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Search engine is an important tool for finding answers to various questions from relevant documents.
Since the huge web is also regarded as an important Web Corpus for developing academically inter-
ested language models, it is also now an important web navigating tool for searching linguistic pat-
terns from the web. However, without high precision search results, the potential of all such applica-
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Abstract

Short query terms often result in irrelevant search results due to the lack of appropriate contexts
to disambiguate real user intention and thus introduce search errors. Without high precision raw
search results, post re-ranking modules may not really help since garbage input only results in
garbage output. Automatic query formulation, which supplies appropriate left and right con-
texts to the query terms, is therefore an important pre-processing technique for acquiring highly
relevant documents and submitting them for post re-ranking.

A systematic approach for augmenting short query terms with the best contextual text patterns
is proposed in this paper for matching answers of some well-defined questions such as “the
birthday of Bill Gates” (and most factoid questions). The augmentation patterns are learned to
directly maximize the top-1 accuracy rate for searching relevant documents. In comparison
with the basic two-term query form, which submits a key entity query term (‘Bill Gates’) plus
an intended attribute (‘birthday’) to be answered, the augmented patterns achieve 31% top-1
accuracy rate, in contrast to the extremely low, 4%, accuracy achieved by two-term query; the
top-10 performance, which is about 54%, is also significantly better than the 21% accuracy
with two-term query. This also implies that about 57% of the top-10 results have their correct
answer given at the first place. By using appropriate augmented query terms, the correct search
results can thus often be ranked at the first few places, and very likely at rank-1. Experiments
show that the augmented query patterns significantly boost the top-1 performance for answer-
ing well-defined questions. By applying such techniques to queries, it is likely to improve the
search precision significantly, sometimes even without the help of post re-ranking.

Keywords: query formation, query augmentation, augmented query term, user intention, search engines,
well-defined questions, question answering.

Motivation
Search Errorswith Back-End Ranking

tions will be limited.

Search engines had been improved significantly for the past tens of years by providing better front-
end interfaces and back-end re-ranking models. From primitive AND-OR Boolean query operators to
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state-of-the-art page-ranking algorithms (Brin and Page, 1998), re-classification and re-clustering ap-
proaches (Zeng et al., 2004) and language models for relevance judgment (Gao et al., 2004), all ef-
forts had been directed toward reducing the search space and providing high precision search result.

To reduce the search space and user burden, past research efforts had tried very hard to conduct
some post-filtering steps based on various filtering criteria and re-ranking algorithms. For instance,
some search engines, like Google, provide advanced search options and operators, such as “define:”,
“site:”, “filetype:”, “allinurl:”, “allintitle:,” to explicitly exclude raw search results that do not satisfy
the specific semantics, regions of websites, file types or locations associated with the query terms or
returned documents, in addition to traditional AND-OR operators. These kinds of operators explicitly
reject many documents that might not fit user goal; however, they can in no way indicate which of the
remaining documents match the user goal, like birthday of somebody. The users therefore still need to
filter out their answers from many returned documents if they have no clever way to formulate their
queries precisely.

State-of-the-art techniques had also been developed to identify the implicit user intention behind
the query terms in order to reduce the search space. For instance, natural language query (NLQ) inter-
faces had been supported in the front end of the search engine and the key terms in the queries are
expanded or transformed to search more relevant documents that might include desired answers
(Wang and Wu 2003; Wu 1994). Since NLQ’s normally embed keywords like “what”, “when”,
“where”, “who”, “which”, and “how”, which are related to the question types of the queries, user in-
tention can be more easily detected in such contexts. However, more documents than necessary might
also be returned by inappropriate expansions or ambiguous transformations, which might results in
some noisy documents. The result is an increase in recall at the cost of lower precision in the raw
search results. As such, the user burden may not really be reduced.

Some of the spurious results might be due to the ambiguity of the query terms and their expansions.
Re-clustering or re-classification algorithms (Zeng et al., 2004) are therefore applied to partition the
returned documents by different senses of the query terms. Language models might also be applied to
judge the relevance between the documents and the query terms (Gao et al., 2004). All these tech-
niques help to reduce the search efforts of the user (if the expansion or transformation do not bring
significant amount of noisy documents in the raw results.)

Even with so many prior efforts in back-end re-ranking, the most preferred search result may still
not be ranked at the first few places. There are many reasons why a search engine might not rank the
most preferred results at the first place. First of all, most ranking algorithms for presenting the search
results know very little about the user intention or user goal for a particular query; the ranking may be
simply based on the structures of incoming links and out-going links (Brin and Page, 1998), which do
not directly related to the user interests associated with the query terms.

