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Modeling Taiwanese POS Tagging Using Statistical 

Methods and Mandarin Training Data 

Un-Gian Iunn*, Jia-hung Tai+, Kiat-Gak Lau#, Cheng-yan Kao*, and 

Keh-jiann Chen+ 

Abstract 

In this paper, we introduce a POS tagging method for Taiwan Southern Min. We 
use the more than 62,000 entries of the Taiwanese-Mandarin dictionary and 10 
million words of Mandarin training data to tag Taiwanese. The literary written 
Taiwanese corpora have both Romanized script and Han-Romanization mixed 
script, and include prose, novels, and dramas. We follow the tagset drawn up by 
CKIP. 

We developed a word alignment checker to assist with the word alignment for the 
two scripts. It searches the Taiwanese-Mandarin dictionary to find corresponding 
Mandarin candidate words, selects the most suitable Mandarin word using an 
HMM probabilistic model from the Mandarin training data, and tags the word 
using an MEMM classifier. 

We achieve an accuracy rate of 91.6% on Taiwanese POS tagging work, and we 
analyze the errors. We also discover some preliminary Taiwanese training data. 

Keywords: Taiwan Southern Min, POS tagging, written Taiwanese, Hidden 
Markov Model, Maximal Entropy Markov Model. 
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1. Introduction 

1.1 Background 
There are about 46 million Southern Min speakers in the world. If we list languages by the 
size of their speaking population, Southern Min is ranked 21. The Southern Min speakers are 
mainly distributed in eight countries(Gordon, 2005). It is an important language that has 
received very little attention. 

The percentage of Southern Min speakers in Taiwan was over 70% (Huang, 1995). 
Taiwan has the highest percentage of Southern Min speakers in the world. We will call this 
language as “Taiwanese” for simplification in this paper. 

Many different types of written Taiwanese systems exist. Among these systems, the Han 
character script and one of the Romanized scripts (Pe̍h-ōe-jī, 白話字, abbrev. POJ, vernacular 
writing) are the most popular. Also, the mixture of the above two scripts, called the 
Han-Romanization mixed script (abbrev. as HR mixed script), has been adopted by many 
people (Iunn, 2009). 

1.2 Motivation 
In order to establish the bases of written Taiwanese processing, we have constructed some 
tools over the past few years, including an online Taiwanese syllable dictionary (Iunn, 2003a); 
an online Taiwanese-Mandarin dictionary (abbrev. OTMD) (Iunn, 2000, 2003b); a 5,800,000 
syllable HR mixed script and 3,400,000 syllable POJ script Taiwanese corpus; the online 
Taiwanese concordancer system based on this corpus (Iunn, 2003c; Iunn & Lau, 2007); 
preliminary Taiwanese word frequency reports for the Taiwanese POJ and HR mixed scripts, 
based on the above Taiwanese corpus (Iunn, 2005); the digital archive database for written 
Taiwanese (abbrev. DADWT) literature data with POJ and HR mixed script paragraph 
alignment (Iunn, 2007); etc. 

We intend to annotate the Taiwanese corpus with POS markers for more advanced 
applications, including Taiwanese tone sandhi TTS system improvement (Iunn et al. 2007), 
Taiwanese Treebank construction, etc. 

1.3 Problem 
The primary difficulty encountered in the POS tagging of Taiwanese corpora is the question, 
“What is the Taiwanese POS tagset?” To date, no standard tagset for Taiwanese has been 
proposed. Under the circumstances, we have temporarily employed the Chinese POS tagset 
established by the CKIP Group of Academia Sinica (CKIP, 1993). Unfortunately, we still 
encountered some problems because we did not have a Taiwanese dictionary that contained 
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the Mandarin POS tagset. The existing Taiwanese dictionaries merely contain basic 
vocabulary words, that is, nouns, verbs, adjectives, etc. 

Moreover, there was another problem to surmount – manpower shortage. We did not 
have enough manpower to fully execute the POS tagging of the Taiwanese corpora. 

Therefore, we proposed employing statistical procedures with the existing Mandarin 
resources and the OTMD to automatically complete the Taiwanese POS tagging. We used the 
Mandarin language model under the assumption that the word sequence in Taiwanese is 
similar to Mandarin. 

1.4 Review 
Shi (2006) translated the Mandarin sentences in the book, “Modern Chinese 800 words ‘現代

漢語八百詞’ ” (by Shu-xiang Lü) into Taiwanese and Hakka to establish the T3 corpus and 
developed some editing tools to help in the construction of the T3 Treebank. Chou (2006) 
used the Brill tagger based on the HMM model to tag words in the T3 Treebank. They used a 
tagset size of 26, and attained tagging accuracy rates of 92.80% and 85.59% for the training 
and test data, respectively. 

T3 Treebank has not been released publicly. Thus, we decided to use different tagsets 
and different tagged corpora in our experiments. 

2. POS Tagging Method 

Figure 1 shows our system architecture diagram. 

Para. for para. 
alignment 
Taiwanese 
texts 

Word for word 
alignment 
Taiwanese texts

Word 
alignment 
assistant 

Add Mandarin 
candidate words 

Select the best 
Mandarin word POS tagging 

OTMD 

Mandarin 
training data 

HMM
MEMM 

Search 
program 

Step 1 
Step 2

Step 3Step 4 

Figure 1. Taiwanese POS Tagging System Architecture Diagram 
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At first, the text contains both POJ and HR mixed scripts with paragraph by paragraph 
alignment. Step 1 converts the texts to word alignment form. Step 2 adds the Mandarin 
candidate words (translations). Step 3 selects the best Mandarin translation using the HMM 
model. Finally, we decide the POS tagging of each word using the MEMM model. The 
following subsection will describe this process in detail. 

For example, the original texts are 

“Tâi-ôan  tē-it  kôan  ê  Gio̍k-san ê  hū-kūn  khah   kē   ê  só.-chāi ... ” and 

“台灣   第一   懸   ê  玉山    ê   附近    較    低   ê   所在 ... ”  

Taiwan  first  high  of  Mt.Jade  of  nearby  more  low  of  place 

 

Step 1 converts the texts to word alignment form: 

“台灣/Tâi-ôan 第一/tē-it 懸/kôan ê/ê 玉山/Gio̍k-san  ê/ê  附近/hū-kūn  

較/khah 低/kē  ê/ê  所在/só.-chāi … ”  

 

Then, Step 2 adds the Mandarin translations: 

“台灣/Tâi-ôan{台灣} 第一/tē-it{第一;絕頂} 懸/kôan{高} ê/ê{的} 玉山

/Gio̍k-san{玉山} 

ê/ê{的}  附近/hū-kūn{附近} 較/khah{較} 低/kē{低}  ê/ê{的}  所在/só.-chāi(去
處; 

地方;角頭;所在;處所;場所;間量} …” 

 

Step 3 selects the best Mandarin translation using the HMM model (we omit the original 
Taiwanese texts): 

“台灣  第一  高  的  玉山  的  附近  較  低  的  地方 …” 

 

Finally, Step 4 decides the POS tagging of each word using the MEMM model: 

“台灣/Tâi-ôan(Nc) 第一/tē-it(Neu) 懸/kôan(VH) ê/ê(DE) 玉山/ Gio̍k -san(Nc)  
ê/ê(DE) 

附近/hū-kūn(Nc) 較/khah(Dfa) 低/kē(VH)  ê/ê(DE)  所在/só.-chāi(Na)… ”  

 

We will illustrate our work with Figure 1 in the following subsections. 
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2.1 Origin of the Corpus 
The corpus we chose is part of the DADWT project achievements of the National Museum of 
Taiwan Literature. It contains both POJ and HR mixed scripts with paragraph by paragraph 
alignment, including novels, prose, dramas, and poems (Iunn, 2007). 

2.2 Word by Word Alignment 
First, we developed a word alignment program to aid manual processing. We arranged the 
word alignment of the two scripts, where the paragraphs were already aligned. This program 
not only collates the number of syllables in the two scripts, but it also compares and contrasts 
the two scripts with the entries of the OTMD. If the program does not find the two scripts 
within the same entry, it highlights the corresponding words to remind the user that the word 
may be an unknown word, an inconsistent usage of the Han character, or a typographical 
error. 

The OTMD was announced and has been online since 2000. The main data provider is 
Robert L. Cheng, but many anonymous contributors also offer entries and correct the 
typographical errors. There are a total of more than 62,000 entries. The URL is 
http://iug.csie.dahan.edu. tw/q. This dictionary offers POJ, HR mixed script, and Mandarin 
fields, with the POJ field also offering the different accents. The pronunciation function was 
added in 2006, and English translation was added to more than 10,000 entries in 2007 based 
on Embree (1984), which contains English, Mandarin, and POJ fields. 

2.3 Finding the Corresponding Mandarin Candidate Words 
Next, we continued to search for the corresponding Mandarin candidate words from the POJ 
and HR mixed script word pairs via the OTMD. The mapping was one-to-many. In short, a 
Taiwanese word pair would have more than one Mandarin word counterpart. For example, “愛

/ài” in Taiwanese has the meanings of “愛”‘love (person),’ “喜歡”‘like (thing),’ “要” ‘want 
to,’ “需要”‘need to,’ etc. in Mandarin. Nevertheless, we were not able to find counterparts for 
certain words, since they were not contained in the OTMD. We also found some that had 
different HR mixed script usage. 

For instance, the Taiwanese word that appears as “較贏/khah-iâⁿ” ‘more than’ in the 
corpus appears as “khah 贏/khah-iâⁿ” in the dictionary. With regard to problems of this nature, 
we applied the following solution. If the POJ and HR mixed script word pair could not be 
found, we temporarily removed the HR mixed script and searched for the Mandarin word 
counterpart again using the POJ script. If the characters of HR mixed script were all Han 
characters, we regarded the Han characters as one of a Mandarin candidate word (assuming 
that the word is common to both Taiwanese and Mandarin). 
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This method might increase the number of the Mandarin candidate words, especially for 
single syllable words. For instance, the word pair “轉/chōan”‘turn’ appears in the text. We 
could not find an entry that contains both “轉” and “chōan” in the OTMD. The corresponding 
Mandarin translations of “chōan” in the dictionary are “扭”’twist’ and “上” ‘up’. We added 
“轉”‘turn’ as the supplementary Mandarin translation, but the meanings of these three words 
differ. 

Table 1. Partial Entries of the OTMD 
HR Mixed Script POJ Script Mandarin Translation 

chōan chōan 扭 

撰 chōan 上 
Note: There exists not “轉/chōan” entry in the OTMD. The Mandarin 

translation of “轉/chōan” will be “扭,” “上” and “轉” 

If the strategy was still unable to find any results, the HR mixed script was directly 
recognized as the Mandarin candidate word. For instance, no dictionary entry was found for 
the word pair appearing as “有形/iú-hêng”‘tangible’ in the text, neither could one be found in 
the search using the POJ script “iú-hêng.” So, the HR mixed script “有形” was directly 
recognized as the Mandarin candidate word (Lau, 2007). 

