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Abstract

In this paper, we develop a series of algorithms to improve the noise robustness of speech
features based on discrete cosine transform (DCT). The DCT-based modulation spectra of clean
speech feature streams in the training set are employed to generate two sequences representing
the reference magnitudes and magnitude weights, respectively. The two sequences are then
used to update the magnitude spectrum of each feature stream in the training and testing
sets. The resulting new feature streams have shown robustness against the noise distortion.
The experiments conducted on the Aurora-2 digit string database reveal that the proposed
DCT-based approaches can provide relative error reduction rates of over 25% as compared with
the baseline system using MVN-processed MFCC features. Experimental results also show that
these new algorithms are well additive to many noise robustness methods to produce even higher
recognition accuracy rates.

I. Introduction

Most of the state-of-the-art automatic speech recognition (ASR) system developed in the
laboratory, in which the speech is not obviously distorted, can achieve excellent recognition per-
formance. But in the real-world application, the recognition accuracy is seriously degraded due
to so many distortions or variations existing in the application environment. Particularly speak-
ing, the environmental distortions can be roughly classified into two types: channel distortion
and additive noise, both influencing the performance of an ASR system a lot. The channel dis-
tortion occurs when the speech signal is transmitted by electronic devices or transmission lines,
such as the air, the telephone line or the microphone. The additive noise is like the “shadow” or
“background” existing in the environment, such as car noise and babble noise. Noise robustness
techniques have thus received much attention in recent years since they are so important in the
applicability of ASR.

One school of noise-robustness techniques is devoted to compensate the original speech fea-
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ture to reduce the effect of noise and recover the speech feature back to its intact state. Typical
examples of these techniques include cepstral mean normalization (CMN) [1], mean and vari-
ance normalization (MVN) [2], cepstral gain normalization (CGN) [3], cepstral shape normaliza-
tion (CSN) [4], histogram equalization (HEQ) [5], higher-order cepstral moment normalization
(HOCMN) [6], temporal structure normalization (TSN) [7] and MVN plus ARMA filtering
(MVA) [8]. However, the main purpose of the above methods can be roughly divided into two
parts: one is to normalize the statistics of temporal-domain feature sequence and the other is
to further reduce the mismatch by enhancing some components which are not easily affected by
noise. For the latter case, the discrete Fourier transform (DFT) is usually used to be an analysis
tool for obtaining the modulation spectrum of temporal-domain feature sequence. Therefore,
we can deal with the modulation spectrum explicitly or implicitly in order to obtain the robust
temporal-domain feature sequence.
In this paper, we present two novel methods to improve the noise robustness of speech features,
hoping to promote the resulting recognition accuracy. These novel methods take advantage of
the discrete cosine transform (DCT) [9] to analyze and cope with the temporal-domain feature
sequence, which is quite different form the conventional DFT-based methods. As we know, DCT
is widely used in many fields, such as image compressing and coding. However, it is less used
for robust speech feature extraction. Especially, to our knowledge, there are little research that
directly uses DCT to analyze and process the temporal-domain feature sequence. Therefore, the
proposed methods in this paper are both innovative and valuable.

The remainder of the paper is organized as follows: Section II describes an overview of DCT
and the effect of noise on the DCT-based modulation spectrum of speech features. Then the
details of our proposed feature compensation algorithms based on DCT are described in Section
III. Section IV contains the experimental setup, experimental results and discussions. Finally,
concluding remarks are given in Section V.

II. Brief introduction of discrete cosine transform (DCT) and the
effect of noise on the DCT of the speech feature streams

Discrete cosine transform (DCT) is a Fourier-related transform similar to discrete Fourier
transform (DFT), and it has been one of the most powerful analysis tools in the field of signal
processing. Basically speaking, DCT expresses a sequence of finitely many data points in terms
of a sum of cosine functions oscillating at different frequencies. DCT has been successfully
applied in many aspects of speech analysis, like transform coding and speech feature extraction.
It transforms the input signal from the time domain into the frequency domain, which highlights
the periodicity of the signal. Besides, in speech feature extraction, DCT plays an important role
in reducing the correlation of features and thus results in a more compact feature representation.
In the following, we will make a brief introduction of DCT, and then investigate the effect of
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noise on the DCT of the speech feature stream, which serves as the background of the presented
methods in section III.

II.1 The relationship between DCT and DFT

DCT expresses a signal in terms of a weighted sum of sinusoids, which is similar to DFT.
However, DCT has some peculiar properties that are different from DFT. An obvious distinction
between DFT and DCT is that, in analyzing a real-valued signal, DFT uses complex sinusoids
(including the cosine and sine functions), while the latter uses only cosine functions. As a
result, DFT often exhibits complex values while DCT real values only, indicating that the DCT
coefficients are either 0 (positive) or π (negative) in phase.

It can be shown that the DCT of a signal x[n] equals to the amplitude part of the DFT of
another signal y[n] given y[n] is an extended version of x[n] with even symmetry. According
to different arrangements for the even-symmetry condition, eight DCT variants can be defined,
among which the type-II DCT is probably the most commonly used form, and is often simply
referred to as “the DCT”. Besides, the inverse of the type-II DCT (IDCT) is just the type-III
DCT.