Secondly, short and ambiguous terms are often used in user queries. As a result, even with a search
engine that attempts to figure out the user intention, it’s not easy to identify the real user goal from the
short queries. Unfortunately, in the front-end, users tend to submit short queries since they don’t
really know how to formulate effective queries to match the unknown answers for their questions. For
instance, in searching the answer for the birthday of Bill Gates, a user may simply submit the key en-
tity term ‘Bill Gates’ plus the attribute term ‘birthday’ to be answered to a search engine. Such a
“two-term (entity-attribute) query form” maybe valid for very important persons like Bill Gates since
a mass number of documents related to Bill Gates may eventually contain sentences like ‘the birthday
of Bill Gates is...’. But the birthday of an ordinary person may only be introduced informally in all
relevant documents as ‘somebody was born on ..., which may not be effectively matched with the
two-term query since the ‘birthday’ attribute is expressed with another term which depends on the
syntactic forms of the answering sentences.

Such short or inappropriate query terms therefore often result in irrelevant search results, since user
goal or user intention cannot be easily identified without appropriate contexts, and the answering sen-
tences may not be expressed directly in the same terms as the submitted entity-attribute terms or in a
syntactic pattern that a user may think of.

Finally, and most critical of all, even though the user intention is clearly identified or specified with
specific query terms, like ‘bi rt hday: Bill Gat es’ (‘when was Bill Gates born’) and ‘bi rt h-
pl ace: Bill Gates’ (‘where was Bill Gates born’) in the front-end, the search engine still do
not know effectively how the query terms should be formulated to match against the unknown an-
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swers (i.e., ‘October 28, 1955° and ‘Seattle, Washington’) in the wide variety of sentences that con-
tain the answers, since there is no explicit links between the surface forms of the query terms and sen-
tences containing the answers. Users simply cannot post higher level search options, like “birthday:
Bill Gates” and “height: Eiffel Tower”, to indicate their intentions to most search engines and rely on
the search engine to automatically formulate appropriate query strings regardless of how the answers
may be expressed in relevant documents.

As a result, the most preferred result is not always ranked at the first place. And, normally a huge
number of noisy search results will also be returned even for a very simple and well-defined question
(such as most factoid questions) with very clear answer. Sometimes the preferred answer may be re-
turned in the first document, but the answer might be located very far away from the query terms. All
these unsatisfactory results impose heavy load to the users and the users have to filter out a significant
portion of the search results by hands.

Post re-ranking modules may not really help since garbage input only results in garbage output if
the most relevant documents do not even have the chance to be submitted to the re-ranking modules.
Therefore, being able to rank the most preferred document at the first few places in the search results
is very important, with or without post re-ranking or clustering. Automatic query augmentation, at
least for those queries with clear user intentions, is therefore an important pre-processing technique
for acquiring highly relevant documents from a search engine and submitting them for post re-ranking,
if necessary.

1.2 Solutionswith Front-End Query Formulation

The fundamental problem is that the underlying indexing mechanism of current search engines only
provides a pattern matching mechanism between the guery terms and the document containing the
query terms, but not the direct matching mechanism between the query terms and the yet unknown
answers. Users actually get the unknown answers (‘Oct. 28, 1955°) by matching against the entity
term (“Bill Gates’) and the possible contexts (‘birthday’, ‘of’, ‘the’) of the answers, but the lexical and
syntactic patterns of the contexts may have many possible forms, which cannot be easily guessed. The
problem gets worse if the query terms are highly ambiguous or a large number of terms are synony-
mous to the query terms. In this case, more discriminative contexts may be needed to disambiguate
the real user intention and the sentences containing such terms. That’s why the search engines often
return a huge number of documents that contains the query terms but contains no answer at all, and
the best match, if indirectly found, may not be ranked at the first place. Under such a fundamental
limitation of the current search engines, formulating appropriate query terms that might possibly
match the answers in the documents is therefore an important technique to improve the search preci-
sion of the search result, hopefully ranking the document with the most appropriate answer at the first
place.

Unfortunately, in many prior works, even though the user intention might be detected, the user in-
tention was simply used at the back-end to filter out, re-rank, re-cluster or re-classify a large collec-
tion of documents; most such post processing modules do not have control over the quality of the raw
search results. Some of the raw search results might be highly noisy. If this is the case, garbage raw
search results might only produce garbage re-ranked output even with known user intention and the
state-of-the-art re-ranking modules.

