

1

Context-Aware In-Page Search

Yu-Hao Lin, Yu-Lan Liu, Tzu-Xi Yen, Jason S. Chang

Department of Computer Science

National Tsing Hua University
{ catonmars.lin, ikulan12, joseph.yen, jason.jschang}@gmail.com

Abstract

In this paper we introduce a method for searching appropriate articles from knowledge bases
(e.g. Wikipedia) for a given query and its context. In our approach, this problem is transformed
into a multi-class classification of candidate articles. The method involves automatically
augmenting smaller knowledge bases using larger ones and learning to choose adequate
articles based on hyperlink similarity between article and context. At run-time, keyphrases in
given context are extracted and the sense ambiguity of query term is resolved by computing
similarity of keyphrases between context and candidate articles. Evaluation shows that the
method significantly outperforms the strong baseline of assigning most frequent articles to the
query terms. Our method effectively determines adequate articles for given query-context
pairs, suggesting the possibility of using our methods in context-aware search engines.

Keywords: entity linking, word sense disambiguation, Wikipedia, support vector
machine, search engine

1 Introduction

Today we surf the Internet through search engines most of the time. With the explosive growth
of web pages, the accuracy and relevancy of search results have become ever more important.
Traditional search engines accept keywords, and return a page full of possible relevant results.
Then users can click one of the results to visit the sites they are interested in. We call this type
of search “keyword-search”. Today, almost all search engines are keyword-based.

However, various classes of results mixed in the search results. For example, when a user
query the search engine with the keyword “apple”, the search results comprise of two major
class, “Apple Inc.”, the computer company, and “apple”, a kind of fruit. With only one
keyword, even state-of-the-art keyword-based search engines could not distinguish between
different search intents. Unlike keyword search, context-aware search assume each query is

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

292

2

associated with a context.

Figure 1. An example of context-aware search

Figure 2. The mention “John McCarthy” and its context.

In this paper, we present a prototypical system, In-Page Search, that automatically extract
context information and use them to disambiguate ambiguous queries. Users could select the
terms they are interested in, and then with a click of the mouse, the In-Page Search system
shows a pop-up window with the most relevant results for the given context.(See Figure 1.)
In-Page Search is similar to the “entity-linking problem”, which has long been an active
research topic in IR and Database community. Entity-linking problem could be informally
described as follows: given a knowledge base, in which every entry is an entity and its
associated information. Given a mention and the context with the mention, determine the
correct entity that the given mention really links to. For example, Figure 2 shows the mention
“John McCarthy” and it’s context, in a knowledge base, there are more than 10 entities which
may be linked to “John McCarthy”. The problem is determining the correct entity to link to.
Intuitively, entity-linking could be considered a Named-Entity Disambiguation problem or
more generally, a word sense disambiguation problem.

In our approach, we also exploit the cross-language features in multi-language knowledge
bases. This method augments information in one language with other languages in the same

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

293

3

knowledge base to cope with the data sparseness problem which may be a problem for a
language with less data. We discuss this multi-language model and the definitions of various
link-based similarity measures in Chapter 3.

At run-time, In-Page Search starts with a query together with its context page submitted
by the user. The system then extracts context terms and transforms them into machine-readable
features. Finally, the system uses a SVM model (Chang and Lin, 2011) trained on a knowledge
base to determine which entity in the knowledge base should be linked to the current query, and
output a summarized abstract of this entity to the user. The results could be further augmented
for other purposes. For example, for the input links to a geographic entity, we could show the
location using a map application.

The rest of this thesis is organized as follows. We review the related work in the following
chapter. Then we describe our preprocessing and runtime algorithm in Chapter 3. We then
report on the experimental setup and compare our results to various baselines in Chapter 4.
Conclusions are provided in Chapter 5 along with the directions of future work.

2 Related Work

Search engines and related technology has long been an active research topic in information
retrieval and natural language processing. Most modern search engines (e.g. Google, Bing, and
Yahoo!) accept keyword or keyphrase as input. Today keyword search engines have excellent
performance in terms of both results relevancy and response time. However, keyword search
engines do not consider a query may come with a context, so they could not distinguish
between different search intents. With the rise of the mobile web, some search engines have
evolved to provide better user experience. One reprehensive example is the Google Now
feature of mobile edition of Google. While accepting user’s voice input, it extracts user’s
context information such as GPS location, user’s schedule recorded on calendar application,
and the contact information on user’s cell phone. Thus, Google Now can analyze user’s search
intent and provide the most relevant information using these contexts.

