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Abstract 

Transliteration is the general choice for handling named entities and out of 
vocabulary words in any MT application, particularly in machine translation. 
Transliteration (or forward transliteration) is the process of mapping source 
language phonemes or graphemes into target language approximations; the reverse 
process is called back transliteration. This paper presents a novel approach to 
improve Punjabi to Hindi transliteration by combining a basic character to 
character mapping approach with rule based and Soundex based enhancements. 
Experimental results show that our approach effectively improves the word 
accuracy rate and average Levenshtein distance of the various categories by a large 
margin. 

Keywords: Transliteration, Punjabi, Hindi, Soundex Approach, Rule based 
Approach, Word Accuracy Rate. 

1. Introduction 

Every machine translation system has to deal with out-of-vocabulary words, like technical 
terms and proper names of person, places, objects, etc. Machine transliteration is an obvious 
choice for such words. When words cannot be found in translation resources, such as a 
bilingual dictionary, transliteration - the process of converting characters in one alphabet into 
another alphabet - is used. Transliteration is a process wherein an input string in some 
alphabet is converted to a string in another alphabet, usually based on the phonetics of the 
original word. If the target language contains all the phonemes used in the source language, 
the transliteration is straightforward, e.g. the Hindi transliteration of Punjabi word “ਕਮਰਾ” 
[kamarā] (room)1 is “कमरा” [kamarā], which is essentially pronounced in the same way. 
Nevertheless, if some of the sounds are missing or are extra in the target language, they are 
generally mapped to the most phonetically similar letter, e.g., in Hindi we have syllables 
(consonant clusters) that are written as a single atomic grapheme and have a double sound 
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associated with them, like “क्ष”, which is a combination of the sound of “क” and “ष”. No such 
consonant cluster is present in Punjabi. So, a similar sounding letter generally is used to 
denote such sounds. Again, there is no rule to find out when a sequence of letters in Punjabi is 
going to map in a consonant cluster in Hindi, e.g., consider the two names written in Punjabi, 
viz. ਿਸ਼ਿਤਜ [ṣitij]  िक्षितज [kṣitija] and ਿਸ਼ਕਾਕਾਈ [śikākāī] िशकाकाई [śikākāī]. In the first name, 
the consonant cluster ਿਸ਼ is mapped to िक्ष, whereas, in the second name, the same is mapped to 
िश. 

The important consideration in transliteration is to preserve the phonetics of 
transliterated word (Virga & Khudanpur, 2003). The transliteration process depends on the 
target language and on the education and experience of the actual transliterator. Thus, a single 
foreign word can have many different transliterations. For example, “ਮਿਹਫੂਜ਼” [mahiphūz] (safe) 
can be transliterated as “महफूज़” [mahaphUz], “महफ़ूज़” [mahafUz], “मिहफूज़” [mahiphUz], 
“मिहफ़ूज़” [mahifUz], etc. This variation, due to localization, poses problems in various NLP 
tasks, like cross language information retrieval. According to Viswanadha R. (2002), for a 
finer transliteration among two scripts, the scripts must have the features of completeness, 
predictability, pronounceable, unambiguousness, and partial reversibility. Transliteration 
schemes have to face the problem of letters present in one language and not in the other. 
Unless a superset of letters from all of the Indian Languages is formed, uniform transliteration 
is ruled out. Viswanadha, (2002) had the view that, when characters do not have any 
appropriate transliteration, they should be consumed and not replaced with any other character. 
This results in partial loss of reversibility and readability. 

For several decades now, Roman transliteration has been used in English Indian language 
texts. Extensive research has been carried out on methodologies for transliterating Indian 
scripts to and from their Romanized counterpart. Transliteration among Indian scripts is a 
rather neglected area. With the development of ISCII (Indian Script Code for Information 
Interchange), the problems in transliteration among Indian scripts have been solved to some 
extent. ISCII has been designed via the phonetic property of Indian scripts and caters to the 
superset of all Indian scripts. The ISCII document is IS13194:1991, available from the office 
of the Bureau of Indian Standards. The ISCII approach is based on the fact that many Indian 
language groups share a common set of phonemes, and via the same set of codes for different 
Indian languages, it would be possible to change fonts from one language to the other, thereby 
"transliterating" the script in the process. By attaching an appropriate script rendering 
mechanism to ISCII, transliteration from one Indian script to another is achieved in a natural 
way. Later in the decade of the 1990s, Unicode standards were developed for representing the 
character set of all languages. In Unicode, alphabets are coded by script rather than language, 
which saves reduplication of the same character if it occurs in multiple languages. The 
Gurmukhi and Devanagari Unicode tables were based on templates from the 1988 versions of 
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the ISCII standard. 

In this paper, we will discuss the Punjabi to Hindi Machine transliteration system. 
Although Punjabi and Hindi are related languages, and, except for a few cases, all letters of 
Gurmukhi script (a script for the Punjabi Language) are present in Devanagri script (a script 
for the Hindi Language), the task of transliteration from Punjabi to Hindi is not trivial. We 
will use letter to letter mapping as the baseline and try to find the improvements by rule based 
and Soundex based approaches. This work forms part of larger Punjabi to Hindi machine 
translation system, and the results of transliteration will be applied to this system for its 
improvement. 

The remainder of the paper is organized as follows. Section 2 reviews previous work. In 
Section 3, the Gurmukhi and Devanagri scripts are compared, and the problems of 
transliteration from Punjabi to Hindi are discussed. Section 4 describes the formulation of the 
rule based model and the Soundex based model. Section 5 outlines the experiment and the 
evaluation methodology used. Section 6 will present the results. Finally, Section 7 contains 
our overall impressions and conclusions and points to future work. 

2. Previous Work 

The topic of machine transliteration has been studied extensively for several different 
language pairs, and many techniques have been proposed. Grapheme based models and 
Phoneme Based models are the two approaches found in literature. Grapheme refers to the 
basic unit of a written language: for example English has 26 graphemes or letters. Phonemes 
are the simplest significant unit of sound e.g. the /M/, /AE/, and /TH/ in math. Grapheme 
based models are classified into the statistical transliteration based model, decision tree based 
model, transliterated network based model etc. Some examples of this would be the 
noisy-channel model (NCM) (Lee & Chang, 2003; Virga et al., 2003), HMM (Jung, Hong & 
Paek, 2000), decision tree (Kang & Choi, 2000), transformation-based learning (Meng, Lo, 
Chen & Tan, 2001), statistical machine transliteration model (Lee et al. 2003), finite state 
transducers (Knight & Grahel, 1998), and rule-based approach (Oh & Choi, 2002; Wan & 
Verspoor, 1998). The phoneme-based approach has received remarkable attention in various 
works (Lee et al. 2003; Meng et al. 2001; Oh et al., 2002; Knight et al. 1998; Virga et al. 
2003; Jung et al. 2000; Al-Onaizan & Knight, 2002). 

For Indian languages, as mentioned earlier, Roman transliteration has been used to 
represent texts of Indian languages in English. Since it is difficult to represent the letters of 
Hindi using just the twenty six letters of the Roman alphabet, scholars have used varying 
schemes to accommodate sounds that could not be correctly indicated using appropriate 
Roman letters. The schemes are somewhat arbitrary in the choice of Roman letters. Sometimes, 
phonetic symbols are used in place of the normal Roman letters. Most phonetic symbols are 
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basically the letters of the Roman and Greek alphabets with special marks known as diacritic 
marks. Roman transliteration that makes use of diacritic marks works better for Indian 
languages, and some standardization has been effected in the last few decades based on the 
recommendation from the National Library in Calcutta (“Transliteration Principles,” 
2008).  Roman letter assignments in this scheme are phonetically equivalent to the letters of 
Sanskrit or other Indian languages. The primary difficulty in data entry of the phonetic 
symbols is that there is no provision to input the symbols directly using the standard ASCII 
keyboard. Transliteration methods using only the displayable ASCII symbols do not run into 
this problem since the ASCII letters can be typed in directly. A special computer program, 
however, would be required to interpret the input string to produce the Indian languages 
display or printout. This is precisely what the currently popular transliteration schemes 
attempt. Schemes such as ITRANS (Chopde, 2001), RIT (Kanneganti & Kishore, 2008), 
ADHAWIN (Srinivasan, 1995), and MYLAI (KalyanaSundram, 2008), use only the standard 
displayable ASCII letters and symbols to transliterate the text. These schemes allow multiple 
representations for certain syllables and long vowels but the processing program handles this 
well. Although the input can be done using standard keyboards, these schemes are not suitable 
for searching the contents on the Internet. There is a need to evolve a case-insensitive 
transliteration scheme to facilitate searching on web. 

For the Punjabi language, a Gurmukhi to Roman transliteration system using a 
transliteration scheme based on ISO: 15919 transliteration and ALA-LC has been developed at 
Punjabi University Patiala (Sharma, 2008). 

All of these transliteration schemes are either from Roman to Indian languages or 
vice-versa. Transliteration among Indian languages is rather ignored. As the English language 
is one of the official languages of India, Roman transliteration is developed primarily to 
disseminate information in the English language. Little need is felt for transliteration among 
Indian languages. Malik (2006) has developed a machine transliteration system from Hindi to 
Urdu. The system converts Hindi and Urdu into a common language that may be ASCII 
encodings of Hindi and Urdu characters or the International Phonetic Alphabet (IPA) 
equivalents of Hindi and Urdu Phonemes. Then, Hindi and Urdu will be generated from the 
common language. This makes the system reversible. 

A corpus based transliteration system for Shahmukhi to Gurmukhi has also been 
developed (Saini & Lehal, 2008). Their system uses statistical data from both Shahmukhi and 
Gurmukhi corpora like character, word, and n-gram frequencies. In this system, script 
mappings are performed for simple consonants, aspirated consonants (AC), vowels, and other 
diacritical marks or symbols. Next, the transliteration system is virtually divided into two 
phases. The first phase performs rule-based transliteration, and the second phase performs the 
transliteration using bi-gram language model. 
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A machine transliteration system has also been developed for transliterating from Hindi 
to Punjabi (Goyal & Lehal, 2009). This system has implemented approximately fifty complex 
rules for making the transliteration between Hindi-Punjabi language pair. The system claims 
98% accuracy. The system is not reversible due to the dependency on language-specific rules. 

As more and more data in Indian languages is available in electronic format, the need of 
the hour is to develop sophisticated transliteration modules for Indian languages that can be 
used in various NLP systems, like machine translation and cross language information 
retrieval. This paper discusses the first attempt to develop a transliteration system for 
transliterating Punjabi text to Hindi. 

3. Gurmukhi and Devanagari Scripts 

Punjabi can be written in Gurmukhi script or in Shahmukhi script. Shahmukhi is used to write 
and record the Punjabi language in West Punjab in Pakistan. In East Punjab in India, however, 
the Gurmukhi script is used to record the Punjabi language. This paper also considers this 
script for writing Punjabi. The script used for writing Hindi is called Devanagari. Both 
Gurmukhi and Devanagari descended from the Brahmi script of Ashoka. Both scripts are 
left-to-right and words are spelled phonetically. As a background for readers who are not 
familiar with script terminology, we will describe the basic elements of a script here. Building 
blocks of a script are alphabets, which are the sets of letters, each of which represents one or 
more phonemes in the language they are used to write. In some cases, combinations of letters 
are used to represent single phonemes, as in the English sh, ch, and th. The alphabets contain 
letters for both consonants (sound articulated with complete or partial closure of the vocal 
tract) and vowels (sound pronounced with an open vocal tract). A single vowel or a consonant 
plus a vowel make a syllable. A writing system can be syllabary or alphasyllabary. A syllabary 
system is a phonetic writing system consisting of symbols representing syllables. On the other 
hand, an alphasyllabary system consists of symbols for consonants and vowels. The 
alphasyllabary system is also known as abiguda. Both Gurmukhi and Devanagri are 
alphasyllabary in nature. Alphabets of both scripts represent syllables. All consonants contain 
an inherent vowel /a/ or schwa ending, both of which can be altered or muted by means of 
diacritics or matra. Vowels can also be written with separate letters when they occur at the 
beginning of a word or on their own. When two or more consonants occur together, special 
conjunct symbols are often used to add the essential parts of the first letter or letters in the 
sequence to the final letter (“Writing Systems,” 2010). 

Gurmukhi, meaning "from the mouth of the Guru" is the most commonly used script in 
India for writing in Punjabi. Gurmukhi was introduced by the second Guru of the Sikhs, Guru 
Angad Dev Ji, in the sixteenth century as a polished version of the Landa writing system, 
which was used in old Punjabi at that time. Part of the shift from Landa to Gurmukhi entailed 
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the inclusion of some Devanagari letters. Gurmukhi was then used to record the scriptures of 
the Sikhs, and it continues till today as the prominent writing system for Punjabis. Bhatia 
(1993) identifies three stages of development the Punjabi language has undergone over the 
years, which are illustrated in Figure 1 below. 

Stage 1 : Old Punjabi (10th to 16th century) 

Stage 2 : Medieval Punjabi (16th to 19th century)

Stage 3 : Modern Punjabi (19th century to present)

Figure 1. The development stages of the Punjabi language. 

In Gurmukhi, there are three letters that are used to provide bases for free-standing vowels: 

ੳ [uṛa] ਅ    [ æṛa] ੲ  [iṛi] 

There are nine dependent vowel sounds (also called diacritics) available in Punjabi as ◌ਾ, 
ਿ◌, ◌ੀ, ◌ੁ, ◌ੂ, ◌ੇ, ◌ੈ, ◌ੋ, and ◌ੌ. The allowed combination of vowel symbols and sounds are ਅ, ਆ, 
ਇ, ਈ, ਉ, ਊ, ਏ, ਐ, ਓ, and ਔ. These are also called independent vowels. All of these 
combinations have a unique code in Unicode and are termed as independent vowels. When a 
vowel sound comes at the start of a word or is independent of some consonant in the middle or 
end of a word, independent vowels are used. There are 32 consonants in the older Gurmukhi 
script. Later, some more letters were introduced to represent some sounds adapted from Farsi 
and Persian. Presently, Gurmukhi has 38 consonants, 10 vowels letters (independent vowels), 
9 vowel symbols (dependent vowels), 2 symbols for nasal sounds, and 1 symbol that 
duplicates the sound of consonants (Bhatia, 1993; Malik, 2006). The form of each syllable is 
often dependent on whether it occurs in combination with other letters, e.g., a vowel following 
a consonant changes its form, behaving as a diacritic modifier to the consonant: 

ਕ + ਈ = ਕੀ 

All consonants have an inherent vowel, i.e. /a/. Diacritics, which can appear above, 
below, before or after the consonant they belong to, are used to change the inherent vowel. 
When certain consonants occur together, a special conjunct symbol halant character ◌੍ before 
the consonant is used to combine the essential parts of each letter. For example 

ਕ + ◌੍ + ਰ = ਕਰ੍ 

These are also called conjunct consonants. A sentence illustrating Gurmukhi script is 
given below. Terminology used throughout the paper is: TT denotes phonetic transcription, G 
denotes gloss, and E denotes English sentence. 
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“ਪੰਜਾਬੀ ਮੇਰੀ ਮਾਂ ਬੋਲੀ ਹੈ।” 

TT: pañjābī mērī māṃ bōlī hai. 

G: Punjabi my mother tongue is. 

E: Punjabi is my mother tongue. 

The Nāgarī (lit. 'of the city') or Devanāgarī ('divine Nagari') was originally developed to write 
Sanskrit but was later adapted to write many other languages, including Hindi. Devanagari has 
65 consonants, 18 full vowel letters, 17 vowel symbols, and 2 symbols for nasal sounds. Hindi 
uses only 34 consonantal syllables, 11 vowel letters (independent vowels), 9 vowel symbols 
(dependent vowels), and 2 symbols for nasal sounds (“The Devanagari Script Block,” 2008). 
Similar to Gurmukhi, the form of each syllable is often dependent on whether it occurs in 
combination with other letters, e.g., a vowel following a consonant changes its form, behaving 
as a diacritic modifier to the consonant: 

क    [ka] + आ [ā] = का [kā] 

When two consonants occur together, the combination results in a conjunct character. The first 
sign receives the diacritic  known as a halant, to show that the consonant has its inherent 
vowel silenced, also known as the dead consonant form. 

क् [ka] + र [ra] = कर् 

Unlike Devanagari, there are only a few conjunct consonants in Gurmukhi. In Devanagari, if a 
consonant is followed by two vowels, then the first vowel is written in the diacritic form, 
whereas the second is written in full. This feature is not present in Gurmukhi. Vowels may 
also be nasalized, which is indicated by a anusvara “ ◌ं” or chandrabindu “ ◌ँ” written over the 
head stroke (horizontal line) of the vowel or the consonant it is attached to. 

हु ँ[hũ] nasalized 

In cases where part of the vowel is written above the head stroke, only the dot is used to 
indicate nasalization. Although chandrabindu is not a part of Standard Hindi, in practice, both 
are used interchangeably in Hindi. The sentence illustrating Hindi is given below: 

“पंजाबी मेरी मातृभाषा ह।ै” 

paṁjābī merī mātṛbhāṣā hai 

G: Punjabi my mother tongue is. 

E: Punjabi is my mother tongue. 

Except for minor differences, most of the letters are same in both of the scripts. There are 
three syllables of consonant clusters in Hindi that are written as a single atomic grapheme, i.e., 
तर् , ज्ञ, क्ष but no such letters or consonant clusters are available in Gurmukhi. Punctuation in 
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Punjabi is similar to Hindi. Table 1, adapted from (Goyal & Lehal, 2009), shows the 
similarities and dissimilarities among alphabets in both scripts. As we can see, most of the 
letters have one to one correspondence, so this table also forms the base for direct mapping. 

Table 1. Alphabet of Gurmukhi and Devanagari scripts 
Gur
mu
khi 

Dev
ana
gari 

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi 

Dev
ana
gari 

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi

Dev
ana
gari 

Gur
mu
khi 

Dev
ana
gari 

ੳ - ◌ਾ ◌ा ਕ क ਟ ट ਨ਼ ऩ ਲ ल ਗ਼ ग़ 

ਅ अ ਿ◌ ि◌ ਖ ख ਠ ठ ਪ प ਲ਼ ळ ਜ਼ ज़ 

ੲ - ◌ੀ ◌ी ਗ ग ਡ ड ਫ फ - ऴ ੜ ड़ 

ਆ आ ◌ੁ ◌ु ਘ घ ਢ ढ ਬ ब ਵ व ੜਹ੍ ढ़ 

ਇ इ ◌ੂ ◌ू ਙ ङ ਣ ण ਭ भ ਸ਼ श ਫ਼ फ़ 

ਈ ई ◌ੇ ◌े ਚ च ਤ त ਮ म - ष ਯ਼ य़ 

ਉ उ ◌ੈ ◌ै ਛ छ ਥ थ ਯ य ਸ स ਤ਼ ᬵ 

ਊ ऊ ◌ੋ ◌ो ਜ ज ਦ द ਰ र ਹ ह - ᭁ 

ਏ ए ◌ੌ ◌ौ ਝ झ ਧ ध ਰ਼ ऱ ਕ਼ क़ ᴠ ᭂ 

ਐ ऐ - ऋ ਞ ञ ਨ न - र्   ਖ਼ ख़ ᴟ ᬾ 

ਓ ओ - ॠ - कृ         

ਔ औ - ॐ ੴ -         

4. Approach to Transliteration from Gurmukhi to Devanagari 

4.1 Letter to Letter Mapping 
Both Punjabi and Hindi are phonetic languages, and their scripts represent the phonetic 
repository of their respective languages. These phonetic sounds are used to determine the 
relations between the alphabets of the two scripts. On the basis of this idea, character 
mappings are determined. The development of the Unicode system for representing alphabets 
eases the problem to some extent. With this system, every letter can be uniquely mapped to 
the corresponding letter, as shown in Table 1. Taking into account the similarity of both of the 
scripts, letter to letter mapping is the obvious choice for the baseline computation. Letters are 
mapped using Table 1. This system is used as the baseline for improvements by the rule based 
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and Soundex based approaches. 