Observing this, we should use the user intention as early as possible and pay more attention at the
front-end query formulation stage to get a collection of high precision raw search results and avoid
submitting garbage to post processing modules.

2  Query Augmentation

The ability to return high precision raw search results at the front-end is therefore an important factor
for the re-ranking modules to fully demonstrate their potential. Such ability is obviously related to the
capability to match the query terms against those unknown answers in the documents with the help of
known user intention.

To resolve such an answer-searching and matching problem, one can try to learn the possible lexi-
cal and syntactic patterns of the sentences containing desired answers associated with the query terms
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and intention. The syntactic patterns for the answering sentences are then used to match the docu-
ments, instead of using some explicit and unformulated query terms.

For instance, to find the birthday of Bill Gates, we may augment the key term “Bill Gates” with its
context “was born on”, which is likely to appear near the answer, and submit the single augmented
query token “Bill Gates was born on” to the search engine, instead of submitting “Bill Gates” plus
“birthday” by heuristics. The documents matching this augmented query pattern will then likely to
include the correct answer “(Bill Gates was born on) October 28, 1955”. The augmentation pattern
“was born on” for the explicit and required query term “Bill Gates” plays the role to restrict the search
space to the particular user goal of “birthday”. Unlike other query expansion methods, which may in-
troduce a larger and expanded search space while expanding the query term and thus may introduce
excessive search errors, we are actually shrinking the search space by using more precise lexical and
syntactical patterns to match the answers, and not query-expanding them.

Such an augmented query pattern, inspired by a sentence pattern that contains the answer near the
augmented query term, will be more effective in matching the answer than using heuristically selected
query terms like “Bill Gates” AND “birthday”, which may be far away in the matched documents,
and thus unrelated to the answer. A natural language query like ‘When is the birthday of Bill Gates?’
suffers from the same inefficiency in matching sentences containing the answer.

The reason why augmented query terms match better is that sentences answering the birthday of a
person normally take the syntactic pattern of “$person was born on $date” instead of “The birthday of
$person is $date.” The latter syntactic form will sometimes be found, but only when $person is a
really important person such that we have some documents that introduce this important person in
such a straight and formal way. Also, there is rarely a chance to have a sentence like ‘When is the
birthday of Bill Gates? It is October 28, 1955.” in any relevant documents. Therefore, there is also
little chance that the question sentence will match the answer directly. Likewise, if the user goal is the
“birthplace” of Bill Gates, the augmented query pattern “Bill Gates was born in” is likely to return the
correct answer “Seattle, Washington” in the first place of the search results. Note that the most effect
and discriminative query terms for these two highly related queries might differ in the prepositions
‘on’ and ‘in’, not in ‘birthday’ or ‘birthplace’. This might suggest that intuitive query formulation
does not always be the most effect. A systematic approach is required to learn the augmentation pat-
terns to make the search really effective.

If we can formulate appropriate augmented query terms, with the help of known user intention, and
the augmented query terms effetely match part of the potential answering sentences, then the most
preferred documents containing the answer to the query is likely to be ranked at the first few places in
the search results. In the best case, the answering documents will hopefully be ranked at the first place,
even without the necessity of other re-ranking modules at the back end of the search engine. We
therefore propose, in this paper, a simple and effective model for acquiring the augmentation patterns
that can match the answering sentences for some query terms with known user intention. The goal is
to acquire accurate search results that return the most preferred documents and answers in the first
few places by augmenting user queries with appropriate augmentation patterns.

With such a query augmentation model, it will be possible to provide search engines with advanced
search options like “birthday: Bill Gates” and ‘“height: Eiffel Tower”, corresponding to the natural
language query ‘when is the birthday of Bill Gates’ and ‘how high is the Eiffel Tower’, for many fre-
quently asked and well-defined questions whose answers can be found within the same sentence as
the augmented query terms.

Note that, in this setting, we don’t really need the search engine to judge the user intention from a
short query, which is known to be very hard even with the current state-of-the-art works. Instead, the
list of frequently asked attributes (such as ‘birthday’ and ‘height’) about entities is simply provided
for user selection by the search engine. The search engine simply augments the short query with ap-
propriate contextual patterns learned for the selected attribute. If the learning and augmentation meth-
ods, such as that proposed in the current work and others, prove to be effective, it will be worth the
cost to build the augmentation patterns inside the search engine from the mass number of query-
answer logs by classifying them by their attributes, either automatically or semi-automatically. This
might be more realistic than using immature identification techniques for user intentions at the current
stage of the art.
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The same technique might also be applicable to natural language applications which require lin-
guistics patterns in the Web Corpus that satisfy some known attribute.

