
A simple real-word error detection and correction using local word
bigram and trigram

Pratip Samanta
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute, Kolkata
pratipsamanta@gmail.com

Bidyut B. Chaudhuri
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute, Kolkata
b bcisical@gmail.com

Abstract
Spelling error is broadly classified in two categories namely non word error and real word
error. In this paper a localized real word error detection and correction method is proposed
where the scores of bigrams generated by immediate left and right neighbour of the candidate
word and the trigram of these three words are combined. A single character position error
model is assumed so that if a word W is erroneous then the correct word belongs to the set of
real words S generated by single character edit operation on W. The above combined score is
calculated also on all members of S. These words are ranked in the decreasing order of the
score. By observing the rank and using a rule based approach, the error decision and
correction candidates are simultaneously selected. The approach gives comparable accuracy
with other existing approaches but is computationally attractive. Since only left and right
neighbor are involved, multiple errors in a sentence can also be detected (if the error occurs
in every alternate words).

Keywords: Real word error, Local context.

1. Introduction

Word error is a major hindrance to the real world applications of Natural Language
Processing. In textual documents, word-error can be of two types. One is non-word error
which has no meaning and other is real word error which is meaningful but not the intended
word in the context of the sentence. Of these, non-word has been widely studied and
algorithms to detect and suggest correction word for the error have been proposed. These
algorithms are generally termed as spell-checker, which are integrated in various word-
processing software like Microsoft Word1, LibreOffice Writer2, Ispell3, Aspell4 etc. For error
occurring at two positions of a word, the commercial spell checkers work fairly well. Some
studies on spell checking approaches are found in [1-5], that include English and non-English
language like Bangla.
However, the problem of real-word error is a more complex one. Usually, such error disturbs
the syntax and semantics of the whole sentence, which requires human-being to detect it.
However, an automatic syntactic/semantic analysis of a 'correct' sentence itself is a difficult

1 Microsoft Word is a word processor developed by Microsoft.
2 LibreOffice Writer a free open-source word processor.
3 Ispell is spell-checker for Unix.
4 Aspell is a free spell-checker for GNU software system.

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

211

mailto:berlin@ntnu.edu.tw

task and the analysis of an 'erroneous' sentence is almost impossible in most cases. Any
word-error can be represented in terms of insertion, deletion or substitution of one or more
character. If we consider 'space' as one character, the problem can become more complex. For
example, the word 'within' can become 'with' and 'in' if a 'space' is inserted wrongly after 'h'.
Conversely, 'with' and 'in' can be merged to 'within' if a 'space' is unintentionally missed. This
can be regarded as 'Split error' or 'Prune-on error'. Exploring further, 'these' can be split into
'the' and 'se'. This is an example of mixed case where the first part is real-word error and the
second part is non word error, making them more difficult to correct. Real-word errors are
also found in dyslexic text written by person having Dyslexia. Moreover, not only human-
beings, these errors can occur due to 'Auto Correction' feature of some word processing
software [6]. Sometimes by man and machine together, when user chooses a wrong word
from list of suggestion against a flagged error by word processing software [7] .

To the best of our knowledge, the problem of real-word error is still at the research and
development stage where instead of going at the full sentence level, anomaly is searched at
the word bigram or trigram level. The first work in this direction was due to Mays et al. [8]
who considered word trigram i.e. Second order Markov process for language modelling. If a
word (W) in the sentence is unintended (i.e. erroneous) , then the correct word is assumed
to come from the members of confusion set of real word C(W) of W generated by single edit
operation. In this model, the observed word W is assumed to be correct with probability or
degree of belief α. Hence any member of C(W) is equally likely to be a correction candidate
with constant probability (1- α) / n where n is the cardinality of C(W). The member for which
the sentence probability is maximum is the correction word.
In this paper we present a simpler method to deal with the real word errors based on bigram
and trigram model. The method tries to detect an error by noting bigrams and trigram
constituted by immediate left and right neighbour of candidate word and then generate some
suggestions according to ranks/score calculated for the correction set of words. Here we use
BYU5 corpus of bigram and trigram corpus while test our method on text from Project
Gutenberg6.
This paper is organized as follows. Section 2 covers overview of related work. In section 3
we present our method. Section 4 highlights evaluation and experimental results.
Concluding remarks are given in section 5.