For analysis and comparison purposes, both scripts are subdivided into different groups 
on the basis of types of letters, e.g., consonants, vowel symbols, vowel sounds, and other 
symbols. 

4.1.1 Vowel Mapping 
Punjabi contains 10 vowel symbols. Hindi vowels have one to one correspondence with 
Punjabi vowel symbols. There are nine dependent vowel sounds available in Punjabi as ◌ਾ, ਿ◌, 
◌ੀ, ◌ੁ, ◌ੂ, ◌ੇ, ◌ੈ, ◌ੋ, and ◌ੌ. Corresponding vowel sounds in Hindi are ◌ा, ि◌, ◌ी, ◌ु, ◌ू, ◌े, ◌ै, ◌ो, 
and ◌ौ. When a vowel sound comes at the start of a word or is independent of any consonant 
in the middle or the end of the word, independent vowels are used. The mapping is shown in 
Table 2. 

Table 2. Vowel Mapping 
Independent vowels Dependent vowels 

Gurmukhi Devanagari Gurmukhi Devanagari

ਅ  अ  ◌ਾ   ◌ा, 

ਆ  आ  ਿ◌  ि◌, 

ਇ  इ  ◌ੀ  ◌ी,   

ਈ  ई  ◌ੁ    ◌ु,   

ਉ  उ  ◌ੂ    ◌ू,   

ਊ  ऊ  ◌ੇ    ◌े, 

ਏ  ए  ◌ੈ    ◌ै,   

ਐ  ऐ  ◌ੋ    ◌ो,   

ਓ  ओ  ◌ੌ  ◌ौ 

ਔ  औ     

Besides these vowels, Punjabi has two more symbols, ੳ and ੲ. No symbol is present in Hindi 
for these two symbols. The nearest phonetic letters are उ and इ, respectively. These are used in 
the letter to letter mapping scheme. 
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4.1.2 Consonant Mapping 
Consonant mapping is shown in Table 1, Columns 5-14. No letter in Punjabi is present for the 
Hindi letters “ऴ”, “ष”, and “ᭁ”. This means these letters can never be mapped in a letter to 
letter based approach. Similar is the case for some double-sound-producing syllables, like “क्ष”, 
“ज्ञ”, and “शर्”. Syllables like “ज्ञ” and “शर्” can be mapped by a rule based approach while 
others like “ष”, “क्ष”, “ऴ”, and “ᭁ” can be handled by the Soundex based approach discussed 
in the next sections. 

4.1.3 Conjunct Consonants Mapping 
There are three conjunct consonants in Gurmukhi also called PAIREEN, (“Haahaa”), 

(“Raaraa”), and (“Vaavaa”), which are shown in Table 3. 

Table 3. Sub Joins of Gurmukhi 

Conjunct Consonants Punjabi Hindi English 

 ਬੁਲਹ੍ੜ [bulharh] बुल्हड़ A person with large lips 

 ਪਰ੍ੀਤਮ [pritam] पर्ीतम A person name (Pritam) 

 ਸਵ੍ਰਗ [svarag] स्वरग Heaven 

The usage of PAIREEN “Haahaa” is quite frequent in Punjabi, but the other two are very rare 
in usage and are used in Sanskrit loan words. In Punjabi, they are represented by the halant 
character ◌੍ before the consonant, which indicates that the inherent vowel is omitted. A similar 
halant character is also present in Hindi, which can replace the halant character in Punjabi. It 
may be noted that the actual sequence of letters is the same in both languages but the visual 
sequence of letters differs (Table 4). PAIREEN “Haahaa” in Punjabi is replaced with their 
full consonant counterparts, while the full consonant preceding them in Punjabi is shown in 
half form in Hindi. Similar is the case with PAIREEN “Vaavaa”. On the other hand, 
PAIREEN “Raaraa” takes the position below the previous consonant in Punjabi as well as in 
Hindi. 

  Table 4. Actual Sequence of letters 

ਬ  ◌ੁ  ਲ  ◌੍  ਹ  ੜ  =  ਬੁਲਹ੍ੜ

ब  ◌ु  ल  ◌੍  ह  ड़  =  बुल्हड़

4.1.4 Other Symbols 
Punctuation marks and digits are the same in both scripts. A special character called as visarga 
(◌ः) is present in Hindi but not in Punjabi. So, it will never be mapped in the letter to letter 
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based scheme. Besides this, Gurmukhi has two separate nasal characters, Bindi (◌ਂ) and Tippi 
(◌ੰ ). Hindi has only one nasal character called anusvara “ ◌ं”. In the Devanagari script, 
anusvara is represented with a dot (bindu) above the letter e.g. “मं”. Both nasal characters of 
Punjabi are mapped to this single nasal character in Hindi. Adhak (◌ੱ ) is used to duplicate the 
sound of a consonant in Punjabi. No such character is present in Hindi. Sound duplication is 
represented by half form consonants in Hindi. 

4.1.5 Problems in Letter to Letter Mapping 
The total number of letters in Punjabi and Hindi are not same (Table 1). The Punjabi letters ੳ 
and ੲ have no mapping in Hindi. Similarly, there are letters in Hindi that have no mapping in 
Punjabi e.g. ऋ. These letters will never be mapped in Punjabi to Hindi transliteration using a 
direct mapping method. Some letters have more than one representation in Hindi, e.g., ਸ਼ may 
be mapped to श or ष. Another problem is the use of conjunct consonant forms in Hindi. In 
Hindi, a syllable may consist of a vowel, a consonant followed by vowel, or a consonant 
cluster followed by a vowel. The last form i.e., when two or more consonants are used within 
a word with no intervening vowel sound, is known as a conjunct consonant. Use of conjunct 
consonants is limited in Punjabi. Only three letters can be used as conjuncts i.e., ਹ, ਰ, and ਵ. 
Their representation is also unique. It is not a trivial task to find out which combinations of 
letters in Punjabi will take conjunct consonant form in Hindi. For example, why the word ਿਨਊ 
[niū] (new) in Punjabi takes the conjunct consonant form in Hindi न्यू, is not clear. 

Also, the mapping of nasal consonants is not clear. Nasal consonants in initial place in a 
conjunct may be expressed using the anusvara over the previous vowel, rather than as a 
half-glyph attached to the following consonant. The anusvara is written above the headstroke, 
at the right-hand end of the preceding character. In the list below, both spellings are correct 
and equivalent, although anusvara is preferred in the case of the first two: रंग = रङ्ग, पंजाबी = 
पᲳाबी, िहदी = िहन्दी, लंबा = लम्बा. Anusvara is still applied when previous character has its own 
vowel sign. If the vowel sign is [aa], the anusvara appears over the [aa], e.g. ᯋांसीसी or 
आंदोलन. 

Similarly, the position of the character “र” is not specific. It can be used as consonant, 
subscripted consonant, or can take a position above a consonant or diacritics, and it is 
typically displayed as a small mark above the right shoulder of the last letter in the syllable. It 
is not clear how the character ਰ [ra] in Punjabi will map to which form in Hindi, e.g., the three 
cases where mapping of ਰ is not clear are: from ਤਰਕਸ਼ [tarkash] (arrow-holder) to तरकश, from 
ਵਰਤ [varat] (fast) to वर्त, and from ਬਰਤਨ[bartan] (utensil) to बतर्न. 
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4.2 Rule Based Approach 
Character mapping alone is not sufficient for a Punjabi to Hindi machine transliteration 
system. Quite a reasonable improvement can be achieved by small amount of dependency or 
contextual rules. These rules are manually crafted with the help of a linguist by observing the 
problems in the direct mapping system. This section discusses such rules for alleviating some 
of the problems discussed in the previous section. Ideally, the rule set must contain all of the 
rules required by the system to perform, but practically it is not possible to construct such a set. 
About 11 rules are identified that are applicable on the source text and about 8 rules are 
identified that are applicable on the target text. We tried to cover all the possible cases but still 
we may miss some of them. Moreover, new rules can be added when identified. The rules go 
as follows: 

1. Letters whose mapping is not available in Hindi : 

a. ੳ and ੲ are two such letters whose corresponding Hindi letters are not available. They 
are replaced by their most phonetically equivalent letters, i.e., उ and इ respectively. 
Formally, the rule goes like this 

if inpt_str contain “ੳ” then replace it with “उ” 

if inpt_str contain “ੲ” then replace it with “इ” 

b. A character adhak “◌ੱ” is present in Punjabi and used to show the stress on the next 
character. No letter in Hindi is present to represent this character. Nevertheless, the 
purpose is served by placing a half character before the stressed character, e.g., “ਸ਼ੱਕਰ” 
[śakkar] (jaggery) is transliterated as “शक्कर”[śakkar]. There is an exception for this rule. 
If the next character of adhak “◌ੱ” is ਖ [kha] then, instead of placing a half character, a 
half क[ka] is placed, e.g., “ਮੱਖਣ” [makkhaṇ] (butter) transliterated to “मक्खन” [makkhana]. 
Also, if the next character is ਛ [ccha], then the half character is replaced by a half च, e.g., 
as in “ਮੱਛਰ” [macchar] (mosquito), which is transliterated to “मच्छर” [macchar]. Similarly, 
if the next character is ਧ [dha], then the half character is replaced by a half द, e.g., as “ਬੱਧ” 
[baddh] is transliterated as ब᳍. Formally, it is 

If current_char = “◌ੱ” then 
 If nxt_char= “ਖ” then 
  map “◌ੱ “ to “क्” 

  else if nxt_char= “ਛ” then 
   map “◌ੱ “ to “च”् 
  else if nxt_char= “ਧ” then 
   map “◌ੱ “ to “द”् 
  else  
   map “◌ੱ “ to nxt_char & “◌੍” 
  end if 
 end if 
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2. Bindi and Tippi both are used to produce a nasalized sound in Punjabi. There is only Bindi 
(anusvara) present in Hindi to serve the same purpose. Tippi can be successfully mapped to 
Bindi in Hindi. A special case is when the tippi “ ◌ੰ ” [ṃ] is followed by “ਨ” [na] or “ਦ” [da], 
then it is replaced by a half “न”, as in “ਕੰਨੜ” [kannaṛ] (Kannad) “क᳖ड़” [kannaṛ]. If, however, 
it is followed by “ਬ” [ba], then it is replaced by a half “म”, as in “ਮੋਜ਼ੰਿਬਕ” [mōzmbik] 
(mozambique) “मोज़िम्बक”. Formally, it is 

If current_char = “◌ੰ ” then 

 If nxt_char= “ਨ” then 

  map “◌ੰ “ to “न”् 

  else if nxt_char= “ਬ” then 

   map “◌ੰ “ to “म”् 

  else 

   map “◌ੰ “ to “◌ं” 

  end if 

 end if 

3. The presence or absence of the diacrtic mark “ਿ◌” in the target string is effected by the 
character ਹ [ha] in Punjabi. When ਹ [ha] in the input string is followed or preceded by the ਿ◌ 
[i] mark, ਿ◌ [i] is translitrated differently. In this case, ਹ [ha] is followed by ਿ◌ then ਿ◌ is 
ommited from the transliterated text, e.g., ਸ਼ਿਹਰ [shahir] (city) is transliterated to शहर. On the 
other hand, if ਹ [ha] is preceded by ਿ◌, then ਿ◌ is mapped to ◌े in the transliterated text, e.g., 
ਿਸਹਤ [sihat] (health) is transliterated to सेहत. Formally, it is 

If current_char = “ਹ ” then 

 If nxt_char= “ਿ◌” then 

  Omit “ਿ◌” in target string 

  else if prev_char= “ਿ◌” then 

   map “ਿ◌”  to “◌े” 

  else 

   map “ਿ◌” to “ਿ◌” 

  end if 

 end if 

4. Another rule deals with transliteration of letters ਅਰ [ar]. If this combination appears at the 
final position in a word, then, instead of mapping ਅ [a]to अ, this letter is mapped to य., e.g.,  
ਬੀਅਰ [bīar] (bear) is transliterated to बीयर. Formally, it is 
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If last_two_char = “ਅਰ ” then 

  map “ਅ”  to “य” 

 else 

  map “ਅ” to “अ” 

 end if 

5. If ਅ is in the last position, then it is replaced by य as in ਿਪਰ੍ਅ [pria] – िपर्य Formally, it is 

If last_char = “ਅ ” then  map “ਅ”  to “य” 

6. If ਈ is in the last position, then it is replaced by यी,  e.g., in ਵਾਜਪਾਈ [vājapāī] (Vajpai)– 
वाजपायी Formally, it is 

If last_char = “ਈ ” then  map “ਈ”  to “यी” 

7. If ਓ is in the last position or the 2nd to last position, then it is replaced by यो, e.g., in ਗਲੀਿਲਓ 
[galīliō] (galilio) – गलीिलयो. Formally, it is 

If last_char = “ਓ” or second_last_char= “ਓ” then  map “ਓ”  to “यो” 

8. A rule for plural forms of Punjabi words calls for changing the vowel sign of the last 
chararcter. It says that, if the last characters are ◌ा ◌ं, then ◌ा is mapped to ◌ो in Hindi, e.g., 
ਿਕਤਾਬਾ ਂ [kitābāṃ] (books) is transliterated to िकताबᲂ[kitābō]̃. Although this is a case of 
translation where the root ਿਕਤਾਬ [kitāb] is the same in the two languages and gets inflected by 
the rules in respective languages, this case can be handled at the transliteration stage. 
Formally, it is 

If last_two_char = “◌ा ◌ं” then   map “◌ा”  to “◌ो” 

9. Similarly, if the last positions are occupied by ਆਂ [āṁ], then ਅ [a] is mapped to य, e.g., ਸ਼ੀਸ਼ੀਆਂ 
[shīshīāṃ] (bottles) should be mapped to शीशीयᲂ rather than शीशीᲐ. It is worth mentioning 
here that both of the spelling variants are acceptable in general to Hindi speakers but the 
former is preferred. Formally, it is: 

If last_two_char = “ਆਂ” then   map “ਅ”  to “य” 

10. The character ੴ [ik-ōṅkār] is replaced by string “एक Აकार”. Formally, 

If char = “ੴ” then   map “ੴ”  to “एक Აकार” 

11. The letter “ਣ” [ṇ] is converted to “न” if it is a last consonant in a word, e.g., in ਕਿਹਣਾ [kahiṇā] 
(to say) the letter ਣ is converted to न when transliterated to produce “कहना”. 

If last_consnt = “ਣ” then   map “ਣ”  to “न” 

The above rules are applicable for the character sequence found in the source script. Table 5 
describes some rules that are applicable to the character sequence found in the target script, i.e. 
Hindi. We can find a probable character sequence using the letter to letter mapping approach. 
These rules then can be applied to these probable strings. Every row of Table 5 gives the 
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replacement rules for a character combination found in the probable string. For example, for a 
source script word ਿਵਉ [viu] (view), the letter to letter mapping approach produces a probable 
string िवउ, which is converted to ᳞ु by applying the rule from the following table. Formally, it 
can be described as follows: 

For each chr_seqnce in table 

 If chr_ seqnce present in input string then  

  Replace chr_ seqnce to corresponding seqnce from table 

Table 5. Replacements in transliterated text 

Occurrence in 
hindi token 

Replacement in 
hindi token Example 

"ि◌उ" "◌्यु" ਿਵਉ [viu]–िवउ – ᳞ ु

"ि◌ऊ" "◌्यू" ਿਨਊ [niū]– िनऊ – न्यू 

"ि◌ओ" "◌्यो" ਿਬਓਰਾ [biōrā]– िबओरा – ब्योरा 

"◌ीआ" "ि◌या" ਕੋਰੀਆ [kōrīā]– कोरीआ – कोिरया 

"◌ीअ" "ि◌य" ਕੋਰੀਅਨ [kōrīan] — कोरीअन — कोिरयन 

"इण" "यण" ਰਾਮਾਇਣ [rāmāiṇ] — रामाइण — रामायण 

"◌ीयो" "◌्यो" ਟੋਕੀਓ [ṭōkīō] — टोकीयो – टोक्यो 

"ि◌आ" "◌्या" ਿਸਆਿਚਨ[siācin]— िसआिचन — स्यािचन 

4.3 Soundex Based Approach 
Considerable improvements are noticed over the letter to letter mapping approach when using 
the rule based approach, but still some problems persist. Although we tried to cover the 
maximum number of rules, still there are cases for which no rule applies. Letters or syllables 
not available in Punjabi but present in Hindi, ऋ, क्ष ,ज्ञ ,शर् ,ष, etc. are still unhandled. The 
syllables having double tones in Hindi, like ऋ is a combination of sound of consonant “र” /r/ 
and vowel “ਿ◌” /i/, are represented in Punjabi with the help of two letters, like the consonant 
“ਰ” /r/ and vowel “ਿ◌”/i/. There is no means to find when these two letters in Punjabi will map 
to corresponding letters “िर” or to a single syllable “ऋ” in Hindi, e.g., consider following 
cases. 
Case I:  ਿਰਕਸ਼ਾ(riksha) [rickshaw]  िरक्शा 
Case II:  ਿਰਸ਼ੀ(rishi) [cleric]  ऋिष 
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In Case I, the letters ਿਰ are mapped to िर, whereas, in Case II, they are mapped to ऋ. Also, the 
rule based approach is deficient in producing the half form of letters and some other letters, as 
discussed in the previous section. For generating these characters, the Soundex technique is 
employed. Soundex is a phonetic matching technique. The Soundex algorithm was designed 
by Odell and Russell (1918) to find spelling variation of names. It represents classes of sounds 
that can be lumped together. Two names match if they have the same Soundex representation. 

Back in 1918, Odell and Russell proposed Soundex, the first phonetic encoding for 
English to be used in the US census. Soundex partitions the set of letters into seven disjoint 
sets, assuming that the letters in the same set have similar sounds. Each of these sets is given a 
unique key, except for the set containing the vowels and the letters h, w, and y, which are 
considered to be silent and are not taken into account during encoding. For example, both 
realize and realise have been encoded to ‘R-420’ in Soundex encoding, which works well for 
trivial cases, but fails to give same code to words where letters change its pronunciation in 
different contexts. For example, knight, night, and nite are similar sounding words but 
Soundex does not give the same code to these words. 