In the following sections, a model for systematic and effective training of query augmentation pat-
terns is proposed to maximize the top-1 searching criteria. Experiments results are then shown to
demonstrate how such augmentation improves the searching performance in comparison with un-
augmented queries.

3 Learning Augmentation Patterns
3.1 Weél-Defined Questions

It is not always easy to learn augmentation patterns for all types of general questions. However, many
well-defined questions can be answered by augmenting key query terms with their contexts and sub-
mitting them to a search engine. To make the search more effective, we further impose the require-
ment that the answer must appear in the same sentence as the key query terms.

By well-defined questions (WDQ’s), we mean questions that can be answered (almost) unambigu-
ously with a few words. For instance, the birthday, birthplace, height, weight of a person, the time for
some important events, the author of a book, the capital of a nation, the principal of a university, the
constellation of a movie star, and so on, are questions of this category. These kinds of problems are
found everywhere, covering all well-known question types of “what”, “when”, “where”, »
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who”,
“which”, and “how” questions. Table A-1 gives some examples of the well-defined questions. The
last column in the table provides examples of syntactic patterns that contain the answers of the ques-
tions.

3.2 Generating and Ranking Augmented Query Patterns

Given a set of query-answer pairs, the best augmentation patterns, which combine the key query term
and its contexts, and which directly maximize the top-1 accuracy rate, can be learned easily with the
following algorithm:

1. Submit the query-answer pairs to a search engine. Take the returned snippets and titles into
account to extract the augmentation patterns. This step tells us how the answering sentences
are expressed in the real world documents.

2.  Extract the left token, middle tokens and right token separated by the query-answer pairs in
the returned snippets. In general, we will have 5 parts, “($left) (Squery|$Sanswer) ($middle)
($answer|$query) ($right)”, in a returned snippet near the query-answer pair. The tokens can
be identified by a tokenizer or a word segmentation module. Currently, only one left token
and one right token are considered in the augmented query patterns.

3. Generate the augmented query patterns by removing the $left or $middle or $right parts of the
above 5 parts. In other words, an augmented query pattern is a subsequence of the above 5
parts, excluding the $answer. This step thus generates 8 different augmented query patterns
for each returned snippet. Each such pattern represents a possible way to match the possible
syntactic form of some answering sentences.

4. Remove augmented patterns that occur less often than a reasonable threshold to ignore rare
syntactic patterns. In the current work, we use a cut-off value of 5 times.

5. Re-submit the query-answer pairs with the 8 different types of augmented left, middle, or
right contexts. Identify the rank of the first snippet whose query-answer pair is in the same
sentence. Note that adjacent tokens are doubly-quoted when submitted to the search engine so
the engine only returns snippets whose query and answer terms are close to each other or even
in the same sentence.

6.  Rank the augmentation patterns by their searching performance for all the query-answer pairs.
We virtually used the Top-1 performance as the ranking criteria in this work.

Theoretically, we can use the top-1 performance to select the best augmented patterns. However, the
search engine may not be able to return the best documents in the first place in the training phase due
to its own imperfect ranking criteria for the some query-answer pairs. Therefore, we use 10*Top-1 + 1
* Top-10 as the ranking score for extracting the best augmentation patterns. Since Top-1 accuracy is
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weighted much higher, the auxiliary criteria for Top-10 performance will not seriously affect the ma-
jor Top-1 criteria in learning; it simply backs off to other high rank results when Top-1 result is not
available.

The above training process is similar to (Ravichandran and Hovy 2002). It’s not absolutely new,
but it is proved to be the most effective for some TREC tasks. However, the major criterion used by
(Ravichandran and Hovy 2002) is the percentage of times a contextual pattern is used to get the cor-
rect answer for a query; it does not care whether the correct answer is given at the first place or at the
100" place. The proposed method here avoided this by directly using the top-1 performance as the
major criterion, and thus is likely to acquire augmentation patterns, that would get the best answer at
the first place most of the time.

With this simple training algorithm, we can virtually train the augmented patterns to directly maxi-
mize the Top-1 searching performance, instead of other criteria that are not directly related to the IR
performance in other methods (Voorhees 2001; Ravichandran and Hovy 2002).

