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Abstract 

This paper presents a decision tree pruning method for the model clustering of 
HMM-based parametric speech synthesis by cross-validation (CV) under the 
minimum generation error (MGE) criterion. Decision-tree-based model clustering 
is an important component in the training process of an HMM based speech 
synthesis system. Conventionally, the maximum likelihood (ML) criterion is 
employed to choose the optimal contextual question from the question set for each 
tree node split and the minimum description length (MDL) principle is introduced 
as the stopping criterion to prevent building overly large tree models. Nevertheless, 
the MDL criterion is derived based on an asymptotic assumption and is problematic 
in theory when the size of the training data set is not large enough. Besides, 
inconsistency exists between the MDL criterion and the aim of speech synthesis. 
Therefore, a minimum cross generation error (MCGE) based decision tree pruning 
method for HMM-based speech synthesis is proposed in this paper. The initial 
decision tree is trained by MDL clustering with a factor estimated using the MCGE 
criterion by cross-validation. Then the decision tree size is tuned by backing-off or 
splitting each leaf node iteratively to minimize a cross generation error, which is 
defined to present the sum of generation errors calculated for all training sentences 
using cross-validation. Objective and subjective evaluation results show that the 
proposed method outperforms the conventional MDL-based model clustering 
method significantly. 
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1. Introduction 

Currently, there are two main speech synthesis methods. One is unit-selection speech 
synthesis (Hunt & Black, 1996) (Ling & Wang, 2007) and the other is the hidden Markov 
model (HMM) based parametric speech synthesis (Black, Zen, & Tokuda, 2007). The 
unit-selection approach concatenates the natural speech segments selected from a recorded 
database to produce synthetic speech. It can generate highly natural speech often, but its 
performance may degrade severely when the contexts for synthesis are not included in the 
database. In HMM-based parametric speech synthesis, speech waveforms are parameterized 
and modeled by HMMs in model training (Yoshimura, Tokuda, Masuko, Kobayashi, & 
Kitamura, 1999). During synthesis, speech parameters are generated from the trained models 
(Tokuda, Yoshimura, Masuko, Kobayashi, & Kitamura, 2000) and sent to a parametric 
synthesizer to reconstruct speech waveforms. Although the quality of synthetic speech still 
needs improvement, HMM-based parametric synthesis has several important advantages, 
including high flexibility of the statistical models, a comparatively small database necessary 
for system construction and robust performance of the synthetic speech -- it never makes the 
serious errors that unit-selection speech synthesis may make sometimes. 

In HMM-based parametric speech synthesis, binary decision tree based 
context-dependent model clustering is a necessary step in dealing with data-sparsity problems 
and predicting model parameters for the contextual features of synthetic speech that do not 
occur in the training set. In the conventional model clustering process, the maximum 
likelihood (ML) criterion is utilized to choose the optimal question from the question set for 
each tree node split and the minimum description length (MDL) criterion (Shinoda & 
Watanabe, 2000) is used as the stopping criterion to control the size of trained decision trees, 
which affects the performance of synthetic speech significantly, e.g., a large decision tree may 
alleviate the over-smoothing effects in generated speech parameters but may also lead to 
over-fitting problems. Nevertheless, the MDL criterion is derived based on an asymptotic 
assumption and the assumption that fails when there is not enough training data (Rissanen, 
1980). Therefore, it may not work successfully in HMM-based speech synthesis, where the 
amount of training data is much smaller than that in speech recognition. 

Some research work has been done to improve the MDL criterion for the decision tree 
construction of HMM-based speech synthesis. A decision tree backing-off method was 
proposed in (Kataoka, Mizutani, Tokuda & Kitamura, 2004). In this method, a decision tree 
was first built using ML criterion without pruning. During synthesis, the tree nodes that 
generated the observations with maximum likelihood were chosen by a process of backing-off 
from the leaf node that was decided by the contextual information of each state for synthesis 
to the root node. Nevertheless, there still exist two issues in this method. One is the 
one-dimensional optimization algorithm adopted in (Kataoka, Mizutani, Tokuda, & Kitamura, 
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2004) to reduce the computational complexity, which means the decision tree backing-off is 
conducted simultaneously for all states instead of processing each state separately. The other 
is the inconsistency between the ML criterion and the aim of speech synthesis, which is to 
generate speech (acoustic parameters) as close to natural speech as possible. The minimum 
generation error (MGE) criterion has been proposed to solve the second issue. It optimized the 
model parameters by minimizing the distortion between the generated speech parameters and 
the natural ones for the sentences in the training set. The MGE criterion has been applied not 
only to the clustered model training (Wu & Wang, 2006b) but also to the decision tree based 
model clustering of context-dependent models (Wu, Guo & Wang, 2006) and positive results 
have been achieved in improving the naturalness of synthetic speech. In (Wu, Guo & Wang, 
2006), MGE was adopted to replace the ML criterion to select the optimal question at each 
tree node split. Since increasing the size of the decision tree always leads to the reduction of 
the generation error on the training set, MGE cannot be used directly as a stopping criterion in 
decision tree building. Thus, the size of the decision tree trained in (Wu, Guo & Wang, 2006) 
was tuned manually to compare the results with the MDL clustering that had almost 
equivalent numbers of leaf nodes. 