For Punjabi to Hindi transliteration, the Soundex concept is extended for searching for 
the correct spelling variant of a given transliteration. The Soundex codes are assigned to the 
Hindi characters based upon their phonetics i.e., similar sounding characters get the same code, 
e.g., both श and ष have the same sound, thus, they get the same code, 44. The akharas having 
single graphemes get the code according to the sounds they produce, e.g., ऋ is a combination 
of sound of consonant “र” /r/ and vowel “ਿ◌” /i/, so it gets the code of these two letters, i.e. 
4149. The code table is shown in Table 6. Codes in this table are selected in such a way that 
similar sounding letters get the same code. We start with independent vowel sounds whose 
code ranges from 1 to 5. For consonants, we start from two digit codes, i.e. 11 to 47. 
Thereafter, we code the dependent vowels and some other miscellaneous letters. Unlike 
Soundex code, which consists of a letter (the first letter of the string) followed by three 
numerical digits encoding the remaining consonants, all characters of the Hindi string are 
coded into digits. This ensures matching in case the first letter does not match. From the 
transliterations produced by the previously discussed methods, the correct spelling variant is 
searched using Soundex codes as described in the following lines. Let H be a set of equivalent 
Hindi words and TH be a transliteration produced by the machine transliteration step. A 
relevant h from H is selected by comparing phonetic similarity between H and TH. For 
implementation purposes, we make a unigram table from a corpus of about 1 GB size obtained 
from the Internet. Unigram contains about 150,000 unique words along with their frequency in 
the corpus. The codes are generated for each of the word in unigram using Table 6. For the 
comparison, letters in TH are converted into phonetic code using the mapping table as 
described in Table 6. Then, this code is looked for in a unigram table. The unigram table may 
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produce more than one candidate. The candidate with maximum frequency is selected as the 
correct variant of the given TH produced by the machine. For example, consider the word 
“ਡਰਾਫਟ” [ḍarāphaṭ] (draft) written in Punjabi. The string “डराफट” is produced by the baseline 
module. The code 2541483623 is generated for this string, as shown in the following table. 

ड र ◌ा फ ट 

25 41 48 36 23 

This code is looked for in a unigram database. This database contains two entries against this 
code, i.e. डर्ाफ्ट and डराफ्ट with frequency 12 and 8. The string with higher frequency is 
selected as the correct output for this input. 

Table 6. The coding scheme for Hindi text 

अ 1   च 17  न 34   ◌ा 48 

ऑ 1   छ 18  प 35   ◌ॉ 48 

इ 2   ज 19  फ 36   ि◌ 49 

ई 2   ज़ 19  फ़ 36   ◌ी 49 

उ 3   ज्ञ 20  ब 37   ◌ो 50 

ऊ 3   झ 21  भ 38   ◌ौ 50 

ए 4   ञ 22  म 39   ◌ ू 51 

ऐ 4   ट 23  य 40   ◌ ु 51 

ओ 5   ठ 24  र 41   ◌ े 52 

औ 5   ड 25  ऌ 42   ◌ ै 52 

क 11   ड़ 26  ल 42   ◌ँ or ◌ ं 53 

क़ 11   ढ 27  ळ 42   ◌ ़ 54 

क्ष 12   ढ़ 28  व 43   ॐ 55 

ख 13   ण 29  श 44   ऋ 4149 

ख़ 13   त 30  ष 44   ॠ 4149 

ग 14   थ 31  आ 45   ◌ृ or ◌ ॄ 4149 

ग़ 14   द 32  स 46 शर् 4441 

घ 15   ध 33  ह 47   

ङ 16                  
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5. The Experiment 

In this section, we describe the evaluation of our models on the task of Punjabi to Hindi 
transliteration. 

5.1 Data 
A provocative question for evaluators is the type of test material that should be adopted for 
evaluation. Balkan (1994) describes three types of test material, viz. test corpora, test suites, 
and test collections. While test corpora is a collection of naturally occurring texts, a test suite 
is a collection of artificially constructed inputs, where each input is designed to probe a 
system's treatment of a specific phenomenon or set of phenomena. A test collection is a set of 
inputs associated with a corresponding set of expected outputs. Test suites and test corpora are 
extensively used for evaluating various systems involving NLP, while test collections are 
rarely used. 

Users can make their own test suites, and such test suites are helpful for checking the 
improvement of an MT system. For two competing systems, however, test suites are not 
considered a good method of assessment. It is difficult to interpret the result that both systems 
transliterate same percentage of text but fail on different sentences. How to design a test suite, 
the cost of constructing it, and what sort of sentences/words should go into a test suite are 
some other issues discussed by Arnold (1995). There are several issues involved in the 
selection of a set of words for a comprehensive evaluation. For example, the set could be 
constant, variable, or a mixed one; the collection of words may be domain-specific or generic. 
It is obvious that there is no guarantee that even the bulkiest sample will include all of the 
possible words of the source language. Some suggestions as to what should go into a test suite 
are discussed in Hoard (1991). Some empirical evidence is present in literature to answer the 
question of how much text to include in a test suite. Although this evidence is not for 
transliteration system, it can provide insight for this system as well. Elliott et al. (2003) tried 
to prove the general hypothesis that more text would lead to more reliable scores. Based on an 
empirical assessment of score variation, the authors estimate that systems could be reliably 
ranked with test suite of around 14,000 words. Zhang & Vogel (2004) also studied the 
influence of the amount of test data on the reliability of automatic metrics, focusing on 
confidence intervals for BLEU and NIST scores. Their results show that BLEU and NIST 
scores become stable when using around 40% of the data (around 40 documents or 300 
sentences), although stability is defined here in terms of the distance between scores of 
different systems. Estrella et al. (2007) shows that, for human or automatic evaluation, about 
five documents from the same domain-with 6,000 words-seem sufficient to establish the 
ranking of the systems and about ten documents are sufficient to obtain reliable scores. 
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For this experiment, a benchmark sampling method is used to select the set of words. 
Unicode encoded text is used in Punjabi as well as Hindi, as it eliminates the need of 
normalizing the text. If text is in font encoded form, then the ASCII code for a given character 
may vary. For example, under the AnmolLipi font, the Latin character ‘A’ would appear as 
‘ਅ’. Conversely, under the DrChatrikWeb font, it would appear as ‘ੳ’. Unicode encoded text 
provides a unique way of representing a character; hence, it eases the task of mapping letters 
from different alphabets. We tested on people names, location names, and foreign words in 
Punjabi. The list was prepared manually by typing the names and terms from telephone 
directories, census records, etc. and partially obtained from manually searching the Internet. 
We tried to include the maximum possible variety of words in the set. The words are further 
categorized as Punjabi names, Hindi names, English names, and other foreign names/words. It 
is worth mentioning here that quite a number of English words are adapted into the Punjabi 
and Hindi languages, so we categorized them separately from the foreign words, which are 
words from other languages. The list contains about 3500 person names, 1500 location names, 
and 1000 foreign words. 

5.2 Evaluation Methodology 
The following combinations of approaches are tested for Punjabi-Hindi transliteration task. 

Baseline: As a baseline for our experiments, we used a simple letter to letter based approach that 
maps Punjabi letters to the most likely letter in Hindi. We call it CASE-I. 

Baseline followed by Rule Based Approach: Some hand crafted rules are studied for the 
improvements in the letter to letter based mapping system. This system is called CASE-II. 

Baseline followed by Soundex Approach: The Soundex approach is applied to the output of 
the baseline method. This is termed as CASE-III. 

Baseline followed by Rule Based followed by Soundex Based Approach: Both the rule based 
and Soundex approaches, consecutively, are applied to the output of the baseline method. This is 
termed as CASE-IV. 

Baseline followed by Soundex Based followed by Rule Based Approach: Both the Soundex 
based and Rule based approach, consecutively, are applied to the output of the baseline method. 
This is termed as CASE-V. 

Human: For the purpose of comparison, we allowed an independent human subject (fluent in 
Punjabi and native speaker of Hindi) to perform the same task. The subject was asked to 
transliterate the Punjabi words in the test set without any additional context. No additional 
resources or collaboration were allowed. This output was used as the gold standard for checking 
the system's performance. 
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5.3 Evaluation Metrics 
Often, more than one transliteration is acceptable for any input string. Using one gold standard 
may prove to be too rigid for measuring accuracy. On the other hand, including more than one 
correct transliteration complicates the computation of the evaluation score. Also, there is no 
one exact transliteration of a foreign word, so a soft standard is required to indicate the 
closeness of output to the gold standard. Levenshtein distance is used for this purpose. The 
metrics are described as follows: 

Word Accuracy Rate: It is defined as percentage of correct transliteration from the total 
generated transliterations by the system. 

Average Levenshtein Distance: This is the average of Levenshtein distances between the 
transliterated word and reference word. Levenshtein distance is a measure of similarity of two 
strings. The distance is the number of deletions, insertions, or substitutions required to transform 
the source string to the target string, e.g., transforming from the source string इखितआर, which 
results from the direct transliteration of ਇਖਿਤਆਰ [ikhtiār], the correct target string इखत्यार can 
be produced by deleting ि◌ from त, adding halant (◌੍) to त, and replacing अ with य. Thus, the 
Levenshtein distance is 3. 

While Levenshtein distance captures the performance of a system at character level, 
word accuracy rate is used to capture the performance at word level. A word may have 
non-zero Levenshtein distance but still may be accurate. Lower Levenshtein distance value 
implies that, although the result is not the same as that of the gold standard, it is still 
intelligible. 

6. Evaluation Results 

The experiment was performed on the prepared list. The results of this experiment follow. 

Table 7. Word Accuracy Rate and Avg Lev Dist. of Fivr Cases 

 CASE-I CASE-II CASE-III CASE-IV CASE-V 

WAR 73.13% 78.88% 86.72% 92.65% 87.15% 

ALD 0.61 0.32 0.39 0.10 0.37 

The baseline model produced a 73.13% accuracy rate. The rule based enhancement and 
Soundex based enhancement shows the improvements in performance with Soundex prove to 
be better than rule based. It is observed that CASE-V, i.e. Soundex followed by rule based, 
does not provide much improvement. This is because in the literature, the Soundex approach 
is largely discussed as a spelling correction method. Thus, it performs better on refined text, 
i.e. the output generated by the rule base, and fails to perform on raw input. Similarly, the 
average edit distance of different cases is shown in Table 7. The average edit distance of 
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CASE-III is increased from CASE-II then decreased with WAR increasing, as evident from 
Figure 2. This is because the human evaluator has marked some spelling variations correct. 
That is, for the name ਸੁਿਰੰਦਰ (Surinder), the three transliterations produced by CASE-I, Case-II, 
and Case-III are सुिरदर, सुिरन्दर and सुिरदर्, respectively. The human evaluator marked all of 
these as correct. Nevertheless, as Levenshtein distance is measured against a gold standard, 
which is सुिरदर् in this case, CASE-III shows an increase in this parameter despite increased 
word accuracy. The word accuracy rate for CASE IV, i.e. the Base + rule + Soundex approach 
is found out to be 92.65% and Avg. Levs. Dist is 0.10. These figures are the highest among all 
the cases and verify the suitability of the approach. 

 
Figure 2. Word Accuracy Rate and Avg Lev Dist. of Five Cases 

The breakdown of the figures is shown in following tables. 

Table 8. WAR and ALD for person names, location names, and foreign words in all 
cases 

 Person Name Location Name Foreign Words 

 WAR (%) ALD WAR (%) ALD WAR (%) ALD 

CASE-I 75.85 0.59 67.10 0.61 63.50 0.64 

CASE-II 86.9 0.23 79.8 0.24 69.8 0.50 

CASE-III 88.5 0.41 81.7 0.51 89.8 0.26 

CASE-IV 92.8 0.1 91.45 0.1 93.8 0.09 

CASE-V 88.78 0.39 82.7 0.48 90.01 0.24 
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Figure 3. WAR for person names, location names, and foreign words in all cases 

 
Figure 4. ALD for person names, location names, and foreign words in all cases 

The word accuracy for words whose origin is also Punjabi is 86.6 in the baseline model and 
shows the similar trend in other cases, as shown in Table 9. The improvement in all cases is 
registered with maximum for Hindi and English languages. 

Table 9. Word Accuracy rate and Avg. Lev Dist according to origin of  
source language of input word 

 Punjabi Word Hindi Word English Word Foreign Word 

 WAR ALD WAR ALD WAR ALD WAR ALD 

CASE-I 86.6 0.41 63.54 0.76 57.3 0.83 80.1 0.39 

CASE-II 91.6 0.12 70.15 0.44 63.4 0.60 83.9 0.25 

CASE-III 90.1 0.36 83.29 0.46 85.3 0.35 90.05 0.21 

CASE-IV 95.4 0.06 89.9 0.14 92.2 0.10 93.37 0.08 

The accuracy in the baseline model for Hindi and English is quite low because the baseline 
model cannot capture the half form representation of letters. As there is no half form in 
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Punjabi, a Hindi name, when spelled in Punjabi, uses the full form of the character instead of 
its half form. For example, the name इन्दर् (Inder) when spelled in Punjabi will look like ਇੰਦਰ 
[indar]. Here, the half form of न and र in the Hindi name are represented by (tippi-a character 
for nasal sound) and ਰ, respectively. When this form is transliterated by the baseline model, it 
will produce इंदर, which is incorrect. Similar is the case with English and other foreign words. 
So, due to the character gap in Punjabi and other languages, the word accuracy rate for the 
baseline is low. It is also interesting to note that when words that are originally from Hindi and 
used in Punjabi are transliterated back to Hindi, the accuracy rate is lower than other types of 
words (for Cases III and IV). The reasons are twofold. First, Hindi words written in Punjabi 
are an approximate transliteration of the original Hindi word in Punjabi. Depending upon the 
perception of the transliterator, a Hindi word may have more than one representation in 
Punjabi, e.g., the Hindi name आचायार् (Acharya) can be represented in Punjabi as “ਆਚਾਿਰਆ ”, 
“ ਆਚਾਰੀਆ ”, “ ਅਚਾਰੀਆ ”, and “ ਅਚਾਿਰਆ ”. Only the first representation, when again 
transliterated back into Hindi, converts to the correct representation. Other representations are 
converted into such strings by baseline and rule based modules that they have no match in the 
unigram table, making the Soundex module inefficient. Normalization of spellings at the 
source by a similar Soundex approach may improve the results. 

Table 10. Breakdown of Word Accuracy rate and Avg. Lev Dist for person names, 
location names, and other words according to origin of source language of 
input word 

 Punjabi Words Hindi Words English Words Foreign Words 
WAR ALD WAR ALD WAR ALD WAR ALD 

CASE-I 

Person 
Name 86.9 0.4 63.92 0.77 79.51 0.59 82.78 0.39 

Location 
Name 76.61 0.60 67.09 0.48 42.30 1.23 73.68 0.26 

Other 
Words 87.02 0.27 30 1.3 52.21 0.83 66.66 0.55 

CASE-II 

Person 
Name 91.6 0.12 70.49 0.43 84.33 0.32 87.41 0.24 

Location 
Name 91.12 0.14 75.95 0.34 57.69 0.61 73.68 0.26 

Other 
Words 91.8 0.11 29.04 1.25 56.63 0.71 66.66 0.33 

CASE-III 

Person 
Name 91.4 0.35 83.14 0.14 90.36 0.34 90.72 0.23 

Location 
Name 77.41 0.56 82.28 0.29 65.38 0.90 94.73 0.05 

Other 
Words 92.30 0.22 90.1 0.3 87.61 0.23 88.88 0.33 

CASE-IV Person 
Name 95.8 0.05 89.7 0.12 95.18 0.08 94.7 0.08 



 

 

100                                 Gurpreet Singh Josan and Gurpreet Singh Lehal 

Location 
Name 92.74 0.08 91.14 0.14 86.53 0.11 94.73 0.05 

Other 
Words 95.41 0.05 90.8 0.25 92.47 0.10 88.88 0.11 

CASE-V 

Person 
Name 91.4 0.32 85.14 0.15 88.36 0.33 89.72 0.21 

Location 
Name 78.1 0.54 82.8 0.28 67.38 0.85 94.23 0.05 

Other 
Words 92.6 0.21 91.1 0.31 86.94 0.21 89.28 0.3 

The system also benefits from the spelling correction capability of the Soundex method. It can 
improve the results by selecting the correct output for a given wrong input, e.g., for the input 
ਅਨੂਪਮ (correct is ਅਨੁਪਮ [anupam]), the Soundex method selects the correct variation अनुपम 
instead of अनूपम. On the other hand, at times it selects the wrong target word, e.g., for input 
ਕᶥਟ [kaiṇṭ] (cantt) the correct output is कᱹट but the Soundex method selects कᱶ ट as output. 
Another problem with the Soundex based approach is that it is dependent upon the unigram 
table. Although this table is generated from a large amount of data, still it is not exhaustive. 
New terms and names are coined every day, and these need to be included in the unigram table 
regularly. If the data is not present in this table, then the system fails. Such cases, however, are 
few and overall accuracy of the system improves with the combined approach of baseline + 
rule based + Soundex based approach. 

7. Conclusion 

The results show that following the rule based followed by Soundex approach produces the 
best results and the words can be transliterated with considerable accuracy. A fully accurate 
transliteration system is not possible due to the inherent problems, missing corresponding 
letters in two scripts, conjunct form, etc. Although it is possible to transliterate across the 
scripts preserving the basic sounds of the source language, there will be some variations 
because the word in the source script may be pronounced somewhat differently in the target 
script, as per local conventions in each region. This results in more time required by the users 
to interpret the word in the context of original language from which the word comes. The 
transliterated text will be correctly understood only if the reader has knowledge of the 
conventions used for representing sounds in the source script. The aim of the module at least 
is to present a nearest possible transliterated text to the user instead of going blank to such 
words. This module is successfully used for transliterating proper nouns in Punjabi to Hindi 
machine translation system and in the Cross Language Information Retrieval system 
“PunjabiKhoj,” which is a search engine for Punjabi language. 

Although the system performs well, still there is room for improvement. Transcription 
rules based upon IPA and statistical models will be considered in the future. Testing of the 
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system on precision, recall, and F-score is on our future agenda. 
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Abstract 

It is shown that the enormous improvement in the size of disk storage space in 
recent years can be used to build individual word-domain statistical language 
models, one for each significant word of a language that contributes to the context 
of the text. Each of these word-domain language models is a precise domain model 
for the relevant significant word; when combined appropriately, they provide a 
highly specific domain language model for the language following a cache, even a 
short cache. Our individual word probability and frequency models have been 
constructed and tested in the Vietnamese and English languages. For English, we 
employed the Wall Street Journal corpus of 40 million English word tokens; for 
Vietnamese, we used the QUB corpus of 6.5 million tokens. Our testing methods 
used a priori and a posteriori approaches. Finally, we explain adjustment of a 
previously exaggerated prediction of the potential power of a posteriori models. 
Accurate improvements in perplexity for 14 kinds of individual word language 
models have been obtained in tests, (i) between 33.9% and 53.34% for Vietnamese 
and (ii) between 30.78% and 44.5% for English, over a baseline global tri-gram 
weighted average model. For both languages, the best a posteriori model is the a 
posteriori weighted frequency model of 44.5% English perplexity improvement 
and 53.34% Vietnamese perplexity improvement. In addition, five Vietnamese a 
posteriori models were tested to obtain from 9.9% to 16.8% word-error-rate (WER) 
reduction over a Katz trigram model by the same Vietnamese speech decoder. 
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Keywords: A Posteriori, Stop Words, Individual Word Language Models, 
Frequency Models. 