For a finite-length real-valued sequence {x[n]; 0 ≤ n ≤ N − 1}, its DFT X[k] and DCT
(type-II DCT) C[k] are obtained by the following two equations, respectively:

DFT: X[k] =
N−1∑
n=0

x[n]e−j 2πkn
N , 0 ≤ k ≤ N − 1, (1)

DCT: C[k] =
1√
N
µk

N−1∑
n=0

x[n] cos( π

2N
(2n+ 1)k), 0 ≤ k ≤ N − 1, (2)

where µ0 = 1 and µk =
√
2 for k > 0. Besides, X[k] and C[k] are related by{

X[k] = 2ej
πk
2N C[k] , 0 ≤ k ≤ N − 1

X[2N − k] = 2e−j πk
2N C[k] , 0 ≤ k ≤ N − 1

(3)

It can be shown that the inverse DFT and DCT are:

IDFT: x[n] = 1
N

N−1∑
k=0

X[k]ej
2πkn
N , 0 ≤ n ≤ N − 1 (4)

and

IDCT: c[n] = 1√
N

N−1∑
k=0

µkC[k] cos
[

π
2N

(2n+ 1)k
]

, 0 ≤ n ≤ N − 1. (5)

As shown in eq. (1), the DFT X[k] of a real-valued sequence is a complex sequence satisfying
the conjugate symmetry condition, X[k] = X∗[⟨−k⟩N ] , and thus about one-half (⌊N/2⌋ + 1)

DFT points are in fact redundant. However, in the DCT case C[k] and x[n] are equal in length,
and in general C[k] is neither symmetric nor anti-symmetric. Therefore, DCT exhibits higher
frequency resolution than DFT. In addition, eq. (3) shows DCT can be performed efficiently via
the fast algorithms of DFT.
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II.2 Properties of DCT

[10] shows the Karhunen Loeve Transform (KLT) gives the optimal performance in trans-
form coding. However, KLT lacks fast algorithms in implementation. DCT compares more
closely to KLT in coding performance relative to other orthogonal transforms.Therefore, DCT
serves as a very good alternative of KLT for coding speech signals. Besides, DCT provides
higher frequency resolution than DFT, and is more efficiently computable than discrete wavelet
transform (DWT).

II.3 The impact of noise on the DCT of speech feature stream

When it comes to the analysis for the temporal characteristics of the speech feature
stream, we often focus on the DFT-based modulation spectrum. In contrast, the “modulation
spectrum” derived from DCT is much less considered. Since DCT possesses peculiar proper-
ties relative to DFT as described previously. Here we would like to observe the DCT-based
modulation spectrum of a feature stream and investigate the corresponding response to noise.

First, Figures 1(a) and (b) depict the DCT-based and DFT-based modulation (magnitude)
spectra for the MFCC c1 feature stream of a clean utterance. We find that the DCT-based
spectrum is more concentrated at low frequencies in energy than the DFT-based spectrum, and
it shows higher frequency resolution.

Next, we investigate the impact of noise on the DCT-based modulation spectrum, which is
separately observed in magnitude and phase (sign). Note that the DCT of an arbitrary sequence
is real-valued, which can be only positive, zero or negative, corresponding a binary phase of 0
and π.

(a) (b)

Figure 1: The modulation (magnitude) spectrum of (a) DCT-based and (b) DFT-based for the
MFCC c1 feature stream of a clean utterance.

4
24

yu
矩形



Figures 2(a) and (b) depict the averaged magnitude and phase (sign) distortions by comparing
the DCT-based modulation spectra of the MFCC c1 streams for a set of 1001 clean utterances
and its three noisy counterparts at signal-to-noise ratios (SNRs) 20 dB, 10 dB and 0 dB. From
Figure 2(a), the DCT-magnitude distortions increase as the SNR get worse, and larger distortion
components are mainly located in the low frequency region (roughly [0, 10 Hz]). Besides, Figure
2(b) shows that amplifying the noise level (with a lower SNR) introduces more DCT-phase
(sign) distortions. However, in contrast to the case of DCT-magnitudes, DCT-phase distortions
are approximately uniformly distributed over the whole frequency range, with the relatively
larger phase distortions dwelling at high frequencies probably because the corresponding DCT
coefficients are smaller in magnitude and easier to be changed in phase (sign).

(a) (b)

Figure 2: The averaged (a) DCT-magnitude distortions and (b) DCT-phase distortions in the
original MFCC c1 streams caused by babble noise at three SNRs, 20 dB, 10 dB and 0 dB.

Moreover, here the well-known noise-robustness method, mean and variance normalization
(MVN) [2], is selected to process the MFCC features used in Figures 2(a) and (b), and the
corresponding DCT-magnitude and DCT-phase distortions are plotted in Figures 3(a) and (b),
respectively. Comparing Figure 3(a) with Figure 2(a), DCT-magnitude distortions are signifi-
cantly reduced by MVN. On the contrary, DCT-phase distortions shown in Figure 3(b) remain
significant as shown in Figure 2(b). These results imply the good performance of MVN mainly
comes from its capacity of reducing DCT-magnitude distortions rather than DCT-phase distor-
tions.
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(a) (b)

Figure 3: The averaged (a) DCT-magnitude distortions and (b) DCT-phase distortions in the
MVN-processed MFCC c1 streams caused by babble noise at three SNRs 20 dB, 10 dB and 0
dB.

III. The proposed DCT-based feature compensation ap-
proaches

This section is arranged as follows: First, we introduce two new proposed feature compen-
sation methods based on DCT, and they are termed “DCT magnitude substitution” (DCT-MS)
and “DCT magnitude weighting” (DCT-MW), respectively. Next, we introduce a variant of
DCT-MS, which differs from DCT-MS primarily in the selection of processed frequency range.
Finally, we examine these new methods in their capability of reducing the mismatch in the power
spectral density (PSD) of feature streams.