Previously, much effort has been made in research on word sense disambiguation based
on machine learning (Black, 1988; Hearst, 1991; Leacock, Towell, and Voorhees, 1993; Bruce
and Wiebe, 1994). Yarowsky (Yarowsky, 1992) uses a Naïve Bayesian classifier trained on
Roget’s thesaurus to classify words with given context into its sense category. They use
class-based salient words list provided by Roget’s thesaurus as features and tuning weight by
counting the frequencies of surrounding salient words in context. While achieving high
accuracy, this research can be viewed as prototypical framework of most machine learning
WSD systems. These approaches often rely on sense-labeled corpus. Although supervised
machine learning WSD algorithms frequently gives high performance, however, sense-labeled

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

294

4

corpus is not always available. Compared to our approach, we use Wikipedia as our corpus, its
cross-lingual nature enables us to augment smaller knowledge base with other languages.

 An important branch of WSD is entity-linking. While WSD focuses on linking word to
its correct sense given context, entity-linking systems focus on linking mentions of entities
(often named-entities) to its correct entry in a given knowledge base. “Wikify” (Mihalcea and
Csomai, 2007; Milne and Witten, 2008) is an example of entity-linking systems. These systems
automatically augment user’s input texts with hyperlinks to Wikipedia entries. For example,
imagine Figure 2 with links removed, these systems will automatically detect them with
anchors links to proper Wikipedia articles (e.g. John McCarthy in Figure 2 links to John
McCarthy (computer scientist) in Wikipedia.). Mihalcea’s system decomposes these task into
two procedural: keyphrase extraction and word sense disambiguation. They achieve WSD by
computing various linguistic features except the “Keyphraseness”: how frequently one phrase
in Wikipedia being hyperlinks.

 Milne and Witten’s system disambiguates mentions by incorporating more link-based
measures. They apply normalized Google Distance (Cilibrasi and Vitanyi, 2007) to compute
relatedness between two Wikipedia articles, and training machine learning models. Unlike
Mihalcea’s system, they first disambiguate possible candidates in input document, and then use
information from this pass of disambiguation to aid keyphrase extraction. Their system has
good performance both on Wikipedia articles and wild-life news pages.

Compared to our system, most entity-linking system developed their method on English,
so they could not directly apply to languages that need segmentation pre-processing. To apply
our method to CJK languages, we use a scheme similar in (Milne and Witten, 2008) to
transform context page into vector of context entities. In addition, we extend traditional
link-based measure to a cross-lingual augmented knowledge base. To the best of our
knowledge, such technique hasn’t been shown in previous systems.

3 Method

Understanding a user’s search intent basing solely on query term (e.g.,) is a challenging
task. Short query terms typically have more than one sense which leading to multiple entities in
the knowledge base that could be linked to. To assign adequate entity for a given query, a
promising method is to compute the similarity between a query’s context and candidate
entities’ description, and returning the most similar entity (e.g. for) in the
context of a computer-related Chinese article.

3.1 Problem Statement

We focus on the essential step of determining user’s search intent: choosing the appropriate

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

295

5

entity in the knowledge base for the given query. Once the entity has determined, the system
returns information of this entity in various ways (e.g. text description, image, audio, video). In
a Wikipedia-like knowledge base, we treat each document as an entity, its description page as
the context, and hyperlinks in this page as query terms. With the hyperlinked nature of such a
knowledge base, we train a classifier which estimate the similarity of link structure between
each query term’s context, and determine whether a query term and an entity (i.e. the article
titles) should be linked together. Thus, the problem of context-aware search is transformed to
an entity-linking problem. We now formally state the problem we are addressing by first giving
a definition of Wikipedia-like knowledge base.

A Wikipedia-like knowledge base is a collection of documents, each document should
describe an unique concept with hyperlinks, inter-wiki links and disambiguation pages which
list possible sense of an ambiguous term.