1. Introduction 

A human is able to work out the precise domain of a spoken sentence after hearing only a few 
words. The clear identification of this domain makes it possible for a human to anticipate the 
following words and combination of words, thus, recognizing speech even in a very noisy 
environment. This ability to anticipate still cannot be replicated by statistical language models. 
In this paper, we suggest one way that significant improvement in language modeling 
performance can be achieved by building domain models for significant words in a language. 
The word-domain language model extends the idea of cache models (Kuhn & De Mori, 1990) 
and trigger models (Lau, Rosenfeld, & Roukos, 1993) by triggering a separate n-gram 
language model for each significant word in a cache and combining them to produce a 
combined model. 

The word-domain models are built by collecting a training corpus for each significant 
word. This is done by amalgamating the text fragments where the word appears in a large 
global training corpus. In this paper, the text fragments are the sentences containing the 
significant words. Sicilia-Garcia, Ming, and Smith (2001, 2002) have shown that larger 
fragments are not needed. We define a significant word as any word that significantly 
contributes to the context of the text or any word that is (i) not a stop word, i.e. not an article, 
conjunction, or preposition; (ii) not among the most frequently used words in the language, 
such as “will”; and (iii) not a common adverb or adjective, “now,” “very,” “some,” etc. 

All other words are considered significant, and a corpus is built for each. A statistical 
language model is then calculated from this corpus, i.e. from all of the sentences containing 
the word. Therefore, the model should be able to represent the domain of that word. This 
approach entails a very large number of individual word language models being created, 
which requires a correspondingly large amount of disk storage; previous experiments by 
Sicilia-Garcia, Ming, and Smith (2005) were done on twenty thousand individual word 
language models, which occupied approximately 180 GigaBytes. Thus, this tactic is feasible 
only given the relatively recent increase in affordable hard disk space. These word models 
gradually developed from the PhD work of Sicilia-Garcia 1999-2005. Almost at the same time 
as her research, similar research work was done by Blei, Ng, and Jordan (2003); they 
originally started from the ideas of Hofmann, Puzicha, and Buhmann (1998) and from 
Hofmann (1999). 

The remaining sections are organized in the following way. First, we discuss the 
weighted average model our developed approach lies upon. Then, we discuss both the 
probability models - including linear interpolation and the exponential decay model - and the 
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weighted models, such as the weighted probability model, weighted exponential model, and 
linear interpolation exponential model with weights. Then, we discuss their corresponding 
frequency models and we discuss a priori and a posteriori testing methods. Following this, the 
corpus, experiments, and results are shown for the probability models, for the frequency 
models, and for a posteriori models. Finally, we provide some conclusions. 

2. The Language Models 

Experiments had shown that we needed to combine the global language model with the 
individual word-domain models in order to obtain good results. (This may be due to the 
limited size of the global corpus in our tests, which was 40 million tokens.) So, we first built a 
language model for the whole global corpus. Frequencies of words and phrases derived from 
the corpus and the conditional probability of a word given a sequence of preceding words 
were calculated. The conditional probabilities were approximated by the maximum 
likelihoods: 

( ) ( )
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1 1 11
1 1 1 11
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ML i i i

f w f w w w
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= =                                (1) 

where ( )1
nf w  is the frequency of the phrase 1 1 1...n

n nw w w w−= in the text. These 
probabilities were smoothed by one of the well-known methods, such as Turing-Good 
estimation (Good, 1953) or the Katz back-off method (Katz, 1987). Although any of these 
could be used in our experiment to demonstrate the principle of our multiple word-domain 
models, it was convenient to use the empirical weighted average (WA) linear interpolation 
n-gram model (O’Boyle, Owens & Smith, 1994) because of its simplicity. It gives results 
comparable to the Katz back-off method but is much quicker to use. The weighted average 
probability of a word w given the preceding words w1…wm-1wm is: 
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where the weighted functions (in the simplest case) are given by 

( ) ( )( )0 1 .2m i
i m iLn T and Ln f wμ μ + −= =                                (3) 

where T is the number of tokens in the corpus and ( )1
m
m if w + −  is the frequency of the 

sentence wm+1-i…wm in the text. The unigram maximum likelihood probability of a word is: 

( ) ( )
ML

f w
P w

T
=                                                   (4) 
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The language model defined by Equations (2) and (4) is called the global language model 
when trained on the global corpus. The creation of a language model for each significant word 
is formed in the same manner as the global language model. 

3. Probability Models 

We need to combine the probabilities obtained from each word-domain language model and 
from the global language model in order to obtain a combined probability for a word, given a 
sequence of words. One simple way to do this is a mathematical combination of the global 
language model and the word language models in a linear interpolated expression as: 

( ) ( ) ( )1 1 1
1

mn n n
G G i i

i
P w w P w w P w wλ λ

=
= + ∑                                     (5) 

where 
1

1
m

G iλ λ+ =∑  and ( )1
n

GP w w  is the conditional probability of the word w following 
a phrase w1...wn-1,wn in the global language model, Pi is the conditional probability in the word 
language model for the significant word wi, λi is the correspondent weight, and m is the 
number of word models that are included. Ideally, the λi parameters would be optimized using 
a held-out training corpus; however, this is not practical as we do not know which 
combination of words wi will arise in the cache. So, a simpler approach is needed. 

3.1 Linear Interpolation 
A simple method of choosing the λ-values is to give the same weight to all of the word 
language models but a different weight to the global language model and to put a restriction 
on the number of word language models to be included. This weighted model is defined as 
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m
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λ
=

− ⎡ ⎤
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and λ and m are parameters that are chosen to optimize the model. 

3.2 Exponential Decay Model 
A method was developed based on an exponential decay of the word model probabilities with 
distance since a word appearing several words before the target word will generally be less 
relevant than more recent words. Given a sequence of Vietnamese words, for example, 
“ ” (meaning “I had friendly relations with HUI”) in Table 1, 
where 5, 4, 3, 2, 1 represent the distance of the word from the target word “HUI”. The words 
“tri” (relation) and “giao” (friendly) are significant words for which we have individual word 
language models. 
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Table 1. An explanation of distance of words. 

  tri giao   
5 4 3 2 1  

This model for the word w, where w represents the significant word “HUI,” is as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1
1

.exp 3 / .exp 2 /

1 exp 3 / exp 2 /

n n n
G tri giaon

P w w P w w d P w w d
P w w

d d

+ − + −
=

+ − + −
            (7)

where ( )1
n

GP w w  is the conditional probability of the word w following a phrase w1,w2…wn 
in the global language model and ( )1

n
triP w w  is the conditional probability of the word w 

following a phrase w1…wn-1wn in the word language model for the significant word “tri”. The 
same definition applies for the word model “giao”. d is the exponential decay distance with 
d=5, 10, 15, etc. A cache or cut-off is introduced in the model 

if l ≥ cache => replace exp(-l/d) by 0 

where l is the distance from the significant word to the target word. 

3.3 Weighted Models 
In the two methods above, the weights for the word language models were independent of the 
size of the word training corpora or the global training corpus. So, we introduced new weights 
to these models that depend on the size of the training corpora. These weights are functions of 
the size of the word training corpora, i.e. the number of tokens of the training corpora Ti. 
Examples of the weights can be seen in Table 2. 

Table 2. Some of the weights in weighted models. 

Weights 

Ln(1+LnTi) 

Sqrt(LnTi) 

LnTi 

Sqrt(Ti) 

Ti/LnTi 

Ti 

TiLnTi 
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An obvious weight to use is a log function to match the information theory, but other weights 
were also tried. All of these weights are studied in order of weight difference as Ti increases, 
from the largest difference to the smallest. Their relationship can be seen in Figure 1. 

Figure 1. Value of the weights used in these models. 

3.3.1 Weighted Probability Model 
The weighted probability model is based on the idea that the weight given to a word language 
model should depend on the size of the training corpora. It is described as follows: 
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where βG is the weight for the global language model and βi is the weight for the word model 
for the word wi. We give more weight to those word models with a small training corpus as 
they represent models for the less frequent words, which have the most information. The 
weights used are functions of the size of the word training corpora in Table 2, that is, of the 
number of tokens of the training corpora Ti. 

3.3.2 Weighted Exponential Model 
The weighted exponential language model is a combination of the weighted probability model 
and the exponential decay model. Each language model has two functions: one is the 
exponential decay, in terms of the distance from the significant word, and the second function 
is a weight, depending on the size of the word training corpora. We define this model as: 
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where xi is the distance from the word wi model. 

3.3.3 Linear Interpolation Exponential Model with Weights 
Finally, we decided to try another model that is based on a combination of all previous 
methods. Based on the idea that the global language model could be weighted in a different 
way from the word language models, the probability of a word given the previous words is: 
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This is equivalent to combining all of the methods seen previously into one model, which we 
call the linear interpolation exponential model with weights. 

4. Frequency Models 

Instead of combining probabilities to obtain a dynamic language model, it is also possible to 
combine frequencies before calculating probabilities, i.e. a revised maximum likelihood. To 
do this, replace Equation (1) with: 
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This can then be combined using the WA model in Equation (2). This simple method is 
automatically normalized, and it is easy to implement and fast to execute. The choice of λ is 
still critical but cannot be optimized from a held out corpus. For the frequency model, we also 
combine the frequencies using the same methods that are used for probabilities. 

4.1 Linear Interpolation Frequency Model 
The linear interpolation model applied to the frequency is defined as: 
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where ( )1
n

Gf w  is the frequency of the phrase w1, w2…wn from the global model, ( )1
n

if w  
is the frequency of the phrase w1, w2…wn from the word wi model, and m and λ>0 are chosen 
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parameters. 

4.2 Exponential Decay Frequency Model 
A method was used based on an exponential decay of the frequencies: 
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4.3 Weighted Models 
We introduce new weights to these models; they are functions shown in Table 2. 

4.3.1 Weighted Frequency Model 
The weighted frequency model is a mathematical combination of the word language models 
with the global language models. The frequency for this model is defined as follows: 
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4.3.2 Weighted Exponential Decay Frequency Model 
As can be seen from the previous section, the frequencies are weighted depending on the size 
of the training corpora only. In this model, the exponential decaying factor is added to these 
weights. The new weighted exponential frequency becomes: 
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5. Testing Methods 

Perplexity is a well known measure of the performance of a language model (Jelinek, Mercer, 
& Bahl, 1983). We calculate the perplexity of each sentence, nw1 , by 

1
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and the perplexity of a sentence by 
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where m is the number of words in the sentence. 

There are two methods of calculating the constituent probabilities on the right hand side 
of Equation (17) using the word domain language models, one a priori by Sicilia-Garcia et al. 
(2001, 2002) and the second a posteriori, which was first tried by Sicilia-Garcia et al. (2005.) 
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5.1 A Priori Method 
In the a priori method, we use the global language model and (possibly) individual word 
models from earlier sentences (i.e. from the cache) at the beginning of the sentence because 
we do not know which significant words are going to appear in the sentence. We then add in a 
word language model for each significant word after it appears in the sentence. Thus, in the 
sentence, “The cat sat on the mat,” neglecting previous sentences, the first two words are 
modeled using the global language model, the probability P(sat| the cat) is calculated using the 
global model combined with the word model for “cat,” and the last three words are modeled 
using the global model combined with the word models for “cat” and “sat”. 

5.2 A Posteriori Method 
This, however, is not the only way in which models are tested. For example, in domain 
language models, researchers extract a whole sentence, paragraph, or document from the test 
file, find all of the significant words within it, and use all of these words to perform an 
optimization of the possible domains to find the domain or combination of domains to 
minimize the perplexity (Seymore, Chen, & Rosenfeld, 1998; Donnelly, 1998; Iyer & 
Ostendorf, 1999; Sicilia-Garcia et al., 2005.) 

To make comparisons with these other domain methods, Sicilia-Garcia et al. (2005) also 
tried this a posteriori method to calculate perplexity for word-domain models. To do this, they 
extracted all of the significant words in a sentence and built a language model based on the 
global model and the word domain models for the significant words. This was then used to 
calculate the perplexity of the whole sentence. In the example above, “The cat sat on the mat,” 
the perplexity was calculated using the global model combined with the word domain models 
for the three words “cat,” “sat,” and “mat” for the whole sentence calculation. Using this 
approach, they obtained 68%-69% improvement in perplexity when using the a posteriori 
weighted probability model and the a posteriori weighted frequency model. They accepted 
that this 69% improvement exaggerated the performance but showed the potential power of 
these a posteriori models. Upon further analysis of this, however, we have discovered a slight 
flaw in the calculation. This can be demonstrated by again considering the example above. 
They calculated the a posteriori probability P(sat| the cat) by employing the global model, the 
word “cat” model, the word “sat” model, and the word “mat” model. As the unigram “sat,” as 
well as its n-grams, obviously occur themselves in every sentence of its own target word “sat” 
model, this yields an unnaturally high probability Psat(sat| the cat). Hence, the flaw: if we 
replace the word “sat” by any significant words xxx in the test, the probability Pxxx(xxx| the cat) 
will also obtain unnaturally high values in its own word xxx model. 

In this work, we propose and test a corrected method for calculating the a posteriori 
probability P(sat| the cat), which uses only the global model and the word models for “cat” 
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and “mat,” excluding the target word “sat” model. Furthermore, we have tested three different 
ways of combining word models in our calculation for the linear interpolation probability, the 
exponential decay probability, and the weighted probability models in the whole sentence test: 

i. applying the word models appearing from the beginning until the end of each sentence, 
excluding the target word model 

ii. applying the word models within the phrase history first then the word models that 
appear later in each sentence, and  

iii. ignoring the order of appearance of significant words in each sentence, either existing 
in the phrase history or occurring later, but applying those significant word models 
that are located from nearer to farther distances, relative to the target word. 

We find out that the (iii) calculation provides 1%-3% better perplexity improvements than (i) 
and (ii) calculations for all three models. This means that nearer word models supply more 
reliable probabilities. 

Sicilia-Garcia (2002) suggested another whole paragraph calculation with poorer results. 

6. Corpus 

The methods described above were compared in some Vietnamese and English experiments. 
For English, we used the Wall Street Journal (WSJ) corpus (Paul & Baker, 1992). Previous 
research by Sicilia-Garcia et al. (2001, 2002, 2005) displayed how the individual word 
probability models depend on the size of the training corpus for two subsets of the WSJ of 
approximately 16 million (1988) and 6 million words (1989). The well-known WSJ test file 
(Paul et al., 1992) contains 584 paragraphs, 1,869 sentences, 34,781 tokens, and 3,677 word 
types. In this work, we develop these models for the whole combined WSJ corpus of 40 
million words. The results reveal a lower perplexity for the larger 40 million word corpus, 
compared to Sicilia-Garcia et al. 

For Vietnamese, we employ the syllabic Vietnamese corpus by Ha in 2002 
(http://hochiminhcityuniversityofindustry-lequanha.schools.officelive.com/VietnameseQUBC
orpus.aspx), with a size of 6,564,445 tokens and 31,402 types. This corpus was collected from 
popular Vietnamese newspapers, such as The Youth Newspaper, Saigon Liberation 
Newspaper, Vietnamese Culture and Sports, Motion Pictures Magazine, and Vietnam Express, 
along with traditional and modern novels and short stories. 

Vietnamese is the national and official language of Vietnam. It is the mother tongue of 
86% of Vietnam's population, and of about three million overseas Vietnamese people. It is 
also spoken as a second language by many ethnic minorities of Vietnam. It is part of the 
Austro-Asiatic language family, of which it has its most speakers, having several times more 
speakers than the other Austro-Asiatic languages put together. Some Vietnamese vocabulary 
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has been borrowed from Chinese, and it was formerly written using a Chinese-like writing 
system, albeit in a modified format and with vernacular pronunciation. As a byproduct of 
French colonial rule, the language displays some influence from French, and the Vietnamese 
writing system in use today is an adapted version of the Latin alphabet, with additional 
diacritics for tones and certain letters. 

Vietnamese is basically a monosyllabic language with six tones, which gives the 
language a sing-song effect. A syllable can be repeated with any one of six tones to indicate 
six different meanings. For example, the syllable “ma” has six different meanings according to 
the tone this Vietnamese syllable carries - with level tone, “ma” means “phantom” or “ghost”; 
with low tone, “ ” means “but,” “which,” or “who”; with high rising glottalized  tone, 
“ ” means “code”; with dipping-rising tone, “ ” means “tomb”; with high rising tone, 
“ ” means “cheek”; and with low glottalized tone, “ ” means “young rice seedling”. 

Due to the semantic impact of tonality, we would like to apply our language models for 
Vietnamese syllables instead of English words. 

We also established our Vietnamese test text from the above Vietnamese newspapers, but 
its content was taken from newspapers of the year 2008, much later than Ha’s training text in 
2002. Therefore, the Vietnamese test text is totally different from Ha’s corpus; it includes 
33,108 Vietnamese syllable tokens of 2,226 syllable types within 3,321 sentences. 

7. Results 

We will first present the results for each a priori model, starting from the probability models 
and moving to the frequency models then show our a posteriori results. All perplexity values 
shown in the tables are accompanied with a percentage, which shows the improvement 
compared to the global base-line trigram WA model. 

7.1 Results for Probability Models 
We present the results for all a priori probability models, starting from the linear interpolation 
probability model and going to the linear interpolation exponential decay probability model 
with weights. It can be seen from the results that the best English and Vietnamese probability 
model is the weighted exponential probability model, with overall results in Tables 3 and 4. 

The best performance achieved using each different type of probability models is shown 
in Table 5 and Table 6. 

The best model is the weighted exponential probability model, with 34% improvement 
for English and 37% for Vietnamese, while the linear interpolation exponential model with 
weights - our combination of all of the models - disappointingly only improves 32% for 
English and 33.9% for Vietnamese. For these models, the number of individual word models 
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required in the cache to reach the maximum performance is 16-23 English words and 29-64 
Vietnamese syllables. So, the individual word-domain language model reduces the size of the 
cache needed from 500 words, as in other models (Clarkson & Robinson, 1997; Donnelly, 
Smith, Sicilia-Garcia & Ming, 1999), to less than 30 English words or 64 Vietnamese 
syllables, which is important for spoken language and is closer to the ability of humans. 

In Table 5 and Table 6, WM represents the number of word language models that is m in 
Equations (6), (8), (9), and (10). 

Table 3. The weighted exponential model (English WSJ.) 

 Sentence/WSJ 

n-gram Perplexity Improvement (d, Cache, Function) 

tri-gram 62.71 16.78% (8, 75, Sqrt(1/LnTi)) 

5-gram 51.09 32.21% (8, 70, LnTi) 

7-gram 49.91 33.77% (7, 75, LnTi) 

9-gram 49.82 33.90% (7, 75, LnTi) 

Table 4. The weighted exponential model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (d, Cache, Function) 

tri-gram 94.70 22.98% (13, 100, Sqrt(LnTi)) 

5-gram 80.16 34.81% (13, 100, LnTi) 

7-gram 78.12 36.47% (13, 100, LnTi) 

9-gram 77.57 36.92% (13, 100, LnTi) 

Table 5. Improvement in perplexity for different probability models, all in sentence 
contexts (English WSJ.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 26.77%  

Linear Interpolation 11.16% 31.98% λ=0.7, WM=23 

Exponential Decay 16.75% 33.72% Decay=6, Cache=70 

Weighted Probability 13.90% 32.52% WM=16, Sqrt(Ti) 

Weighted Exponential 16.78% 33.90% Decay=7, Cache=75, LnTi 

Linear Interpolation Exponential 
with Weights 12.91% 32.28% λ=0.6, Decay=13, 

Cache=65, Ln(1+LnTi) 



 

 

A Posteriori Individual Word Language Models for Vietnamese Language      115 

Table 6. Improvement in perplexity for different probability models, all in sentence 
contexts (Vietnamese QUB.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 20.88%  

Linear Interpolation 18.46% 34.02% λ=0.6, WM=64 

Exponential Decay 22.88% 36.54% Decay=10, Cache=100 

Weighted Probability 20.45% 34.45% WM=29, Sqrt(Ti) 

Weighted Exponential 22.98% 36.92% Decay=13, Cache=100, LnTi 

Linear Interpolation Exponential 
with Weights 18.40% 33.88% λ=0.6, Decay=57, 

Cache=100, 1/Ln(1+LnTi)) 

Our weighted exponential model is a special case of the linear interpolation exponential with 
weights. Hence, it should not have better performance. Sicilia-Garcia et al. (2001, 2002, 2005) 
were also disappointed when this combination model of all other models was not good. The 
reason for this unusual observation is a conflict occurring between the weighted exponential 
model (that is a combination of exponential decay and weighted probability models) and the 
linear interpolation model. The linear interpolation model was optimized on the condition that 
all significant words are equally treated, while the weighted exponential model treats 
significant words differently from each other. 