III.1 The concepts of DCT-based speech feature compensation meth-
ods

According to the discussions in the previous section, the magnitude parts of the DCT
for speech feature streams are vulnerable to noise, and properly dealing with them such as
the MVN process can help a lot. Here we attempt to provide some directions to alleviate the
DCT-magnitude distortions.

Let {x[n]; 0 ≤ n ≤ L−1} be the temporal-domain feature sequence of an arbitrary utterance
for each channel, and its M -point DCT is represented by

{C[k]; 0 ≤ k ≤ M − 1}. (6)
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Then C[k] corresponds to the DCT-based modulation spectrum of {x[n]} at frequency f =

k Fs

2M
in Hz, where Fs (Hz) is the frame rate of {x[n]}. Note here the DCT-size M is set to be

larger than or equal to L, the length of {x[n]}, to avoid the time aliasing effect. Briefly speaking,
our methods update these C[k]’s in its magnitude part |C[k]|, and leave its sign (phase) part
sgn(C[k]) unchanged, hoping that the mismatch of |C[k]| among different SNR cases can be
thus reduced.

We present two types of DCT-based feature compensation methods, both of which consist
of three steps:
Step 1: Obtain the DCT-magnitude reference or the DCT-magnitude weight from
the training data:

Let {C[k]; 0 ≤ k ≤ M − 1} be the M -point DCT of any temporal sequence in the training
set with respect to a specific channel. Here the used DCT-size M is common to any temporal
sequence in the training set, and this setting makes the DCT spectra of all training sequences
(with respect to a specific channel) have the same length M . We calculate two sequences:
DCT-magnitude reference:

Aref [k] = E{|C[k]|} =
1

Nref

∑
C[k]∈training set

|C[k]|, (7)

and
DCT-magnitude weight:

σref [k] = std{C[k]} =

√√√√√ 1

Nref

∑
C[k]∈training set

C2[k]−

 1

Nref

∑
C[k]∈training set

C[k]

2

, (8)

where E{X} and std{X} denote the mean and standard deviation of X, and Nref is the number
of C[k]’s in the training set.

Step 2: Update the DCT magnitude component of the speech features currently
processed:

In Step 1, the DCT-magnitude reference/weight shown in eqs. (7) and (8) are obtained
from the feature sequences of all the clean utterances in the training set. Now we apply them
to update the DCT-magnitude of each feature sequence in both the training and testing sets.
Briefly speaking, the DCT coefficients {C[k]; 0 ≤ k ≤ M − 1} of any feature sequence in the
training and testing sets is updated in magnitude, and we produce the new DCT stream:

C̃[k] =
∣∣∣C̃[k]

∣∣∣ sgn(C[k]), 0 ≤ k ≤ M − 1. (9)

where |C̃[k]| denotes the new DCT-magnitude. That is, the original and updated DCT streams
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differ only in magnitude, not in phase. We propose various ways to update the DCT-magnitude,
and they will be described in detail in the next subsections.

Step 3: Use IDCT to obtain the new feature sequence:
The the L-point new feature stream is obtained by

x̃[n] = IDCTM{C̃[k]; 0 ≤ k ≤ M − 1}, 0 ≤ n ≤ L− 1. (10)

That is, the M -point inverse DCT is performed on the M -point sequence {C̃[k]}, and the re-
sulting M -point sequence {x̃[n]} is truncated and thus only the first L points in {x̃[n]} are
reserved.

III.2 The DCT-magnitude updated algorithms

In this subsection, we provide two different directions to update the DCT-magnitude of
a speech feature stream as mentioned in Step 2 of sub-section III.1.

III.2.1 DCT-magnitude substitution (DCT-MS)

In DCT-MS, the DCT-magnitude of each feature stream currently processed is directly
substituted by the DCT-magnitude reference shown in eq. (7). That is,

|C̃[k]| = Aref [k], 0 ≤ k ≤ M − 1. (11)

This operation is primarily motivated by two observations:

1. The DCT-magnitudes among different clean feature sequences look similar to one another.
Using the same DCT-magnitude for different feature sequences probably causes a small
amount of distortion.

2. Noise affects the DCT-magnitude very significantly, and thus the DCT-magnitude of a
noisy feature stream is highly deviated from that of a clean one. Introducing a unified
DCT-magnitude completely removes the effect of noise (while probably loses some speech
information).

III.2.2 DCT-magnitude weighting (DCT-MW)

In DCT-MW, the DCT magnitude of each feature stream currently processed is directly
multiplied by the DCT-magnitude weight defined in eq. (8). That is:

|C̃[k]| = |C[k]|σref [k], 0 ≤ k ≤ M − 1. (12)
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(a) (b)

Figure 4: The flowchart of (a)DCT-MS (b)DCT-MW

The method of DCT-MW is basically from two ideas:

1. In general, the variance, or its variant such as the standard deviation, accounts for the
amount of gross information contained in a random variable. Assuming most of the in-
formation corresponds to speech, to weigh the noisy DCT-magnitude with the standard
deviation of the clean DCT-magnitudes probably highlights the speech components.

2. The original noisy DCT-magnitude, that is expected to contain speech information and
benefit the recognition, is reserved in DCT-MW. Furthermore, DCT-MW behaves simi-
larly to a zero-phase temporal filter, which can effectively improve the noise robustness of
features if properly designed.