Problem Statement: We are given a set of Wikipedia-like knowledge bases KB={ kb1 ,…,
kbn| n ≥ 1 } (e.g., {Chinese Wikipedia, English Wikipedia}), a query term q, a context
document c of q, and a knowledge base kbj � KB, where q should be searched. Our goal is to
assign an adequate document ei, where ei � kbj = {e1,…, ej} and e1,…, ej are candidate senses.
For this, we compute the link structure similarity between each document pair (c, e), where e is
in kbj, and then train a classifier to determine which (c, e) pair should be linked together.

3.2 Learning to Link with Wikipedia-like Databases

We attempt to resolve the sense ambiguity of a given query term by learning link structure
characteristics from a collection of <Term, Entity> pairs in a Wikipedia-like knowledge base.
Our learning process is shown in Figure 3.

Figure 3 Outline of the training process.

3.2.1 Generate Candidate Term-Entity Pairs From Knowledge Base

In the first stage of the learning process (Step (1) in Figure 3), we generate candidate
<Term, Entity> pairs from KB. Once the candidate pairs have been computed and stored, the
In-Page Search system could use them to efficiently retrieve possible entities of a given query,
instead of comparing every e in KB. For example, given the query “ ”, we retrieve { <”

”, ” ”>, <” ”, ” ”>, <” ”, “ ()”>, <” ”,”
”>}, and then, these four entities will be disambiguated. We compute these pairs from KB

using a hyperlink’s anchor text and its destination entity. The rationale behind computing
<Term, Entity> pairs using anchor texts is that anchor texts reflect how people mentioning

(1) Generate Candidate Term-Entity Pairs From Knowledge Base (Section 3.2.1)

(2) Augment Knowledge Bases by Inter-Wiki Links (Section 3.2.2)

(3) Train Binary SVM Classification Model (Section 3.2.3)

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

296

6

entities in written articles.

The input to this stage is a set of Wikipedia-like knowledge base KB. With their
hyperlinked nature, we could compute <Term, Entities> pairs easily. To provide broader
coverage of query, we also take into account the redirect links and disambiguation pages.

Figure 4. An input document from an Wikipedia-like knowledge base

Table 1. Samples of <Term, Entity> pairs constructed from Figure 4.

 The output of this stage is a collection of <Term, Entity> pairs of a certain knowledge
base. Some <Term, Entity> pairs, automatically constructed, are shown in Table 1. Figure 5
shows the algorithm for computing <Term, Entity> pairs from a Wikipedia-like database.

Figure 5. Generating <Term, Entity> pairs.

In Step (1) of the algorithm we retrieve the list of all articles in kb. Then we iterate through
all articles. For each article, we first identify all hyperlinks and title of article (Steps (4), (5)). If
this document is a disambiguation page, for each hyperlinks in this page, we add <document

Term Entity
NASDAQ
LSE
CNN

Term Entity

procedure GenerateTermEntityPairs(kb)
(1) docs = GetDocuments(kb)
(2) list = emptyList
(3) for each ei in docs
(4) links = GetLinks(ei)
(5) title = GetTitle(ei)
(6) if ei is Disambiguation Page
(7) for each target in links
(8) list += <title,target>
(9) else
(10) for each <anchor,target> in links
(11) list += <anchor,target>
(12) hist=Histogram(list)
(13) return hist

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

297

7

title, link target> to a temp list. Otherwise we add <anchor text, link target> to the temp list
(Steps (6)~(11)). Finally, we compute the histogram of the temp list, where every entry is a
<Term, Entity> pair and its frequency (Steps (12)). An example of results is shown in Table 2.

Table 2. <Term, Entity> pairs of ‘ ’

Term Entity Frequency
 () 149
 23
 () 1
 1

3.2.2 Augmenting Knowledge Base using Inter-Wiki Links

In the second stage of the learning algorithm (Step (2) in Figure 3), we augment each
Wikipedia-like knowledge base in KB using inter-wiki links. Consider Chinese Wikipedia and
English Wikipedia, language links among them link two document describe the same entity
together. For example, ” ” in Chinese Wikipedia and “Macintosh” in English
Wikipedia. By linking one entity to its corresponding entity in other knowledge base, we could
combine the knowledge to obtain a richer representation of information of each entity. For two
imbalanced knowledge bases (e.g. Chinese Wikipedia and English Wikipedia), our algorithm
could augment the one with less information using the one with more information.

