input phrases

(4) Run statistical machine translation

Figure 10. Outline of the process used to correct the sentence at run-time

3.4.1 Tag the Input Ssentence

We use a POS tagger to tag the input sentence, and we identify trigrams (t1, t2, t3) consisting of

a content word followed by a preposition and verb (belonging to the NPV, VPV, APV, or RPV

types we described in Section 3.2.1).

 Correcting Serial Grammatical Errors based on N-grams and Syntax 39

3.4.2 Search TM and Generate Translation Rules

We then search for the group of trigrams (indexed by POS type and t1, t3) in TM containing the

trigrams (t1, t2, t3), found in Step 3.4.1. We find the trigram (h1, h2, h3) with the highest count

in that group. With that, we can dynamically add the translation, “t1, t2, t3 ||| h1, h2, h3 ||| 1.0” to

the cache of TM in memory (e.g., “difficulty to understand ||| difficulty in understanding |||

1.0”) to speed up the subsequent decoding process.

3.4.3 Search TMbo and Generate Translation Rules

Just like in 3.4.2, we use t1 and its part of speech p1 to search TMbo for the generalized trigram

group that matches (t1, t2, t3). We then find the most frequent generalized trigram (h1, h2, h3) in

that group. After that, we need to specialize (h1, h2, h3) for t3 by replacing h3 with the verb

form of t3 for the designator h3, resulting in (h1, h2, h’3). Consider the generalized trigram

“accused of VERB-ing” and t3 = “murder,” the specialized trigram would be “accused of

murdering.” Finally, we add “t1, t2, t3 ||| h1, h2, h’3 ||| 1.0” (e.g., “accused to murder ||| accused

of murdering ||| 1.0”) to the cache of TM in memory for the same purpose of speeding up

decoding.

3.4.4 Decode the Input Sentence without Reordering

Finally, we run a monotone decoder with the cache TM and a language model LM. By default,

any word not in TM will be translated into itself.

4. Experimental Setting

Our system DeeD (Don’ts-to-Do’s English-English Decoder) was designed to correct

preposition-verb serial errors in a given sentence written by language learners. Nevertheless,

since large-scale learner corpora annotated with errors are not widely available, we have

resorted to Web scale n-grams to train our system, while using a small annotated learner

corpus to evaluate its performance. In this section, we first present the details of training DeeD

for the evaluation (Section 4.1). Then, Section 4.2 lists the grammar checking systems that we

used in our evaluation and comparison. Section 4.3 introduces the evaluation metrics for the

performance of the systems, and details of the sentences evaluated and performance judgments

are reported in Section 4.4.

4.1 Training DeeD

We used the Web 1T 5-grams (Brants & Franz, 2006) to train our systems. Web 1T 5-grams is

a collection that contains 1 to 5 grams calculated from a 1 trillion words of public Web pages

provided by Google through the Linguistic Data Consortium (LDC). There are some ten

40 Jian-cheng Wu et al.

million unigrams, 3 hundred million bigrams, and around 1 billion trigrams to fivegrams. We

obtained 104,537,560 trigrams, containing only words in the General Service List (West, 1954)

and Academic Word List (Coxhead, 1999). These trigrams were further reduced to 4,486,615

entries that fit the patterns of four types of serial errors and corrections: an adjective, noun,

verb, or adverb followed by a preposition (or infinitive to) and a verb.

To determine the part of speech of words in the n-gram, we used the most frequent tag of

a given word in BNC to tag words in the trigram.

4.2 Grammar Checking Systems Compared

Once we have trained DeeD as described in Section 3, we evaluated its performance using two

datasets. The first dataset contained sentences written by an ESL or EFL learner with the serial

errors with corrections. The second dataset contained mostly correct sentences in British

National Corpus (BNC) with mostly published works written by native, expert speakers.

The first testset is a subset of the Cambridge Learner Corpus, the CLC First Certificate

Exam Dataset (CLC/FCE). This dataset contains 1,244 exam essays written by students who

took the Cambridge ESOL First Certificate in English (FCE) examination in 2000 and 2001.