4 Experiments

4.1 Data Sources

To evaluate the proposed augmentation mechanism, we shall show some experiments on a set of 122
query-answer pairs in details, where the key query terms are names of artists (including singers,
movie starts, and so on) and the intended answers are the horoscopes or constellations (! %) of the
artists. These pairs are divided into training and test sets for learning augmentation patterns and evalu-
ating the performance, respectively. A few examples of the pairs are given in Table A-2 in the Ap-
pendix. Other training pairs had also been used in a series of experiments, including authors of books,
capitals of countries, principals of universities, directors of movies and singers of albums. We will
show the results of these WDQ’s later to demonstrate the effectiveness and interesting observations
across different domains. Other than such cross-domain behavior, they have similar results and con-
clusions as the constellation problem.

4.2 BasdlineModéds

The evaluation is compared with two baselines, each simulating one of the most intuitive query forms
for general users with simplest query formulation. The first baseline model (baseline-1, or Bl) is
called “single-term query”, and the second baseline (baseline-2, or B2) is called “two-term query”.

The single-term query simply submit the key entity term (in the current case, an artist’s name) to
the search engine (Google) and see if the search engine returns the constellation of the artist in the
first document with the answer in the same sentence as the key query term. This baseline model can
simulate the case where user intention is completely unknown.

The two-term query submits both the key entity query term (i.e., artist’s name) and the representa-
tive attribute word (i.e., “£ > “constellation”) that represents the answer to be found. Before these
two terms are submitted, they are virtually ANDed (in a loose way). This baseline simulates the gen-
eral case where the user intention is known and an attribute word for the key term is used but only the
simplest method (AND operation) is used to formulate the query.

The augmented query, on the other hand, augments the key entity term with the most discriminative
lexical form of the attribute as well as other discriminative contexts in an appropriate syntactic form.

4.3 Comparison with Augmented Queries

The comparison of the augmented queries with the baselines is demonstrated in Figure 1 and Table
1, in terms of various performance criteria.
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Testing Data(Five Augmentations)and Baseline

60% 5% 54%

50%

A0% <415 g

» 1% Oper Test

30% Baseline-1

S0k 21% 23% -~Baseline2

10% A%

0% 0% 0%
Tap-1 Top-10 Tog-10+
‘Dpen Test 31% 54% LEL)
Baseline-1 0% 0% 24%
Baseling-Z: 4% 21% 41%
Evaluation Criteria

Figure 1. Test Set Performance for Augmented Query (Five Best Augmentations) and Baselines.

Model | Topl | ToplO | Topl0+ [ ARR AR
B-1 0% 0% 24% 1 0.0010 | 1010.6
B-2 4% 21% 41% | 0.0055 | 181.6

Open | 31% 54% 54% | 0.1031 9.7
Close | 39% 54% 68% | 0.1450 6.9

Table 1. Comparison of Augmented Query with Baselines.

The above table demonstrates the results for baseline-1 (B-1), baseline-2 (B-2) and augmented query
using the Best-5 augmented query strings for the test set (Open) and training set (Close), respectively.
The performance is evaluated in terms of the Top-1 accuracy rate, Top-10 including rate, average re-
ciprocal rank (ARR) and average rank (AR). The percentage of queries whose correct answers can be
found outside the 10™ place is also listed as “Top-10+" for reference.

Without any mechanism for forming good query strings, the first correct answer is rarely found in
the first returned document. Submitting only the key query term never gets the right answer in the first
document or in the first 10 documents. If the key query term is ANDed with a typical attribute word
to restrict the search space, a better result may be possible. But the 4% Top-1 performance and the
21% Top-10 performance is still not impressive.

The situation is changed drastically when the key query term is augmented with its contextual pat-
terns; the Top-1 performance is boosted significantly from 4% to 31% and the Top-10 performance is
increased from 21% to 54%. On average, the answer can be found in the first 9.7 documents returned
by the search engine. Note that the baselines are conducted with all query-answer pairs. Therefore, if
we compare them with the combination of the training (close) and test (open) data, the difference will
be even larger.