In a Wikipedia-like knowledge base, each article can be viewed as a concept (i.e. entity).
From hyperlinks in documents, we could build a directed graph of the entire knowledge base,
in which nodes denote articles, the edge indicate an article mentions another via hyperlinks.
Thus, out-going edges of a node point to other articles mentioned in the article represented by
the node, while in-coming edges of a node indicate other articles mentioning the node. We call
these two edges out-links and in-links respectively (See Figure 6.).

Figure 6. A link graph. Blue edges denote outlinks, green edges denote inlinks, orange edges
denote both inlinks and outlinks.

The input of this stage is two Wikipedia-like knowledge bases (e.g. <Chinese Wikipedia,
English Wikipedia>, we augment the first knowledge base using the second one. The output of
this stage is an augmented knowledge base, in which each document is augmented.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

298

8

Figure 7. The augmentation process.

Figure 7. shows the knowledge base augmenting process. In Step (1) of the algorithm, we
retrieve the list of all articles in kbc. For each article, we first examine whether it has an
inter-link points to its corresponding entity in kbe. If the result is negative, we leave the current
article unchanged without augmentation. In Step (5), we identify the corresponding article in
kbe by looking at the target, een of inter-wiki link of ecn. Then, we retrieve all out-links and
in-links of een and carry out the CombineLinks procedure with both kinds of links (Step (6), (7),
(8)). In the CombineLinks procedure, we iterate through all links in linken, and then determine
if the link (i.e. lken) has an inter-link (Step (10)). If such an inter-link exists, we “translate” the
link by replacing lken with lkcn, a hyperlink point to destination of the inter-link and has anchor
text of destination title. Finally we add the translated link to the original set of link (i.e. linkcn),
and store them in database. Note that the linken is also stored in kbc (Step (14)). We do that to
support cross-lingual entity-linking. Once the augmentation has been done, each article in kbc
has two link sets from each knowledge base. For articles with inter-links, the performance of
entity-linking could be improved from the augmentation algorithm.

3.2.3 Training the Binary SVM Model

In the third and final stage of the learning process, we train a Link Similarity Model based on
the link graph of Wikipedia-like knowledge base articles. To determine which entity to be
linked given query term q, we compute link graph similarity between context c of q and
candidate entities’ articles, and transform them to feature vectors to train a binary SVM
classifier. In the rest of this section, we first explain the Link Similarity Model, which is used to
estimate the similarity between two entities, and show how we incorporate the Link Similarity
Model with SVM.

Consider link graphs in Figure 6. We compute similarity between two link graphs which

procedure AugmentKB(kbc, kbe)
(1) docs = GetDocuments(kbc)
(2) for each ecn in docs
(3) <olinkscn,ilinkscn> = <GetOLinks(ecn),GetILinks(ecn)>
(4) if InterlinkOf(ecn) exists:
(5) een=GetDocument(kbe,InterlinkOf(ecn))
(6) <olinksen,ilinksen> = <GetOLinks(een),GetILinks(een)>
(7) CombineLinks(olinkscn,olinksen)
(8) CombineLinks(ilinkscn,ilinksen)

procedure CombineLinks(linkcn,linken)
(9) for each lken in linken:
(10) if InterlinkOf(lken) exists:
(11) lkcn=translate(lken,InterlinkOf(lken))
(12) linkcn+=lkcn
(13) linken-=lken
(14) AddToKB(<linkcn, linken>)

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

299

9

has vertices va, vb as central node respectively using following equations:

(1)

In Eq. (1) Ea, Eb denote the edges of va, vb respectively. The interpretation of Eq. (1) is that
we compute the number of edges in common with both vertices respectively, and normalize it
using edges of smaller graph constructed from va and vb. In order to make range of Eq. (1) lies
in [0, 1], we choose to normalize by smaller graph. Thus, bigger value means bigger similarity
between two vertices.

Given training data, we use Eq. (1) to compute features from training data and use them to
train a binary SVM classifier. The procedure is shown in Figure 8.