The flowcharts of DCT-MS and DCT-MW are depicted in Figures 4(a) and (b). Besides, the
DCT-magnitude weight for DCT-MW from the MVN-processed MFCC c1 streams is plotted in
Figure 5, which shows the DCT-magnitudes at lower modulation frequencies are to be amplified
in DCT-MW. This is somewhat consistent to the general idea that, the modulation frequency
components within [1 Hz, 16 Hz] contain rich speech information [11], and emphasizing these
components properly will improve the recognition accuracy.

III.2.3 Partial-band DCT-MS

The substitution process of DCT-MS is originally carried out on the entire DCT-magnitude
stream, indicating that each modulation frequency component within the full-band range [0, Fs

2
Hz]

is updated, where Fs is the frame rate in Hz. Here, we propose to select the components within
a specific partial-band rather than the full-band to perform DCT-MS.

This partial-band process is mainly inspired by two considerations:
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Figure 5: The DCT-magnitude weight for MVN-processed MFCC c1 features in DCT-MW.

1. Keeping the less-distorted components unchanged:
The deviations in the DCT-magnitudes caused by noise are in fact unequal. In particular,
noise probably just contaminates a few frequency components primarily. Updating the
DCT-magnitudes at all frequencies introduces another distortion, especially to those less
noise-affected ones.

2. Reducing the computation complexity:
Provided that the recognition accuracy is not degraded, decreasing the number of DCT-
magnitudes necessary for an update reduces the computation complexity of the algorithms
for sure.

Here, we arrange the partial-band version of DCT-MS by simply setting a cutoff frequency Fc,
dividing the frequency range into two sub-bands [0, Fc Hz] and [Fc Hz, Fs

2
Hz], and performing

DCT-MS for either one sub-band. Accordingly, the performance of the patial-band DCT-MS
depends on the selection of the cutoff frequency Fc and the sub-band components to be updated.

Note that we do not provide the partial-band version of DCT-MW since it seems not very
appropriate to weigh some DCT-magnitudes and leave the others unchanged, which behaves like
a filter having a discontinuity at the cutoff frequency in magnitude response.

III.3 A preliminary evaluation of DCT-MS/DCT-MW in reducing
the noise effect

We perform the proposed DCT-MS or DCT-MW on the MFCC c1 feature streams of three
utterances containing the same embedded clean speech while distorted at different SNRs: clean,
10 dB and 0 dB with subway noise. Before acting DCT-MS/DCT-MW, the feature sequence is
processed by MVN to be zero-mean and unity-variance.

Figures 6(a)-(d) plot the power spectral density (PSD) curves of the c1 feature streams for
three SNR cases obtained from various processes. The corresponding detailed information and
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discussions are:

1. As shown in Figure 6(a), there exists significant mismatch among the PSDs of original
(MVN-processed) features at different SNRs. The mismatch gets larger with increasing
frequency. The PSD becomes relatively ”flat” as the SNR gets worse, which agrees with
the observation in [8].

2. Figure 6(b) corresponding to the features processed by DCT-MS reveals that this method
successfully reduces the PSD mismatch shown in Figure 6(a). The direct substitution for
the DCT-magnitudes of different feature streams with a common reference curve makes
the associated PSD curves so close to each other.

3. From Figure 6(c), the PSDs of DCT-MW processed features still contain significantly
mismatch as the ones from MVN in Figure 6(a). However, the scale of deviation (for
the frequency greater than 10 Hz) shown in Figure 6(c) is below 10−2, while the original
PSD deviation shown in Figure 6(a) is roughly within the range [10−1, 10−2]. As a result,
DCT-MW can reduce the PSD mismatch effectively.

4. Figure 6(d) depicts the PSDs for the “partial-band” version of DCT-MS, in which the
frequency range to be updated is set to [5 Hz, 50 Hz]. That is, the first one-tenth band
[0, 5 Hz] components are kept unchanged. We find that they are quite similar to the curves
shown in Figure 6(b) (the “full-band” version of DCT-MS): the median/high frequency
distortion is insignificant. The unprocessed band [0, 5 Hz] appears deviations among the
curves. The positive or negative effect of keeping the low frequency components unchanged
in recognition accuracy will be shown in section IV.
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Figure 6: The c1 PSD curves processed by various methods:(a)MVN (b)DCT-MS (c)DCT-MW
(d)partial-band DCT-MS

IV. The recognition experiment results and discussions
This section is organized as follows: Firstly, sub-section IV.1 introduces the used speech

database and the setup for the experimental environment. Secondly, the recognition results for
the original and MVN-processed MFCC are provided in sub-section IV.2. Thirdly, we present
and discuss the recognition accuracy obtained by the new DCT-based algorithms in sub-section
IV.3. Finally, sub-section IV.4 briefly summarizes the recognition results of the DCT-based
algorithms for the features preliminary processed by some robustness methods.

IV.1 The Experimental Environmental Setup

Our recognition experiments are conducted on the AURORA 2.0 database , the details of
which are described in [12]. In short, the testing data consist of 4004 utterances from 52 female
and 52 male speakers, and three different subsets are defined for the recognition experiments:
Test Sets A and B are each affected by four types of noise, and Set C is affected by two types.
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Each noise instance is added to the clean speech signal at six SNR levels (ranging from 20 dB
to -5 dB). The signals in Test Sets A and B are filtered with a G.712 filter, and those in Set C
are filtered with an MIRS filter. In the “clean-condition training, multi-condition testing” mode
defined in [12], the training data consist of 8440 clean speech utterances from 55 female and 55
male adults. These signals are filtered with a G.712 filter. The data in Test Sets A and B are
more distorted by additive noise than the training data, while the data in Set C are affected by
additive noise and a channel mismatch.