2. Related Work

Apart from Mays et al. [8], several other methods have been proposed to handle real word
spelling error problem. They are mainly based on either semantic information or machine
learning and statistical method.
Among them, Golding and Schabes [9] introduced a hybrid approach called 'Tribayes'
combining Trigram and Bayes' method. Trigram method uses part-of-speech trigrams to
encode the context whereas Bayes' is a feature-based method. They use two types of
features : context word and collocations. Their method worked better than MS-Word on a
predefined confusion set. Later Golding with Roth [10] proposed a Winnow-based method
for real word detection and correction. They modified the previous method [9] by applying a
winnow multiplicative algorithm combining variants of winnow and weighted majority
voting and achieved better accuracy. However , they used a small data set in their experiment.
Word-net was considered as first lexical resources for real word error by Hirst and St-Onge

5 Details of Brigham Young University corpus can be found at http://corpus.byu.edu/.
6 Project Gutenberg is a collection of free electronic books, or ebooks. Details is available at
http://www.gutenberg.org

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

212

http://www.gutenberg.org/
http://corpus.byu.edu/

[11]. They used a robust database of 1987-89 Wall Street Journal corpus as test data.
Following them [11], Hirst and Budanitsky [6] made a study of the problem on same corpus
of Wall Street Journal. Their method identifies tokens that are semantically unrelated to their
context and was not restricted to checking words from predefined confusion set. They
achieved Recall of 23%-50% and Precision of 18%-25%. In another Word-net based
approach, Peddler [12] showed that semantic association can be useful in detecting real-word
error using some confusion sets especially in case of Dyslexic text [13]. She achieved recall
and precision of correction 40% and 81%, respectively for Dyslexic text. But most of these
approaches consider that writers make spelling error by writing words which are semantically
closer to what they intended to write. But this may not be generally true for Real-word error.
W. O. Hearn et al. [7] analysed the advantages and limitations of Mays' [8] method and
present a new evaluation to compare with Hirst and Budanitsky [6]. They showed that
optimizing over sentences gives better result than the variants of the algorithm which
optimize over fixed length of windows on WJS corpus data.
Statistically based approaches are highly dependent on corpora--its size and correctness.
Results vary with its size and existence of words. Our approach is based on the notion that
words used less frequently are less likely to be an instance of real-word error.

3. Proposed Method

Our proposed algorithm initially chooses a confusion set for each candidate word using
Levenshtein distance [14] equal to one from the dictionary words. Then it calculate the ranks
of the elements of the confusion set. Based on that it detects an error and suggests some
words against the detected error. Both detection and suggestion are computed simultaneously,
which is an advantage of this algorithm.

3.1. Confusion Set by Levenshtein Distance

The confusion set for a test word (W) is a set of words from the lexicon which can generate
W by single edit operation. As stated, we use Levenshtein Distance, also known as as
minimum edit distance, which is the minimum number of edit operations required to
transform one word into another. An edit operation is either an insertion, deletion or a
substitution of a character in the word. In our proposed model, for simplicity, we consider
single error in the word. The confusion set may be represented as

C (W i)={W 1
i ,W 2

i ,. . .,W j
i , . .. ,W ki

i }

where W i is the i-th word in the test sentence and k i is number of elements in the C(W i
) .

To generate this set we use a list of approximately 110,000 English words7. For convenience
we rename W i as W 0

i and define

C' (W i)={W 0
i ,W 1

i ,W 2
i , .. . ,W j

i ,. . .,W ki

i }

3.2. Forming N-gram model

Now we consider the sets of left bigram, right bigram and trigram for each member of
C ' (W i

) . We try to form them by taking left word, right word and both of them (for

7 http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

213

http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt

trigram). By this, the number of each type of Bigrams as well as Trigrams generated for W i

is k i+1 . Thus for W i , the following Bigrams and Trigram will be generated.

Left Bigram : W i−1W j
i

Right Bigram : W j
i W i+1

Trigram : W i−1 W j
i W i+ 1

where 0 ≤ j ≤ k i

Next we count the occurrence of these bigrams and trigrams from the BYU n-gram corpus of
English.