Figure 8. Training SVM Classifier.

In Step (1) we retrieve a list of <Term, Article> pairs in which Term is an anchor text of
randomly chosen hyperlink in Article, a randomly chosen article from kb. We treat Terms as
query terms, and Articles as their contexts. Using <Term, Entity> pairs computed in 3.2.1, we
can get candidates <Term, Entity> pairs (Step (3)). Then we iterate through them (Step (4)). In
Step (5), for each <Term, Entity> pairs, we extract three features from them:

lp: The link probability defined as P(Entity|Term), which could be easily computed since
we have stored the histograms in 3.2.1.

olinkSim: The link similarity considering only outlinks, i.e. Siml(article, entity).

ilinkSim: Likewise, the link similarity by considering only inlinks.

In the computation of link similarity, notice that since the knowledge base has been
augmented in 3.2.2, each articles has two link sets. We utilize a set of constant coefficient <α1,
α2, α3> to interpolate between similarity computed from <linken, linkcn, linkcn0>, where linkcn0
is the unaugmented link set of kbcn. Finally we examine whether the target of term’s hyperlink
equals entity, if the result is positive, we add the current feature vector to the input of SVM with
positive example, otherwise with negative example (Steps (6)~(9)).

procedure GenerateSVMInput(kb)
(1) <Terms, Articles>= RandomTermArticles(kb)
(2) for each <term, article> in <Terms, Articles>
(3) candidates = GetTermEntity(term)
(4) for each <term, entity> in candidates
(5) <lp, olinkSim, ilinkSim> = extractFeatures(article, entity)
(6) if entity==TargetOf(term)
(7) AddToOutput(<1, lp, olinkSim, ilink>)
(8) else
(9) AddToOutput(<0, lp, olinkSim, ilink>)

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

300

10

3.3 Run-Time Entity Linking

Once the SVM model is constructed, we are ready to classify or disambiguate query terms
to corresponding entities in KB. We associate adequate entities with given query terms and
context using the procedures in Figure 9.

Figure 9. Classification algorithm at run-time.

In Step (1) of ClassifyTerm procedure, we transform given context into an entity
containing out-link set and in-link set, thus the link similarity measure could be applied. In
TransformContext procedure, we first split the context into N-grams, and then do a longest
possible match with the <Terms, Entity> pairs of kb computed in 3.2.1. For every N-gram there
may be more than one matching <Term, Entity> pairs, we choose the one with highest
frequency. Then we iterate through the matched terms (Step (2)), and then retrieve the
corresponding entity (Step(3)), finally in Step (4) we make a union on the entity’s link sets with
the output, ctxEntity’s link set, which is initialize as empty set.

We now return to the ClassifyTerm procedure. Once we get the transformed context entity,
in Step (2) we retrieve the candidates <Term, Entity> pairs where “Term” equals the query term
q. For each entities in the candidate list, we compute feature vectors, where the first element is
the link probability of current entity, the second and third elements are computed using eq. (1)
with entity and context entity as input (Step (4)). After that we run the SVM model trained in
3.2.3 to predict the results, if it is positive, we add this entity to the result candidates list,
otherwise we continue the iteration. After the end of the iteration, we select the one with
highest link probability as the result entity to be linked (Steps (9)~(12)).

procedure ClassifyTerm(q, context, kb)
(1) ctxEntity = transformContext(context, kb)
(2) candidates = GetCandidateEntities(q)
(3) for each entity in candidates
(4) feature = <LinkProb(entity), olinkSim(entity,

ctxEntity), ilinkSim(entity, ctxEntity)>
(5) if SVMPredict(feature) is positive
(6) AddToResultCandidate(entity)
(7) else
(8) continue
(9) if ResultCandidate is empty
(10) return “No entity could be linked”
(11) else
(12) return MaxLinkProb(ResultCandidate)

Procedure TransformContext(context, kb)
(1) terms = LongestPossibleMostFrequentMatch(context, kb)
(2) for each terms in terms:
(3) entity = GetEntity(term)
(4) CombineToCtxEntity(<olinks(entity), ilinks(entity)>)
(5) return ctxEntity

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

301

11

4 Experimental Setting

The proposed Link Similarity Model and knowledge base augmentation method was designed
to resolve the sense ambiguity of given query terms and to leverage broader information from
larger knowledge base. As such, our models will be trained on query terms and their target
entities. In this thesis we treat hyperlinks and their destination in Wikipedia as query terms and
target entities. Using such data, we compiled datasets from Chinese Wikipedia for training and
evaluation. In this chapter, we first present the training and test data for the evaluation (Section
4.1). Then, Section 4.2 lists the methods we use in comparison. Section 4.3 introduces the
evaluation metrics. Finally, we report the settings of the parameters in Section 4.4.