2.4 Selecting the Best Mandarin Translation 
We employed the Hidden Markov Model and Viterbi algorithm, and we made use of the 
bigram word training data of the ten-million word balanced Sinica corpus of the CKIP Group 
of Academia Sinica to select the most appropriate corresponding Mandarin word from the 
Mandarin candidate words. Figure 2 is an example. The selected words are boxed and bold. 

 
Taiwanese 

Word 
對/ 
Tùi

古早/ 
kó. –chá 

以來/ 
í-lâi

琴/ 
khîm

有/ 
ū

濟濟/ 
chē-chē 

款/ 
khóan 

  ‘from’  ‘ago’ ‘since’ ‘instrument’  ‘has’ ‘many’  ‘appearance’ 

Corresponding 
Mandarin 
Word(s) 

 

從 11w  

對 12w  

對子 13w
對於 14w

 

以前 21w  

古代 22w  

古時候 23w  

從前 24w  

  以來 31w         琴 41w       有 51w
濟濟 61w  

很多 62w  

樣子 71w  

樣式 72w  

整理 73w  

  111 ww = 212 ww =   313 ww = 414 ww = 515 ww = 626 ww =   717 ww =  

Figure 2. An Example of Selecting the Best Mandarin Translation 

Assume that a particular sentence contains m words. The first word, 1w , is selected from 
the candidate words of 

111211 ,...,, nwww ; the second word, 2w , is selected from the 
candidate words of 

222221 ,...,, nwww ; and the mth word, mw , is selected from the candidate 
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words of 
mmnmm www ,...,, 21 . mwwwS 21

ˆ = , which is the most probable word sequence, is 
selected from the candidate words, such that P( mwwwS 21

ˆ = ) is maximized. 

The HMM assumes that the word iw  is only influenced by the previous word 1−iw , 
thus: 

≅= )ˆ( 21 mwwwSP ∏
=

−×
m

i
ii wwPwP

2
11 )|()(  (1) 

Therefore, it searches for the word sequence mwwwS 21
ˆ = , which maximizes 

∑
=

−+
m

i
ii wwPwP

2
11 )|(log)(log  (2) 

We use the Laplace smoothing method to solve the problem of 1( | ) 0i iP w w − = , where 
no bigram of ii ww 1−  could be found in the training data in other words. It should be noted 
that the word string Ŝ  may not be a legal Mandarin sentence. 

In practice, we use the Viterbi algorithm to eliminate repeated computation and reduce 
the time complexity from exponential time to polynomial time. If a sentence S has m words, 
and every word has n candidate words, the time complexity will be ( )mO n . The Viterbi 
algorithm reduces the time complexity to 2( )O n m× (Manning & Schütze, 1999). 

2.5 Selecting the Most Appropriate POS According to the Corresponding   
Mandarin Word 

We applied the Maximal Entropy Markov Model (MEMM) to the POS tag selection. 

Manning and Schütze (1999) stated that “Maximum entropy modeling is a framework for 
integrating information from many heterogeneous information sources for classification. The 
data for a classification problem is described as a number of features. Each feature 
corresponds to a constraint on the model. …Choosing the maximum entropy model is 
motivated by the desire to preserve as much uncertainty as possible.” 

MEMM includes a set of possible word and tag contexts, or “histories” (H), and the POS 
tagging set (T): 

∏
=

=
k

j

thf
j

jthp
1

),(),( απμ  (3) 

where ,h H t T∈ ∈ , π  is a normalization constant, { }kααμ ,...,, 1
 are the positive 

model parameters, and { }kff ,...,1
 stands for the features { }1,0),( ∈thf j . Parameter jα  

corresponds to the feature jf . The parameters { }kααμ ,...,, 1  are then chosen to maximize 
the likelihood of the training data using p: 

∏ ∏∏
= ==

==
n

i

k

j

thf
j

n

i
ii

iijthppL
1 1

),(

1

),()( απμ  (4) 



 

 

244                                                        Un-Gian Iunn et al. 

As for the POS tag it  of the target word iw , we selected ten features including: 

(a) Words – five types of feature patterns: 211121 ,,,, +++−−− iiiiiii wwwwwww . 

(b) POS – two types of feature patterns: 121, −−− iii ttt . 

(c) Morpheme – three types of feature patterns: nmmm ,, 21 . 

The feature patterns 1 2, , nm m m  are designated to manipulate the unknown words. If 

iw  is an unknown word, we segment iw  with a maximal matching strategy; thus, 

ni mmmw 21=  and, under certain circumstances, nmmm === 32 . If iw  is a known 
word, the three morpheme features are set to null. Moreover, if iw  is at the beginning or end 
of a sentence, certain features are likewise given a null value. For instance, when i=1, the 
feature values of 121121 ,,, −−−−−− iiiiii tttwww , etc. are also null (Berger et al., 1996; McCallum 
et al., 2000; Rabiner, 1989; Ratnaparkhi, 1996; Samuelsson, 2003; Tai, 2007; Tsai & Chen, 
2004). 

In MEMM, the dependencies of observations are flexibly modeled whereas HMM 
assumes that observations are independent. We think MEMM is more suitable for the POS 
tagging task. 

We used the “Maximum Entropy Modeling Toolkit for Python and C++” package 
provided by Zhang Le to implement our system (Le, 2003). The ten-million word POS tagged 
balanced Sinica corpus of the CKIP Group was used as the training data. Several million 
features were expanded from the ten features mentioned above, and the training time was 
about two days on Windows Server 2003 x64 SP2 with an Intel Xeon 3.2GHz processor 
(Quad-core), 8G DRAM. 

3. Results 

We used the aforementioned method to perform the Taiwanese POS tagging task; nevertheless, 
as no standard answers were available to gauge the accuracy rate, we extracted partial results 
and checked them manually. The primary consideration of the manual checking procedure was 
the Chinese Word Segmentation and Tagging System of the CKIP group of Academia Sinica 
(CKIP, 2004). We selected fourteen literary works belonging to three different eras – the 
Ching Dynasty, the Japanese-ruled Period, and the Post-war Era. These literary works were in 
the form of prose (seven), novels (five), and dramas (two). We selected the first paragraph 
from each composition, or, if the length (number of syllables) of the first paragraph was less 
than 60, we selected the second paragraph. 

    1  
   

number of tagging errorsaccuracy rate ( ) 100%
number of total words

= −                         (5) 

The test data list is shown in the Appendix. Table 2 shows the test data selected for 
manual checking. The number of syllables, words, and incorrectly selected Mandarin words, 
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as well as the POS tagging inaccuracy of each paragraph are noted. 

A total of 1,038 words (1,496 syllables) were selected, and manual checking showed that 
90 words had been incorrectly selected and 87 words were found to have inaccurate POS 
tagging, thus placing the average POS tagging accuracy rate at 91.6%. It should be noted that 
sometimes, even when the corresponding Mandarin word selected was inappropriate, the POS 
tagging result was still accurate. On the other hand, an appropriate or correct corresponding 
Mandarin word did not always have accurate POS tagging. 

Furthermore, sometimes one Taiwanese word would correspond to two Mandarin words. 
For instance, while the Taiwanese word “壁頂/piah-téng” ‘on the wall’ is treated as only one 
word, the Mandarin translation “牆壁 上” should be treated as two words. There are also 
occasions wherein two Taiwanese words would correspond to only one Mandarin word 
counterpart. For instance, the Mandarin counterpart of the Taiwanese words “Tiong-kok/中
國” ‘Chinese’ and “jī/字” ‘character’ was “中國字.” The former is processed as an unknown 
word, whereas the latter, which was separated into two independent words, was processed as 
two words. In these types of cases, if the POS tagging was accurate, we still regarded the 
results as accurate. If they were to be regarded as incorrect, the average accuracy rate would 
drop by around 2%. 

Table 2. Tagging Accuracy Rate of The Test Data 

id No. of 
Syllables 

No. of 
Words Errors Tagging 

errors 
Accuracy 
rate(%) 

1 162 109 9 6 94.5 

2 66 46 4 3 93.5 

3 180 119 6 8 93.3 

4 122 88 3 6 93.2 

5 74 51 4 1 98.0 

6 75 49 7 7 85.7 

7 112 87 13 12 86.2 

8 101 77 7 9 88.3 

9 133 93 7 9 90.3 

10 116 82 3 3 96.3 

11 94 59 7 5 91.5 

12 92 61 10 10 83.6 

13 77 59 8 4 93.2 

14 92 58 3 4 93.1 

Totally 1,496 1,038 90 87 91.6 
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In Table 3 (following), examples of actual POS tagging results are shown. It is a part of 
id 11. In this table, the first field is the HR mixed script and POJ script (contained in brackets), 
and the second field is the Mandarin candidate word(s). The “@” symbol preceding the word 
indicates that no entry has been found for the Taiwanese word shown in the first field; hence 
the HR mixed script automatically served as the Mandarin candidate word. The third field 
contains the selected Mandarin word, and the final field contains the selected POS. All of the 
incorrectly selected Mandarin words or incorrectly selected POS tags are underlined and 
segregated by two asterisks “**” preceding the word. The correct POS tag, contained in 
parentheses and shown in bold type, is then added after the incorrect POS tag. 