On the other hand, cross-validation (CV) is a well-known technique to deal with the 
over-training and under-training problems without requiring extra development data. It 
estimates the accuracy of performance of a predictive model by partitioning the data set into 
complementary subsets and uses different subsets for training and validation (Bishop. 2006). 
In (Hashimoto, Zen, Nankaku, Masuko & Tokuda, 2009), a CV based method of setting 
hyper-parameters for HMM-based speech synthesis under the Bayesian criterion was proposed 
and positive results were reported. 

In this paper, we integrate the minimum “cross” generation error criterion to optimize the 
size of the model clustering decision tree automatically for HMM-based speech synthesis. 
Different from (Wu, Guo & Wang, 2006), the ML criterion is still adopted to select the 
optimal question at each tree node split. A “cross” generation error is defined to calculate the 
sum of generation errors for all training sentences by cross-validation using the models 
clustered with a given decision tree. The size of the decision tree is optimized to minimize the 
cross generation error in two steps. First, an initial decision tree is obtained through model 
clustering with the MDL factor tuned with MCGE criterion. Then, the decision tree is finely 
modified by backing-off or splitting each leaf node iteratively to minimize the cross 
generation error. Objective and subjective evaluation results show that this proposed method 
outperforms the conventional MDL based HMM model clustering method significantly. 

This paper is organized as follows: Section 2 describes the HMM-based speech synthesis 
method with conventional MDL clustering. In Section 3, the proposed MCGE based decision 
tree pruning method is introduced. Objective and subjective experimental results are discussed 
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in Section 4. Finally, conclusions are given in Section 5. 

2. HMM-based Parametric Speech Synthesis 

2.1 The Framework of HMM-based Speech Synthesis 
As shown in Figure 1, a typical HMM-based parametric speech synthesis system consists of 
two parts: the model training part and the speech synthesis part. In the model training part, 
spectrum, F0 and state duration are modeled simultaneously in a unified HMM framework. 
For each HMM state, the spectral features are modeled by a continuous probability 
distribution and F0 features are modeled using a multi-space probability distribution (MSD) 
(Tokuda, Masuko, Miyazaki & Kobayashi, 1999). In the synthesis step, speech parameters are 
generated from the trained models using maximum likelihood parameter generation (MLPG) 
algorithm (Tokuda, Yoshimura, Masuko, Kobayashi & Kitamura, 2000) and a parametric 
synthesizer is employed to reconstruct speech waveforms from the generated parameters. 

 
Figure 1. Flowchart of a conventional HMM-based parametric speech 

synthesis system. 

2.2 MDL-based Model Clustering 
In the training stage, decision-tree-based model clustering is conducted after training for full 
context-dependent HMMs to avoid data-sparsity problems and to predict model parameters for 
the context features that do not occur in the training set. A question set containing 
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language-dependent contextual questions is used. In the top-down decision tree building 
process, the ML criterion is commonly adopted to choose the optimal question and leaf node 
for splitting that lead to the greatest likelihood of growth. Further, the MDL principle is 
employed as a stopping criterion for decision tree pruning (Shinoda & Watanabe, 2000). The 
description length (DL) is defined as 

1( ) log ( | ) ( ) log
2

I P D N Cλ λ λ≡ − + +o                                   (1) 

where λ  denotes the clustered models; T T T T
1 2[ , ,..., ]N=o o o o  is the training feature sequence, 

T( )⋅  means the matrix transpose and N  is the total frames of training data; log ( | )P λo  is 
the log likelihood function of λ on the training set; ( )D λ  is the dimensionality of the model 
parameters; and C  is a constant. The decision tree stops growth if the optimal leaf node 
splitting determined by the ML criterion can no longer reduce the DL. 