4.1 Data Set

In this thesis we focus on linking Chinese query terms to articles in Chinese Wikipedia.
We used the Chinese Wikipedia XML file dumped at 20120503 as our main knowledge base.
For the augmentation algorithm, we used 20120502 version of English Wikipedia to augment
Chinese Wikipedia. Some statistics are shown in Table 3. Currently English Wikipedia is far
more larger than Chinese Wikipedia, no matter in numbers of articles, numbers of
language-links or average sense ambiguity. Notice that the sense ambiguity is lower in
Chinese. To better investigate our algorithms, we compiled a collection of <hyperlink, article>
pairs from Chinese Wikipedia with two criteria:

1. The sense ambiguity of hyperlink’s anchor text (i.e. query terms) should not be too low or
high. Lower ambiguity leads to easier datasets for our classifier, while extremely high
value makes running time exponential longer, which is unacceptable for a real-time system.
We set this value to lie in [2,7] in our experiment.

2. The contexts (i.e. articles) where each hyperlink appeared should not be too lengthy. Our
Link Similarity Model uses hyperlinks information in context. In Wikipedia some special
pages such as Lists pages, which lists instances of entities, contain extremely many
hyperlinks that introduce too much noise to our model. In our implementation we make a
threshold on number of hyperlinks per article to lower than 50.

Table 3. Statistics of Wikipedia

 Chinese Wikipedia English Wikipedia
Number of articles 482,095 4,485,110
Percentage of language links 67% 9%
Average sense ambiguity 3.1 6.7

Using these criteria we randomly chosen 501 distinct <hyperlink, article> pairs from
Chinese Wikipedia as our training data, and another distinct 2965 <hyperlink, article> pairs as
testing data.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

302

12

4.2 Methods Compared

The proposed method starts with a query term and its textual context, and determines a suitable
entity (i.e. article) for the query term in Chinese Wikipedia. The output of our system is the
linked article from Chinese Wikipedia.

In this thesis, we proposed a method for augmenting the smaller Wikipedia-like
knowledge base (CN) using larger knowledge base (EN). In addition, we propose a model for
computing link structure similarity between two hyperlinked articles, and then use it to train a
SVM classifier, in which we use out-links (OL) and in-links (IL) as features. Further, the link
probability (LP) is used as a feature to balance the system performance between rare and
common entities. To inspect the effectiveness of the augmentation method and these modules
in more detail, the baseline and the combinations of the three main modules, OL, IL, and LP,
evaluated in our experiments are described as follows:

� LP: We train the SVM model using only link probability, and we use this model as
baseline.

� OL+IL+LP (CN): The full model trained using out-links, in-links, and link
probability without augmentation.

� OL+IL+LP (CN+EN): The most complete version of proposed system, using all
features and augmentation process.

� -LP (CN+EN): The full model with augmentation minus the link probability feature.
� -OL (CN+EN): The full model with augmentation minus the out-links feature.
� -IL (CN+EN): The full model with augmentation minus the in-links feature.

4.3 Evaluation Results

In this section, we report the evaluation results of the experiments on the methodology
described in the previous chapter. Table 4. shows the results evaluated on the testing data
consist of 2965 <query term, context>.