For each exam script, the CLC/FCE Dataset includes the original text annotated with error,

type, and correction. From the 34,893 sentences in the 1,244 exam essays, we extracted 118

sentences that contained the serial errors in question. Other types of errors were replaced with

corrections in these sentences.

The second testset is a random sample of 1000 sentences containing trigrams that fit the

error patterns also used to evaluate our system. The four system and testset combinations

evaluated are:

—Learner corpus without back-off model (LRN): The proposed system using only the

surface-level translation model was tested on the first testset obtained from a learner corpus.

—Learner corpus with back-off model (LRN-BO): The proposed system with the additional

back-off model was tested on the first testset obtained from a learner corpus.

—BNC without back-off model (BNC): The proposed system using only the surface-level

translation model was tested on the first testset obtained from the British National Corpus.

—BNC with back-off model (BNC-BO): The proposed system without the back-off model was

tested on the first testset obtained from the British National Corpus.

4.3 Evaluation Metrics

English correction systems usually are compared based on the quality and completeness of

correction suggestions. We measured the quality using the metrics of precision, recall, and

error rate. For the first testset, we measured precision and recall rates while, for the second

 Correcting Serial Grammatical Errors based on N-grams and Syntax 41

testset, we measured the error rate (false alarms). We define precision and recall as:

Precision = C/S (1)

Recall = C/N (2)

where N is the number of serial errors, S is the number of corrections our system found, and C

is the number of corrections where our system was correct. We also computed the

corresponding F-score. Error rate was used in the second dataset described above, and we

define the error rate as follows:

Error Rate = E/T (3)

where E is the number of corrections our system found (which are all wrong, since we were

testing sentences with no errors) and T is the number of sentences tested.

5. Evaluation Results

In this section, we report the results of the evaluation using the dataset and environment

mentioned in the previous section. During this evaluation, 118 sentences with serial errors

were used to evaluate the two systems: LRN and LRN-BO. Table 1 shows the average

precision, recall, and F-score of LRN and LRN-BO. As we can see, LRN performs better in

precision, which is reasonable since the back-off model corrects errors without the

information of the verb involved. LRN-BO performs better in recall because the back-off

model applies when the original model does not cover the case. Overall, LRN-BO performs

better in F-score.

Table 1. Average precision, recall, and F-score of LRN and LRN-BO

 F-Score Precision Recall

LRN 0.43 0.71 0.31

LRN-BO 0.45 0.68 0.33

 Table 2. Average error rate of BNC and BNC-BO

 Error Rate

BNC 0.10

BNC-BO 0.13

During this evaluation, 1000 sentences in BNC that fit the pattern of serial errors but in

fact do not contain errors, were used to evaluate the same two systems: BNC and BNC-BO.

Table 2 shows the average error rate of BNC and BNC-BO. It is not surprising that BNC

performs better than BNC-BO, since BNC always makes fewer corrections than BNC-BO.

Nevertheless, BNC-BO is only slightly worse than BNC.

42 Jian-cheng Wu et al.

6. Conclusions

Many avenues exist for future research and improvement of our system. For example, spell

checking can be done before correcting grammatical errors. Context used to “translate” the

serial errors can be enlarged from one word to two or more words (immediately or closely)

preceding the errors. We can also add one more level of backing off for the context word

preceding the serial errors: from surface word to lemma or from a proper name to named

entity type (PERSON, PLACE, ORGANIZATION). We also can improve the accuracy of part

of speech tagging used in applying the back-off model.

Additionally, an interesting direction to explore is extending this approach to handle

other types of isolated and serial errors commonly found in learners’ writing. Yet another

direction of research would be to consider corrections resulting in more or fewer words (e.g.,

one less word as in *spend time for work vs. spend time working). Or, we could also combine

n-gram statistics from different types of corpora: a Web-scale corpus, a reference corpus, and

a learner corpus. For example, the translation probability can be determined via statistical

classifier training on the learner corpus with features extracted from n-grams of multiple

corpora.