If a single-Gaussian distribution with diagonal covariance matrix is used as the output 
probability distribution function (PDF) of each HMM state, Eq. (1) can be calculated as 
Equation (2) in (Shinoda & Watanabe, 2000) 

1

1( ) ( log(2 ) log ) log
2

M
m m

m
I E E EM N Cλ π

=
= Γ + + + +∑ Σ                            (2) 

where M  is the leaf node number of the model clustering decision tree; mΓ  is the sum of 
state occupation probabilities for all frames in the training set belonging to the states that share 
the PDF of node m ; E  is the dimensionality of feature vectors; mΣ  is the covariance 
matrix of the Gaussian distribution function at node m . 

Assume leaf node S  with a contextual question is chosen among the M  leaf nodes by 
ML criterion and further split into two child nodes SY  and SN . Thus, the DL of the 
updated model 'λ  becomes 
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The change of DL after the tree node splitting is 
1 1 1( ') ( ) log log log log .
2 2 2SY SY SN SN S SI I I E Nλ λΔ = − = Γ + Γ − Γ +Σ Σ Σ       (4) 

The tree growth stops if 0IΔ > . Thus, the stop condition of MDL-based decision tree 
building is 

1 1 1log log log log .
2 2 2S S SY SY SN SN E NΓ − Γ − Γ <Σ Σ Σ                             (5) 
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The left side of Equation (5) presents the increase of log likelihood after the splitting. 
Therefore, the MDL criterion can be explained as introducing a threshold logE N  into the 
ML-based decision tree construction. In practical system construction, an MDL factor 0α >  
is used to tune the threshold and control the size of the trained decision tree. Thus, Equation (5) 
can be rewritten as 

1 1 1log log log log .
2 2 2S S SY SY SN SN E NαΓ − Γ − Γ <Σ Σ Σ                           (6) 

Small α would lead to a large decision tree. 

Besides MDL, the node size is also used as a complementary stop condition in practical 
system construction. It requires each leaf node to contain at least β  samples otherwise the 
tree growth stops. Therefore, the pruning of the ML-trained model clustering decision tree is 
determined by a pair of parameters { , }α β  with a default value of {1.0,15}  in our baseline 
system. 

3. Minimum Cross Generation Error based Decision Tree Pruning 

3.1 Cross Generation Error 
In order to introduce MGE criterion into the pruning of model clustering decision tree, Cross 
Generation Error (CGE) is calculated on the training set by cross-validation. Assume the 
training database is composed of L sentences. To do cross-validation, we first divide the 
database into K  subsets, 1 2{ , ,..., }KS S S  and 

 
,1 ,2 ,{ , ,..., }, 1, 2,...,

kk k k k L k K= =S C C C                               (7) 

where T T T T
, , ,1 , ,2 , ,[ , ,..., ]k l k l k l k l T=C c c c  denotes the speech parameter sequence of the l-th 

sentence in the k-th subset, , ,k l tc  is feature vector of the t-th frame in ,k lC  and T is the 
frame number of ,k lC ; kL  is the number of sentences in subset k and 1

K
kk L L= =∑ . The 

phonetic balance needs to be considered when partitioning the database and the subsets should 
be divided as evenly as possible. When a model clustering decision tree TR is given, the “cross” 
generation error is calculated as 

,

, , , ,
1 1 1

1 1( ) ( , ' ( ( )))
k lk TLK

k l t k l t k
k l tk

TR d TR
K L

λ
= = =

= ∑ ∑ ∑D c c                              (8) 

where ( )k TRλ  represents the model estimated using the decision tree TR and the training 
subsets 1,..., ,{ }k j j K j k= ≠=S S ; , ,' ( )k l t λc  denotes the generated parameter vector of frame t 
for the l-th sentence in subset k using model λ ; ( , ')d c c  is an objective distortion function 
to calculate the generation error between the natural and generated speech parameters and a 
Euclidean distance measure is adopted here. The calculation process of the cross generation 
error is illustrated in Fig. 2. 
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Figure 2. The calculation process of cross generation error. 

3.2 Decision Tree Initialization 
The pruning of the decision tree by CV and MGE is carried out in two steps. First we tune the 
MDL factor in Eq. (6) and the threshold in the node size stop condition discussed in Section 
2.2 to generate an initial decision tree with a minimum cross generation error. Then the effect 
of each single tree leaf node on the cross generation error is inspected separately for further 
decision tree leaf backing-off or splitting. The decision tree initialization process is introduced 
in this section. 