With the Aurora-2 database, we performed the a series of robustness methods to compare the
recognition accuracy. Each utterance in the clean training set and three testing sets is directly
converted to 13-dimensional MFCC (c0∼c12) sequence. Next, the MFCC features are then
updated by either noise-robustness method. The resulting 13 new features, plus their first- and
second-order derivatives, are the components of the final 39-dimensional feature vector. With
the new feature vectors in the clean training set, the hidden Markov models (HMMs) for each
digit and silence are trained with the HTK toolkit [13] . Each digit HMM has 16 states, with
20 Gaussian mixtures per state.

IV.2 Experiment results of plain MFCCs and MVN-processed MFCCs

The recognition accuracy rates for the original MFCC are shown in Table 1. From this
table, we have some observations as follows:

1. When the SNR becomes worse, the recognition accuracy rate gets lower in every noisy
environment. Therefore, noise brings a significant distortion to MFCC features.

2. The averaged recognition accuracy of Set A is better than that of Set B probably because
most noise types in Set A are stationary and most noise types in Set B are non-stationary.

3. Among the four noise types in Set A, “babble” and “exhibition” result in the largest and
smallest accuracy degradation, respectively. In contrast, the noise types in Set B that
correspond to the highest and lowest accuracy rates are “airport” and “street”.

4. With the same noise type “subway”, the accuracy of Set A is better than that of Set C,
implying the channel mismatch in Set C further degrades the recognition performance.

Among the various noise-robustness algorithms,MVN is very widely used since implementing
MVN is quite simple and significant recognition improvement can be thus achieved. Many
noise-robustness techniques such as TSN [7] and MVA [8] have been developed directly on
MVN-processed MFCC features and reveals very good performance. As a result, we treat the
MVN-processed MFCC as the baseline features hereafter, unless otherwise mentioned.

The recognition results of the baseline experiments, using MVN-processed MFCC as features,
are shown in Table 2. Comparing Table 2 with Table 1, MVN benefits the plain MFCC a lot
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Table 1: The recognition accuracy rates (%) of plain MFCCs in various environments

baseline experiments
(using MFCCs, including c0 ∼ c12 plus their delta and delta-delta,

totally 39 features)
Set A Set B Set C

subway babble car exhibition average restaurant street airport train average subway street average

clean 99.83 99.77 99.74 99.85 99.80 99.83 99.77 99.74 99.85 99.80 99.79 99.76 99.78

20dB 98.90 91.26 97.14 98.72 96.51 94.41 97.33 92.87 93.67 94.57 96.58 97.16 96.87

15dB 95.08 78.27 88.16 95.25 89.19 84.12 92.22 80.54 83.06 84.99 91.63 93.16 92.40

10dB 82.43 61.68 69.65 84.04 74.45 67.83 77.61 63.88 66.07 68.85 82.24 82.64 82.44

5dB 62.31 44.41 53.20 63.63 55.89 49.55 60.19 48.38 49.28 51.85 65.01 67.25 66.13

0dB 47.12 33.20 45.00 49.04 43.59 36.13 47.74 37.98 41.52 40.84 48.64 51.79 50.22

-5dB 43.13 30.89 42.60 43.77 40.10 33.60 42.81 35.42 40.15 38.00 43.58 45.33 44.46

average 77.17 61.76 70.63 78.14 71.92 66.41 75.02 64.73 66.72 68.22 76.82 78.40 77.61

Table 2: The recognition accuracy rates (%) of the baseline experiment, with the MVN-processed
MFCC as the features

Baseline experiment results (with MVN-processed MFCC features)
Set A Set B Set C

subway babble car exhibition average restaurant street airport train average subway street average

clean 99.81 99.77 99.76 99.92 99.82 99.81 99.77 99.76 99.92 99.82 99.85 99.79 99.82

20dB 98.46 99.06 98.71 98.32 98.64 99.20 98.72 99.12 98.47 98.88 98.52 98.74 98.63

15dB 96.73 96.95 96.73 96.22 96.66 97.62 96.82 97.67 96.05 97.04 96.79 96.76 96.78

10dB 92.03 92.20 90.91 90.90 91.51 93.34 91.54 93.24 91.05 92.29 91.92 91.64 91.78

5dB 81.25 78.68 74.90 81.08 78.98 81.95 79.10 80.63 76.96 79.66 81.21 79.47 80.34

0dB 62.39 57.61 53.56 63.89 59.36 63.55 59.11 61.31 55.66 59.91 61.97 58.96 60.47

-5dB 47.84 45.63 43.72 48.64 46.46 48.17 46.44 46.98 45.30 46.72 47.58 46.74 47.16

average 86.17 84.90 82.96 86.08 85.03 87.13 85.06 86.39 83.64 85.56 86.08 85.11 85.60

MFCC 77.17 61.76 70.63 78.14 71.92 66.41 75.02 64.73 66.72 68.22 76.82 78.40 77.61

by enhancing the recognition accuracy rates for almost all SNR cases and all noise types, which
exhibits the capability of improving noise robustness of MVN for MFCC. Furthermore, even
though MVN does not eliminate the median/high (modulation) frequency distortion very well,
as depicted in Figure 3(a), the low-frequency portion that contains most speech information
is well treated by MVN in reducing noise effects, thus bringing about very good recognition
accuracy.