Table 4. The evaluation results of different systems

System Classifier
accuracy

Entity
accuracy

LP (Baseline) 95.87 90.54
OL+IL+LP(CN) 97.49 92.81
OL+IL+LP(CN+EN) 97.61 93.02
-LP (CN+EN) 90.38 71.38
-OL (CN+EN) 97.46 92.69
-IL (CN+EN) 95.94 88.81

As we can see, the full model (i.e. OL+IL+LP (CN+EN)) outperformed the strong
baseline LP either on classifier accuracy or entity accuracy, which indicates that our

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

303

13

classification strategy can effectively return the most compatible entity to a given query term.
As identified in previous related research (Milhacea et al., 2007; Milne et al., 2008), the
baseline LP is extremely effective for determining suitable English Wikipedia articles for
ambiguous query terms, in our experiment performed using Chinese Wikipedia, this is also the
case.

Comparing the two full models (i.e. OL+IL+LP), the results on CN and CN+EN indicate
that our augmentation process provides a small performance improvement. Although the
augmentation process does not greatly improve the performance, we perform 10-fold cross
validation on another test set consisting of 3001 <hyperlink, article> pairs and found that the
performance gain is statistically significant.

In general, there is no significant difference between average number of in-links and
out-links, so the number of links does not explain this phenomena. We suggest that in
Wikipedia, in-links reflect topics that mention an entity, while out-links reflect context terms of
a certain entity. Since topics are more stable than context term, the performance influenced by
in-links are stronger.

In sum, our model achieved impressive performance for linking query terms to articles in
Chinese Wikipedia. The augmentation process further significantly improve performance.

5 Conclusion and Future Works

Many avenues exist for future research and improvement of our system. For example, more
features used in training the classification models could be added to boost system performance.
To improve our system, language features such as collocations, N-gram counts, or
part-of-speech could be added. Additionally, an interesting direction to explore is to apply our
model to cross-language entity-linking. To support cross-language entity-linking, we could
also augment the <Term, Entity> pairs described in 3.2.1 using similar augmentation process.
Once the augmentation has been done, we could cross-link a term to other knowledge base. For
example, ” ” in Chinese Wikipedia may be linked to “Big Apple”, the nickname of New
York city, in English Wikipedia.

In summary, we have introduced a method for linking a <query term, context> pair to an
appropriate article in Chinese Wikipedia. Our goal is to improve user experience so that the
underlying search system could distinguish between different search intents based on the
context. The method involves possible candidates construction, knowledge base augmentation
via inter-links, computation of various link similarity measures, and multi-class classification
using binary SVM classifier. We have implemented and thoroughly evaluated the method as
applied to linking query terms to Chinese Wikipedia articles. In our evaluation, we have shown

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

304

14

that the augmentation process slightly improved system performance. In addition, our full
model significantly outperforms the strong baseline in terms of entity accuracy.

References
[1] Agirre, E., and Rigau, G. (1996). Word Sense Disambiguation using Conceptual Density.

16th Conference on Computational Linguistics, (pp. 16-22). Copenhagen.

[2] Banerjee, S., and Pedersen, T. (2002). An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. the Third International Conference on Intelligent Text
Processing and Computational Linguistics. Mexico City.

[3] Black, E. W. (1988). An Experiment in Computational Discrimination of English Word
Senses. IBM Journal of Research and Development , 185-194.

[4] Bruce, R., and Wiebe, J. (1994). Word-Sense Disambiguation Using Decomposable
Models. 32nd Annual Meeting of the Association for Computational Linguistics (pp.
139-146). Las Cruces: Association for Computational Linguistics.

[5] Carpaut, M., and Wu, D. (2007). Improving Statistical Machine Translation using Word
Sense Disambiguation. 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (pp. 61-72).
Prague: Association for Computational Linguistics.

[6] Chan, Y. S., Ng, H. T., and Chiang, D. (2007). Word Sense Disambiguation Improves
Statistical Machine Translation. the Association for Computational Linguistics (ACL),
(pp. 33-40).

[7] Chang, J. S., Lin, T., You, G.-N., Chuang, T. C., and Hsieh, C.-T. (2003). Building a
Chinese WordNet via Class-based Translation Model. Computational Linguistics and
Chinese Language Processing , 61-76.

[8] Chang CC and Lin CJ. 2011. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2(3):27.

[9] Cilibrasi RL and Vitanyi PMB. 2007. The google similarity distance. Knowledge and
Data Engineering, IEEE Transactions on 19(3):370-83.

[10] Diab, M., and Resnik, P. (2002). An Unsupervised Method for Word Sense Tagging using
Parallel Corpora. the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), (pp. 255-262). Philadelphia.