Table 3. Example of POS Tagging Result 

Taiwanese Mandarin Candidate  
Words 

Selected 
Word POS tagging 

我[góa] ‘I’ 我 我 Nh 

將[chiong] ‘let’ 將 將 D 

草帽仔[chháu-bō-á] ‘straw hat’ @草帽仔 草帽仔 Na 

掛[kòa] ‘hang’ 帶;掛;戴 **帶 掛 VC 

tī [tī] ‘at’ 在 在 P 

壁頂[piah-téng] ‘on the wall’ 牆壁上 牆壁上 Nc 

，[,] ， ， CommaCategory 

行李[hêng-lí] ‘baggage’ 行李 行李 Na 

khêng[khêng] ‘arrange’ 收拾;盤點 收拾 VC 

khêng[khêng] ‘arrange’ 收拾;盤點 收拾 VC 

leh[leh] ‘(modal particle)’ 咧 咧 T 

，[,] ， ， CommaCategory 

坐[chē] ‘sit’ 坐 坐 VA 

tòa[tòa] ‘at’ 住 **住 **VCL(P) 

小店[sió-tiàm] ‘store’ @小店 小店 Na 

ê[ê] ‘of’ 的 的 DE 

tha-thá-mì[tha-tha-mì] ‘tatami’ 塌塌米 塌塌米 Na 

頂 kôan[téng-kôan] ‘above’ 上面 上面 Ncd 

，[,] ， ， CommaCategory 

看[khòaⁿ] ‘see’ 看 看 VC 

窗外[thang-gōa] ‘outside the 
window’ 

@窗外 窗外 Nc 
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ê[ê] ‘of’ 的 的 DE 

光景[kong-kéng] ‘scenery’ 風光;氣象;光景;風景;
景氣 

**景氣 風

景 
Na 

，[,] ， ， CommaCategory 

看[khòaⁿ] ‘see’ 看 看 VC 

起起[khí-khí] ‘up’ @起起 起起 **Nb(VA) 

落落[lo̍h-lo̍h] ‘down’ @落落 落落 VA 

ê[ê] ‘of’ 的 的 DE 

海湧[hái-éng] ‘wave’ 海浪 ;海潮 海浪 Na 

，[,] ， ， CommaCategory 

因為[in-ūi] ‘because’ 由於 ;因為 因為 Cbb 

等待[tán-thāi] ‘wait’ 留待 ;等待 等待 VK 

朋友[pêng-iú] ‘friend’ 友人 ;朋友 朋友 Na 

，[,] ， ， CommaCategory 

心適[sim-sek] ‘pleasant’ 好玩 ;好玩兒 ;有趣 ;風
趣 ;愉快 ;稀奇 ;鬧著玩 

有趣 VH 

心適[sim-sek] ‘pleasant’ 好玩 ;好玩兒 ;有趣 ;風
趣 ;愉快 ;稀奇 ;鬧著玩 

有趣 VH 

，[,] ， ， CommaCategory 

輕輕仔[khin-khin-á] ‘lightly’ 輕輕的 輕輕的 **Nb(D) 

來[lâi] ‘toward’ 來 來 D 

點[tiám] ‘light’ 燃點;檢點;點;點子 點 VC 

一支[chi̍t-ki] ‘a’ @一支 一支 Na 

涼涼[liâng-liâng] ‘cool’ 冷冷;涼絲絲 **冷冷 涼

涼 
VH 

ê[ê] ‘of’ 的 的 DE 

芎蕉[kin-chio] ‘banana’ 香蕉 香蕉 Na 

薰[hun] ‘tobacco’ 香菸;香煙;薰 香煙 Na 

。[.] 。 。 PeriodCategory 

4. Error Analysis 

This section discusses how a more thorough check was performed to analyze the error 
conditions. 
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4.1 Selection of Inappropriate Mandarin Word 
An analysis of the errors made in the selection of Mandarin words or POS tags revealed that 
the selection of inappropriate Mandarin words led to POS tagging errors in 25 cases. Table 4 
shows the incorrect Mandarin words selected and their respective POS. 

Table 4. The Selected Incorrect Mandarin Words and Their Respective POS 

Word Selected Mandarin  
word and POS 

More appropriate 
Mandarin word and POS Remark 

押/ah 強制(D) ‘compel’ 押(VC) ‘take into custody’  

bat/bat 知道(VK) ‘know’ 曾(D) ‘ever’  

無/bô 不(D) ‘not’ 沒有(VJ) ‘not have’ 2 times 

chham/chham 和(P) ‘and’ 摻(VC) ‘accompany’  

進前

/chìn-chêng 
之前(Ng) ‘before’ 向 前(P Nes) ‘forward’  

這號/chit-hō 這樣(VH) ‘such’ 這種(Nep Nf) ‘this kind 
of’ 2 times 

轉/chōan 上(Ncd) ‘above’ 轉(Vac) ‘turn’ 2 times 

外/gōa 外(Ng) ‘outside’ 開外(Neqa) ‘more’ 2 times 

夭壽/iáu-siū 非常(Dfa) ‘very’ 早夭(VH) ‘dead early’  

加/ke 上(Ncd) ‘above’ 多(Dfa) ‘more’  

價值/kè-ta̍t 值得(VH) ‘worthy’ 價值(Na) ‘value’  

腳/kha 個(DE) ‘(a numerary adjunct)’ 下(Ncd) ‘under’  

黃 hóaⁿ/n̂g-hóaⁿ 罕(D) ‘rarely’ 淺黃(A) ‘light yellow’  

倚/óa 依(P) ‘in accordance with’ 靠(VJ) ‘lean against’  

活/o̍ah 生活(Na) ‘life’ 活(VH) ‘live’  

破相/phòa-siùⁿ 破(VHC) ‘break’ 殘廢(Na) ‘disabled’  

細漢/sè-hàn 小時候(Nd) ‘in one's childhood’ 年幼(VH) ‘young’  

相借問

/sio-chioh-mn ̄g 
招呼(VC) ‘greet’ 打招呼(VB) ‘say hello’  

搭/tah 地方(Na) ‘location’ 搭(VC) ‘construct’  

tio ̍h/tio ̍h 就(P) ‘(an auxiliary confirming 
and stressing the verb following)’ 

著(VCL) ‘come into 
contact with’  

著/tio ̍h 就(P) ‘(an auxiliary confirming 
and stressing the verb following)’ 

得(D) ‘need to’  
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4.2 Absence of Appropriate Mandarin Translation in OTMD 
There were fourteen errors made in inappropriate Mandarin word selection due to the absence 
of an appropriate Mandarin word in the OTMD. This also led to errors in the POS tagging. 
The discovery indicates the necessity of expanding the entries of the OTMD. Table 5 tabulates 
these errors. 

Table 5. Errors Caused by Absence of Appropriate Mandarin Word Option in OTMD 

Taiwanese Selected Mandarin by 
System Appropriate Mandarin Word Remark 

chak/chak 促(VF) ‘urge’ 擠(VC) ‘crowd’  
chūn/chūn 絞(VC) ‘twist’ 陣(Nf) ‘(a numerary adjunct)’ 2 times 

kah/kah 和(Caa) ‘and’ 得(DE) ‘a particle used after a 
verb’ 3 times 

leh/leh 咧(T) ‘(modal particle)’ 在(P) ‘doing’ 3 times 
煞/soah 結束(VHC) ‘finish’ 卻(D) ‘but’  

teh/teh 在(P) ‘(an indicator or 
location)’ 

著(Di) ‘(an adverbial particle)’  

頂/téng 頂(VC) ‘lift’ 上(Nes) ‘(the first half part)’  
tiāⁿ-tiāⁿ / tiāⁿ-tiāⁿ 常常(D) ‘often’ 而已(T) ‘just’  
轉 / tńg 調解(VC) ‘mediate’ 轉(VAC) ‘turn’  

4.3 Unknown Words from the Viewpoint of Mandarin 
Ten of the POS tagging errors were made because the word was an unknown word. Parts of 
these unknown words correspond to two Mandarin words. These unknown words are tabulated 
in Table 6. 

Table 6. Unknown Words from The Viewpoint of Mandarin 

Taiwanese Word Corresponding  
Mandarin Word 

Selected POS 
by System Correct POS 

bē 會/bē-ē 不會 ‘be unable to’ Nb D 
廟埕/biō-tiâⁿ 廟前院 ‘temple square’ Na Nc (Na Nc) 

食老/chia̍h-lāu 年老 ‘old’ Na VH 

轉了/chōan-liáu 轉 後 ‘after turning’ VH VC Ng 
牛擔灣/Gû-taⁿ-oan 牛擔灣 ‘(a place name)’ VA Nc 

法律上/hoat-lu̍t-siōng 法律上 ‘jural’ VC N (Na Ncd) 

非為/hui-ûi 非為 ‘infamous conduct’ A N (A Na) 
窮志/kiông-chì 窮志 ‘exhaust the ambition’ Na V (VH Na) 
輕輕仔/khin-khin-á 輕輕地 ‘lightly’ Nb D (VH DE) 
生子/seⁿ-kiáⁿ 生孩子 ‘give birth to a child’ Na VA (VH Na) 
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4.4 Propagation Error 
Five of the POS tagging errors were probably due to the occurrence of a previous POS tagging 
error. These are categorized as propagation errors and include one unknown word. 

4.5 Other Cases 
The personal name “天賜” of “天賜 ah/Thian-sù ah” (not an unknown word) which has been 
tagged as “A” with the suffix “ah” tagged as “T” or “Di” (which appeared twice in all; once, 
the selected Mandarin word was “啊” and in other instance it was “了”). 

The Taiwanese word “對/tùi” under general circumstances is synonymous with the 
Mandarin word “從”‘from.’ This word appeared ten times in the test data. The system selected 
the Mandarin word “對”‘for’ eight times and the word “從” twice for its counterpart. 
Nevertheless, under both circumstances, the POS tag of the word was always “P”; thus, the 
different word choice did not affect the accuracy of the POS tagging. 

There were also 30 errors made that leave us unable to clearly explain the reasons. Table 
7 lists some examples. 

Table 7. Example of Some POS Tagging Errors 

Left Context Word and 
POS 

Correct
POS Right Context id 

 lūn ‘discuss’ 
(Na) VE 

tha̍k‘read’(VC) pe̍h-ōe-jī 
‘vernacular writing’(Na) 
khah-iâⁿ‘better 
than’(VJ) … 

1 

chò ‘do’(VC) thâi-lâng ‘kill 
someone’(VA) 

hōan ‘criminal’ 
(VC) 

Na 
 

siū ‘be subjected to’(P) 
sí-hêng ‘death 
penalty’(Na) ê‘of’(DE) 
7(Neu) lâng ‘people’(Na) 

2 

lâng‘people’(Na) chi̍t-ē ‘once’ 
(Nd) 

D chia ̍h-lāu ‘old’(VH) 3 

tùi ‘from’ (P) khí-thâu 
‘beginning’(VH)

Nv 
 

chiū‘then’(D) 
chin‘very’(Dfa) tāng 
‘waver’(VAC) 

4 

Má-lī ‘a person name’(Nb) 
ê‘of’(DE) lāu-pē‘father’(Na) sí ‘dead’ (Dfb) VH ê‘of’(DE) sî‘time’(Na) 10 

khòaⁿ ‘look at’ (VC) khí-khí‘up’(Nb) VA 
lo ̍h-lo̍h‘down’(VA) 
ê‘of’(DE) hái-éng 
‘tide’(Na) 

11 

n̂g-hóaⁿ ‘turned yellow’(VH) 
àm-tām‘dim’(VH) ê‘of’(DE) 
lō-͘teng‘streetlamp’(Na) 

chhiō ‘shine’(D) VC 
lóng‘always’(D) 
bē‘not’(D) hn̄g‘far’(VH) 12 
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4.6 Summary of Error Conditions 
A summary of the causes of the errors made during the POS tagging and their frequency 
percentages is tabulated in Table 8. 