The improvement can be attributed to several factors. First of all, the best augmentation patterns
will restrict the search space with different attribute words that are related the answer we are search-
ing for. For instance, the augmented patterns may include not only ‘birthday’ but also synonymous
variants forms like ‘birth’ or ‘born’, whichever is most effective, when the user is interested in the
birthday of Bill Gates. Secondly, the augmented patterns will partially matches the most frequently
used syntactic patterns (or an n-gram grammar) that could be used to write an answering sentence.
For instance, to express the birthday of Bill Gates, a variety of sentence patterns can be used, and such
patterns will be learned by the query augmentation mechanism. Therefore, the query augmentation
mechanism provides a way to write the query with right attribute words and right syntax such that the
document containing right answer can be matched at the surface level without resorting to a compli-
cate re-ranking model at the back-end of the search engine.

4.4  Sensitivity to Training Data Size

It may be a problem if a large number of question-answer pairs are required to effectively learn the
augmentation patterns. Fortunately, the words and the syntax which are used frequently to describe an
attribute of an entity are not as wild as one may expect.
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To investigate the sensitivity of the query augmentation mechanism to data sizes, we used different
training data sizes (derived from the 122 pairs) to learn the augmentation patterns. We then estimate
their training set performances, in terms of the Top-1, Top-10 and Top-10+ criteria, with the number
of the best augmentation patterns as the only independent variable.

It is observed that the performance curves converge quickly when the best 5 or best 10 patterns are
used to augment the key query terms. To avoid over fitting, using the best 5 patterns seems to be a
good balance. By inspecting the Best-5 query augmentation patterns, as listed in Table 2, one can see
that the 4 subsets of training data, which use 20%, 30%, 60% and 90% of the whole data set respec-
tively, actually have the same best-5 augmentation patterns. The 5 best patterns are simply ranked dif-
ferently with different training sizes.

Rank|QAug of 20% DataAug TypgQAug of 30% DatalAug Type

1 "EEZ G Queryn AMQ ")iji G Queryn AMQ

2 "Query {””EJ&” QMAR "EEZ H Query i‘»_,].n AMQR

3 "R e Query #" | AMQR "R Query" AMQ
4 " Query" AMQ "Query £ ""A&" | QMAR
5 "Query % A" QMA "Query & A" QMA

Rank(QAug of 60% DataAug TypeQAug of 90% DataAug Type

1 "Rk £ Query" AMQ " A& £ Query" AMQ

2 "/ Query" AMQ " Query" AMQ

3 ”Query {Yl!l&” QMAR "Query {nn@n QMAR

4 | " Query$" | AMQR | "Query 2 2" | QMA

5 "Query % " QMA | " Query " | AMQR

Table 2. The Best-5 Query Augmentation Patternsand Augmentation Types Trained from Training Data of Different
Sizes.

In the above table, the variable “Query” in the query augmentation (QAug) patterns refers to the
key query term, which is a person name in the current experiments. The augmentation type (AugType)
is encoded with the 5 letters, Q/Query, A/Answer, L/Left, R/Right, M/Middle, according to the con-
stituents of an augmented query pattern. For instance, AMQ indicates that the answer (A) can be
found from the left hand side of the augmented query string “MQ”.

It can also be found in the above table that the best augmentation pattern (i.e., ““ [~ Query” in
Rank-1) is consistently the best pattern among all training data sizes. This further enforces the conclu-
sion that the syntactic patterns and attribute words associated with an answer are not necessarily too
wild. Therefore, training the augmented patterns can be data-efficient.

The tables also suggest that, if one is interested in the constellation of the famous movie director
named “Z=%Z” (Ang Lee), then she/he can simply submit the augmented query string “ 4592522 as a
single token to the Google search engine. It is then likely to get the answer “KF-/# “Libra” in the
first returned document immediately to the left of the augmented query term “FEf)2=%2". This aug-
mented query string is simply the concatenation of the suffix ‘% of a constellation name and the Chi-
nese possessive marker ‘9’ ‘de’ plus the key query term. Although the augmented query string is not
a normal word or compound, it turns out to be the most effective ‘term’ in finding the constellation of
a person exactly from the first document returned by the search engine.
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45 Cross-Domain Experiments

In addition to the constellation problem, 5 additional sets of Q-A training pairs had also been used in a
series of experiments, including authors (T'F—‘[’; ) of books, capitals (g #7°) of countries, principals (12
£) of universities, directors (%) of films and singers (i# “S‘F,}" , 8t ) of albums. The results of
these WDQ’s are compared here to show the effectiveness of the augmentation techniques and some
interesting observations across different domains.

Well-Define Questions Question Sentence Number of Training Data
T e F it £ ? 100
F 30 vOE R g R AR ? 100
fe £ B o el L ? 100
Eiw IRk T A 100
B K - 2R RERE A Y 70

Table 3. Five Additional Typesof WDQ’s and Statistics of Training Data.