3.3. Estimating N-Gram Probabilities

One of the ways to calculate probability of the sentence in N-gram model is using Markov
chain rule. According to Markov assumption, probability of some future event (next word)
depends only on a limited history of preceding events (previous words). For example in a
bigram language model for a sentence of m words W 1 ,W 2, ... , W m it can be calculated as

P (W 1 ,W 2 , .. . ,Wm) =
P (W 1∣Ь) P (W 2∣W 1) P (W 3∣W 2) .. . P (W m∣W m−1) P (Ь∣W m)

where Ь denotes blank.
In our model we do not calculate the sentence probability. We take a weak assumption that
occurrence of any event (word) depends on its previous and next events (words) only and
independent of other events (words) in the sentence. By Maximum Likelihood Estimation
we get the bigram and trigram probabilities as

P1 (W j
i∣W i−1) =

count (W i−1W j
i)

∑
r=0

k i

count (W i−1 W r
i)

 (1)

P2 (W j
i∣W i+ 1) =

count (W i+1W j
i)

∑
r=0

k i

count (W r
i W i+1)

 (2)

P3 (W j
i∣W i−1 ,W i+1) =

count (W i−1 W j
i W i+ 1)

∑
r=0

ki

count (W i−1W r
i W i+1)

 (3)

By equation (1) , we calculate P1 of each element of confusion set for each word using left
bigram count. The denominator here represents the summation of all bigrams consisting of
the previous word and one word from the confusion set. We get the counts directly from the
BYU corpus. In the same way we compute P2 using right bigram count in BYU corpus by
equation (2). We compute it for every elements in respective confusion set so that the
following condition is satisfied :

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

214

∑
r= 0

k i

P1 (W r
i
∣W i−1) = 1

∑
r= 0

k i

P2 (W r
i
∣W i+1) = 1

For equation 3, we use the trigram count of BYU corpus. The denominator here represents
the summation of all trigram consisting of the previous word, one word from the confusion
set and the next word. We get numerator value as before. We do it for every elements in
confusion set so that it implies :

∑
r= 0

k i

P3 (W r
i
∣W i−1 ,W i+1) = 1

We combine the probability estimates of equations (1), (2), (3) into a score of evidence that a
W j

i may be correct alternative to W i . The score can be obtained by simple addition as
follows. The values obtained from equation (1), (2) and (3) can be combined to get the final
score Score (W j

i) by adding up. We use both the bigrams and trigram to be less dependent on

a particular bigram or trigram.

Score (W j
i) = P1 (W j

i ∣W i−1)+P2 (W j
i ∣W i+1) +P3 (W j

i∣W i−1 ,W i+1) (4)

Note that 0 <= Score (W j
i) <= 3. Later on we noted that simple addition does not lead to best

results. Hence we go for a weighted combinations score.

3.4. Weighted combination score

Higher and lower order n-gram models have different strengths and weaknesses . High-order
n-grams are sensitive to more context, but have sparse counts. On the other hand, low-order
n-grams consider only very limited context, but have robust counts. In order to follow the
principle of Interpolation we put a weighting scheme on score generated by trigram.
Combining them like equation (4) :

Score (W j
i) = λ1 P1 (W j

i∣W i−1)+λ2 P2 (W j
i∣W i+1)+λ3 P3 (W j

i ∣W i−1 ,W i+1) (5)

The values of λ1, λ2 and λ3 can be computed by optimizing the accuracy on the training set.
Let λ1 + λ2 + λ3 = 1 . We noted by trial and error that the results on the training set are best if

λ3 = 2λ2 = 2λ1 . Then λ1 = λ2 = 0.25 we get λ3 = 0.5 . Also, W j
i is limited by

0 ≤ Score (W j
i)<= 1

3.5. Error detection & choice of suggestions

To confirm a word as a real-word error, we set some rules. At first, we arrange the score for
members of confusion set in a descending order. Also a Stemming8 method described later
with an example, is used in our error detection. In addition to the above, we have used the

8 According to Wikipedia, 'In linguistics morphology and information retrieval, Stemming is process for
reducing inflected (or sometimes derived) words to their stem, base or root form-generally a written word
form'.

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

215

apriori belief that the observed test word is not a real word error. In their experiment Mays et
al. obtained optimum value of this belief as 0.99 [8] which is used in our case as well. In
other words, we believe that the test word can be a real word error in 1% cases. This value is
used in normalizing the score in the real-word error detection algorithm described below.

Let W i be a test word in the sentence. If W i has a suffix part it can be stemmed into a root
word say W s

i . But if W i is a root word, it cannot be stemmed. Thus, W s
i may or may not

exist, depending on the nature of W i . Now, depending on the scores we make the decisions
described in pseudo-code as follows.