Table 8. The Reason of POS Tagging Errors 
Reason Count Percentage(%) Remark 

Selection of Inappropriate 
Mandarin Word 25 28.7  

Absence of Appropriate  
Mandarin Word 14 16.1  

Unknown Word 10 11.5  

Personal Name 4 4.6  

Propagation Error 4 4.6 Includes an unknown word 

Totally 57 65.5 After discounting the repeat count 

5. Discussion 

5.1 Is Improvement Possible? 
The ideal situation would be to resolve the foregoing errors and use this method to conduct the 
Taiwanese POS tagging to achieve an accuracy rate of 97.1%. Nevertheless, there is an 
apparent difficulty in the realization of this goal. 

There are differences between the Taiwanese word order and the Mandarin word order; 
thus, the selection of the incorrect Mandarin word, and consequently incorrect POS tagging, 
occurred with high probability. The absence of appropriate Mandarin translation was the 
second leading cause of the POS tagging errors. 

The unknown word problem was also a cause of POS tagging errors. From the Mandarin 
perspective, these words are not actually unknown words; this problem mostly resulted from 
the fact that translations between different languages are not one-to-one mappings. Another 
significant factor involves the use of hyphens in the POJ script, as their usage has not yet been 
standardized. It is probable that due to the use of Han characters, word boundaries are 
relatively vague in the different languages of the Chinese language family. 

5.2 Hyphen Problems, Distinction between Taiwanese and Mandarin 
In Taiwanese, some words take on the POJ script, thus, the use of the hyphen. Used one way, 
they separate the syllables of words, making it possible for a syllable to correspond to a Han 
character; used another way, they serve as word separators. Each syllable in a hyphenated 
word represents a unigram, and a space separates each word. Unfortunately, no original word 



 

 

252                                                        Un-Gian Iunn et al. 

boundaries of Han character writing can be found to correspond to the hyphenated word. 

In addition, Taiwanese has around 3,000 legal syllables, whereas Mandarin has around 
1,200 legal syllables (Chan, 2008). Because of this, it may be said that the Taiwanese 
language has more single-syllable words. Nevertheless, as a single-syllable word may have 
several corresponding Han characters, the use of two-syllable or multi-syllable words resolves 
most of the problems. 

For instance, if the Taiwanese word “這個”‘this one’ is written as “chit ê” (no hyphen 
used), the syllable “chit” may be made to correspond to several Mandarin words, such as “這” 
‘this,’ “職”‘job,’ “質” ‘quality,’ “織,” ‘knit,’ etc. The syllable “ê” may also be made to 
correspond to several Mandarin words, such as “的” ‘of,’ “個” ‘(a numerary adjunct),’ “鞋” 
‘shoe,’ etc. If the word is written as “chit-ê” (hyphenated), it definitely corresponds to “這個” 
in HR script. Hence, under the POJ script, the writer may tend to use a hyphen to link a 
single-syllable word to another single-syllable word if these two single-syllable words may 
likely form one composite word or one phrase. Present practices show that the word “這個” 
may appear hyphenated or in a separated syllable form, thus creating inconsistencies. 

As the use of hyphenated words creates the problem of one Taiwanese word 
corresponding to two Mandarin words, if the original text is not revised and the Mandarin 
corresponding word is manifested as an unknown word, it may be possible to just remove the 
hyphen and try again. This method may reduce the chance of POS tagging errors due to the 
unknown word factor. 

5.3 The Distinction between Different Eras or Different Genres 
We investigated whether texts of a different era or a different literary genre would affect the 
accuracy rate of the POS tagging. Table 10 shows the POS tagging accuracy rates for texts of 
three types of literary genres and Table 11 shows the POS tagging accuracy rates for texts of 
literary works belonging to three different periods or eras. Table 9 shows that the POS tagging 
accuracy rate for novel materials is comparably lower than other genres; whereas Table 10 
indicates that the POS tagging accuracy rate for the materials written in the Post-war era are 
comparably lower than the other periods investigated. Basically, there are no significant 
differences among three genres or three eras as a whole. 

Table 9. Tagging Accuracy Rate for Different Genres 

Genre No. of 
Words 

No. of Tagging 
Errors 

Accuracy Rate 
(%) 

Prose  549  43   92.2 

Novel  372     36   90.3 

Drama  117 8   93.2 
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Table 10. Tagging Accuracy Rate for Different Eras 

Era No. of 
Words 

No. of Tagging
Errors 

Accuracy Rate 
(%) 

Ching Dynasty   232   18   92.2 

Japanese-ruled    359   27   92.5 

Post-war   447   42   90.6 

After deliberation, we found that the individual writing style of authors is actually the 
dominant factor of the POS tagging accuracy. From Table 2, the individual POS tagging 
accuracy varies from 83.6% to 98.0%. 

6. Conclusion and Future Works 

We proposed a Taiwanese POS tagging method using a statistical method and Mandarin 
training data, and we achieved an accuracy rate of 91.6%. Due to the lack of Taiwanese 
training data, we sought the help of Mandarin. 

This strategy could also be applied to other languages that lack resources. We think that 
this is a very important idea. It is preferable to select an intermediate language close to the 
target language from the viewpoint of the language family. 

We also developed an online Taiwanese word segmentation and POS tagging system for 
people who are interested in this topic. Users can input Taiwanese text and get the POS 
tagging results. It is somewhat difficult for a user to prepare both POJ and HR mixed scripts; 
therefore, we also provide the functions in the absence of one of these two scripts (Iunn, et. al., 
2007). This, however, will decrease the accuracy rate. 

If we can construct a Taiwanese-Mandarin parallel corpus, we can use other methods like 
the Coerced Markov Models proposed by Fung and Wu (1995) to accomplish the Taiwanese 
POS tagging task. 

We hope that we can proceed to the construction of Taiwanese Treebank. 
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Appendix 

Test Data List. 

id Year Genre Author Article title No. of 
Syllables 

1 1885 prose Reverend Ia̍p ‘葉
牧師’ 

Pe̍h-ōe-jī ê lī-ek ‘The Benefits of Using 
Pe̍h-ōe-jī, 白話字的利益’ 

162 

2 1893 prose
Reverend Kam ‘甘
牧師’ Chhiⁿ-mî o ̍h ‘Blind Study, 青瞑學’ 66 

3 1919 prose H S K Phín-hēng ê ûi-thôan ‘Inheritance of 
Morality, 品行的遺傳’ 180 

4 1935 prose Ong Chong-têng 
‘汪宗程’ 

Chín-chai kì ‘Earthquake Disaster 
Record, 震災記’ 122 

5 1954 prose Ô. Bûn-tî ‘胡文池’ Tōa-soaⁿ chhiùⁿ-koa ‘A High Mountains 
sing, 大山唱歌’ 74 

6 1990 prose
Tân Gī-jîn ‘陳義

仁’ 
Lāu-lâng ê kè-ta̍t ‘The Value of The 
Elderly People, 老人的價值’ 

75 

7 2000 prose
Tân Bêng-jîn ‘陳明

仁’ 
Sûn-chêng Ông Pó-chhoan ‘Pure Love 
Ông Pó-chhoan, 純情王寶釧’ 112 

8 1890 novel Unknown An-lo̍k-ke ‘Safety and Happiness Street, 
安樂街’ 

101 

9 1924 novel
Lōa Jîn-seng ‘賴仁

聲’ 
Án-niá ê Ba̍k-sái ‘Mother's Tears, 母親

的眼淚’ 
133 

10 1955 novel N̂g Hôai-un ‘黃懷

恩’ 
Chháu-tui téng ê bîn-bāng ‘Dreams on 
the Grass Stack, 草堆上的夢’  116 

11 1990 novel
Iûⁿ Ún-giân ‘楊允

言’ translated 
Hái-phīⁿ Sin-niû ‘Bride on The Cape, 
岬角上的新娘’ 94 

12 2006 novel
Lâu Sêng-hiân ‘劉
承賢’ Chia̍h-chōe ‘Plead Guilty, 伏罪’ 92 

13 1924 drama
Lîm Bō.-seng ‘林
茂生’ 

Hì-chhut: Lō.-tek kái kàu ‘ Drama: Ruth 
Reformed Church, 戲齣:路得改教’ 77 

14 1950 drama Tân Chheng-tiong 
‘陳清忠’ translated

Venice ê Seng-lí-lâng ‘Venice 
Businessman, 威尼斯的生意人’ 92 

Note: the original author of id 11 is Sòng Te̍k-lâi ‘宋澤萊,’ id 14 is Shakespeare 
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Abstract 

Researchers have developed many computational tools aimed at extracting 
collocations for both second language learners and lexicographers. Unfortunately, 
the tremendously large number of collocates returned by these tools usually 
overwhelms language learners. In this paper, we introduce a thesaurus-based 
semantic classification model that automatically learns semantic relations for 
classifying adjective-noun (A-N) and verb-noun (V-N) collocations into different 
thesaurus categories. Our model is based on iterative random walking over a 
weighted graph derived from an integrated knowledge source of word senses in 
WordNet and semantic categories of a thesaurus for collocation classification. We 
conduct an experiment on a set of collocations whose collocates involve varying 
levels of abstractness in the collocation usage box of Macmillan English Dictionary. 
Experimental evaluation with a collection of 150 multiple-choice questions 
commonly used as a similarity benchmark in the TOEFL synonym test shows that a 
thesaurus structure is successfully imposed to help enhance collocation production 
for L2 learners. As a result, our methodology may improve the effectiveness of 
state-of-the-art collocation reference tools concerning the aspects of language 
understanding and learning, as well as lexicography. 

Keywords: Collocations, Semantic Classification, Semantic Relations, Random 
Walk Algorithm, Meaning Access Index and WordNet. 
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1. Introduction 

Researchers have developed applications of computational collocation reference tools, such as 
several commercial collocation dictionary CD-ROMs, Word Sketch (Kilgarriff & Tugwell, 
2001), TANGO (Jian et al., 2004), to answer queries (e.g., a search keyword “beach” for its 
adjective collocates) of collocation usage. These reference tools typically return collocates 
(e.g., adjective collocates for the pivot word “beach” are “rocky,” “golden,” “beautiful,” 
“raised,” “sandy,” “lovely,” “unspoiled,” “magnificent,” “deserted,” “fine,” “pebbly,” 
“splendid,” “crowded,” “superb,” etc.) extracted from a corpus of English texts (e.g., British 
National Corpus). 

Unfortunately, existing tools for language learning sometimes present too much 
information in a batch on a single screen. With corpus sizes rapidly growing to Web scale (e.g., 
Web 1 Trillion 5-gram Corpus), it is common to find hundreds of collocates for a query word. 
The bulk of information may frustrate and slow L2 learners’ progress of learning collocations. 
An effective language learning tool also needs to take into consideration second language 
learners’ absorbing capacity at one sitting. To satisfy the need for presenting a digestible 
amount of information at one time, a promising approach is to automatically partition 
collocations of a query word into various categories to support meaningful access to the search 
results and to give a thesaurus index to collocation reference tools. 