IV.3 The experimental results of proposed DCT-based algorithms

IV.3.1 DCT-MS and DCT-MW

This sub-section provides the results of DCT-MS and DCT-MW. The parameter M in eq.
(6) that represents the length of the common DCT-magnitude reference/weight for DCT-MS/
DCT-MW is set to 1024.
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Tables 3 and 4 give the detailed recognition accuracy rates obtained from DCT-MS and
DCT-MW. We have some findings from the two tables:

1. Compared with the baseline results in Table 2, both DCT-MS and DCT-MW provide
better recognition accuracy, implying the two methods can enhance MVN features in noise
robustness.

2. DCT-MW outperforms DCT-MS slightly,indicating that to highlight the more important
DCT-components like a filtering process helps more. For example, with DCT� MW, the
averaged accuracy for Set B can be as high as 90%, roughly 4% better than the baseline.

Table 3: The recognition accuracy rates (%) of DCT-MS that performs on the MVN-processed
MFCC

DCT-MS
Set A Set B Set C

subway babble car exhibition average restaurant street airport train average subway street average

clean 99.37 99.23 99.25 99.58 99.36 99.37 99.23 99.25 99.58 99.36 99.43 99.11 99.27

20dB 97.91 98.38 98.73 98.13 98.29 98.35 98.23 98.62 98.63 98.46 98.14 98.32 98.23

15dB 96.08 96.93 97.55 96.43 96.75 97.39 97.21 97.87 97.50 97.49 96.48 96.89 96.69

10dB 92.34 94.12 94.38 92.68 93.38 94.09 93.92 95.39 94.70 94.53 92.09 93.63 92.86

5dB 84.08 85.97 87.86 85.18 85.77 86.73 87.08 88.31 88.59 87.68 84.52 87.42 85.97

0dB 71.10 69.64 76.34 71.98 72.27 72.68 74.44 75.69 75.62 74.61 70.55 74.80 72.68

-5dB 56.34 52.56 61.46 57.24 56.90 55.20 59.04 58.26 60.37 58.22 56.08 59.17 57.63

average 88.30 89.01 90.97 88.88 89.29 89.85 90.18 91.18 91.01 90.55 88.36 90.21 89.28

MVN
86.17 84.90 82.96 86.08 85.03 87.13 85.06 86.39 83.64 85.56 86.08 85.11 85.60baseline

IV.3.2 Partial-band DCT-MS

Here we perform the partial-band DCT-MS given in sub-section III.2.3. For the sake of
clarity, the notations pDCT-MSu and pDCT-MSl are used, where the left subscript index “p”
indicates a partial-band DCT-MS, and the right subscript, “u” or “l”, represents the updated
partial band being “upper sub-band” ([Fc Hz, Fs/2 Hz]) or “lower sub-band” ([0, Fc Hz]), in
which Fc and Fs are the cutoff frequency and the frame rates in Hz. The averaged recognition
accuracy rates achieved by pDCT-MSu and pDCT-MSl for five different assignments of cutoff
frequency Fc are listed in Tables 5 and 6. We have the following observations from the two
tables:

1. For the case of pDCT-MSu, in which only the upper sub-band magnitudes are updated and
increasing the cutoff frequency narrows the upper sub-band in bandwidth, the correspond-
ing recognition accuracy rates are always better than the baseline (with MVN-processed
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Table 4: The recognition accuracy rates (%) of DCT-MW that performs on the MVN-processed
MFCC

DCT-MW
Set A Set B Set C

subway babble car exhibition average restaurant street airport train average subway street average

clean 99.66 99.53 99.66 99.83 99.67 99.66 99.53 99.66 99.83 99.67 99.64 99.57 99.61

20dB 98.75 98.95 98.95 98.55 98.80 99.20 98.55 98.94 98.91 98.90 98.76 98.53 98.65

15dB 97.76 97.53 97.61 96.47 97.34 98.21 97.72 98.11 97.52 97.89 97.43 97.66 97.55

10dB 94.20 94.12 95.13 92.47 93.98 94.92 94.78 95.13 94.72 94.89 93.90 94.76 94.33

5dB 86.31 85.29 88.40 84.40 86.10 86.37 87.14 87.64 87.74 87.22 86.31 87.16 86.74

0dB 70.26 66.50 74.75 71.58 70.77 68.66 72.88 72.25 72.57 71.59 70.22 72.11 71.17

-5dB 53.68 48.87 56.60 55.90 53.76 50.47 54.16 54.06 55.39 53.52 53.26 54.01 53.64

average 89.46 88.48 90.97 88.69 89.40 89.47 90.21 90.41 90.29 90.10 89.32 90.04 89.68

MVN
86.17 84.90 82.96 86.08 85.03 87.13 85.06 86.39 83.64 85.56 86.08 85.11 85.60baseline

features). However, pDCT-MSu outperforms the full-band DCT-MS (with the cutoff fre-
quency 0 Hz) only when the cutoff frequency Fc is 5 Hz, and there is a performance gap
when Fc is from 5 Hz to 15 Hz. This observation leads to two aspects: First, keeping the
components within [0, 5 Hz] unchanged is better than updating them, probably because
this frequency range has been handled well by MVN and further normalizing it in DCT-
magnitude tends to attenuate the recognition information. Second, operating DCT-MS
in the frequency range [5 Hz, 15 Hz] especially helps in recognition performance, which is
somewhat consistent of the observation in Figure 3(a) that there remains PSD mismatch
roughly above 5 Hz after operating MVN.