Begin
if Score (W i)= 0

if W s
i exists

if Score (W s
i) = 0

declare W i as real-word error
else

W i is correct
 end if
else

declare W i as real-word error
 end if
else

if W s
i exists

if Score (W s
i) < 0.01 * Score of Top-ranked element of confusion set

declare W i as real-word error

else
W i is correct

end if
else

W i is correct
end if

end if
End

The above rules are now illustrated by an example. In a stream of text “... new lodger made
his appearance ink my modest bachelor quarters, but I was not ...” , the word 'ink' is actually
a real-word error.
In our approach, the system starts processing one word after another. While processing the
word 'his', we have the confusion set { his, him, this, is, has }. For each of these words we
calculate the score the score and arrange it in decreasing order of magnitude, as shown in
Table 1.

Rank Confusion Word Score

1 his 0.3153

2 him 0.1177

3 this 0.0619

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

216

4 is 0.0044

5 has 4.9629E-4

Table 1: Confusion set for word “his” with score

Since 'his' is on top of the list, the system infers that it is a correct word.
In case of the word 'appearance', we get the following results and it is also declared as a
correct word.

Rank Confusion Word Score

1 appearance 0.2256

2 appearances 0.0243

Table 2: Confusion set for word “appearance” with scores

 Now, for the word 'ink' we get the confusion set { in, sink, ink }

Rank Confusion Word Score

1 in 0.4998

2 sink 1.2672E-4

3 ink 0

Table 3: Confusion set for word “ink” with score

However, there is no count of the bigrams 'appearance ink' and 'ink my' as well as no count of
the trigram 'appearance ink my' in the BYU corpus. So, the score of 'ink' is 0 and hence it is
declared as real-word error. Since 'in' tops the score, the system considers it as the correct
suggestion.
But score zero may not always mean that the word is an error. Sometimes a bigram/trigram
score may be zero because it is absent in the particular corpus. For example, consider the
word 'quarters'. From BYU corpus we get

Count (bachelor quarters) = 0
Count (quarters but) = 0

Count (bachelor quarters but) = 0

So we shall get zero score for the word 'quarters' and the system would declare 'quarters' as a
wrdong word. But in reality 'quarters' is a correct word. So, the system will make an error. In
order to reduce such incorrect decisions we do a kind of suffix stripping or stemming. In this
case if we strip the plurality suffix -s, we get 'quarter'. Now, the bigrams and trigram
generated by 'quarter' are not null in the corpus and hence the score is also non-zero, as
shown in Table 4. Thus we include the stemmed word in the confusion set if the score for the
test word is zero.

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

217

Rank Confusion Word Score

1 quarter 0.25

2 quarters 0

Table 4: Confusion set for word “quarter” with score

Some of the frequent elements we consider for stemming are given below :

{d, n, r, s, y, ed, es, ly, ies}

Now we have a word (W i) decided as real-word error or not along with scores of the
members of its confusion set. If decided as real-word error, we rank the members of the
confusion set in descending order as suggestions for correction.

4. Experimental results and discussion

In order to evaluate our approach we collected test data from Project Gutenberg. We chose
Project Gutenberg because it contains simple text files only, especially with no pictures i.e.
only stream of text. Our data consists of around 100 files (approximately 25000 words) with
headings removed.
We simulated real-word error synthetically and subject this erroneous document to our error
detection and correction system. To make such a corrupted document, one in every 20 words
is chosen. Suppose this current word is W. Then W is converted into a set of strings by one
edit operation (insertion, deletion, substitution) at one character position. If W contains n
characters then n substitutions, n deletions and n+1 additions will create 3n+1 strings. From
all the generated strings we find those which are valid words. One of these valid words is
chosen at random and W is replaced by this word. In this way we introduce 100/20 = 5%
real-word error in the corpus. Here we have considered real-word error generated by single
operation like substitution, deletion or insertion.
While typing people make single position character mistake in between 60%-80% of the
erroneous cases [2]. A small portion of that becomes real-word error. Out of the rest 20%-
40% two or more position mistakes, the chance of getting real-word error is even smaller. So,
single portion mistyping based model can take care of a very high percentage of real-word
errors. We give this qualitative statement because we did not find any robust statistics of the
real-word errors presented in the published literature.
The performance of our approach can be evaluated from three aspects. The first one is to
compute Precision and Recall of real-word error detection. Let n1 be the number of total
errors, n2 be the be number of total detection and n3 be the number of correct detection.
Then,

Precision =
n3

n2

Recall =
n3

n1

While precision gives how precisely the system detects the error, we do not get an estimate
on relative number of errors made by the system. The number of errors made by the system is

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

218

(n2 − n3) . However, n2 can theoretically be equal to the total number of words in the test
corpus (say N). So, we may normalize (n2 − n3) with respect to N and represent it in percent
as

Percent of erroneous detection =
(n2−n3)

N
∗ 100 %

Table 5 shows Precision, Recall and percentage of erroneous detection. It is significantly
better than [6] though test database is different.