Consider the query “beach” in a search for its adjective collocates. Instead of generating 
a long list of adjectives like the above-mentioned applications, a better presentation could be 
composed of clusters of adjectives inserted into distinct semantic categories such as: {fine, 
lovely, superb, beautiful, splendid} assigned with a semantic label “Goodness,” {sandy, rocky, 
pebbly} assigned with a semantic label “Materials,” etc. Intuitively, by imposing a semantic 
structure on the collocations, we can bias the existing collocation reference tools towards 
giving a thesaurus-based semantic classification as one of the well-developed and 
convincingly useful collocation thesauri. We present a thesaurus-based classification system 
that automatically groups collocates of a given pivot word (here, the adjective collocates of a 
noun, the verb collocates of a noun, and the noun collocates of a verb) into semantically 
related classes expected to render highly useful applications in computational lexicography 
and second language teaching for L2 learners. A sample presentation for a collocation 
thesaurus is shown in Figure 1. 
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Figure 1. Sample presentation for the adjective collocate search query “beach”. 

Our thesaurus-based semantic classification model has determined the best semantic 
labels for 859 collocation pairs, focusing on: (1) A-N pairs and clustering over the adjectives 
(e.g., “fine beach”); (2) V-N pairs and clustering over the verbs  (e.g., “develop 
relationship”); and (3) V-N pairs and clustering over the nouns (e.g., “fight disease”) from the 
specific underlying collocation reference tools (in this study, from JustTheWord). Our model 
automatically learns these useful semantic labels using the Random Walk Algorithm, an 
iterative graphical approach, and partitions collocates for each collocation types (e.g., the 
semantic category “Goodness” is a good thesaurus label for “fine” in the context of “beach” 
along with other adjective collocates such as “lovely,” “beautiful,” “splendid,” and “superb”). 
We describe the learning process of our thesaurus-based semantic classification model in more 
detail in Section 3. At runtime, we assign the most probable semantic categories to 
collocations (e.g., “sandy,” “fine,” “beautiful,” etc.) of a pivot word (e.g., “beach”) for 
semantic classification. In this paper, we exploit the Random Walk Algorithm to disambiguate 
word senses, assign semantic labels, and partition collocates into meaningful groups. 

The rest of the paper is organized as follows. We review the related work in the next 
section. Then, we present our method for automatic learning to classify collocations into 
semantically related categories, which is expected to improve the presentation of underlying 
collocation reference tools and support collocation acquisition by computer-assisted language 
learning applications for L2 learners (Section 3). As part of our evaluation, two metrics are 
designed with very little precedent of this kind. One, we assess the performance of resulting 
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collocation clusters by a robust evaluation metric; two, we evaluate the conformity of 
semantic labels by a three-point rubric test over a set of collocation pairs chosen randomly 
from the classifying results (Section 5). 

2. Related Work 

Many natural language processing (NLP) applications in computational lexicography and 
second language teaching (SLT) build on one part of lexical acquisition emphasizing teaching 
collocation for L2 learners. In our work, we address an aspect of word similarity in the context 
of a given word (i.e., collocate similarity), in terms of use, acquisition, and ultimate success in 
language learning. 

This section offers the theoretical basis on which recommendations for improvements to 
the existing collocation reference tools are made, and it is made up of three major sections. In 
the first section, an argument is made in favor of collocation ability being an important part of 
language acquisition. Next, we show the need to change the current presentation of collocation 
reference tools. The final section examines other literature on computational measures for 
word similarity versus collocate similarity. 

2.1 Collocations for L2 Learners 
The past decade has seen an increasing interest in the studies on collocations. This has been 
evident not only from a collection of papers introducing different definitions of the term 
“collocation” (Firth, 1957; Benson, 1985; Nattinger & DeCarrico, 1992; Nation, 2001), but 
also from the inclusive review of research on collocation teaching and the relation between 
collocation acquisition and language learning (Lewis, 1997; Hall, 1994). 

New NLP applications for extracting collocations, therefore, are a great boon to both L2 
learners and lexicographers alike. SLT has long favored grammar and memorization of lexical 
items over learning larger linguistic units (Lewis, 2000). Nevertheless, several studies have 
shown the importance of acquisition of collocations; moreover, they have found specifically 
that the most important is learning the right verbs in verb-noun collocations (Nesselhauf, 2003; 
Liu, 2002). Chen (2004) showed that verb-noun (V-N) and adjective-noun (A-N) collocations 
were found to be the most frequent error patterns. Liu (2002) found that, in a study of English 
learners’ essays from Taiwan, 87% of miscollocations were attributed to the misuse of V-N 
collocations. Of those, 96% were due to the selection of the wrong verb. A simple example 
will suffice to illustrate: in English, one writes a check and also writes a letter while the 
equivalent Mandarin Chinese word for the verb “write” is “kai” (開) for a check and “xie” (寫) 
for a letter, but absolutely not “kai” (開) for a letter. 
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This type of language-specific idiosyncrasy is not encoded in either pedagogical 
grammars or lexical knowledge but is of utmost importance to fluent production of a language. 

2.2 Meaning Access Indexing in Dictionaries 
Some attention has been paid to the investigation of the dictionary needs and reference skills 
of language learners (Scholfield, 1982; Béjoint, 1994), and one important cited feature is a 
structure to support users’ neurological processes in meaning access. Tono (1984) was among 
the first attempts to claim that the dictionary layout should be more user-friendly to help L2 
learners access desired information more effectively. According to Tono (1992) in his 
subsequent empirical close examination of the matter, menus that summarize or subdivide 
definitions into groups at the beginning of entries in dictionaries would help users with limited 
reference skills to access the information in the dictionary entries more easily. The Longman 
Dictionary of Contemporary English, 3rd edition [ISBN 0-582-43397-5] (henceforth called 
LDOCE3), has just such a system called “Signposts”. When words have various distinct 
meanings, the LDOCE3 begins each sense anew with a word or short phrase which helps users 
more effectively discover the meaning they need. The Cambridge International Dictionary of 
English [ISBN 0-521-77575-2] does this as well, creating an index called “Guide Word" 
which provides similar functionality. Finally, the Macmillan English Dictionary for Advanced 
Learners [ISBN 0-333-95786-5], which has “Menus” for heavy-duty words with many senses, 
utilizes this approach as well. 

Therefore, in this paper, we introduce a classification model for imposing a thesaurus 
structure on collocations returned by existing collocation reference tools, aiming at facilitating 
concept-grasping of collocations for L2 learners. 

2.3 Similarity of Semantic Relations 
The construction of practical, general word sense classification has been acknowledged to be 
one of the most difficult tasks in NLP (Nirenburg & Raskin, 1987), even with a wide range of 
lexical-semantic resources such as WordNet (Fellbaum, 1998) and Word Sketch (Kilgarriff & 
Tugwell, 2001). 

Lin (1997) presented an algorithm for word similarity measured by its distributional 
similarity. Unlike most corpus-based word sense disambiguation (WSD) algorithms, where 
different classifiers are trained for separate words, Lin used the same local context database as 
the knowledge source for measuring all word similarities. Approaches presented to recognize 
synonyms have been studied extensively (Landauer & Dumais, 1997; Deerwester et al., 1990; 
Turney, 2002; Rehder et al., 1998; Morris & Hirst, 1991; Lesk, 1986). Measures of 
recognizing collocate similarity, however, are not as well developed as measures of word 
similarity. 
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The most closely related work focuses on automatically classifying semantic relations in 
noun pairs (e.g., mason:stone) and evaluation with a collection of multiple-choice word 
analogy question from the SAT exam (Turney, 2006). Another related approach, presented in 
Nastase and Szpakowicz (2003), describes how to automatically classify a noun-modifier pair, 
such as “laser printer,” according to the semantic relation between the head noun (printer) and 
the modifier (laser). The evaluation is manually conducted by human labeling. For a review of 
work to a more fine-grained word classification, Pantel and Chklovski (2004) presented a 
semi-automatic method for extracting fine-grained semantic relations between verbs. 
VerbOcean (http://semantics.isi.edu/ocean/) is a broad-coverage semantic network of verbs, 
detecting similarity (e.g., transform::integrate), strength (e.g., wound::kill), antonymy (e.g., 
open::close), enablement (e.g., fight::win), and temporal happens-before (e.g., marry::divorce) 
relations between pairs of strongly associated verbs using lexico-syntactic pattern over the 
Web. Hatzivassiloglou and McKeown (1993) presented a method towards the automatic 
identification of adjectival scales. Based on statistical techniques with linguistic information 
derived from the corpus, the adjectives, according to their meaning based on a given text 
corpus, can be placed in one group describing different values of the same property. Their 
clustering algorithm suggests some degree of adjective scalability; nevertheless, it is 
interesting to note that the algorithm discourages recognizing the relationship among 
adjectives, e.g., missing the semantic associations (for example a semantic label of “time 
associated”) between new-old. More recently, Wanner et al. (2006) sought to 
semi-automatically classify the collocations from corpora via the lexical functions in 
dictionary as the semantic typology of collocation elements. While there is still a lack of 
fine-grained semantically-oriented organization for collocation, WordNet synset (i.e., 
synonymous words in a set) information can be explored to build a classification scheme for 
refinement of the model and develop a classifier to measure the distribution of class for the 
new tokens of words set foot in. Our method, which we will describe in the next section, uses 
a similar lexicon-based approach for a different setting of collocation classification. 

3. Methodology 

3.1 Problem Statement 
We focus on the preparation step of partitioning collocations into categories for collocation 
reference tools: providing words with semantic labels, thus, presenting collocates under 
thesaurus categories for ease of comprehension. The categorized collocations are then returned 
in groups as the output of the collocation reference tool. It is crucial that the collocation 
categories be fairly consistent with human judgment and that the categories of collocates 
cannot be so coarse-grained that they overwhelm learners or defeat the purpose of users’ fast 
access. Therefore, our goal is to provide semantic-based access to a well-founded collocation 
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thesaurus. The problem is now formally defined. 
 

Problem Statement: We are given (1) a set of collocates Col = {C1, C2, …, Cn} (e.g., “sandy,” 
“beautiful,” “superb,” “rocky,” etc.) with corresponding parts-of-speech P={p| p ∈ Pos and 
Pos={noun,adjective,verb}} for a pivot word X (e.g., “beach”); (2) a combination of thesaurus 
categories (e.g., Roget’s Thesaurus), TC = {(W, P, L)} where a word W with a part-of-speech P 
is under the general-purpose semantic category L (e.g., feelings, materials, art, food, time, etc.); 
and (3) a lexical database (e.g., WordNet) as our word sense inventory SI for semantic relation 
population. SI is equipped with a measure of semantic relatedness: REL(S, S’) encodes semantic 
relations holding between word sense S and S’. 
 

Our goal is to partition Col into subsets of similar collocates by means of integrated 
semantic knowledge crafted from the mapping of TC and SI, whose elements are likely to 
express related meanings in the same context of X. For this, we leverage a graph-based 
algorithm to assign the most probable semantic label L to each collocation, thus giving 
collocations a thesaurus index. 