As shown in Equation (6), a small α  would decrease the threshold in the stop condition 
of the MDL criterion and lead to a large decision tree. On the other hand, reducing the 
threshold β  in the stop condition of the node size would also increase the size of the 
decision tree. A set of threshold parameter pairs { , }α β  is designed in accordance with our 
speech synthesis system construction experience. For each pair of { , }α β , a decision tree is 
trained via the method discussed in Section 2.2 and the cross generation error is calculated. 
We tune α  first and keep β  equal to its default value. When reducing α can no longer 
increase the size of the decision tree, we keep α  constant and reduce β  further. By such 
tuning, we are able to find a pair of { , }α β  that leads to the smallest cross generation error. 
When the optimum pair of { , }α β  is obtained, they are applied to conduct the model 
clustering using all of the training data and to generate the initial decision tree 0TR  for 
further optimization. 
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3.3 Cross Generation Error based Tree Pruning 
Given an initial decision tree 0TR by Section 3.2, the effect of every single leaf node on the 
cross generation error is inspected for further tree node back-off or splitting. Here, we define 
the cross generation error of tree node m as 

,

, , , ,
1 1 1

1 1( ) ( ) ( , ' ( ( )))
k lk TLK

m m k l t k l t k
k l tk

TR t d TR
K L

γ λ
= = =

= ∑ ∑ ∑D c c                       (9) 

where ( )m tγ  denotes the state occupancy probability of frame t in the l-th sentence of subset 
k belonging to the node m. By comparing the sum of the cross generation error of each tree 
leaf node and its brother node with the cross generation error of their father node, it can decide 
whether we should back-off the leaf nodes to reduce the cross generation error or not. In the 
same way, we can decide whether the decision tree leaf should be split further. Backing-off or 
splitting continues for each decision tree leaf until no tree leaf can be backed-off or split. The 
optimization process for the decision tree backing-off and splitting is conducted iteratively 
and is described in detail as follows. 

 

 Step 0. Given the divided training subsets 1 2{ , ,..., }KS S S  for cross-validation, the initial 
decision tree 0TR  is backed-off to get 1TR  to guarantee that each leaf node should 
contain at least one frame of sample from every kS . 

 Step 1. A group of clustered models 1 1,...,{ ( )}k k KTRλ =  is estimated. Set 1=i . 

 Step 2. Back-off all the leaf nodes in iTR to their father nodes by one level and attain 'iTR . 
Assume that leaf node m in 'iTR  is the father node of node ml and mr in iTR . If 

( ') ( ) ( )m i ml i mr iTR TR TR< +D D D , we merge node ml and mr in iTR  into their father node. 
Otherwise, these two leaf nodes are reserved. This process is carried out for all leaf nodes 
in 'iTR  and a new tree 1iTR +  after necessary backing-off. Then set 1i i= + . The 
flowchart of this backing-off process is shown in Fig. 3. 

 Step 3. Step 2 is repeated until the number of merged leaf nodes per one time back-off is 
smaller than a given threshold τ . 

 Step 4. Splitting is conducted in a similar way after the backing-off process is finished. 

 

Following these steps, decision tree 0TR is finely tuned for every leaf, reducing the cross 
generation error on the training set. 
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Figure 3. Flowchart for one decision tree back-off process. 

4. Experiments 

4.1 Experimental Conditions 
In the experiment, we used a female phonetic balanced Mandarin database containing 1,000 
sentences as the training database. The sample rate for the speech waves in the training 
database was 16kHz. 40 dimensional LSPs were extracted as the spectral features with 5ms 
frame shift. Five state context-dependent HMMs were used in the model training. Our 
experiments only focused on the decision-tree-based model clustering for spectral features. 
The context-dependent F0 and duration models were clustered in the conventional way. 