2. For the case of pDCT-MSl, in which only the lower sub-band magnitudes are updated and
increasing the cutoff frequency broadens the lower sub-band in bandwidth, assigning a too
small cutoff frequency (below 10 Hz) even worsens the recognition accuracy relative to
the baseline, which supports our statements for pDCT-MSu previously that updating the
components within the frequency range [0, 5 Hz] is not a good idea. Increasing the cutoff
frequency Fc in pDCT-MSl can improve the recognition accuracy, and the best possible
results for pDCT-MSl occurs when Fc is 50 Hz, equivalent to the original (full-band) DCT-
MS. As a result, partial-band DCT-MS outperforms full-band DCT-MS only when a proper
upper sub-band is selected for update.

IV.3.3 Integrating DCT-MS/DCT-MW with other normalization techniques

In sub-section IV.3.2 the MVN-processed MFCC are treated as the baseline features and
they are further updated with the presented DCT-based algorithms. Experimental results show
that the DCT-based algorithms achieve higher recognition accuracy relative to the baseline,
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Table 5: Recognition accuracy rates (%) averaged over all noise types different SNRs for the
pDCT-MSu method with different cutoff frequency, where AR(%) and RR(%) stand for the
absolute and relative error rate reductions, respectively.

pDCT-MSu

(updating the upper sub-band) with different cutoff frequencies
Cutoff frequency Fc Set A Set B Set C Average AR RR

0 Hz (full-band DCT-MS) 89.29 90.55 89.28 89.79 4.44 30.31
5 Hz 90.80 91.62 90.12 90.99 5.64 38.50
15 Hz 87.51 88.03 87.95 87.80 2.45 16.72
25 Hz 86.04 86.60 86.63 86.38 1.03 7.03
35 Hz 85.57 86.14 86.24 85.93 0.58 3.96
45 Hz 85.16 85.78 85.72 85.52 0.17 1.16

50 Hz(equivalent to the baseline) 85.03 85.56 85.60 85.35 - -

Table 6: Recognition accuracy rates (%) averaged over all noise types different SNRs for the
pDCT-MSl, with different cutoff frequency, where AR(%) and RR(%) stand for the absolute and
relative error rate reductions, respectively.

pDCT-MSl

(updating the lower sub-band) with different cutoff frequencies
Cutoff frequency Fc Set A Set B Set C Average AR RR

50 Hz(full-band DCT-MS) 89.29 90.55 89.28 89.79 4.44 30.31
45 Hz 89.13 90.50 89.16 89.68 4.33 29.56
35 Hz 88.59 89.98 88.75 89.18 3.83 26.14
25 Hz 88.27 89.70 88.46 88.88 3.53 24.10
15 Hz 85.73 87.26 86.05 86.41 1.06 7.24
5 Hz 83.78 84.71 84.53 84.30 -1.05 -7.17

0 Hz(equivalent to the baseline) 85.03 85.56 85.60 85.35 - -

revealing that they are well additive to MVN. Here we are to investigate if the proposed DCT-
MS/DCT-MW can enhance some other types of features, including the original plain MFCCs
and the MFCCs processed by either of CMN, CGN, MVA, and HEQ in advance.

Tables 7, 8 and 9 list the averaged recognition accuracy rates for DCT-MS, DCT-MW and
pDCT-MSu (Fc = 5 Hz), respectively, for different types of features (MFCCs processed by CMN,
MVN, CGN, HEQ and MVA). From the three tables, we find that

1. Similar to MVN, all the pre-processing algorithms including CMN, CGN, HEQ and MVA
provide the original MFCC with improved recognition accuracy. MVA performs the best,
followed by HEQ, CGN, MVN and then CMN.

2. The presented DCT-MS enhances the recognition accuracy for all the types of features
shown here, including the unprocessed plain MFCCs. The resulting average accuracy
rates are around 89.50% (except DCT-MS performing on the plain MFCCs). As a result,
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Table 7: Recognition accuracy rates (%) averaged over all noise types different SNRs for the
DCT-MS method combined with various featuer normalization methods

DCT-MS on various feature normalization methods
Method Set A Set B Set C Average AR RR

MFCC 71.92 68.22 77.61 71.58 - -
MFCC+DCT-MS 82.73 84.55 83.39 83.59 12.01 42.26

CMN 79.37 82.47 79.90 80.71 - -
CMN+DCT-MS 89.15 90.45 89.23 89.68 8.97 46.50

MVN 85.03 85.56 85.60 85.35 - -
MVN+DCT-MS 89.29 90.55 89.28 89.79 4.44 30.31

HEQ 87.59 88.84 87.64 88.10 - -
HEQ+DCT-MS 88.50 90.00 89.04 89.21 1.11 9.33

CGN 87.64 88.55 87.73 88.02 - -
CGN+DCT-MS 89.25 90.58 89.27 89.79 1.77 14.77

MVA 88.12 88.81 88.50 88.47 - -
MVA+DCT-MS 88.93 90.20 88.88 89.42 0.95 8.24

by adopting DCT-MS, CMN and CGN become more attractive than HEQ and MVA since
they are more computationally efficient.