[11] Gale, W. A., Church, K. W., and Yarowsky, D. (1992). Using Bilingual Materials to
Develop Word Sense Disambiguation Methods. the International Conference on
Theoretical and Methodological Issues in Machine Translation, (pp. 101-112).

[12] Galley, M., and McKeown, K. (2003). ImprovingWord Sense Disambiguation in Lexical
Chaining. 18th International Joint Conference on Artificial Intelligence (IJCAI 2003).
Acapulco.

[13] Hamp, B., and Feldweg, H. (1997). GermaNet - a Lexical-Semantic Net for German.
ACL workshop Automatic Information Extraction and Building of Lexical Semantic
Resources for NLP Applications, (pp. 9-15). Madrid.

[14] Hearst, M. A. (1991). Noun Homograph Disambiguation using Local Context in Large
Corpora. 7th Annual Conference of the University of Waterloo Centre for the New OED

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

305

15

and Text Research, (pp. 1-15).

[15] Hsieh, C.-T. (2000). Semi-Automatic Construction of Chinese WordNet - Using
Class-based Translation Model.

[16] Huang, C.-C., Tseng, C.-H., Kao, K. H., and Chang, J. S. (2008). A Thesaurus-based
Semantic Classification of English Collocations. ROCLING 2008, (pp. 38-52). Taipei.

[17] Huang, C.-R., Chang, R.-Y., and Lee, H.-P. (2004). Sinica BOW (Bilingual Ontological
Wordnet): Integration of Bilingual WordNet and SUMO. 4th International Conference
on Language Resources and Evaluation (LREC2004), (pp. 1553-1556). Lisbon.

[18] Leacock, C., Towell, G., and Voorhees, E. (1993). Corpus-based Statistical Sense
Resolution. ARPA Human Language Technology Workshop, (pp. 260-265).

[19] Lesk, M. (1986). Automatic Sense Disambiguation using Machine Readable
Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. 5th Annual International
Conference on Systems Documentation (pp. 24-26). Toronto: Association for Computing
Machinery.

[20] Longman Group. (1992). Longman English-Chinese Dictionary of Contemporary
English. Hong Kong: Longman Group (Far East) Ltd.

[21] Mihalcea, R., and Moldovan, D. I. (1999). A Method for Word Sense Disambiguation of
Unrestricted Text. the 37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics (pp. 152-158). College Park: Association for
Computational Linguistics.

[22] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J. (1990).
Introduction to WordNet: An On-line Lexical Database. International Journal of
Lexicography , pp. 235-244.

[23] Medelyan O., Witten I. H. and Milne D. 2008. Topic indexing with wikipedia.
Proceedings of the AAAI WikiAI workshop, AAAI Press. 19 p.

[24] Mihalcea R. and Csomai A. 2007. Wikify!: Linking documents to encyclopedic
knowledge. Proceedings of the sixteenth ACM conference on conference on information
and knowledge management. 233 p.

[25] Milne D. 2007. Computing semantic relatedness using wikipedia link structure.
Proceedings of the new zealand computer science research student conference.

[26] Milne D. and Witten I. H. 2008. Learning to link with wikipedia. Proceedings of the 17th
ACM conference on information and knowledge management, ACM. 509 p.

[27] Pasca, M., and Harabagiu, S. M. (2001). The Informative Role of WordNet in
Open-Domain Question Answering. NAACL 2001 Workshop on WordNet and Other
Lexical Resources: Applications, Extensions, and Customizations, (pp. 138-143).
Pittsburgh.

[28] Towell, G., and Voorhees, E. M. (1998). Disambiguating Highly Ambiguous Words.
Computational Linguistics , 125-145.

[29] Voorhees, E. M., and Tice, D. M. (1999). The TREC-8 Question Answering Track
Evaluation. TREC-8, (pp. 84-106).

[30] Vossen, P. (1998). Introduction to EuroWordNet. Computers and the Humanities , 73-89.

[31] Wible, D., and Kuo, C.-H. (2001). A Syntax-Lexical Semantics Interface Analysis of
Collocation Errors. Pacific Second Language Research Forum.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

306