A question set describing the contextual features for Mandarin Chinese was designed to 
conduct the decision tree splitting. The context features include: 

 Left phone : phone before the current phone 

 Current phone : the focused phone  

 Right phone : phone after the current phone 

 Left tone : tone of the syllable before the current syllable 

 Current tone : the tone of the current syllable 

 Right tone : tone of the syllable after the current syllable 

 Part-of-speech : nature of the current word 
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 Relative positions of the current syllable, word, phrase, sentence, and sentence group 

 Absolute positions from head and tail of the current syllable, word, phrase, sentence, and 
sentence group 

4.2 Experiments on Decision Tree Initialization 

4.2.1 Objective Evaluation 
The training database was divided into ten subsets in our experiments. Following the method 
described in Section 3.2, a group of threshold parameter pairs { , }α β were designed as shown 
in Table 1. As the MDL factor α  is the main factor that affects the size of the decision tree, 
we did not modify β  until reducing α to where it could no longer enlarge the size of the 
decision tree. The System ID, the corresponding threshold parameter pairs { , }α β , size of the 
decision tree, and the cross generation error calculated by LSP distortion introduced in Section 
3.1 are shown Table 1. 

Table 1. Scale of the decision tree and the objective LSF “cross” generation error for 
each system. 

System ID Sys-A Sys-B Sys-C Sys-D Sys-E Sys-F Sys-G Sys-H Sys-I 

{ , }α β  {0.01,1} {0.01,5} {0.01,10} {0.01,15}{0.1,15} {0.5,15} {1,15} {2,15} {10,15} 

Number of all 
leaf nodes 52882 36706 21211 14683 14654 8909 3946 1886 470 

LSF distortion 0.02576 0.02498 0.02442 0.02421 0.02421 0.02428 0.02470 0.02553 0.02869 

From Table 1, we can see that parameter set {0.01,15} (Sys-D) and {0.1,15} (Sys-E) lead to 
the smallest cross generation error. The baseline system is Sys-G with { , }α β  in default 
settings. 

4.2.2 Subjective Evaluation 
A subjective listening test was also conducted for the above systems. As the trained decision 
trees of Sys-D and Sys-E were very close, Sys-E was omitted in the following subjective 
evaluation. Sixteen out-of-training-set test sentences were synthesized by the remaining eight 
systems. Five native Mandarin Chinese speakers were asked to give a score from 1 (very 
unnatural) to 5 (very natural) on the 128 synthetic sentences. The mean opinion scores (MOS) 
of all systems are shown in Fig. 4. From these results, we can see that the subjective scores 
match the objective cross generation error very well, where a smaller cross generation error 
corresponds to a higher MOS. Sys-D is the best system in the subjective evaluation and 
outperforms the baseline system (Sys-G). This proves the effectiveness of the proposed 
decision tree initialization method and the minimum cross generation error criterion. From 



 

 

               Cross-Validation and Minimum Generation Error based            71 

Decision Tree Pruning for HMM-based Speech Synthesis 

Figure 4 and Table 1, we also find that the LSF distortion of Sys-A and Sys-B is larger than 
Sys-G, but with a higher MOS score. This is reasonable because with a much smaller decision 
tree like in system Sys-G, the acoustic model would be too “average”, making the synthesis 
speech “blurring”. Nevertheless, large decision trees like Sys-A and Sys-B cause an 
over-training problem, where voice quality is not impacted much, but synthesized speech may 
not be stable. 

 
Figure 4. MOS of different systems for decision tree initialization. 

4.3 Experiments on Decision Tree Pruning 

4.3.1 Objective Evaluation 
Using the threshold parameter pair {0.01,15} of Sys-D, the initial decision tree 0TR  was built 
by conducting MDL-based HMM clustering using this parameter set on the whole training 
database. Then further tree node backing-off and splitting introduced in Section 3.2 were 
conducted iteratively on the basis of 0TR . Here in the calculation of cross generation error, 
the same decision tree 0TR , other than the optimal { , }α β , is utilized to conduct the model 
estimation of ( )λk TR . The Euclidean LSP distance measure was used to compute the 
distortion between the generation and natural parameters. Figure 5 and Figure 6 describe the 
change in the cross generation error and the total number of the decision tree nodes in the 
iterative backing-off or splitting process. We can see that the cross generation error in Fig. 5 
decreases consistently. Figure 6 shows that the backing-off was conducted for 9 iterations 
until no tree leaf could be backed-off and that node splitting was conducted for 2 iterations. 
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Figure 5. The “cross” generation error curve using Euclidean LSP distortion 
according to the decision tree pruning times. Decision tree backing-off 
is conducted 9 times until no leave can be combined. Then splitting for 
tree leaves is conducted for 2 times. 

 

Figure 6. The scale of the decision tree according to the decision tree pruning times. 
Decision tree backing-off is conducted 9 times until no leave can be 
combined. Then splitting for tree leaves is conducted for 2 times. 