For the rest of this section, we describe our solution to this problem. In the first stage of 
the process, we introduce an iterative graphical algorithm for providing each word with a word 
sense (Section 3.2.1) to establish integrated semantic knowledge. A mapping of words, senses, 
and semantic labels is thus constructed for later use of automatic collocation partitioning. In 
the second stage (Section 3.2.2), to reduce out-of-vocabulary (OOV) words in TC, we extend 
word coverage of limited TC by exploiting a lexical database (e.g., WordNet) as a word sense 
inventory, encoding words grouped into cognitive synonym sets and interlinked by semantic 
relations. In the third stage, we present a similar graph-based algorithm for collocation 
labeling using the extended TC and Random Walk on a graph in order to provide a semantic 
access to collocation reference tools of interest (Section 3.3). The approach presented here is 
generalizable to allow construction from any underlying semantic resource. Figure 2 shows a 
comprehensive framework for our unified approach. 

Extension 

A Thesaurus Word Sense Inventory 
(e.g., WordNet) 

Random Walk on Word 
Sense Assignment 

Integrated Semantic Knowledge (ISK) 
Enriched ISK 

Random Walk on Semantic 
Label Assignment 

A 
Collocation 
Thesaurus 

Uncategorized 
Collocates 

Figure 2. A comprehensive framework for our classification model. 



 

 

264                                                    Chung-Chi Huang et al. 

3.2 Learning to Build a Semantic Knowledge by Iterative Graphical 
Algorithms 

In this paper, we attempt to provide each word with a semantic label and attempt to partition 
collocations into thesaurus categories. In order to partition a large-scale collocation input and 
reduce the out-of-vocabulary (OOV) encounters for the model, we first incorporate word sense 
information in SI, into the thesaurus, i.e., TC, and extend the former integrated semantic 
knowledge (ISK) using semantic relations provided in SI. Figure 3 outlines the aforementioned 
process. 

Figure 3. Outline of the learning process of our model. 

3.2.1 Word Sense Assignment 
In the first stage (Step (1) in Figure 3), we use a graph-based sense linking algorithm which 
automatically assigns appropriate word senses to words under a thesaurus category. Figure 4 
shows the algorithm. 

Algorithm 1.  Graph-based Word Sense Assignment 

Input: A word list, WL, under the same semantic label in the thesaurus TC; A word sense inventory SI. 

Output: A list of linked word sense pairs, {(W, S* )}  
Notation: Graph G = {V, E} is defined over admissible word senses (i.e., V) and their semantic 
relations (i.e., E). In other words, each word sense S constitutes a vertex v ∈ V while a semantic 
relation between senses S and S’ (or vertices) constitutes an edge in E. Word sense inventory SI is 
organized by semantic relations SR and REL(S,S’) identifies the semantic relations between sense of S 
and S’ in SI. 

PROCEDURE AssignWordSense(WL,SI) 

Build weighted graph G of word senses and semantic relations 
INITIALIZE V and E as two empty sets 
FOR each word W in WL 

FOR each of the n(W) admissible word senses, S, of W in SI 
(1)          ADD node S to V 

FOR each node pair (S,S’), where S and S’ belong to different words, in V × V 
(2)     IF ( REL(S,S’) ≠ NULL and S ≠ S’ THEN ADD edge E(S,S’) to E and E(S’,S) to E 

FOR each word W AND each of its word senses S in V 
(3)     INITIALIZE Ps = 1/n(W) as the initial probability 

(1) Build an Integrated Semantic Knowledge (ISK) by Random Walk on Graph 
(Section 3.2.1) 

(2) Extend Word Coverage for Limited ISK by Lexical-Semantic Relations   
(Section 3.2.2)
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(3a)      ASSIGN weight (1-d) to matrix element MS,S 
(3b)      COMPUTE e(S) as the number of edges leaving S 

FOR each other word W’≠ W in WL AND each sense S’ of W’ 
(3c)            IF there is an edge between S and S’ THEN ASSIGN Weight d/e(S) to MS,S’ 

OTHERWISE ASSIGN 0 to MS,S’   

Score vertices in G 
REPEAT 

FOR each word W AND each of its word senses S 
(4)           INTIALIZE QS to PS × MS,S 

FOR each other word W’≠W in WL AND each sense S’ of W’ 
(4a)           INCREMENT QS by PS’× MS’,S  

FOR each word W, SUM QS over n(W) senses as Nw 

FOR each word W AND each of its word senses S 
(4b)           REPLACE PS by QS/Nw  

UNTIL probability PS‘s converge 

Assign word sense 
(5) INITIALIZE List as NULL 

FOR each word W in WL 
(6)      APPEND (W,S*) to List where PS* is the maximum among senses of W 
(7) OUTPUT List 

Figure 4. Algorithm for Graph-based Word Sense Assignment. 

The algorithm for the best sense assignment S* for W consists of three main parts: (1) 
construction of a weighted word sense graph; (2) sense scoring using the iterative Random 
Walk algorithm; and (3) word sense assignment. 

In Step 1 of the algorithm, by referring to SI, we populate candidate n(W) senses for each 
word W in the word list, WL, under the same semantic category as vertices in graph G. In G, 
directed edges E(S,S’) and E(S’,S) are built between vertex S and vertex S’ if and only if there 
exists a semantic relation between the word sense S and S’ in SI. Figure 5 shows an example 
of such a graph. 

beautiful fine splendid 

S5 

S4 

S3 

S2 

S1 

Figure 5. Sample graph built on the admissible word senses (vertical axis) for 
three words (horizontal axis) under the thesaurus category of 
“Goodness”. Note that self-loop edges are omitted for simplicity. 
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We initialize the probability concerning the sense S of a word W, Ps, to 1/n(W), uniform 
distribution among the senses of W (Step (3)). For example, in Figure 5, the probability of the 
fourth sense of the word “beautiful” is initialized to 0.2. Then, we construct a matrix, whose 
element Mx,y stands for the proportion of the probability Px , that will be propagated to node y. 
Since Mx,y may not be equal to M,y,x, the edges in G are directed. In matrix M, we assign 1-d to 
Mx,x where x ∈ V(Step (3a)) while the rest of the proportion (i.e., d) is uniformly distributed 
among the outgoing edges of the node x (Step (3c)). Take the fourth sense (Node 4 for short) 
of the word “beautiful” and the third sense (Node 8 for short) of the word “fine” in Figure 5 
for example. M4,8 is d/2 since there are two outgoing edges for Node 4. On the other hand, 
M8,4 is d/3 in that there are three edges leaving Node 8. d is the damping factor and was first 
introduced by PageRank (Brin & Page, 1998), a link analysis algorithm. The damping factor is 
usually set around 0.85, indicating that eighty-five percent of the probability of a node will be 
distributed to its outbound nodes. 

In the second part of the algorithm, probabilities will be iteratively re-distributed among 
the senses of words until convergence of probabilities. For each sense S of a word W, first, 
(Step (4)) Qs is assigned to Ps×Ms,s (i.e., some proportion, Ms,s, of the probability of Ps is 
propagated to the node s), then (Step (4a)) Qs is incremented by Ps’×Ms’,s, the ingoing 
probability propagation from node s’, whenever there is an edge between s’ and s.  In  Step 
(4b), we re-calculate the probability of the sense  S,  Ps, by dividing Qs  by 

( )
s

s sense W
Q ′

′∈
∑ , 

where S and S’ are different word senses of the same word  W  and  sense(W)  is  the set 
of admissible senses of W in SI for the next iteration. 

( )
s

s sense W
Q ′

′∈
∑ , or  Nw in the algorithm, 

is the normalization factor. The propagation of probabilities at each iteration in this 
graph-based algorithm, or Random Walk Algorithm, ensures that if a node is semantically1 
linked to another node with high probability, it will obtain quite a few probabilities from that 
node, indicating that this node may be important2 in that probabilities converse and tend to 
aggregate in senses (i.e., nodes) of words that are semantically related (i.e., connected). 

Finally, for each word, we identify the most probable sense and attach the sense to it 
(Step (6)). For instance, for the graph in Figure 6, the vertex on the vertical axis represented as 
the sense #3 of “fine” will be selected as the best sense for “fine” under the thesaurus category 
“Goodness” with other entry words, such as, “lovely,” “superb,” “beautiful,” and “splendid”. 
The output of this stage is a set of linked word sense pairs (W, S*) that can be utilized to 
extend the coverage of thesauri via semantic relations in SI. 

                                                       
1 Edges only exist when there is a semantic relation between vertices, or senses. 
2 As probable. 
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Theoretically, the method of PageRank (Brin & Page, 1998) distributes more 
probabilities or more scores through edges to well-connected nodes (i.e., well-known web 
pages) in a network (i.e., the Web). That is, more connected nodes tend to collect scores, in 
turn propagating comparatively more significant scores to their connected neighboring nodes. 
Consequently, the flow or re-distribution of probabilities or scores mostly would be confined 
to nodes in groups and the convergence of the probabilities over the network is to be expected 
normally. In this stage of our method, an edge is added if and only if there are some semantic 
relations, in the sense inventory, existing between two word senses (e.g., one is the immediate 
hyponym/hypernym of the other), to differentiate semantically-related senses from those that 
are not. The PageRank-like algorithm in Figure 4 is exploited to determine the most 
well-connected or more semantically related (sense) group. Additionally, the senses in the 
group are assumed to be the most suitable senses of words for the given semantic category or 
semantic topic. This assumption is more likely to be correct if the number of given words in a 
category is big enough (it is usually easier to uniquely determine the sense of words given 
more words). Moreover, empirically, the number of iterations needed for probabilities to 
converge is less than ten (Usually, six is enough. It took only three iterations for words in 
Figure 6 to converge.); a quick scan of the results of this sense-assigning step reveals that the 
aforementioned assumption leads to satisfying sense analyses. 

 

Figure 6. Highest scoring word sense in the stationary distributions for thesaurus 
word list under category “Goodness” assigned automatically by Random 
Walk on graph. 
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3.2.2 Extending the Coverage of Thesaurus 
Automating the task of constructing a large-scale semantic knowledge base for semantic 
classification imposes a huge effort on the side of knowledge integration. Starting from a 
widespread computational lexical database, such as WordNet, overcomes the difficulties of 
building a knowledge base from scratch. In the second stage of the learning process (Step (2) 
in Figure 3), we attempt to broaden the limited thesaurus coverage in view of reducing 
encounters of unknown words in collocation label assignment in Section 3.3. The 
sense-annotated word lists generated as a result of the previous step are useful for enlarging 
and enriching the vocabulary of the thesaurus. 