In the linear interpolation model, the global “weight” is λ = 0.6 and each Vietnamese 
syllabic model equally optimized at a “weight” of (1-λ)/m = (1-0.6)/64 = 0.006,25. For the 
weighted exponential model, however, the global weight is Ln(40M) = 17.5 and a Vietnamese 
syllabic model with size 10,000 has a weight of Ln(10,000) = 9.21. Another Vietnamese 
syllabic model with size 100 has its weight of Ln(100) = 4.61. On the linear interpolation 
exponential with weights, when these weights are multiplied or interpolated together, they 
break the optimization of both the linear interpolation model and the weighted exponential 
model; the too small individual “weight” 0.006,25 in the first model and the much larger 
global weight 17.5 in the latter model are not satisfied. 

7.2 Results for Frequency Models 
We present the results for each a priori frequency model, starting from the linear interpolation 
frequency model and going to the weighted frequency model. The best English frequency 
model is the weighted frequency model, and our results for this model are displayed in Table 7. 
An improvement of 38% has been achieved for the English weighted frequency model. 

The best Vietnamese one is the exponential decay frequency model with 47.3% 
perplexity improvement, as shown in Table 9. 
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Table 7. The weighted frequency model (English WSJ.) 

 Sentence/WSJ 

n-gram Perplexity Improvement (WM, Function) 

tri-gram 58.12 22.87% (29,1/Ti*Ln(Ti)) 

5-gram 47.36 37.16% (29, 1/Ti) 

7-gram 46.70 38.03% (29, Ln(Ti)/Ti) 

9-gram 46.73 38.00% (29, Ln(Ti)/Ti) 

For the English weighted frequency model, it is important to notice that the perplexity result 
for the 9-gram model is poorer than the one for the 7-gram language model. We think this is 
because the word language models in many cases are so small that the 9-gram frequencies are 
usually zero. In order to recognize or understand a rather short phrase as a tri-gram, its 
meaning largely depends on its context. The other possibility is that the historical word 
language models need more weight than the large global model of 40 million tokens. If a 
significant word language model has 1,000 words in its corpus, then the global weight will 
approximately be 1/(40M*Ln(40M)) = 1.428E-09 while that word model’s weight 
1/(1,000*Ln(1,000)) = 0.000,144 is much larger in comparison. 

Nevertheless, for longer phrases, such as 5-grams or 9-grams, the meanings of a very 
long 9-gram is almost obvious by itself and its meaning is less impacted by significant words 
surrounding it. Sometimes, people understand a long spoken phrase with 9 continuous words 
without confusion even though they did not hear the previous significant words. Therefore, for 
longer English phrases, the global weight should gain importance and increase its value, 
relative to significant words. This means that, in Table 7, the WM = 29 for all n-grams but, 
with the tri-gram weight 1/(Ti*Ln(Ti)), is smaller than the 5-gram weight 1/Ti, and 1/Ti is also 
smaller than Ln(Ti)/Ti of 7-grams and 9-grams. 

This is not happening in the Vietnamese weighted frequency model in Table 8 because 
the value of WM is very large, 67. The weight 1/Ti  is applied to this Vietnamese model and to 
the corresponding 5-gram English model in Table 7. For example, we consider the following 
Vietnamese syllabic 9-gram “ ,” its closest English 
phrase - “Vietnamese is a syllabic language” - is only a word 5-gram. Therefore, because 
many English 5-grams will correspond to Vietnamese syllabic 7-grams or 9-grams, this 
Vietnamese model has the same weights as the 5-gram English weighted frequency model. 
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Table 8. The weighted frequency model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (WM, Function) 

tri-gram 85.88 30.15% (67, 1/Ti) 

5-gram 73.55 40.18% (67, 1/Ti) 

7-gram 72.63 40.93% (67, 1/Ti) 

9-gram 72.47 41.06% (67, 1/Ti) 

Table 9. The exponential decay model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (Decay, Cache) 

tri-gram 100.60 18.19% (150, 150) 

5-gram 71.68 41.71% (150, 145) 

7-gram 66.11 46.24% (150, 145) 

9-gram 64.77 47.32% (150, 145) 

The best performance of the frequency models is shown by Table 10 and Table 11. 

Table 10. Improvement in perplexity for frequency models, all in sentence 
contexts (English WSJ.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 26.77%  

Linear Interpolation  15.77% 34.32% λ=0.003, WM=29 

Exponential Decay  8.13% 30.78% Decay=150, Cache=115 

Weighted Frequency 22.87% 38.00% WM=29, Ln(Ti)/Ti 

Weighted Exponential Decay 22.84% 37.95% Decay=100, Cache=85, 1/Ti 

Table 11. Improvement in perplexity for frequency models, all in sentence contexts 
(Vietnamese QUB.) 

Models tri-gram 9-gram Best Values 

Global 0.00% 20.88%  

Linear Interpolation 22.72% 36.20% λ=0.002, WM=46 

Exponential Decay 18.19% 47.32% Decay=150, Cache=145 

Weighted Frequency 30.15% 41.06% WM=67, 1/Ti 

Weighted Exponential Decay 30.10% 41.05% Decay=100, Cache=100, 1/Ti 
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In Table 10 and Table 11, the best model in the Vietnamese corpus is the exponential decay 
model, which is different from the best in the English corpus because the Vietnamese 
language is formed by a more limited number of syllables than English words; hence, a 
Vietnamese syllable has many more different meanings than an English word. Only a 
significant Vietnamese syllable appearing in the immediate context of a target syllable can 
change the meaning of the target into a total different topic, but this depends much on the 
distance from the significant syllable model to the target. 

In the weighted frequency models, the best weight in English is (Ln(Ti)/Ti) and 
Vietnamese (1/Ti). They are different because a Vietnamese sentence is generally longer in 
syllable length than its corresponding English sentence in word number, for example, the 
following sentence has 12 syllables “ ” 
and its corresponding English sentence that means “I do research in individual word language 
models” only contains 8 words. 

7.3 Results for A Posteriori Models 
We investigated our new approach for calculating a posteriori probabilities using five models: 
the linear interpolation probability model, the exponential probability model, the weighted 
probability model, the linear interpolation frequency model, and the weighted frequency 
model. We found that the best performance was provided by the a posteriori weighted 
frequency model, which gave a 44.46% English improvement and 53.34% Vietnamese 
improvement in perplexity. This is better than the performance of much more computationally 
intensive methods based on clustering (Iyer & Ostendorf, 1999; Clarkson et al., 1997). The a 
posteriori weighted frequency model’s results are displayed in Table 12 and Table 13, and the 
best results for all different a posteriori models are shown in Table 14 and Table 15. 

In order to compare to a priori models in Table 10, in the a priori weighted frequency 
model for English, the weights are different, namely Ln(Ti)/Ti in the a priori model and 
1/Ti*Ln(Ti) in the a posteriori model. Besides, the WM values, the number of significant word 
language models or m in Equation (14), are quite different, with values of 29 for the a priori 
and 16 for the a posteriori models. This can be explained as the concept that people can catch 
the meaning of a target word more clearly and quickly when they not only hear its previous 
words but also listen to its following words. Then, the English a posteriori model needs to 
increase weight on significant word models to the global model weight, but it needs to “hear” 
fewer significant words in the context before it can catch the meaning. 
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Table 12. The a posteriori weighted frequency model (English WSJ.) 
  Whole Sentence Perplexity Whole Sentence Improvement 

Weight tri-gram 5-gram 7-gram 9-gram tri-gram 5-gram 7-gram 9-gram 
Ti*Ln(Ti) 73.91 56.08 54.61 54.52 1.93% 25.59% 27.53% 27.66% 

Ti 73.77 56.00 54.54 54.45 2.11% 25.69% 27.62% 27.75% 

Ti/Ln(Ti) 73.62 55.92 54.47 54.38 2.31% 25.80% 27.72% 27.85% 

Sqrt(Ti) 71.88 54.92 53.56 53.48 4.63% 27.13% 28.93% 29.03% 

Ln(Ti) 67.91 52.52 51.35 51.30 9.88% 30.30% 31.86% 31.93% 

Sqrt(Ln(Ti)) 67.49 52.26 51.10 51.05 10.45% 30.65% 32.19% 32.26% 

Ln(1+Ln(Ti)) 67.34 52.17 51.02 50.97 10.64% 30.77% 32.30% 32.36% 

1/Ln(1+Ln(Ti)) 66.72 51.79 50.66 50.62 11.47% 31.28% 32.78% 32.83% 

Sqrt(1/Ln(Ti)) 66.57 51.69 50.57 50.53 11.67% 31.41% 32.89% 32.95% 

1/Ln(Ti) 66.07 51.39 50.29 50.25 12.32% 31.81% 33.27% 33.32% 

Sqrt(1/Ti) 58.31 46.54 45.73 45.72 22.63% 38.24% 39.32% 39.33% 

Ln(Ti)/Ti 52.00 42.71 42.16 42.19 31.01% 43.32% 44.06% 44.02% 

1/Ti  51.45 42.44 41.92 41.96 31.73% 43.68% 44.37% 44.32% 

1/Ti*Ln(Ti) 51.09 42.30 41.81 41.85 32.21% 43.87% 44.52% 44.46% 

Table 13. The a posteriori weighted frequency model (Vietnamese QUB.) 
 Whole Sentence Perplexity Whole Sentence Improvement 

Weight tri-gram 5-gram 7-gram 9-gram tri-gram 5-gram 7-gram 9-gram 
Ti*Ln(Ti) 122.45 98.83 97.16 96.87 0.41% 19.62% 20.98% 21.22% 

Ti 122.27 98.68 97.02 96.73 0.56% 19.74% 21.10% 21.33% 

Ti/Ln(Ti) 122.03 98.49 96.83 96.54 0.75% 19.90% 21.25% 21.48% 

Sqrt(Ti) 118.30 95.61 94.06 93.79 3.79% 22.25% 23.51% 23.72% 

Ln(Ti) 107.45 87.82 86.52 86.30 12.61% 28.58% 29.64% 29.82% 

Sqrt(Ln(Ti)) 106.05 86.82 85.55 85.33 13.75% 29.39% 30.42% 30.60% 

Ln(1+Ln(Ti)) 105.64 86.53 85.27 85.05 14.09% 29.63% 30.65% 30.83% 

1/Ln(1+Ln(Ti)) 103.41 84.94 83.72 83.51 15.90% 30.92% 31.91% 32.08% 

Sqrt(1/Ln(Ti)) 102.96 84.62 83.41 83.20 16.27% 31.19% 32.17% 32.34% 

1/Ln(Ti) 101.24 83.38 82.21 82.00 17.67% 32.19% 33.14% 33.31% 

Sqrt(1/Ti) 82.11 69.34 68.46 68.31 33.22% 43.61% 44.32% 44.45% 

Ln(Ti)/Ti 68.88 59.43 58.75 58.63 43.98% 51.67% 52.22% 52.32% 

1/Ti 67.31 58.35 57.71 57.59 45.26% 52.55% 53.07% 53.16% 

1/Ti*Ln(Ti) 66.77 58.11 57.49 57.37 45.70% 52.74% 53.25% 53.34% 
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Table 14. Improvements of a posteriori models (English WSJ.) 
A Posteriori Models tri-gram 9-gram Best Values 

Global 0.00% 26.77%  

Linear Interpolation Probability 30.99% 44.20% λ=0.2 

Exponential Decay Probability 28.66% 42.82% Decay=100, Cache=5 

Weighted Probability 30.82% 44.17% Sqrt(1/Ln(Ti)) 

Linear Interpolation Frequency 25.17% 40.66% λ=0.001 

Weighted Frequency 32.21% 44.46% WM=16, 1/Ti*Ln(Ti) 

Similar to a posteriori Vietnamese models in Table 15, the weighted frequency model has 
WM=34 and a weight of 1/(Ti*Ln(Ti)), while the a priori ones are much larger, WM=67 and 
weights 1/Ti. 

Table 15. Improvements of a posteriori models (Vietnamese QUB.) 
A Posteriori Models tri-gram 9-gram Best Values 

Global 0.00% 20.88%  

Linear Interpolation Probability 37.44% 47.63% λ=0.3 

Exponential Decay Probability 40.31% 49.28% Decay=15, Cache=99 

Weighted Probability 37.62% 47.34% Ln(Ti)  

Linear Interpolation Frequency 36.21% 47.03% λ=0.001 

Weighted Frequency 45.70% 53.34% WM=34, 1/Ti*Ln(Ti) 

Previously, for similar experiments, Sicilia-Garcia et al. (2005) reported improvements of 
68%-69% for 7-gram models. Nevertheless, that was based on the flawed calculation 
previously described in the section, A Posteriori Method, so the results we present here can be 
viewed as a true reflection of the performance that can be achieved by these models. 
Nowadays, with the current condition of PCs, the programming issues of Sicilia-Garcia in 
training and accessing a language model of 9-grams no longer exist. With a 9-gram phrase 
length, on the global database of WSJ 4.5 gigabytes, we now complete the a posteriori 
probability linear interpolation model in 30 minutes, while Sicilia-Garcia finished this 
computer execution for 7-grams in 4 days nonstop. For the a posteriori weighted frequency 
model, we now execute only over 2 days for 9-grams, while Sicilia-Garcia completed 10 full 
days for 7-grams. (This is without speeding up the algorithms; it is only by upgrading to newer 
computers.) 

The different nature of the Vietnamese syllabic language causes a much smaller 
proportion of syllables to be significant than English significant words. In a Vietnamese 
sentence and an English sentence of the same length, there are considerably fewer significant 
syllables occurring, hence, inconsistent effects are found from our results. 
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7.4 Speech word-error-rate Results for A Posteriori Models 
We employ a Vietnamese large vocabulary continuous speech decoder linking to the five 
Vietnamese a posteriori models. Our speech recognition system is syllable-based HMM 
trained with Vietnamese speech data of 97,850 spoken statements extracted from the 
Vietnamese QUB text corpus; they are recordings of 326 speech hours by 60 Vietnamese 
speakers, including 30 men and 30 women from 18 years old to 51 years old. The number of 
states per HMM is 5, and each state was modeled using a mixture of 16 Gaussians. It is a 
tone-dependent phoneme model. 

7.4.1 Vietnamese VnIPh Lexicon 
In March 2009, Ha created the Vietnamese lexicon called Vietnamese International Phonetic 
Lexicon version 1.0 or VnIPh lexicon 
(http://hochiminhcityuniversityofindustry-lequanha.schools.officelive.com/VnIPh.aspx). 

We employ this lexicon in our speech recognition system; it includes an automatic 
lexicon generator to create 12,165 Vietnamese syllable entries. We would like to show a few 
Vietnamese syllables from this lexicon in Table 16. 

Table 16. The Vietnamese VnIPh Lexicon (a few entries) 
Vietnamese Syllable Phoneme Meaning in English 

  

In Table 16, phonemes 0, 1, 2, 3, 4, and 5 are the six tones of Vietnamese speech: level, low, 
high rising glottalized, dipping-rising, high rising, and low glottalized tones. In fact, there are 
43 context-independent phonemes: 0, 1, 2, 3, 4, 5, AA, AH, AO, AW, AY, B, CH, D, EH, ER, 
EY, F, G, HH, IH, IY, K, L, M, N, NG, OW, OY, P, R, S, SH, SIL, T, UH, UW, V, W, WW, 
WY, Y, and Z. 

7.4.2 Vietnamese Speech Tests 
We set up our own Vietnamese speech tests that included 21,451 Vietnamese syllables of 
3,363 types in 3,834 statements. In Vietnamese speech, the number of syllables is countable 
because, using the Vietnamese spelling rule, all of the syllables can be obviously formed from 
the vowels, consonants, and tones. Hence, similar to English words, the number of 
Vietnamese words, which are combinations of syllables, is uncountable. Nevertheless, all of 
the possible Vietnamese syllables are fully stored in our lexicon and there are no 
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out-of-vocabulary syllables in our Vietnamese speech tests, even though there are still 
unknown syllable combinations or unknown Vietnamese words out of the training corpus. 

Although the Vietnamese QUB training corpus is clean, without any external noises, our 
Vietnamese speech tests are noisy with all insertion/deletion/substitution cases of phonemes. 
Noisy spoken tests are recorded in realistic environments, around cars, fans, and other people 
talking; each utterance is recorded in a high, medium, or low noise condition. 

We apply an unconstrained phone recognizer, and the observed phone sequences are 
obtained. Our expected phone sequences are constructed using lexicon concatenation based on 
the Vietnamese syllable transcriptions. In comparison to the expected sequences, our observed 
sequences show three experimental conditions: well-matched, medium-matched, and 
highly-mismatched. In our tests, we have three common types of phone errors, which are 
16.57% insertion, 18.24% deletion, and 16.21% substitution. 

7.4.3 Vietnamese Language Models 
Our Vietnamese recognition baseline system uses a Katz back-off trigram language model; 
hence, we can calculate the word error rate (WER) as follows in Table 17. 

All of our Katz probabilities of Vietnamese phrases were stored in a hashed file inside 
the decoder. In order to link our individual word models into this decoder, we first calculated 
the combined probabilities of all n-grams from unigrams and bigrams up to 9-grams via the 
five models in Equations (6), (7), (8), (12), and (14). This took us ten days; then, we created 
five hashed files storing these Vietnamese probabilities with the same structure of the existing 
Katz hashed file. 

In the next step, we replaced the Katz file by each of our five files or our individual word 
language models. In this way, when speaking, the Vietnamese speech decoder is naturally able 
to execute on-line. Our Vietnamese word-error-rates are done by tests with direct microphone 
input from six held-out Vietnamese native speakers, four men and two women, ranging from 
21 years old to 52 years old. 

Table 17. Noisy Speech A Posteriori WER (Vietnamese QUB.) 
A Posteriori Models WER Improvement over Baseline 

Baseline 45.65%  

Linear Interpolation Probability 33.67% 11.98% 

Exponential Decay Probability 35.78% 9.87% 

Weighted Probability 33.33% 12.32% 

Linear Interpolation Frequency 33.44% 12.21% 

Weighted Frequency 28.87% 16.78% 
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8. Conclusions 

We have described the concept of using individual word models to improve language model 
performance. Individual word language models permit an accurate capture of the domains in 
which significant words occur, thereby improving the model performance. The results indicate 
that individual word models offer a promising and simple means of introducing domain 
information into an n-gram language model. 