Comparing Figure 5 and Table 1, one may find that the average “cross” generation error 
in the decision tree leaf backing-off and splitting process is larger than the average “cross” 
generation error in the MDL threshold parameter set optimizing process. This is normal 
because in the MDL threshold parameter optimization process, we employ the same MDL 
threshold parameter set for each 1K −  sub-databases HMM clustering in the CV process. In 
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the backing-off and splitting process, however, the same decision tree except for the MDL 
parameters is employed for HMM clustering in the CV. A different decision tree for different 
divisions in CV leads to a smaller “cross” generation error. 

4.3.2 Subjective Evaluation 
A subjective listening test was conducted for the three systems: the baseline system (Sys-G), 
the system with tuned { , }α β  (Sys-D), and the system with further backing-off and splitting 
based on Sys-D. Sixteen sentences were synthesized by each of the systems and five native 
speakers were asked to choose the best sentence from the randomly ordered three sentences by 
three systems. The results are listed in Fig. 7, where the preference ratios for the three systems 
are 21.6%, 36.7% and 41.7% respectively. 

 
Figure 7. Preference ratio for the (1) baseline system, (2) MDL parameter optimized 

speech synthesis system and (3) further backing-off and splitting system. 

From Figure 7, one can conclude that the MDL threshold parameter optimized speech 
synthesis system and further backing-off and splitting system both out-perform the baseline 
system. The proposed method for initialization of the decision tree and the further pruning 
method are both effective. 

4.4 Discussion 
The subjective MOS test and the objective LSP distortion prove the effectiveness of our two 
step decision tree pruning method. Compared with generating decision tree from the top or 
backing-off from the bottom, our two-steps decision tree pruning method, pruning the decision 
tree from the middle of the decision tree avoids many sub-optimums. If we start to prune from 
a huge decision tree which is split without any constraint using the method described in 
Section 3.3, we cannot guarantee that once the cross generation error by the father node is 
larger than the current tree leaves, the cross generation error by the grandfather level is also 
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larger than the tree leaves. It could be smaller! Also pruning from the middle of the decision 
tree avoids a huge computational cost. 

Theoretically, in order to get the decision tree that leads to the minimum cross generation 
error, one should use the minimum cross generation error criterion to choose the best question 
from the question set, and  use the best question to conduct the splitting of every decision 
tree node. This means speech parameters for the synthesized speech should be generated and 
the cross generation error for the whole decision tree should be calculated for all the questions 
in the question set for each tree leaf. This will lead to an unacceptable computational cost. 
Another method of decision tree optimization is from the bottom to top. Using the ML 
criterion to conduct the decision tree generation with no stopping criterion, a huge decision 
tree is generated. In such a huge decision tree, there is almost only one sample for each tree 
leaf. Then the backing-off for each tree leaf to reduce the “cross” generation error is 
conducted. The problem, however, is that, backing-off the tree from the bottom does not 
always lead to the decision tree with the smallest “cross” generation error. It is quite possible 
that the backing-off process lead to some sub-optimal results. This is the case especially when 
there are only three tree leaves in the two level sub-tree. Nevertheless, informal experiments 
conducted by us revealed that, by conducting the decision tree leaf backing-off from the 
bottom of a huge decision tree as mentioned above, the out-of-training-set generation error of 
the optimized decision tree is even larger than the generation error by the decision tree 
initialized by only optimizing the MDL threshold parameters introduced in Section 3.2. 

5. Conclusion 

In this paper, we have proposed a minimum cross generation error criterion based decision 
tree pruning method for HMM-based parametric speech synthesis. Rather than generating the 
decision tree from the top or backing-off from the bottom, we optimize the decision tree from 
the middle. We first initialize the decision tree by tuning the MDL threshold parameter using 
the minimum “cross” generation error criterion over the whole decision tree. Then, by further 
backing-off or splitting tree leaves according to the cross generation error for every single leaf 
of the decision tree initialized in the first step, the optimal decision tree is obtained. In the 
decision tree pruning process, the cross generation error is calculated for every tree leaf using 
CV over the whole training database, and no extra development data set is needed. 

In the experimental section, an objective cross generation error and subjective MOS 
score are both presented. The results show a smaller cross generation error leads to a higher 
MOS. Finally, subjective preference tests are conducted for the synthesized speech by 
comparing the baseline system, MDL threshold parameter optimized speech synthesis system 
and further backing-off and splitting system. The preference ratio indicates the effectiveness 
of our proposed method. The synthesized speech became more natural after the decision tree 
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pruning process. 
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