Take the sense-annotated result in Figure 6 for example. “Fine” with other adjective 
entries “beautiful,” “lovely,” “splendid,” and “superb” under the semantic label “Goodness” is 
identified as belonging to the word sense fine#3 “characterized by elegance or refinement or 
accomplishment” rather than other admissible senses (as shown in Table 1). After knowing the 
sense of the word “fine” under the semantic category “Goodness,” we may now add its similar 
words via feasible semantic operators (as shown in Table 2) provided in the word sense 
inventory (e.g., WordNet). Its similar word, as suggested in Table 1 and 2, elegant#1 can be 
acquired by applying the operator “syn operator” on fine#3. Then, elegant#1 is incorporated 
into the knowledge base (e.g., ISK) under the semantic category of fine#3, “Goodness”. 

Table 1. Admissible senses for adjective “fine” 

Table 2. Semantic relation operators for extending the coverage of thesaurus. 
semantic relation

operators Description Relations 
Hold for 

syn operator 
synonym sets for every word that are interchangeable in some 
context without changing the truth value of the preposition in 
which they are embedded 

all words 

sim operator adjective synsets contained in adjective clusters adjectives 

Sense 
Number Definition Example Synsets of 

Synonym 

fine #1 (being satisfactory or in 
satisfactory condition) 

“an all-right movie”; “everything’s 
fine”; “the passengers were shaken 
up but are all right”; “dinner and the 
movies had been fine”; “things are 
okay” 

all right#1, 
o.k.#1, 
ok#1, 

okay#1, 
hunky-dory#1 

fine #3 
(characterized by elegance 

or refinement or 
accomplishment) 

“fine wine” ; “a fine gentleman”; 
“looking fine in her Easter suit”;  
“fine china and crystal”; “a fine 
violinist” 

elegant#1 

fine #4 (thin in thickness or 
diameter) 

“a fine film of oil”; “fine hairs”;  
“read the fine print” thin#1 
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In the end, by using semantic operators in lexical database (e.g., WordNet), the coverage 
of the integrated semantic knowledge obtained from Step (1) in Figure 3 can be enlarged for 
assigning the semantic label of a collocation at run-time (Section 3.3). 

3.2 Giving Thesaurus Structure to Collocation by Iterative Graphical 
Algorithms 

Provided with the extended semantic knowledge obtained by following the learning process in 
Section 3.2, we build a thesaurus structure for the query results from online collocation 
reference tools. Figure 7 illustrates a thesaurus structure imposed on some adjective 
collocations (i.e., “superb,” “fine,” “lovely,” “beautiful,” “splendid,” etc.) of the word “beach” 
by our system. 

 

Figure 7. Sample adjective collocations of the word “beach” after being 
classified into some general-purpose semantic topics. 

At run-time, we apply the Random Walk algorithm, which is very similar to the one in 
Figure 4, to automatically assign semantic labels to all collocations of a pivot word (e.g., 
“beach”) by exploiting semantic relatedness identified among these collocations. Once we 
know the semantic labels, or thesaurus categories, of the collocates, we partition them in 
groups according to their labels, which is helpful for dictionary look-up and for L2 learners to 
quickly find their desired collocations under some semantic meaning. The following depicts 
the semantic labeling procedure. 

The input to this procedure is (1) a set of collocations, Col, for the query word X; (2) the 
integrated semantic knowledge (i.e., ISK) from Section 3.2, {(W, L)} where a word W is 
semantically labeled as L. The output of this procedure is sets of collocations, each of which is 
classified under a semantic label and contains semantically-related collocations of the query 
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word (see Figure 7). 

At first, we construct a graph G={V,E} where a vertex in V represents a possible 
semantic category for a collocation C in Col and an edge in E represents a semantic 
relatedness holding between vertices. Note that we can look up possible semantic labels of a 
word from ISK and that edges in G are directed. 

We use PL to depict the probability of the candidate label, L, of a collocation in Col. Prior 
to the random-walking process, PL is uniformly initialized over possible labels of a collocation. 
Once the matrix M, representing the proportions of probabilities to be propagated, is built, PL 

will be iteratively changed, based upon current statistics, until convergence of probabilities. 
Recall that an element Mx,y in the matrix will be set to 1-d if node x is equal to node y; will be 
set to d/e(x) if x is different from y, there is an edge between x and y, and there are e(x) edges 
leaving x; and will be set to zero otherwise. At each iteration, the probabilities of the candidate 
labels of a collocate sum to one, suggesting normalization is needed for each iteration as in the 
algorithm of word sense assignment in Figure 4. 

Finally, we identify the most probable semantic label L* for each collocate C, resulting 
in a list of (C, L*). The procedure is designed to arrange given collocations in thesaurus 
categories with semantically related collocations therein, providing L2 learners with a 
thesaurus index for easy lookup or easy concept-grasping (see Figure 7 for an example). 

4. Experimental Setting 

4.1 Experimental Data 
In our experiment, we applied the Random Walk Algorithm (in Section 3.2 and Section 3.3) to 
partition collocations into existing thesaurus categories, thus imposing a semantic structure on 
the raw data (i.e., given collocations). In analysis of learners’ collocation error patterns, 
verb-noun (V-N) and adjective-noun (A-N) collocations were found to be the most frequent 
error patterns (Liu, 2002; Chen, 2002). Hence, for our experiments and evaluation, we focused 
our attention particularly on V-N and A-N collocations. 

Recall that our classification model starts with a thesaurus consisting of lists of 
semantically related words and extends the thesaurus using sense labeling in Section 3.2.1 and 
semantic operators in the word sense inventory in Section 3.2.2. The extended semantic 
knowledge provides collocates with topic labels for semantic classification of interest. Two 
kinds of resources required in our experiment to obtain the extended knowledge base are 
described below. 
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4.1.1 Data Source 1: A Thesaurus 
We used Longman Lexicon of Contemporary English (LLOCE for short) as our thesaurus of 
semantic categories (i.e., TC). LLOCE contains 15,000 distinct entries for all open-class words, 
providing semantic fields of a pragmatic, everyday common sense index for easy reference. 
The words in LLOCE are organized into approximately 2,500 semantic word sets. These sets 
are divided into 129 semantic categories and further organized as 14 semantic fields. Thus, the 
semantic field, category, and word set in LLOCE constitute a three-level hierarchy, in which 
each semantic field contains 7 to 12 categories and each category contains 10 to 50 sets of 
semantic related words. The LLOCE is based on coarse, topical semantic classes, making them 
more appropriate for WSD than other finer-grained lexica. Alternatively, Roget’s Thesaurus 
can be used as the thesaurus. 

4.1.2 Data Source 2: A Word Sense Inventory 
For our experiments, we need comprehensive coverage of word senses. Word senses can be 
obtained easily from any definitive record of the English language (e.g. an English dictionary, 
encyclopedia or thesaurus). We used WordNet 3.0 as our sense inventory. It is a 
broad-coverage, machine-readable lexical database, publicly available in parsed form 
(Fellbaum, 1998) and consists of 212,557 sense entries for open-class words, including nouns, 
verbs, adjectives, and adverbs. WordNet is organized by the synonymous sets, or synsets, and 
provides semantic operators to act upon its synsets. 

4.2 Experimental Configurations 
Given the aforementioned two data sources, we first integrate them into one then broaden the 
vocabulary of the thesaurus, the basis knowledge for assigning semantic labels to collocations. 

4.2.1 Step 1: Integrating Semantic Knowledge 
For each semantic topic in LLOCE, we attach word senses to its constituent words based on 
semantic coherence (within a topic) and semantic relations created by lexicographers from 
WordNet. The integrated semantic knowledge can help interpret a word by providing 
information on its word sense and its corresponding semantic label. 

Recall that, to incorporate senses into words with semantic topics, our model applies the 
Random Walk Algorithm on a weighted directed graph whose vertices (word senses) and 
edges (semantic relations) are extracted from and are based on LLOCE and WordNet 3.0. All 
edges are drawn and weighted to represent the magnitudes of semantic relatedness among 
word senses. See Table 3 for the relations (or semantic operators) existing in edges in our 
experiment. 
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Table 3. Available semantic relations. 

Relations Semantic Relations for Word Meanings Relations 
Hold for 

syn 
synonym sets for every word that are interchangeable in some 
context without changing the truth value of the preposition in 
which they are embedded 

all words 

hyp 
hypernym/hyponym (superordinate/subordinate) relations 
between synonym sets 

nouns 
verbs 

vgp verb synsets that are similar in meaning and should be grouped 
together when displayed in response to a grouped synset search. verbs 

sim adjective synsets contained in adjective clusters adjectives 
der words that have the same root form and are semantically related all words 

4.2.2 Step 2: Extending Semantic Knowledge 
Based on the senses mapped to words with semantic labels (via the graph-based sense 
assignment algorithm), we further utilize the semantic operators in WordNet (i.e., SI) to add 
new words into LLOCE (i.e., TC). Depending on the part-of-speech (i.e., noun, adjective, or 
verb) of the word at hand, various kinds of semantic relation operators (see Table 3) are 
available for enriching the vocabulary of the integrated semantic knowledge (i.e., ISK) of 
WordNet and LLOCE. In the experiment, using the syn operator alone broadened the 
vocabulary size of ISK to a size more than twice as large as that of the thesaurus LLOCE (i.e., 
39,000 vs. 15,000). 

4.3 Test Data 
We used a collection of 859 V-N and A-N collocation pairs for testing. These collocations 
were obtained from the website: JustTheWord (http://193.133.140.102/JustTheWord/). 
JustTheWord clusters collocates into sets without any explicit semantic label. We will 
compare its clustering performance with our model’s performance in Section 5. 

In the experiment, we evaluated semantic classification of three3 types of collocation 
pairs: (1) A-N pairs and clustering over the adjectives (A-N), (2) V-N pairs and clustering 
over the verbs (V-N), and (3) V-N pairs and clustering over the nouns (V-N). For each type, 
we selected five pivot words with varying levels of abstractness for L2 learners and extracted 
a subset of their respective collocations from JustTheWord, leading to a test data set of 859 
collocation pairs. Table 4 shows the number of the collocations for each pivot of each 
collocation type. In total, 307 collocates were extracted for A-N, 184 for V-N, and 368 for 

                                                       
3 We do not consider the case of A-N in that, usually, various nouns can follow an adjective. 



 

 

       A Thesaurus-Based Semantic Classification of English Collocations         273 

V-N. 

To appropriately select our testing pairs from JustTheWord, we were guided by research 
into L2 learners’ and dictionary users’ needs and skills for second language learning, 
especially taking account the meanings of complex words with many collocates (Tono, 1992; 
Rundell, 2002). The pivot words we selected for testing are words that have many respective 
collocations and are shown in worth-noting boxes in Macmillan English Dictionary for 
Advance Learners [ISBN 0-333-95786-5] (First edition, henceforth MEDAL). 