In summary, we have introduced a new method for correcting serial errors in a given

sentence in learners’ writing. In our approach, a statistical machine translation model is

generated to attempt to translate the given sentence into a grammatical sentence. The method

involves automatically learning two translation models based on Web-scale n-grams. The first

model translates trigrams containing serial preposition-verb errors into correct ones. The

second model is a back-off model for the first model, used in the case where the trigram is not

found in the training data. At run-time, the phrases in the input are matched using the

translation model and are translated before ranking is performed on all possible translation

sentences generated. Evaluation on a set of sentences in a learner corpus shows that the

method corrects serial errors reasonably well. Our methodology exploits the state of the art in

machine translation, resulting in an effective system that can deal with serial errors at the same

time.

References

Atwell, E. S. (1987). How to detect grammatical errors in a text without parsing it. In
Proceedings of the Third Conference of the European Association for Computational
Linguistics (EACL), 38-45, Copenhagen.

Bender, E. M., Flickinger, D., Oepen, S., & Baldwin, T. (2004). Arboretum: Using a precision
grammar for grammar checking in CALL. In Proceedings of the Integrating Speech
Tech- nology in Learning/Intelligent Computer Assisted Language Learning

 Correcting Serial Grammatical Errors based on N-grams and Syntax 43

(inSTIL/ICALL) Symposium: NLP and Speech Technologies in Advanced Language
Learning Systems, Venice.

Brants, T., & Franz, A. (2006). The Google Web 1T 5-gram corpus version 1.1. LDC2006T13.

Coxhead, A. (2000). A new academic word list. TESOL quarterly, 34(2), 213-238.

De Felice, R., & Pulman, S. G. (2009). Automatic detection of preposition errors in learner
writing. CALICO Journal, 26(3), 512-528.

Eeg-Olofsson, E., & Knuttson, O. (2003). Automatic grammar checking for second language
learners - the use of prepositions. In Proceedings of the 14th Nordic Conference in
Computational Linguistics (NoDaLiDa).

Gamon, M. (2010). Using mostly native data to correct errors in learners’ writing. In
Proceedings of the Eleventh Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), Los Angeles.

Gamon, M., Gao, J., Brockett, C., Klementiev, A., Dolan, W. B., Be-lenko, D., &
Vanderwende, L. (2008). Using contextual speller techniques and language modeling for
ESL error correction. In Proceedings of the International Joint Conference on Natural
Language Processing (IJCNLP), 449-456, Hyderabad, India.

Graddol, D. (2006). English next: Why global English may mean the end of ‘English as a
Foreign Language.’ UK: British Council.

Han, N.-R., Tetreault, J., Lee, S.-H., & Ha, J.-Y. (2010). Using error-annotated ESL data to
develop an ESL error correction system. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC), Malta.

Heidorn, G. E. (2000). Intelligent writing assistance. In R. Dale, H. Moisl, and H. Somers,
editors, Handbook of Natural Language Processing, 181-207. Marcel Dekker, New
York.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., & Isahara, H. (2003). Automatic error
detection in the Japanese learners’ English spoken data. In Companion Volume to the
Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (ACL), 145-148.

Knight, K., & Chander, I. (1994). Automated postediting of documents. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI), 779-784, Seattle.

Leacock, C. et al. 2010. Automated grammatical error detection for language learners.
Synthesis Lectures on Human Language Technologies, 3(1), 1-134.

Lee, J., & Seneff, S. (2006). Automatic grammar correction for second-language learners. In
Proceedings of the Ninth International Conference on Spoken Language Processing
(Interspeech), 1978-1981.

Lee, J., Tetreault, J., & Chodorow, M. (2009b). Human evaluation of article and noun number
usage: Influences of context and construction variability. In Proceedings of the Third
Linguistic Annotation Workshop (LAW), 60-63, Suntec, Singapore.

44 Jian-cheng Wu et al.

Rozovskaya, A., & Roth, D. (2013). Joint Learning and Inference for Grammatical Error
Correction, In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, 791-802.

West, M. (1953). A General Service List of English Words. London: Longman, 1953.

Yannakoudakis, H., Briscoe, T., & Medlock, B. (2011). A New Dataset and Method for
Automatically Grading ESOL Texts, In Proceedings of the Annual Meeting of the
Association for Computational Linguistic.