3. Similar to DCT-MS, integrating DCT-MW with most normalization methods (except CMN
and the original MFCC) provide better recognition rates than the individual component
method. The optimal performance, 90.84% in averaged accuracy, occurs with the pairing
of DCT-MW and CGN, better than those shown in Table 8, indicating DCT-MW be-
haves better than DCT-MS when combining with any of CGN, HEQ and MVA. However,
since there remains significant low modulation frequency distortion in the unprocessed
and CMN-processed noisy MFCC features, DCT-MW, acting as a low-pass filter, cannot
benefit the two types of features in reducing the effect of noise.

4. Similar to DCT-MS and DCT-MW, pDCT-MSu (with Fc = 5 Hz) is well additive to most
normalization methods to make the recognition accuracy better. Comparing Table 9 with
Tables 7 and 8, the partial-band DCT-MS, pDCT-MSu, outperforms the full-band DCT-
MS and DCT-MW in most cases. The optimal averaged recognition accuracy shown in
Table 9 is as high as 91.41%, with the pairing of pDCT-MSu and HEQ.

IV.4 Summary

The averaged recognition accuracy rates for some methods presented in sub-section IV.3
are summarized in Figure 7 for a clear comparison. From this figure, we find that: First, among
the three DCT-based algorithms, only DCT-MS can enhance the original and CMN-processed
MFCC features to achieve a high accuracy rate as 89%. Second, when integrating either MVN,
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Table 8: Recognition accuracy rates (%) averaged over all noise types different SNRs for the
DCT-MW method combined with various featuer normalization methods

DCT-MW on various feature normalization methods
Method Set A Set B Set C Average AR RR

MFCC 71.92 68.22 77.61 71.58 - -
MFCC+DCT-MW 74.28 74.44 68.03 73.09 1.51 5.31

CMN 79.37 82.47 79.90 80.71 - -
CMN+DCT-MW(1) 80.02 83.05 80.60 81.35 0.64 3.32

MVN 85.03 85.56 85.60 85.35 - -
MVN+MW(1) 89.40 90.10 89.68 89.74 4.39 29.97

HEQ 87.59 88.84 87.64 88.10 - -
HEQ+DCT-MW 90.24 90.80 90.85 90.59 2.49 20.92

CGN 87.64 88.55 87.73 88.02 - -
CGN+DCT-MW 90.39 91.34 90.73 90.84 2.82 23.54

MVA 88.12 88.81 88.50 88.47 - -
MVA+DCT-MW 89.83 90.59 90.22 90.21 1.47 15.09

Table 9: Recognition accuracy rates (%) averaged over all noise types different SNRs for the
pDCT-MSu method (with Fc = 5 Hz) combined with various featuer normalization methods

pDCT-MSu on various feature normalization methods
Method Set A Set B Set C Average AR RR

MFCC 71.92 68.22 77.61 71.58 - -
MFCC+pDCT-MSu 70.33 68.20 75.64 70.54 -1.04 -3.66

CMN 79.37 82.47 79.90 80.71 - -
CMN+pDCT-MSu 82.69 85.18 83.24 83.79 3.08 15.97

MVN 85.03 85.56 85.60 85.35 - -
MVN+pDCT-MSu 90.80 91.62 90.12 90.99 5.64 38.50

HEQ 87.59 88.84 87.64 88.10 - -
HEQ+pDCT-MSu 91.14 92.06 90.66 91.41 3.31 27.82

CGN 87.64 88.55 87.73 88.02 - -
CGN+pDCT-MSu 90.97 91.87 90.31 91.20 3.18 26.54

MVA 88.12 88.81 88.50 88.47 - -
MVA+pDCT-MSu 90.45 91.32 90.20 90.75 2.28 19.77
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Figure 7: The recognition rates (%) averaged over all noise types and all SNRs for various
DCT-based algorithms performing on various types of features

CGN, HEQ or MVA, the partial-band DCT-MS, pDCT-MSu, behaves the best, followed by DCT-
MW and then DCT-MS. Finally, a relatively computationally efficient algorithm which integrates
pDCT-MSu and MVN/CGN can achieve nearly optimal recognition performance since pDCT-
MSu is the simplest among the DCT-based algorithms in implementation, and MVN and CGN
need less computation complexity than MVA and HEQ.

V. Conclusion and Future Work
In this paper, we use the DCT to develop algorithms to promote the noise robustness

of speech features in the temporal domain. In the presented methods, the DCT-magnitudes of
feature streams are either normalized or weighted appropriately according to the information of
clean speech utterances. We have shown that the two methods give rise to significant word error
rate reduction when performing on the MVN-processed features, and they are also well additive
to each of CMN, CGN, HEQ and MVA to provide further improved accuracy rates relative to
the individual component method.

The future work will be along the following directions:

1. Performing DCT-magnitude substitution adaptively: in this paper we process the DCT-
magnitude substitution by directly referring to a fixed reference magnitude curve. Al-
though it may be the most direct and simplest approach, doing this way probably loses
some important information of the original noisy speech streams for the ASR task. There-
fore, we will study how to collect the information of the currently processed feature stream
in order to create the reference magnitude curve in an adaptive manner.

2. Integrating the proposed new methods with some other feature normalization techniques,

20
40

yu
矩形



such as HOCMN [6] and CSN [4], to see if further improvement can be achieved.

3. Investigating how to determine the optimal trade-off between the noise reduction and the
speech distortion that always exists among the noise-robustness techniques.
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