Detected Real-word Error Erroneous
DetectionPrecision Recall

71%-79% 81%-88% 1%-2%

Table 5: Evaluation results of Detection by our approach

If words in the sentence are real-word error which have been detected by the system, then the
relative ranks of correct suggestion generated by the system is shown in chart 1.

Chart 1 : Evaluation results of ranks of suggestions

It is noted that top-ranked suggestion is correct in 85% cases. Also, the correct suggestion lie
in the top two ranks in 85+8 = 93 % cases. This shows that our proposed method can work
very well by substitutions from our ranked list.

5. Conclusion

A simple but effective real-word error detection and correction approach is proposed here
that employs only two bigrams and one trigram around the test word in a sentence. Since it
works in a small neighbourhood around the test word, possibility of detecting and correcting
more than one real-word error exist. The overall performance of the system on a moderate
test set is quite satisfactory and comparable with those of state art correction systems.
Evaluation of this method on global databases like Wall Street Journal corpus is a future
scope of the work. The n-gram database used here is not huge, hence many valid bigrams and
trigrams are not found in it, thus making the system less accurate. We tried to reduce such
error by employing the stemming based method. This system may be further strengthened by
using Word-net, which is our plan for future work. Test of this approach for Indian language
text is another scope of future study.

85%

8%

7%
Rank 1

Rank 2

Rest

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

219

6. Acknowledgement

Authors would like to thank Supriya Das and Purnendu Banerjee for useful discussion.

7. References

[1] F. J. Damerau. A technique for computer detection and correction of spelling errors,
communication of ACM, 7(3), 171-176, 1964.
[2] Karen Kukich. Techniques for automatically correcting words in text, ACM Computing
Surveys, 24 (4), page 377 - 439, 1992.
[3] B. B. Chaudhuri. Reversed word dictionary and phonetically similar word grouping based
spell-checker to Bangla text, Proc. LESAL Workshop, Mumbai, 2001.
[4] Joseph J. Pollock and Antonio Zamora. Automatic spelling correction in scientific and
scholarly text, Communication ACM, 27(4):358–368, 1984.
[5] Peterson James. Computer Programs for Detecting and Correcting Spelling Errors,
Computing Practices, Communications of the ACM, 1980.
[6] G. Hirst and A. Budanitsky. Correcting real-word spelling errors by restoring lexical
cohesion. Natural Language Engineering, 11(1):87–111, March 2005.
[7] L. A. Wilcox-O’Hearn, G. Hirst, and A. Budanitsky. Real-word spelling correction with
trigrams: A reconsideration of the mays, damerau, and mercer model. In Proceedings of
CICLing-2008 (LNCS 4919, Springer-Verlag), pages 605–616, Haifa, February 2008.
[8] E. Mays, F. J. Damerau and R. L. Mercer. Context based spelling correction. Information
Processing and Management, 27(5):517–522, 1991 .
[9] A. R. Golding and Y. Schabes. Combining Trigram-based and Feature-based Methods for
Context sensitive Spelling Correction. Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics,71-78, 1996.
[10] A. R. Golding and D. Roth. A winnow-based approach to context-sensitive spelling
correction. Machine Learning, 34(1-3):107–130, 1999.
[11] G. Hirst and D. St-Onge. WordNet: An electronic lexical database, chapter Lexical
chains as representations of context for the detection and correction of malapropisms. Pages
305–332, The MIT Press, Cambridge, MA, 1998.
[12] J. Pedler. Using semantic associations for the detection of real-word spelling errors. In
Proceedings from The Corpus Linguistics Conference Series,vol. 1,no. 1,Corpus Linguistics,
2005.
[13] J. Pedler. Computer Correction of Real-word Spelling Errors in Dyslexic Text. PhD.
Thesis, Birkbeck, London University , 2007.
[14] Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, No. 10,707-10, 1966.

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

220