Table 3 indicates the questions types of interests and the numbers of training pairs used for the cross-
domain experiments. The following tables give some examples of the real question-answer pairs for

each question types.

No e & (SAnswer) £ 2 ($Query) B FR(SAnswer) B 7#($Query)

1 = B R By T edrf B RN

2 N EX R L kiR WS R

3 M2 i =% 20N TR I

4 20 95 A7 F e ingw S ] & i B

S i B4k > 1l L E TR P
Table 4. Training Examplesfor the Authorsof Books and Capitals of Countries.

No & ($Answer) 5 #($Query) %% (BAnswer) T #($Query)

1 % pRid IRl B 4 P egc £ 1

2 e~ F=fEs 5 T =% j e

3 5 E Wi~ g ¥ & B £ 5

4 X R a5 e S 3z BN

5 X 4A & R N 4 A A L

Table5. Training Examplesfor the Principals of Universities and Directors of Movies.

No W v8 ¥ ($Answer) % {&(3Query)
1 ¥ Ak 24

2 34 % ¥ oghp !
3 i a &

4 % & =N EhrpEsk

5 T FEEY
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Table 6. Training Examplesfor Singers of Albums.




By acquiring the augmentation patterns from about 40 training pairs with the previously mentioned
training process, the Top-5 augmentation patterns for the above 5 question types are shown as follows.

Rank QAug. of Author Aug. Type QAug. of Country Aug. Type
1 "Query %" QMA "Query 7 #8" QMA
2 "8 7 Query” AMQ " =% Query 7 #R" LQMA
3 "Query"" % &-" QAR "% Query F ¥ ’K" LQMA
4 "4 T & Query" AMQ " _Query 7 #R" LQMA
5 "Query"" F" QAR "¥:E Query 7 #0" LQMA

Table 7. Best Augmentation Patternsfor the Authors of Books and Capitals of Countries.

Rank QAug. of School Principal Aug. Type QAug. of Film Director Aug. Type
1 "d Query K& " LQMA "% ¢ Query" AMQ
2 "2 Query ft £ " LQMA "Query ¥ ix" QMA
3 "Query FrEfE" QMA "Query HiF" A F" QMAR
4 "1 Query K& " LQMA "fris &3 Query"” AMQ
5 "fr Query £ " LQMA "Query HiF " Hpl" QMAR
Table 8. Best Augmentation Patternsfor the Principals of Universitiesand Directors of Films.
Rank QAug. of Singer Aug. Type

1 "Query ;FFT " QMA

2 "Query & i&" AQR

3 "Query 78" AQR

4 "gcd Query" LQA

5 "51""Query" LAQ

Table 9. Best Augmentation Patternsfor the Singers of Albums.
These tables show that we will effectively know that the author of (% ;=& Fr) is “= £ by

posting a query like “ & ;> e Eff*:r—*ﬁ 7, instead of “3- K ¥ 2 enHE AR R 7?7 In asking for the
capital of a country, such as & f ff + {v& (the Irlsh) we can post “& i = fr® @ “"3” (“Irish
capital”) or add prepositions like “ =%+ (“at”), “&” (“in”), “#” (“from”), or some verb hke “PE”
(“arrive at”) before the country name “the Irish” and the keyword “capital” to find its capital immedi-
ately to the right of the augmented query string in the first few search results. For querying the princi-
pal of a university, we can also improve the search accuracy by pre-pending some prepositions to the
name of the university and the keyword “principal”, formatting a query like “d B &+ § £ 7,
On the other hand, Chinese query strings like “¥ %74 1> (“directed by, Brokeback Mountain™)
and “~ 2 4 #HT §7 (“Common jasmin orange, download for listening”) are likely to find you,
respectively, the director of the “Brokeback Mountain”, % % Ang Lee, and the major singer, % 7. i%
Jay Chou, for the album entitled “~ 2 4 ” in the top few search results.