Humans probably hear the sounds of several words spoken before using a form of human 
language model to make a sensible sentence from the sounds, particularly when there are 
corruptions. Therefore, the idea of using the a posteriori method to define the domain might 
be more appropriate than the a priori method. We believe that the use of multiple 
word-domains, which need only large amounts of relatively inexpensive disk space, models 
the domain environment of any piece of written or spoken text more accurately than any other 
domain method. Our Vietnamese word-error-rate measurement to test this theory by linking to 
a speech decoder is also very good. For our future work, we will apply a posteriori language 
models in automatic speech recognition for English and other languages. 
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Improving the Template Generation for Chinese 

Character Error Detection with Confusion Sets 

Yong-Zhi Chen∗, Shih-Hung Wu∗, Ping-che Yang+, and Tsun Ku+ 

 Abstract 

In this paper, we propose a system that automatically generates templates for 
detecting Chinese character errors. We first collect the confusion sets for each 
high-frequency Chinese character. Error types include pronunciation-related errors 
and radical-related errors. With the help of the confusion sets, our system generates 
possible error patterns in context, which will be used as detection templates. 
Combined with a word segmentation module, our system generates more accurate 
templates. The experimental results show the precision of performance approaches 
95%. Such a system should not only help teachers grade and check student essays, 
but also effectively help students learn how to write. 

Keywords: Template Generation, Template Mining, Chinese Character Error. 

1. Introduction 

In essays written in Chinese by students, incorrect Chinese characters are quite common. 
Since incorrect characters are a negative factor in essay scoring, students should avoid such 
errors in their essays. Our research goal is to build a computer tool that can detect incorrect 
Chinese characters in student essays and correct them, so that teachers and students can learn 
faster with help from the computer system. 

Compared with the detection of spelling errors in English, the detection of incorrect 
Chinese characters is much more difficult. In English, a word consists of a series of letters 
while a meaningful Chinese word usually consists of 2 to 4 Chinese characters. The difficulty 
lies partly in the fact that there are more than 5,000 high-frequency characters. 

In previous works on Chinese character error detection systems (Zhang, Huang, Zhou, & 

                                                       
∗ Department of Computer Science and Information Engineering, Chaoyang University of Technology 
 E-mail: {9727602, shwu}@cyut.edu.tw 
 The author for correspondence is Shih-Hung Wu. 
+ Institute for Information Industry 
 E-mail: {maciaclark, cujing}@iii.org.tw 



 

 

128                                                       Yong-Zhi Chen et al. 

Pan, 2000) (Ren, Shi, & Zhou, 1994), a confusion set for each character is built and is used to 
detect the character error with the help of a language model. The confusion set is based on a 
Chinese input method. The characters that have similar input sequences probably belong to the 
same confusion set. For example, the Wubizixing input method (Wubi), which is a Chinese 
character input method primarily for inputting both simplified and traditional Chinese text in a 
computer, is used in (Zhang, Huang, Zhou, & Pan, 2000). The Wubi method is based on the 
structure of the characters rather than on the pronunciation. It encodes every character in four 
keystrokes at the most. Therefore, if one keystroke is changed, another character similar to the 
correct one will show up. Once a student chooses the similar character instead of the accurate 
one, a character error is established, and a confusion set is automatically generated by the 
character error. Another approach is to manually edit the confusion set. Common Errors in 
Chinese Writings gives 1477 common errors (National Languages Committee, 1996). 
Nevertheless, this amount is not sufficient to build a system. Hung manually compiled 6701 
common errors from different sources (Hung & Wu, 2008). These common errors were 
compiled from essays of junior high school students and were used in Chinese character error 
detection and correction. 

Since the cost of manual compilation is high, Chen et al. proposed an automatic method 
that can collect these common errors from a corpus (Chen, Wu, Lu, & Ku, 2009). The idea is 
similar to template generation, which builds a question-answer system (Ravichandran & Hovy, 
2001) (Sung, Lee, Yen, & Hsu, 2008). The template generation method investigates a large 
corpus and mines possible question-answer pairs. Templates for Chinese character error 
detection can be generated and tested by the chi-square test on the basis of a large corpus. In 
this paper, we will further improve the methods for building confusion sets and automatically 
generating a template. 

According to recent studies(Liu, Tien, Lai, Chuang, & Wu, 2009a; 2009b), character 
errors in student essays are of four major types: errors in which characters have similar shapes 
(30.7%), errors in which characters have similar pronunciation (79.9%), errors in which the 
two previous types are combined (20.9%), and other errors (2.4%). Therefore, an ideal system 
should be able to deal with these errors, especially those resulting from similar pronunciation 
and similar character shapes. The confusion set for similar pronunciation is relatively easy to 
build, whereas the confusion set for similar shapes is more difficult. In addition to the Wubi 
input method, the Cangjie input method is also used to compile confusion sets (Liu & Lin, 
2008). 

The paper is organized as follows. In Section 2, we introduce the system design and 
related works. In Section 3, we describe a new process of template generation. Section 4 
describes the experimental procedure and the data. Finally, in Section 5, we give the 
conclusion and propose our future research. 
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2. System Design 

2.1 Chinese Character Error Detection and Correction System 
The system that can detect and correct Chinese character errors works as follows. First, it 
needs a student to input an essay. The system then reports the errors in the essay and gives 
suggestions on correction, as shown in Figure 1. Such a system uses templates that can detect 
whether common errors have occurred. A template consists of a pair of words, a correct one 
and an error one, such as “辯論會”-“辨論會”. For example, if the error template “辨論會” is 
matched in an essay, our system can conclude that there is an error and make a suggestion on 
correction to “辯論會”. 

Figure 1. System function of Chinese character error detection in an essay 

In previous works, these templates were compiled manually (Liu, Tien, Lai, Chuang, & 
Wu, 2009b). The quality of the manually-edited templates is high. Nevertheless, the method is 
time-consuming and costs too much manpower. Therefore, an automatic template generation 
method based on the context of errors was proposed in 2009 (Chen, Wu, Lu, & Ku, 2009), 
several examples of automatically generated tri-gram and four-gram templates are shown in 
Figure 2. The automatic template generation method is less costly; however, it does not 
accommodate conventional vocabulary. The template generation method has a serious 
drawback. In Figure 2, we find that several templates contain unrecognizable words, such as 
“辯護律,” “視辯論,” and “電視辯,” which are trigrams of Chinese characters that do not have 
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any meaning. These templates can be used to detect character errors, but are not suitable for 
suggesting corrections. 

In the following subsections, we will propose a new method to avoid this drawback. 

Templates Templates 

Correct Error Correct Error 

會首長 會首常 清潔隊長 清潔隊常 

會給予 會給于 交通隊長 交通隊常 

辯論會 辨論會 辯護律師 辨護律師 

辯護律 辨護律 視辯論會 視辨論會 

的辯論 的辨論 政策辯論 政策辨論 

視辯論 視辨論 電視辯論 電視辨論 

電視辯 電視辨 公開辯論 公開辨論 

半世紀 辦世紀 半個世紀 辦個世紀 

半以上 辦以上 一年半的 一年辦的 

半個小 辦個小 的另一半 的另一辦 
Figure 2. The templates for error detection and correction in 

(Chen, Wu, Lu, & Ku, 2009) 

2.2 Confusion Set 
The first step in template generation is to replace one character in a word with a character in 
the corresponding confusion set. For example, by replacing one character in the correct word 
“芭蕉,” we get a wrong word “笆蕉”. Such a correct-wrong word pair is used as the template 
for error detection and correction suggestion. 

According to Liu et al. (Liu, Tien, Lai, Chuang, & Wu, 2009a; 2009b), the most common 
error types are characters with similar shapes and characters with similar pronunciation. The 
percentage of these two types of errors combined is 89.7% of all errors. Therefore, the 
confusion set should deal with characters with similar pronunciation and shapes. 

We first compile all of the characters that have the same pronunciation from a dictionary 
and make them the elements of a confusion set. For example, “八(ba1)” and “巴(ba1)” have 
the same pronunciation. Therefore, they belong to the same confusion set. To reduce the size 
of the confusion set, we treat characters with different tones as belonging to different sets, 
even though they sound similar. For example, “罷(ba4)” is not in the confusion set of “八

(ba1)”. We formed 1,351 sets with a total of 15,160 characters, as shown in Figure 3. 

In this paper, we use a simple rule to compile characters with similar shapes. In the first 
book on Chinese characters, known as Shuowen Jiezi (說文解字) (Xu, 2009), in the second 
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century, radicals (部首) were used to categorize characters. We use the key component of a 
character, its radical, as the basic shape of the character to find the characters with the same 
radicals. There are 214 radicals in Chinese, according to the Kangxi Dictionary (康熙字典) 
(Zhang, 1999). Therefore, we compile 214 confusion sets with a total of 9,752 different 
characters. Figure 4 shows some examples. 

After constructing the confusion sets, our system can find characters with the same 
pronunciation and characters with similar shapes for any character that is input. For example, 
given a character “兇,” the system can find characters with the same pronunciation “凶兄匈洶

恟胸,” and characters with similar shapes “兄光兆先兌克免,” as shown in Figure 5. This is a 
crucial step of our new template generation. 

Zhuyin Pinyin Characters 

ㄅㄚ ba1 蚆扒八巴仈叭朳芭疤捌笆粑豝鈀吧 

ㄅㄚˊ ba2 鈸茇拔胈跋菝詙軷魃鼥犮 

ㄅㄚˇ ba3 鈀把靶 

ㄅㄚˋ ba4 伯罷霸猈弝爸壩灞把耙 

ㄅㄛ bo1 剝嚗波袚玻柭砵缽啵菠碆撥嶓蹳鱍岥播襏 

ㄅㄛˊ bo2 爆伯犮襏挀蔔柏瓝薄泊謈濼鋍帛勃胉挬浡 

ㄅㄛˇ bo3 簸跛蚾 

ㄅㄛˋ bo4 播檗蘗亳擘譒北挀薜簸繴 

Figure 3. Examples of characters in confusion sets 

Radicals Characters 

一 一丂丁七三下丈上万丌丑丐不丏丙世丕且 

丶 丸凡丹主 

丿 乂乃久么之尹乍乏乎乒乓乑乖乘 

乙 乙九乜也乞乣乩乳乾亂 

亅 了予事 

二 二于云井互五亓亙些亞亟 

亠 亡亢交亦亥亨享京亭亮亳亶亹 

人 人仁什仃仆仇仍今介仄仂仉以付仔仕他仗 

儿 兀元允充兄光兇兆先兌克免兕兔兒兗党兜 

入 入內全兩 

Figure 4. Examples of characters in confusion sets 
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Figure 5. Combination of the two confusion sets for a given character 

2.3 Automatic Template Generation 
Figure 6 shows the flowchart of our automatic template generation process. The basic 
assumption is that the corpus might contain more correct words than wrong ones. Therefore, 
our system first replaces one character in the correct words to form the corresponding wrong 
words. Then, our system checks the frequency of the words in the corpus. If the replacement 
creates a word with a relatively high frequency, we do not treat it as a wrong word. 

 
Figure 6. The flowchart of the automatic template generation process 

As we mentioned in Section 2.1, the automatically-generated templates might not be 
suitable for suggesting corrections. To overcome this drawback, we use existing vocabulary, 
instead of n-gram character sequences, as the candidate for a template. There are 145,608 
words in the MOE dictionary (Ministry of Education, 2007). We treat them as the seeds of the 
templates. In our experiment, we focus on 4,998 high-frequency characters that were compiled 
on the basis of a 1998 survey (National Languages Committee, 1998). 

Our system generates templates by checking each high-frequency character and finding 
all of the words that contain the character. Then, the system replaces the character in each 
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word with a character in the corresponding confusion set. The correct-wrong word pair 
undergoes a simple statistical test. If it passes the test, it will be kept as a template; otherwise, 
it will be discarded. The statistical test is based on the frequency of each word in the pairs 
appearing in a large corpus. To prevent the process from generating controversial templates, 
our system also conducts a close test. The close test checks whether the new template will 
cause a false alarm on our old test data. The template that generates conflicting templates will 
also be discarded. The close test threshold is set to 0, which means any template that might 
cause a false alarm will not be used. A template generation example is shown in Figure 7. 

 
Figure 7. A template generation example, where two templates are 

generated for an input character “官”. 

The statistical test in our system is not a rigid test. We tune the threshold of relatively high 
frequency based on two formulae. One is adopted from the chi-square test, and the other one is 
from our observation. The first test is a simplified (n=1) chi-square test used in a previous 
work (Hung & Wu, 2008): 

2
2 ( )O EX

E
−

= ,                                                        (1) 

where E is the frequency of a correct word and O is the frequency of a wrong word. To avoid 
further disputation, we assume that E>O in our study. The chi-square test provides a threshold 
mechanism to decide whether a correct-wrong pair is a proper template or not. 

In this study, we suggest the test should be like Equations (2) and (3). 
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where Cfeq is the frequency of the correct word, Wfeq is the frequency of the wrong word, and 
AverageFreq is the average of the frequencies of all correct words. 

If the frequency of the correct word is higher than the threshold and if the square root of 
the frequency of the correct word is higher than the frequency of the wrong word, then the pair 
passes the test. 

We have found that the templates that do not pass the test are also the ones that will 
cause false alarms; for example, the pairs “未來”-“為來,” “已經”-“以經,” and “但是”-“但事”. 
When the context is different, these templates do not always give correct detection results and 
cause false alarms. 

2.4 Word Segmentation 
As in the examples above, short templates with only two characters could cause false alarms. 
The reason is that, when we treat words as bi-gram character sequences, many word 
boundaries may be unclear. For example, as shown in Figure 8, the template “擁有”-“雍有” 
can be used to detect and correct the first sentence, “一個人可雍有很多快樂”, in which one 
of the word pair appears, but the template “擁有”-“以有” cause a false alarm in the second 
sentence, “一個人可以有很多快樂”. We find that this failure can be avoided by using correct 
word segmentation. The character “以” should be a part of the previous word “可以”. If we 
have enough confidence in the word segmentation, then the characters in a segmented word 
should not be candidates for character error detection. 

 
Figure 8. A false alarm in the second sentence for a short template 

 “擁有”-“雍有” and “擁有”-“以有” 

We assume that a word segmentation tool can give the correct results for normal input 
sentences and does not segment sentences with wrong character sequences into words. Figure 
9 shows the segmentation results of the two sentences shown in Figure 8. In our experiment, 
we used the segmentation tool provided by CKIP, Academia Sinica1. With the help of this 
segmentation tool, our system can compile more accurate short templates. Some short 
templates are shown in Figure 10. 

   

                                                       
1 http://ckipsvr.iis.sinica.edu.tw/ 
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Figure 9. Segmentation tool can help prevent false alarms 

Correct 
templates 

Incorrect 
templates  

 Correct 
templates 

Incorrect 
templates 

 Correct 
templates 

Incorrect 
templates 

衝擊 衝急 絆腳石 伴腳石 逼不得已 逼不得己 

檢視 機視 大部分 大不分 情非得已 情非得巳 

經濟 經紀 手電筒 手電桶 逼不得已 逼不得巳 

循環 循還 不經意 不經易 大勢已去 大勢以去 

成績 成積 不願意 不願易 不能自己 不能自以 

薪水 新水 董事長 懂事長 迫不得已 迫不得以 

賺錢 購錢 三輪車 三軸車 情非得已 情非得以 

關鍵 關建 腦震盪 腦振盪 萬不得已 萬不得以 

老闆 老版 辦公室 辨公室 逼不得已 逼不得以 

雖然 隨然 成績單 成積單 巡弋飛彈 巡曳飛彈 

Figure 10. Some short templates generated by our system 

3. Experimental Settings, Results and Analysis 

3.1 Training Corpus and Student Essays 
Our method requires a large corpus to compile templates. Therefore, we used the largest 
available news corpus as our training set. The corpus is described in Table 1. 

Table 1. Corpus statistics 
Year News sources # of Docs File size 

1998-1999 

China Times 38,163 

209MB 

China Times Commercial 25,812 

China Times Express 5,747 

Central Daily News 27,770 

China Daily News 34,728 
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1998-1999 United Daily News 249,508 320MB 

2000-2001 

United Daily News 172,421 

1.03GB 
United Express 91,958 

Min Sheng News 168,807 

Economic Daily News 463,873 

Student essays were collected from one junior high school in Taipei. We used some of 
the essays for the close test and the rest as the open test, keeping them unseen to the system. 
The students were 7th or 8th graders. The essays were reviewed by their teachers, and the 
character errors were highlighted. These 3264 essays were written by hand and were digitized 
later. See Figure 11 for an example. This is part of our experimental setting that tries to avoid 
the influence of different input methods. We deleted some symbols and characters that could 
not be represented by Unicode. 

Figure 11. The file format of our test corpus 

Table 2 shows the analysis of the student essays. Most of the characters (94%) in use fell 
into the frequent characters set. Character errors were not very serious for most of the students, 
with less than 2 character errors per essay. 

Table 3 shows our analysis of the character error types. We find that even in written 
essays, students tend to write characters having the same pronunciation (66~70%). There is 
also a high percentage of wrong written characters with the same radical (13~16%). Table 4 
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shows the templates most used for the student essays. These templates are quite common and 
are too simple for teachers to teach at the 7th and 8th grade levels. A system that can correct 
these errors may reduce the work of teachers. 

Table 2. Analysis of the student essays 

 # of Essays Average 
score 

Average # of 
characters 

Average # of 
character 

errors 

% of frequent 
characters 

Close test essay 2241 3.62 367.12 1.74 94.23% 

Open test essay 1023 3.61 420.02 1.94 94.33% 

Table 3. Analysis of the character error types in student essays 

 % with the same 
radical 

% with the same 
pronunciation % of both % out of the two 

main types 

Close test essay 13.82% 70.27% 4.92% 20.81% 

Open test essay 16.96% 66.31% 2.85% 19.58% 

Table 4. The most used templates in the test corpus 

Close 
essay 

Correct 已經 變得 自己 景象 一旦 寄託 已經 畢竟 而已 根本 

Wrong 己經 變的 自已 景像 一但 寄托 以經 必竟 而己 跟本 

Open 
essay 

Correct 自己 一旦 已經 選擇 煩惱 應該 已經 而已 選擇 後悔 

Wrong 自已 一但 己經 選則 煩腦 因該 以經 而己 撰擇 後侮 

3.2 System Evaluation 
In this study, we compare the quality of characters manually compiled from books and 
students with that of automatically generated ones. Since the frequencies of 2-character words, 
3-character words, and 4-character words are very different, our system uses different 
thresholds - 2300, 500, and 100 for 2-character words, 3-character words, and 4-character 
words, respectively, in the experiment. 

The precision and recall are defined as follows: 
dr( )
rMacro Recall

N

∑
=     (4)         

dr( )
sdMacro Precision

N

∑
=   (5) 

(dr)Micro Recall
(r)

∑=
∑

         (6)         (dr)Micro Precision
(sd)

∑=
∑

         (7) 

where dr is the number of correct characters, r is the number of character errors, sd is the 
number of character errors that our system detects, and N is the number of all of the essays. 
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Macro Precision and Macro Recall are focused on the performance of correction per essay. 
This is what real world students might encounter with the system. As Micro Recall and Micro 
Precision treat the whole data set as one essay, they are suitable for evaluating the average 
performance of the system. We prefer high precision while maintaining a relatively high recall 
because we do not want the users to see too many false alarms. 