To see the effects of corpus size on the search performance across different question types, we fur-
ther select two training sizes, which are about 40 pairs and 100 pairs, respectively for each question
types and compare their Top-1 performance. Table 10 demonstrates the different performances and
pattern sizes among the 6 question types. The ‘#Data’ column indicates the number of training ques-
tion-answer pairs; for each question type, a smaller training set (of about 40 pairs) and a larger train-
ing set (of about 100 pairs) are used. The #Permutation indicates the number of possible augmented
query strings segmented from the left and/or right contexts of the main query keyword and its answer.
Since this is quite a large number, two thresholds are applied to reduce the number of such augmented
query strings. Threshold-1 simply truncates augmented query strings that occur less than 5 times.
Threshold-2 further truncates augmented query strings that do not contribute to the Top-10 perform-
ance significantly. With these two truncated sets of augmented query strings, the best searching per-
formance actually converges at the first few most effective syntactic patterns. The number of patterns

26



with which the searching performance no longer increases significantly is indicated in the ‘Converge’
column. And, the Top-1 performance with these limited number of augmentation patterns is shown in
the ‘T1%’ column.

From this table, it is clear that the constellation problem is actually harder than all the others ques-
tions but it has simpler query forms. Most of the question types can be answered effectively using
only tens of augmented query strings. Some question types, such as the singer problem, can actually
be searched very effectively by applying the query augmentation techniques proposed in this paper.
And, the number of training pairs is normally small. Therefore, it is possible to build, for many inter-
esting questions, the augmented query string patterns with very little costs.

WDQ #Data | #Permutations | Threadhold-1 Threadhold-2 Convergence T1%
5 39 3960 80 23 5 50%
5 R 109 14676 379 31 5 43%
T ¥ 41 19528 692 253 40 80%
] 100 41630 1687 653 45 78%
B 40 25657 881 110 15 85%
A 100 47677 1803 212 20 89%
& £ 40 11750 400 142 5 83%
ZE 100 14223 463 147 25 88%
o 40 23807 782 114 30 55%
Eow 100 45970 1682 164 30 52%

R K 39 26296 1324 903 14 100%

] 70 48328 2389 376 15 99%

Table 10. Performance with Small and Large Training Sizesfor All the Question Types.

5 Concluding Remarks

Inappropriate query strings in the front end of the search engine will pass garbage inputs to its back
end, which is responsible for re-ranking the raw search results of the internal indexing module. The
result is often unsatisfactory. An automatic query augmentation model and its training method are
proposed in this paper in the hope that the augmented query string can directly drive the search engine
to return the expected answer in the first returned document and in the same sentence as the key query
term without the need for a post-ranking model. In other words, we are seeking for an automatic query
formulation mechanism that is trained to maximize the Top-1 accuracy, instead of other criteria. The
result is impressive, and the “garbage-in garbage-out” situation for post-ranking is greatly reduced.

It is observed that 31% of the augmented queries achieve this goal; and, 54% of them extract the
expected answers from the first 10 returned documents and in the same sentence where the key term
appears. In contrast, using the key terms only never get the expected answers in the best 10 documents.
Even with the attribute words ANDed with the key terms, only 4% and 21% of the queries get their
answer in the Top-1 and Top-10 document lists, respectively. Such an augmentation mechanism is
therefore effective in the retrieval of answers for simple attributes of many entities.

Furthermore, it is observed that only about 5 best augmented query patterns will be sufficient to
reach the best performance. The reason is that more training data will have little effects on the first
few best augmentation patterns; they simply have different ranks in the top-5 list. Hence, this augmen-
tation mechanism can be trained with a small training set.
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Appendix

Question Type | Question Sentence with Answer
What 3 R R PR &
B0 04z &%
Who T4 RS . T
T e BE ik £ REAR
When p g 127 26 p & 4 dha &~ 45
4 p 1980 & 3 » 31 p &14 eh3 a2 A
Where B 5 B s Rt P §
TP | EARaG s
How B R 1,612 3 & chgt 5 b

Table A-1. Examples of Well Defined Questions.

w¥E | med | (18] 24 | mAF

1

2 F | WTE 171 &4 . ERK
3] #E | Ens | (18 Ak | a4z
4 _fE 0 O mER 19 &Ad 0 B

9 ¥ Rt 20 Rk LS S
6. 4% g | (21 k& B
1. a4 Wk 22 &% 50
8 £F  F¥ME 23 &k BEKH
9 &4 | ®my¥ 24 K% s
10 44 mEE 25 k& REEAE
A &% Eak 2% XH | HEE
12 &% | M%E 21 KF | B
13 &4  @Em | 28  x# | G
e mNE (29 A# SRR
15] &% Y 30/ A HE

Table A-2. Examples of Query-Answer Pairsfor Model Training (B 2 : constellation, * #4: person name,
X Aries, 5 : Taurus, B¢ : Virgo, <& Libra).
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