3.3 Experimental Results 
We conducted a series of experiments to determine how to improve our system. First, we used 
confusion sets and the chi-square test to generate templates and compared the performance 
with the previous work, which did not use confusion sets. Second, we tested whether the 
square root test is more suitable for our system than the chi-square test. Third, we tested the 
influence of the segmentation added to our system. We report the best performance of the 
experimental results by combining the automatically generated templates with the manually 
edited templates. 

3.3.1 The Comparison of Eexperimental Results of Four Automatic Template 
Generation Settings 

Figure 12 shows the experimental results of using the chi-square test in template generation. 
Setting A used the automatically generated 19,402 templates in the previous work. Setting B 
used the confusion sets during the process of automatic template generation. The total number 
of generated templates was 54,253. The performance of the method proposed in this paper is 
better than the previous work for both precision and recall. Setting C was the automatically 
generated templates using the confusion set and the square root test. The total number of 
templates was 50,467. This new setting results in much higher precision. The Macro Precision 
value is even better than the manually edited Macro Precision value. This result shows that, 
when we reduce the automatically generated templates with the square root test, we also 
reduce noise. For Setting D, our system used confusion sets and a word segmentation tool 
before the square root test, which generated 9,013 templates. We find that the number of 
templates is reduced while the performance is improved in terms of both Macro Precision and 
Micro Precision. The trade off is the performance of recall. 
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Figure 12. The comparison of experimental results of four automatic  
template generation settings 

3.3.2 Combining Automatically Generated Templates with Manually Edited 
Templates 

Figure 13 shows the comparison of the performance of our system combing automatically 
generated templates with manually edited templates. Setting E used the 6,701 manually edited 
templates. Setting F used the combination of Setting E and Setting C, which had a total of 
57,167 templates. Setting G used the combination of Setting E and Setting D, totaling 15,713 
templates. The performance of the combinations declines a little bit in terms of both Macro 
Precision and Micro Precision. Nevertheless, there is an increase in both Macro Recall and 
Micro Recall. Compared with the results in the previous experiment, the combination helps 
the overall performance. This means that our system can incorporate more templates and 
attain better performance in the future. 
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Figure 13. A comparison of experimental results of combining manually 

edited with automatically generated templates 

Based on the analysis of the confusion sets, our system should have a 70% to 80% recall 
rate because we compile all of the characters with the same pronunciation and some similar 
characters in the confusion sets. Nevertheless, the recall remains low, even though we are able 
to control the high-precision performance. Therefore, we will need to conduct further analysis 
of our system. 

3.4 Analysis of the Mistakes in the Experiment 
In this subsection, we discuss the 90,135 templates in Setting I of the third experiment, which 
were generated by using confusion sets, word segmentation, and the square root test. This 
setting was designed to maintain high precision and to increase recall. 

3.4.1 Regarding the Precision 
Theoretically, our system can get 100% precision using templates. In practice, however, there 
are still many exceptions. In Table 5, we list some false alarms in the open tests. According to 
an online dictionary (Ministry of Education, 2007), some templates that we compiled are 
interchangeable, such as: “垃圾桶”-“垃圾筒,” “奇蹟” - “奇跡,” “電線桿” - “電線杆,” and 
“銷聲匿跡” - “消聲匿跡”. This is not consistent with the judgment of some teachers. Some 
templates are just too short and cannot include the necessary context in order for a correct 
decision to be made, such as “一再”-“一在”. The necessary context should include more 
semantic rather than surface syntax. There were some bad templates that our system should 
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have not generated, such as “放聲大哭”-“放聲大叫,” “不用說”-“不用講,” and “讀書人”-“讀

書做,” which can be attributed to the size of the corpus. Nevertheless, no corpus is large 
enough to be perfect for all applications. We find that these are the major causes of false 
alarms. 

Table 5. Some templates that caused false alarms 

Correct word 垃圾桶 奇蹟 電線桿 銷聲匿跡 一再 放聲大哭 不用說 讀書人 

Wrong word 垃圾筒 奇跡 電線杆 消聲匿跡 一在 放聲大叫 不用講 讀書做 

3.4.2 Regarding the Recall 
We treated the errors that the teachers provided from the student essays as templates and 
compared them to the automatically generated templates, as shown in Table 6. The first 
column shows the percentage of “not in the automatically generated template”. The second 
column shows the percentage of an error occurring in a word that is not in the dictionary. The 
third column shows the percentage of an error occurring in a word that is not in the corpus. 
The last column shows the percentage of an error occurring in a word that is neither in the 
dictionary nor in the corpus. 

We find that most student errors were not mined from the news corpus, although our 
system has mined many useful error templates. From the union set of those not in a dictionary 
and not in a corpus, we find that 53.17% of the necessary templates in the close test set cannot 
be generated by our system, while 32.97% of the necessary templates in the open test cannot 
be generated by our system. This is a mismatch of the corpus and student essays. The 
assumption of our system is that the corpus contains the correct and wrong usages. 
Nevertheless, since news reporters and junior high school students make character errors for 
different words, we need to have a more suitable corpus to improve our system. If we have a 
more contemporary dictionary that includes the words in Table 7, our system can perform 
better. 

Table 6. Comparison of real world errors to system generated templates 

 Not matching template Not in dictionary Not in corpus
Neither in dictionary 

nor in corpus 

Close test essay 91.53% 37.73% 35.64% 20.20% 

Open test essay 93.15% 16.27% 23.94% 7.24% 

Table 7. New words not in dictionary 

佈告欄 蒸飯機 值日生 作業本 辦派對 睡午覺 全班齊心 勤加練習 羞恥心 無厘頭 

重拾信心 莽莽撞撞 淘汱 漆彈場 偶像劇 積陰德 融入團體 芬多精 燒炭 拉筋 
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4. Conclusion and future works 

Based on the confusion sets of Chinese characters, word segmentation, and the square root test, 
our system can generate a large number of templates from a corpus. These templates can 
detect and correct Chinese character errors in essays. The templates are more readable and 
have better performance in both precision and recall performance compared to that of previous 
system. 

To improve the system, we will work in two areas. In the knowledge part, we will 
enlarge the confusion sets to include more seeds for template generation. We will compile a 
more suitable corpus for detection and correction of errors in student essays. For the 
dictionary, we will collect more contemporary terms via the Internet, such as from Wikipedia 
and Wikitionary. For the language model part, we will use the student essays that we collected 
in this study to generate an error model, and use that error model to help determine character 
errors. 
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以最佳化及機率分佈標記形聲字聲符之研究 

Annotating Phonetic Component of Chinese Characters 

Using Constrained Optimization and  

Pronunciation Distribution 
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Shu-Ping Li, Hsiang-Mei Liao, Chih-Wen Sun, and Norden E. Huang 

摘要 

一般說來，漢字乃圖形文字，無法像英文等拼音文字一樣，一旦學會拼音方法，

即有基本的閱讀能力。相對的，漢字讀寫的學習進展則相當緩慢，而且必須搭

配注音符號或是其他拼音方法，才可知道每個漢字的發音。事實上漢字中有八

成的字是形聲字，形聲字不僅可由形旁表意，又可以聲符表音，因此即使沒見

過的字也可以由偏旁推論其音及義。不過主要的困難在於聲旁未必一定同音，

可能是相近的發音，之間的演變規則尚未有人探究過，例如：泡、抱、飽三個

字同樣與『包』的發音相近，然而發音如何由『包』的發音轉變成其他三個字

的發音，則仍待研究。本論文首先嘗試以自動化方式判定漢字聲符，做為研究

形聲字發聲規則的第一步。實驗顯示，我們所提的兩種方式，發音相似度比較

法在 9593 個形聲字中的判定聲符準確率為 90.7%，而構件發聲分佈比較法則
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可達到 98.1%的準確率，可以加速形聲字聲符標記所需的大量人力工作與時

間。 

關鍵字: 形聲字、聲符、發音相似度、最佳化、機率分佈、KL divergence 

Abstract 

Generally speaking, Chinese characters are graphic characters that do not allow 
immediate pronunciation unless they are accompanied with Mandarin phonetic 
symbols (zhuyin) or other pinyin methods (e.g. romanization system). In fact, about 
80 to 90 percents of Chinese characters are pictophonetic characters which are 
composed of a phonetic component and a semantic component. Therefore, even if 
one had not seen the character before, one can make a logical guess at the 
character's pronunciation and meaning from its phonetic and semantic symbols. In 
order to analyze such relations, we start by analyzing the characteristics of phonetic 
components. We found two interesting features that could automatically identify 
the phonectic components of Chinese characters. One is pronunciation similarity, 
the other is pronunciation distribution. Experiments show that these two methods 
have high accuracy (90.8% and 98.1% for 9593 pictophonetic characters) in 
predicting the phonetic components of pictophonetic characters. These methods 
can save a lot of time and effort during the annotation of phonetic symbols in the 
early stage. 

Keywords: Picto-phonetic Compounds, Phonetic Component, Pronunciation 
Similarity, Pronunciation Distribution, Optimization. 

1. 簡介 

漢語字形及音讀的繁複，向為初學者及外籍人士所苦，即使會說華語的海外華人對於漢

字的認識也可能相當有限。最主要的原因在於漢字乃圖形文字(pictograph system)，無法

像英文等拼音文字(alphabet system)一樣，一旦學會拼音方法(phonetic representation)， 即

有基本的閱讀能力。相對的，漢字讀寫的學習進展則相當緩慢，而且必須搭配注音符號

(Chinese phonetic symbols)或是其他拼音方法，才可知道每個漢字的發音。這樣的限制，

對於漢字的學習相當不利，這也是為什麼二十世紀初期許多中國革命家意欲將漢字拉丁

化的主要原因。 

漢字的構成包含象形、指事、會意、形聲、轉注、假借(總稱六書(許慎，1988))，其

中象形、指事是「造字法」，會意、形聲是「組字法」，轉注、假借是「用字法」。事

實上形聲字所占的比例相當高，約佔八、九成。形聲字不僅可由形旁表意，又可以聲符

表音，因此即使沒見過的字也可以由偏旁推論其音及義，所謂『有邊讀邊沒邊讀中間』

即是此意。不過主要的困難在於聲旁僅代表相近的發音，之間的演變規則尚未有人探究
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過，例如：泡、抱、飽三個字同樣與『包』的發音相近，然而發音如何由『包』的發音

轉變成其他三個字的發音，則仍待研究。 

為了解漢字中形聲字與其聲符之間發音規則的轉變，我們必須先知道每一個形聲字

的聲符。由於形聲字與聲符發音相近，因此我們憶測可用形聲字與其構件之間的發音相

似度做為聲符預測方法，因此我們一方面尋求聲母、韻母之間發音相似度，一方面也建

立一個形聲字源標記系統，由中央大學中文所四位研究生與三位教授參與人工標記漢字

構形資料庫中 14706 有注音標示的漢字是否為形聲字以及其聲符構件，做為預測方法的

驗證。另外為了提升經由發音相似度比較法判斷聲符之準確率，我們也採用限制性最佳

化技術，自動求得新的發音相似度分數。 

不過發音相似度比較法僅參考單一漢字的資訊，事實上做為聲符構件的漢字，其衍

生字的發聲分佈比非聲符構件的漢字發聲分佈更為集中。因此我們進一步提出構件發聲

分佈比較法，經由計算每個構件的發聲分佈與所有漢字的發聲分佈的 KL 值，做為此構

件做為聲符的強度代表。實驗結果顯示，發音相似度比較法在 9593 個已標示的形聲字中

判定聲符準確率為 90.8%，而構件發聲分佈比較法則可達到 98.1%的準確率，顯示兩種

方法做為聲符判斷問題的可行性。 

雖然形聲字的聲符預測並非計畫最終目的，而且在聲符標注完成後，預測聲符的需

求即消失不在，但是透過發音相似度最佳化方法所得的聲母，韻母相似度參數或許有助

於未來漢字字音處理的研究，同時部件發音強度也可做為漢字學習順序之參考，仍有相

當的重要性。 

2. 相關研究 

漢字的使用從殷商的甲骨文算起已達 3,400 年之久，由於結構複雜，因此文字學在中國

特別發達。文字學的研究包括文字起源、發展、性質、體系，文字的形、音、義的關係，

正字法以及個別文字演變的情況等等議題。為有系統的研究，中央研究院資訊科學研究

所文獻處理實驗室從 1993 年開始，陸續建構古今文字的源流演變、字形結構及異體字

表，做為記錄漢字形體知識的資料庫，也就是漢字構形資料庫(莊德明、謝清俊，2005)。
漢字構形資料庫不僅銜接古今文字以反映字形源流演進，也記錄了不同歷史時期的文字

結構。另外也由於開發漢字部件檢字系統，得以解決缺字問題。 

然而過去的研究著重在字形知識的整理，尚未涉及字音與字義的處理；因此近年來

開始文字學入口網站建置計畫(莊德明、謝清俊，2005；莊德明、鄧賢瑛，2008)。一如

其文所述： 

“漢字構形資料庫目前只著重在字形知識的整理，尚未涉及字音與字義；建立一個形、

音、義俱備的漢字知識庫，仍是我們長遠的目標＂，因此本計畫“漢語系統音源脈絡之

分析＂的目的即是以挑戰漢字的發音規則知識庫為出發，除了了解漢字發音規則外，也

希望藉由此項研究找出一套形聲字發音轉換規則，讓華語學習可以在聲符與規則的輔助

下，順利讀出字的發音。為逹成此目的，第一步我們必須了解每個漢字是否為形聲字，
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以及了解形聲字聲符的部件，進而解析聲符與最終發音之間轉換的規則。因此我們首先

設計一個“形聲字聲符標記系統＂，由中文系研究生與教授的協助，進行形聲字與其聲

符的標記。不過由於此過程需耗費大量時間與人力投入（在 2009/11/10 至 2010/11/23 期

間內共有 9593 字由至少三位研究生標記相同聲符），因此是否存在自動判定形聲字聲符

的方法，變成本計畫第一個挑戰。 

3. 發音相似度比較公式表 

一般說來，聲符構件通常與原字的發音相似度高於非聲符構件與原字的發音相似度，舉

例來說，“詁＂字與其聲符構件＂古＂發音相同，而與其非聲符構件“言＂發音較不相

似，又如“校＂字與其聲符構件＂交＂發音相近，而與其非聲符構件“木＂發音較不相

似。因此發音相似度可以做為我們判定一個形聲字聲符的重要依據。為此我們必須有一

套漢字發音相似度的計算方法。 

每一個單獨的漢字雖為單音節發音，但是就聲韻學上來看可分為聲母、韻母與調性

三類。聲母是使用在韻母前面的輔音，隨著發音部位與發音方法而有所不同，如表一所

示；而韻母則是一個音節中的元音（母音），也是押韻的主要部份；再者由於漢語本身

是具備聲調系統的語言，因此我們在計算一個形聲字與其構件的發音相似度時即可以聲

母、韻母、及聲調的相似度做為判斷發音相似度的依據。 

     表一、聲母的發音部位與發音方法 

 

3.1 人工制定聲母和韻母發音相似度 
如表一所示，聲母依發音部位的不同，可分為雙唇、唇齒、舌尖前、舌尖中、舌尖後、

舌面前、舌根七種音；若依發音方法的不同，則可分為塞音、塞擦音、擦音、鼻音、邊

音等五類，加以聲帶的清濁不同，我們制訂如下之聲母與聲母之間發音相似度： 
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相同的聲母，相似度訂為 ub=1。 

國際拼音相同，但是差一個上標號，相似度訂為 a=0.9。 

發音部位相同（同列），相似度訂為 b=0.8。 

發音方法相同（同行），相似度訂為 c=0.5。 

其他情形（如不同行不同列或是沒有聲母的情形），相似度訂為 0.1。 

同時我們也尋求語言學專家的協助，針對此版本的制訂規則提供意見，專家們對聲母部

分提出以下兩項的建議： 

ㄈ與ㄅㄆㄇ的關係合併為同一行，隸屬唇音一大類。相似度訂為 b。 

ㄗㄘㄙ、ㄓㄔㄕ與ㄐㄑㄒ三大類(不包括ㄖ)，除了同屬塞擦音、擦音外，在發音上

有許多人有彼此相混的現象，所以相似度定為 d=0.7。 

表二、韻母種類 
種類  注音符號 

單韻母  (帀)、ㄧ(yi)、ㄨ(wu)、ㄩ(yu)、ㄚ(a)、ㄛ(o)、ㄜ(e)、ㄝ(  ) 

複韻母  ㄞ(ai)、ㄟ(ei)、ㄠ(ao)、ㄡ(ou) 

聲隨韻母  ㄢ(an)、ㄣ(en)、ㄤ(ang)、ㄥ(eng) 

捲舌韻母  ㄦ(er) 

結合韻母 

ㄧㄚ(ya)、一ㄛ(yo)、ㄧㄝ(ye)、ㄧㄞ(yai)、ㄧㄠ(yau)、ㄧㄡ(you)、
ㄧㄢ(yan)、一ㄣ(yin)、ㄧㄤ(yang)、ㄧㄥ(ying) 

ㄨㄚ(wa)、ㄨㄛ(wo)、ㄨㄞ(wai)、ㄨㄟ(wei)、ㄨㄢ(wan)、ㄨㄣ(wen)、
ㄨㄤ(wang)、ㄨㄥ(weng) 

ㄩㄝ(yue)、ㄩㄢ(yuan)、ㄩㄣ(yun)、ㄩㄥ(yong) 

接著我們制訂韻母與韻母的發音相似度。雖然每個韻母在注音符號表中只是單一個

符號，但是我們可以進一步將韻母分為單韻母、複韻母、聲隨韻母、捲舌韻母與結合韻

母五種。其中複韻母包括兩個母音，聲隨韻母包含韻母後的輔音，而結合韻母則包含兩

個韻母。依據以上分類，我們制訂韻母發音相似度如下： 

韻母相同則相似度訂為 1。 

若兩個韻母同為結合韻母，若兩者有共同尾音則設相似度為 x=0.8，若兩者有共同

第一個音則設相似度為 y=0.5，否則設相似度為 lb=0.1。例如：ㄧㄚ和ㄨㄚ有共同尾音ㄚ

因此相似度為 x、ㄨㄤ和ㄨㄢ有相同第一個韻母因此相似度為 y；ㄧㄞ和ㄨㄟ因無共同部

分，設相似度為 lb。 

若兩個韻母均非結合韻母（也就是屬於單韻母、複韻母、聲隨韻母或捲舌韻母），

則相似度以國際拼音決定。若拼音出現相同字母則設相似度為 z=0.5，否則設相似度為

lb。例如：ㄧ(i)和ㄞ(ai)有相同部分(i)、ㄠ(au)和ㄡ(ou)間有相同部分(u)皆設相似度為 z。 
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若一則為結合韻母，一則非結合韻母，則給分方式如下所示：若單韻母出現在結合

韻母中的後面位置設相似度為 x=0.8，若出現在前面則設相似度為 y=0.5，否則相似度為

lb。例如:ㄧ出現在ㄧㄚ前面位置，則設相似度為 y=0.5；而ㄞ出現在一ㄞ後面位置，設

相似度則為 x=0.8。 

其他情形，相似度訂為 lb。 

根據上述規則所制訂的聲母與韻母相似度表分別列於附錄 A 及 B。給定以上相似

度，我們定義兩個漢字發音相似度為其聲母相似度、韻母相似度的總和： 

Similarity(c1,c2)＝Initial(c1,c2)+Vowel(c1,c2) (1) 

因此給定一個形聲字，我們依據漢字構詞資料庫所拆解成的二至三個構件，分別計

算這些構件與原本漢字的發音相似度，查閱聲母與韻母的相似度比較公式表，求算聲母

與韻母的總和，取相似度大者構件，做為聲符的預測。因此形聲字 w 的聲符即可選取與

w 發聲最為相似的構件 c。 
( ) arg max ( , )

c w
PC w Similarity w c

∈
=                                            (2) 

舉例來說，漢字「校」(ㄒㄧㄠ 4)的構件為「木」(ㄇㄨ 4)和「交」(ㄐㄧㄠ 1)，採用

相似度比較公式表求算「木」和「 校 」的分數，其中聲母不同行不同列，相似度為 0.1，

而韻母無共同音因此相似度則為 lb，故相似度總和為 0.1+lb =0.2；同理「交」和「校」

的聲母發音部位相同，相似度為 b，且韻母同為結合韻母，相似度為 1，故相似度總和為

b+1 =1.8，因此系統判定「交」為「校」的聲符。若各構件的總和皆相同，則加入調性

進行校正，選擇與原字調性相同的構件做為預測聲符。舉例而言，漢字「祖」(ㄗㄨ 3)
的構件為「示」(ㄕ 4)和「且」(ㄑㄧㄝ 3)，採用相似度比較公式表求算「示」和「祖」

的相似度分數為 d+0.1=0.8，「且」和「祖」的總和為 d+lb=0.8，兩者相似度分數相同，

因此我們再加上調性判別，預測與「祖」聲調相同的「且」為聲符 。 

3.2 發音相似度最佳化 
由於前述發音相似度比較公式表是由人工制訂，這些值是否能有效的做為聲符預測的參

數，還是有更佳的值可以推測形聲字聲符？另外，聲母、韻母及聲調三者所占的比重為

何？則是本節所要探討的問題。我們嘗試採用限制型最佳化方法計算聲母和韻母之發音

相似度。假設一組已知聲符的形聲字 T，依照發音相似度比較公式，我們可以為每一個

形聲字 w∈T 列出 w 的聲符構件與原字發音相似度必須大於非聲符構件與原字發音相似

度的限制條件。以前例漢字「校」來說，其構件為「木」和「交」，而其已知聲符為「交」，

因此 Similarity(木,校)≤Similarity(交,校)，也就是 0.1+lb ≤ b+1。 

在我們的問題中，可以將聲母發音相似度參數 ub, a, b, c, d 以及韻母發音相似度參數

x, y, z, lb， 拿來做為最佳化問題中的變數。由於當限制條件多於變數個數時，系統可能

無解，因此我們對每個不等式的聲符部份加上一個額外的變數εi,≥0，也就是 d+0.1≤ b+1+ 
εi，再以 p

i iε∑ 做為最小化的目標函數，確保聲符與原字的發音相似度大於非聲符構件
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與原字的相似度。舉例而言，若是聲符與原字的相似度小於非聲符構件與原字的相似度，

則εi 必須大於 0 才足以讓條件成立，反之若聲符與原字的相似度已大於非聲符構件與

原字的相似度，則εi 在最小化的目標下自然會是 0。因此若有 m 個已知聲符的漢字，則

可化為以下最佳化問題： 

1

2
p
i

i

0.1 1
0.1 1

min s.t. M
1

, , , , , , , , , 0
T

i

lb ub
y ub

b y a

a b c d x y z ub lb

ε
ε

ε
ε

ε

⎧ + <= + +
⎪

+ <= + +⎪
⎪
⎨
⎪ + <= + +⎪
⎪ >=⎩

∑

                                   

(3)

 
其中 p > 0，代表錯誤聲符對系統的處罰程度的不同。在最極端的情形下，我們可以針對

21 個聲母之間的相似度設定 22*21/2 個變數（含聲母空的情形），同理也可對 39 個韻母

（含空韻）之間的相似度設定 39*38/2 個變數，再以限制型最佳化的方法來找出對聲符

預測最有利的相似度分數。但由於會有將近 1000 個變數，所花的時間相對也比較長。 

機率分佈比較法 

除了前述兩項發音相似度比較公式表與最佳化分析的方法，我們也從另一個角度觀

察漢字的發音，我們發現某些漢字構件有較強的發音強度，常常做為聲符，而屬於部首

的構件，則通常代表字的形意。於是我們假設漢字的發音有可能是由其構件發音強度較

高的構件所支配。因此，如何制定構件的發音強度而又不耗費大量的人力是我們的首要

目標。我們觀察一些常見的漢字，如表三所示。從中不難發現包含構件「包」的漢字的

發音不管在聲母、韻母或聲調的表現一致性較高，而包含構件「火」的漢字則較低，一

致性較高的構件我們也可以說它是發音集中在某幾種發音上，反之較為分散。集中度較

高的構件就很有可能支配著包含此構件的漢字發音，也就是構件發音強度較強。 

假設 S 代表某些漢字所形成的集合，ƒ(S)、g(S)、h(S)分表示其聲母、韻母及聲調的

分佈機率。令 A 表示所有漢字所成的集合，則ƒ(A)、g(A)、h(A)分別表示漢字的聲母、

韻母及聲調的分佈機率。同理對於一個漢字構件 b，我們可以找出包含 b 的所有漢字 B，

同時求得其聲母、韻母及聲調的分佈機率ƒ(B)、g(B)、h(B)。若是 b 發音集中度較高，則

其聲母分佈ƒ(B)與ƒ(A)就會有較大的差異。因此我們採用 Kullback–Leibler divergence 的

方法來計算兩個分佈的距離。Kullback–Leibler divergence 的公式如下: 

i

P(i)(P||Q) P(i)log
Q(i)

KL = ∑                                               (4) 

因此我們可以計算 KL(ƒ(B) || ƒ(A))做為構件 b 聲母強度，同理計算 KL(g(B) || g(A)) 
做為 b 韻母強度，以及計算 KL(h(B) || h(A)) 做為聲調強度。以下我們以調號以下我們以

聲母為例，計算構件「火」及「包」的聲母強度，我們從漢字構詞資料庫中找出所有標

示注音的字共|A| = 14598；我們同時統計含有構件「火」的字共有|B|=259，含有構件「包」

的字共有|C|=32，其聲母分佈如下: 
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表三、全部漢字 A 及包含構件「火」B 的聲母分佈狀況 

 ㄅ ㄆ ㄇ ㄈ ㄉ ㄊ ㄋ ㄌ ㄍ ㄎ ㄏ 

所有漢字

|A|=14958 660 445 564 445 642 630 312 1009 587 380 742 

f(A) 0.04 0.03 0.03 0.03 0.04 0.04 0.02 0.06 0.04 0.02 0.05 

含構件火

|B|=259 8 5 10 7 6 13 2 18 7 6 25 

f(B) 0.03 0.01 0.03 0.02 0.02 0.05 0.007 0.06 0.02 0.02 0.09 

含構件包

|C|=32 15 16 0 1 0 0 0 0 0 0 0 

f(C) 0.46 0.5 0 0.03 0 0 0 0 0 0 0 

 ㄑ ㄒ ㄓ ㄔ ㄕ ㄖ ㄗ ㄘ ㄙ 空 

所有漢字

|A|=14958 719 931 835 540 567 239 371 294 356 2120 

f(A) 0.04 0.06 0.05 0.04 0.03 0.01 0.02 0.02 0.02 0.14 

含構件火

|B|=259 8 27 
14 
 

11 8 8 8 4 1 45 

f(B) 0.03 0.1 0.05 0.04 0.03 0.03 0.03 0.015 0.003 0.17 

含構件包

|C|=32 0 0 0 0 0 0 0 0 0 0 

f(C) 0 0 0 0 0 0 0 0 0 0 

 

將|A|與|B|正規化得 f(A)與 f(B)兩機率分佈。最後將 f(B)及 f(A)代入 KL-divergence
公式可得構件「火」的聲母強度。同樣方式可計算「包」的聲母強度。 

當我們要判斷某個漢字的聲符時，只需要將此漢字的所有構件的聲母、韻母及聲調

三種 Kullback–Leibler divergence 的值做加總，那麼擁有最大的加總值的構件便會被我們

判定為此漢字的聲符。這個方法的好處在於方法簡單而且不需訓練過程，後續實驗將可

看出這個方法對形聲字聲符判斷相當有效。表四分別列出依聲母、韻母、聲調 KL 值與

其構件出現次數|B|的乘積值排序前十名構件。這樣子的排序可以做為聲符學習的參考順

序。 
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表四、漢字構件發音強度表 

字碼 聲母 KL 值 字碼 韻母 KL 值 字碼 聲調 KL 值 

分 0.9768 非 1.3864 皇 0.4851 

莫 1.3439 分 1.1621 盧 0.5487 

非 0.9789 令 1.4116 令 0.2977 

令 1.0335 票 1.4535 會 0.4988 

元 1.7167 莫 1.439 夷 0.5487 

票 1.1263 屯 1.6778 希 0.5458 

卑 1.0746 龍 1.1123 余 0.3386 

弗 1.4473 皇 1.6968 吉 0.3332 

方 0.9731 包 1.3036 肖 0.2747 

俞 1.0632 同 1.4166 世 0.4988 

4. 實驗 

以下實驗探討前二節所提出的三種分析方法：發音相似度比較公式表、發音相似度最佳

化與機率分佈比較法，分別在自動判別形聲字之聲符的效能為何。實驗中使用的測試資

料集，是取自漢字構形資料庫中有注音標示的漢字，在 2009/11/10 至 2010/11/23 期間內

共有 9593 字為四位中文系研究生共同標記完成。 

4.1 發音相似度比較法 
首先我們進行發音相似度比較公式的預測效能。如表五所示，原始發音相似度方法，準

確率約 88.67%，其中包含 518 筆無法判別的字；加入聲調的判別，無法判別的字減少至

291，準確率約 90.21%。採用專家建議的修正版之發音相似度比較公式表來測試，準確

率提高至 89.39%，再加入聲調後則為九成零七的準確率。顯示以發音相似度比較公式進

行判別聲符，有一定的效果。也因為考慮聲調可以提升一個多百分點，因此我們將調的

相似度直接納入發音相似度的計算，將計算式(1)改為如下計算式： 

Similarity(c1,c2)＝Initial(c1,c2)+Vowel(c1,c2)+Tone(c1,c2) (5) 

其中聲調相似度依兩個發音的聲調是否相同，給予δ及 0 的相似度。參數δ的值則由分析

每一個字的 pcdiff 的分佈圖而得。方法如下：對於每一個字 w，我們先用方程式(1)計算

w 與其聲符構件 pcw 的發音相似度，以及 w 與其非聲符構件的發音相似度（若有多個非
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聲符構件則取發音相似度值較大者），並定義 pcdiff(w)為兩者的差： 

\
( ) ( , ) ( , )

w

w
c w pc

pcdiff w Similarity w pc similarity w c
∈

= −                              (6) 

表五、發音相似度比較法判別準確率 

 正確 錯誤 無法判別 準確率 

原始版(no d) 8507 568 518 88.67

原始版＋調 8654 648 291 90.21

修正版(d=0.7) 8576 575 442 89.39

修正版+調 8701 648 244 90.70

整合版(δ=0.2) 8707 618 268 90.86

圖一為所有字的 pcdiff 分佈圖（Histogram）。每一個藍色長條圖 Mi 代表 pcdiff 為 i
（i=…, -0.2, -0.1, 0, 0.1, 0.2, ….）的字的個數（黑色字），同時我們也統計每一藍色長

條中有多少個字的聲調與其聲符構件相同但與非聲符構件不同，我們用 Ni 來表示（綠色

字）；另外我們也統計有多少個字的聲調與其聲符構件不同但與非聲符構件相同，我們

用 Li 來表示（紫色字）。這兩部份的字集分別代表的是在採用方程式(5)來計算發音相似

度時，pcdiff 會增加或是減少的字數。因此如果我們採用方程式(5)來計算發音相似度，

將會有新增加 N0+N-0.1+…+N-δ+0.1 可被正確預測的字（橘色轉換），但是同時會有

L0.1+L0.2+…+Lδ的字會從正確預測轉為錯誤預測或無法判斷（藍色轉換）。因此若 N0=125, 
L0=73, N-0.1=45, N-0.2=10, L0.1=25, L0.2=14（如圖二）, 當我們設δ=0.2，則我們可新增

125+45=170 個可正確判斷的字，但失去 25+14=39 原可正確判斷的字。整體來說，我們

可多預測 170-39=131 個正確的字，而無法判別的字則減少 125+73-10-14＝174 個字

(442-174=268)。 

 
圖一、聲符發音相似度與非聲符發音相似度差分佈圖 
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4.2 發音相似度最佳化 
第二部份實驗主要是了解最佳化方法計算出的聲母與韻母相似度參數在判別漢字聲符之

可能性。實驗主要目的在了解需要多少訓練資料筆數才能逹到大約九成的準確率，以及

最佳化方法的學習曲線。由於變數不多，理論上我們所需要的訓練資料筆數並不需要太

多，但是若是取太少訓練資料，則預測準確的效果差異則會變大。我們取 p=1 做為目標

函數，隨機抽取 1000 筆資料做為訓練資料，剩餘 8593 筆資料做為測試資料。每次從訓

練資料中隨機抽取 m（=20, 60, 80, 100, 200, 500）個漢字產生 m 個限制條件（公式 1)，
再由線性規劃方法計算出參數值，並利用這些參數來檢視所有 8593 筆測試漢字聲符判別

之準確率。我們反覆十次上述的實驗，用以繪製盒鬚圖(Box-Whisker Plot)得到如圖二之

結果。 

Phonetic Component Prediction

89.03% 89.78% 89.98% 89.47% 89.90% 89.50% 88.22%

70%
75%
80%
85%
90%
95%

100%

20 40 60 80 100 200 500
# constraints

Te
sti

ng
 A

cc
ur

ac
y

 
圖二、以發音相似度最佳化作為聲符預測準確圖 

如圖二所示，我們可以藉由最佳化方法找到與前節所得準確率相當的相似度參數，

甚至於在少數已知聲符的漢字訓練資料，如 40 或 60 筆時，即有相當好的結果，超越修

正版 89.39%的準確率，所得參數值與人工定義的參數設定方式接近，如聲母參數

ub>a>b>c,d>0.1 等關係，韻母參數 1>x>y,z>lb 等關係（如表六所示）。事實上聲符預測

準確率最高 89.98%，可由 60 筆已知聲符的形聲字所產生的限制條件求出，然當訓練資

料（限制條件）增加時，準確率並無上升的情形，甚至在 500 時，反而有下降趨勢（最

佳測試準確率降至 87%及 81.5%）。推測主要的原因在於聲符與形聲字發音相似度大於

非聲符構件與形聲字發音相似度僅是一個通則，仍有相當多例外的情形。例如，冶、洛、

債、時、枸、荼等字，前二者產生 y<=lb+ε的限制，中二者則產生 b<=d+ε 的限制，

後二者則產生 z<=lb+ε 的限制條件。在少量的訓練資料時，這些限制條件的影響可能

只是影響一二個變數大小關係，但是在較多的訓練資料時，將可能同時影響數個變數，

最終是聲母參數均相同（ub=a=b=c=d），韻母參數均相同（x=y=z=lb）時，反而可以讓

目標函數的值較小。因此我們看到當訓練資料 500 筆時，即使是最佳一組測試準確率，

也僅得聲母參數均相同的結果。 
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表六、不同筆訓練資料所得最佳測試準確率及其聲母、韻母參數 

 20 40 60 80 100 200 500 

訓練資料準確率 90.0% 98.0% 98.0% 96.0% 94.0% 98.0% 97.0% 

測試資料準確率 89.0% 89.8% 90.0% 89.5% 90.0% 90.0% 88.0% 

ub 0.97 0.82 0.94 0.93 1.00 0.66 0.93 

a 0.73 0.55 0.63 0.73 0.84 0.89 0.10 

b §0.10 §0.10 0.60 0.76 §0.37 0.50 0.10 

c §0.46 §0.67 0.00 0.10 §0.42 0.10 0.10 

d §0.10 §0.40 0.55 0.19 §0.58 0.10 0.10 

x 0.63 0.70 0.72 0.83 0.64 0.89 0.93 

y 0.10 ¶0.22 ¶0.38 ¶0.33 ¶0.16 0.18 0.10 

z 0.10 ¶0.34 ¶0.51 ¶0.52 ¶0.41 ♮0.10 ♮0.10 

lb 0.10 0.16 0.10 0.13 0.10 ♮0.13 ♮0.12 

Affected by constraints § b<=c or d, ¶ y<=z, ♮z<=lb 

4.3 機率分佈比較法 
第三部份的實驗目的在於了解機率分佈比較法對於在判別漢字的聲符之效能。如表七所

示，以聲母分佈、韻母分佈以及聲調分佈個別強度做為聲符預測，都有一定的準確度（分

別為 92.8%、97.5%及 95.9%），其中又以韻母的分佈是三者當中最為有效方式。整體來

說，三種分佈一起考量的結果有最佳的效果，針對 9593 筆形聲字，其中有 9413 筆正確，

180 筆錯誤，準確率 98.1%。 

                    表七、機率分佈比較法判別準確率。 

 正確 錯誤 準確率

聲 8910 683 92.80

韻 9362 231 97.50

調 9207 386 95.90

聲+韻+調 9413 180 98.10

為了解判定錯誤發生的可能原因，我們列出錯誤例子如表八。這些例子顯示，機率

分佈比較法發生錯誤多在在於構件間的強度太過接近，尤其是兩個構件均為部首的情

形，然而若就發音相似度比較法而言應該可以正確判斷其聲符。因此也可以考慮結合機

率分佈比較法與發音相似度比較法，對於形聲字進行聲符的判斷測試。 
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表八、機率分佈比較法錯誤例子 

 

5. 結論及未來研究 

本篇論文主要目的是藉由對形聲字的分析研究，找出漢字與其聲符構件原字之間的關

係。在第一階段我們針對漢字形聲字聲符的標記，除了採用中文系研究生的人力標記之

外，同時也提出三種自動判別的方式，用以加速形聲字聲符的標記工作。實驗顯示，不

論是人工制訂的相似度參數或是最佳化方式所得的參數，預測準確率大約可以做到九

成。這是否是本篇論文所使用的最佳化方法的不足，又或是發音相似度比較法對於聲符

預測的極限，仍尚待進一步的研究。另外一方面，以每個部件發音的分佈集中與否做為

聲符的判斷，則有高達九成八的準確率，則是相當有用的資訊。 

雖然形聲字在聲符標注完成後，預測聲符的需求即消失不在，但是透過發音相似度

最佳化方法所得的聲母，韻母相似度參數或許有助於未來漢字字音處理的研究，同時部

件發音強度也可做為漢字教學順序參考，仍有相當的重要性。未來我們將以持續以挑戰

漢字的發音規則知識庫為出發，除解析漢字發音規則外，也希望以此項研究為出發，發

展一套漢字學習的順序，讓使用者可用較少的學習時間，有效率認識更多漢字。 
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附錄A:聲母相似度比較表 
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附錄B:韻母相似度比較表 
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