Table 4. Statistics of our testing collocation pairs. 

collocation 
type 

pivot 
word 

some collocations count 

A-N 
 

 (N=pivot) 

advice helpful, dietary, impartial, free 36  

attitude healthy, moral, aggressive, right 49  

description clinical, excellent, fair, precise 47  

effect serious, inevitable, possible, sound 114  

impact dramatic, negative, powerful, severe 61  

V-N 
         

(N=pivot) 

balance strike, maintain, achieve, tilt, tip 29  

disease cure, combat, carry, transmit, carry 21  

issue settle, clarify, identify, remain, avoid 38  

plan propose, submit, accept, involve 54  

relationship forge, alter, develop, damage, form 42  

V-N 
 

(V=pivot) 

deserve blame, support, title, thanks, honor 51  

express love, anger, fear, personality, doubt 82  

fight disease, war, , enemy, cancer, duel 24  

hold funeral, presidency, hope, knife 151  

influence health, government, opinion, price 60  

5. Results and Discussions 

Two pertinent sides were addressed for the evaluation of our results. The first was whether 
such a model for a thesaurus-based semantic classification could generate collocation clusters 
correlating with human word meaning similarities to a significant extent. Second, supposing it 
could, would its results of semantic label assignment lead to easy dictionary lookup or better 
collocation understanding and production? In the following sections, two evaluation metrics 
are described to respectively examine our results in these two aspects, that is, the accuracy of 
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our collocation clusters and the helpfulness of our labels in terms of language learning. 

5.1 Performance Evaluation for Semantic Clusters 
Traditional cluster evaluation (Salton, 1989) might not be suited to assess our model, where 
we aim to facilitate collocation referencing and help learners improve their collocation 
production. Hence, to evaluate the performance of our clustering results, an evaluation sheet 
made up of test items, resembling synonym test items of the Test of English as a Foreign 
Language (TOEFL), was automatically generated for human judgment. Landauer and Dumais 
(1997) first proposed using the synonym test items of TOEFL as an evaluation method for 
semantic similarity. Fewer fully automatic methods of a knowledge acquisition evaluation, i.e., 
ones that do not depend on knowledge being entered by a human, have been capable of 
performing well on a full scale test used to measure semantic similarity. A test item provided 
by Landauer (1997, as cited in Padó & Lapata, 2007) is shown below where “crossroads” is 
the synonym for “intersection” in the context. 

You will find the office at the main intersection. 

(a) place  (b) crossroads  (c) roundabout  (d) building 

As to our experiment, we evaluated the semantic relatedness among collocation clusters 
according to the above-mentioned TOEFL benchmark by setting up test items out of our 
clustering results. Then, human judges performed a decision task similar to TOEFL test takers:  
deciding which one of the four alternatives was synonymous with the target word. A sample 
question is shown below where “rocky” is clearly the most similar word for “sandy” given the 
pivot word “beach”. 

sandy beach 

(a) long  (b) rocky  (c)super  (d)narrow 

There were 150 multiple-choice questions randomly constructed to test the accuracy of 
our clusters, 50 questions for each collocation types (i.e., A-N, V-N, and V-N) and 10 for each 
of collocation pairs. In order to evaluate the degree to which our model achieved production of 
good clusters, two judges were asked to choose the most appropriate answer. More than one 
answer was allowed if the judges found some of the distractors in the test items to be plausible 
answers. Moreover, the judges were allowed not to choose any of the alternatives given if they 
thought no satisfactory answer was provided. Table 5 shows the performance of collocation 
clusters generated by JustTheWord and the proposed system. As suggested in the table, our 
model achieved significantly higher precision and recall in comparison with our baseline, 
JustTheWord. 
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Table 5. Precision and recall of two systems 

 Judge 1 Judge 2 Inter-Judge 
Agreement Precision Recall Precision Recall 

Ours .79 .71 .73 .67 
.82 

JustTheWord .57 .58 .57 .59 

With high inter-judge agreement (i.e., 0.82), the influence of human judges’ subjectivity 
on the performance evaluation of collocation clusters is not that severe and it is modest to say 
that our model’s clustering results are thought to be better than the baseline’s across human 
judges. 

5.2 Conformity of Semantic Labels 
The second evaluation task focused on whether the semantic labels would facilitate users 
scanning the collocation entries quickly and finding the desired concept of the collocations. 
The evaluation is aimed at examining the extent to which semantic labels are useful, and to 
what degree of reliability. 

Two native speakers were asked to grade half of the labeled collocations randomly 
selected from our classifying results (all test data considered). A three-point rubric is used to 
evaluate the effectiveness, or usefulness, of the given semantic labels in terms of navigating 
users to the desired collocates. The three types of rubric points with their descriptions are: 
three points for those collocations with effective semantic labels in navigation in a collocation 
reference tool, two points for those with somewhat helpful assigned labels, and one point for 
those with misleading labels. 

Table 5 shows that 77% of the semantic labels assigned as a reference guide have been 
judged as adequate in terms of guiding a user finding a desired collocation in a collocation 
learning tool and that our classification model provably yields productive performance of 
semantic labeling of collocates to be used to assist language learners. The results justify the 
thought that the move towards semantic classification of collocations is of probative value. 

Table 6 shows that 76% of the semantic labels assigned as a reference guide were judged 
adequate in terms of guiding users to find a desired collocation in a collocation learning tool, 
and this suggests that our classification model yielded promising performance in semantically 
labeling collocates further to be used to assist language learners. The results justify that the 
move towards semantic classification of collocations is of probative value. 

Table 6. Performance evaluation for assigning semantic labels as a reference guide 

 Judge 1 Judge 2 

Ours .77 .75 
JustTheWord Not available Not available 

Results 
System 
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6. Conclusion and Future Work 

The research seeks to create a thesaurus-based semantic classifier within a collocation 
reference tool without meaning access indices. We describe a thesaurus-based semantic 
classification for a semantic grouping of collocates with a pivot word. The construction of a 
collocation thesaurus is meant to enhance L2 learners’ collocation production. Our 
classification model is based on two graph-based Random Walk Algorithms (i.e., word sense 
assignment and semantic label assignment) to categorize collocations into semantically-related 
groups for easy dictionary lookup and collocation understanding and production. The limited 
vocabulary size of the semantic thesaurus is dealt with using the sense information and the 
semantic operators in the word sense inventory, WordNet. The evaluation shows that the 
thesaurus structure imposed by our model for an existing computational collocation reference 
tool is quite accurate and is helpful for users to navigate the collocations of a pivot word. 

Many avenues exist for future research and improvement of our system. For example, 
semantic relations existing between word senses may take on different weights in that some 
may be more informative than others in determining semantic similarities. Another interesting 
direction to explore is to see if our model can benefit from other thesauri with semantic labels. 
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Cantonese-English Code-Mixing Speech 
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Abstract 

Code-mixing is a common phenomenon in bilingual societies. It refers to the 
intra-sentential switching of two different languages in a spoken utterance. This 
paper presents the first study on automatic recognition of Cantonese-English 
code-mixing speech, which is common in Hong Kong. This study starts with the 
design and compilation of code-mixing speech and text corpora. The problems of 
acoustic modeling, language modeling, and language boundary detection are  
investigated. Subsequently, a large-vocabulary code-mixing speech recognition 
system is developed based on a two-pass decoding algorithm. For acoustic 
modeling, it is shown that cross-lingual acoustic models are more appropriate than 
language-dependent models. The language models being used are character 
tri-grams, in which the embedded English words are grouped into a small number 
of classes. Language boundary detection is done either by exploiting the 
phonological and lexical differences between the two languages or is done based on 
the result of cross-lingual speech recognition. The language boundary information 
is used to re-score the hypothesized syllables or words in the decoding process. The 
proposed code-mixing speech recognition system attains the accuracies of 56.4% 
and 53.0% for the Cantonese syllables and English words in code-mixing 
utterances. 

Keywords: Automatic Speech Recognition, Code-mixing, Acoustic Modeling, 
Language Modeling 

1. Introduction 

Code-switching and code-mixing are common phenomena in bilingual societies. According to 
John Gumperz (Gumperz, 1982), the definition of code-switching is “the juxtaposition within 
the same speech exchange of passages of speech belonging to two different grammatical 
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systems or sub-systems”. Different combinations of languages are found in code-switching, 
for examples, Spanish-English in United States, German-Italian and French-Italian in 
Switzerland, and Hebrew-English in Israel (Auer, 1998). In Taiwan, code-switching between 
Chinese dialects, namely Mandarin and Taiwanese, has become common in recent years 
(Chen, 2004). Hong Kong is an international city where many people, especially the younger 
generation, are Cantonese and English bilinguals. English words are frequently embedded into 
spoken Cantonese. The switching of language tends to be intra-sentential, and it rarely 
involves linguistic units above the clause level. Hence, the term code-mixing is usually 
preferred (Li, 2000). In this case, Cantonese is the primary language, also known as the matrix 
language, and English is the secondary language, usually referred to as the embedded 
language (Halmari, 1997). 

Automatic speech recognition (ASR) is one of the key technologies in spoken language 
processing. An ASR system converts an input speech waveform into a sequence of words. 
Recently, ASR for multilingual applications has attracted great interest (Schultz & Kirchhoff, 
2006). In state-of-the-art ASR systems, the input speech is assumed to contain only one 
language and the language identity is given. These systems are not able to handle code-mixing 
speech, which differs significantly from monolingual speech spoken by native speakers. This 
calls for special consideration in the design of acoustic models, lexical and language models, 
and in the decoding algorithm. 

There have been two different approaches to code-switching or code-mixing speech 
recognition (Lyu et al., 2006; Chan et al., 2006). The first approach involves a language 
boundary detection (LBD) algorithm that divides the input utterance into 
language-homogeneous segments. The language identity of each segment is determined, and 
the respective monolingual speech recognizer is applied. LBD for mixed-language utterances 
was studied by Wu et al. (2006) and Chan et al. (2004). Language-specific phonological and 
acoustic properties were used as the primary cues to identify the languages. The second 
approach aims to develop a cross-lingual speech recognition system, which can handle 
multiple languages in a single utterance. The acoustic models, language models, and 
pronunciation dictionary are designed to be multi-lingual and cover all languages concerned. 
In Lyu et al. (2006), automatic recognition of Mandarin-Taiwanese code-switching speech 
was investigated. It was found that Mandarin and Taiwanese, both of which are Chinese 
dialects, share a large percentage of lexicon items. Their grammar was also assumed to be 
similar. A one-pass recognition algorithm was developed using a character-based search net. It 
was shown that the one-pass approach outperforms LBD-based multi-pass approaches. In You 
et al. (2004), a mixed-lingual keyword spotting system was developed for auto-attendant 
applications. The keywords to be detected could be in either English or Chinese. 

This paper presents a study on automatic speech recognition of Cantonese-English 
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code-mixing speech. Part of the work was reported in Chan et al. (2006). Our study covers all 
components of an ASR system, including acoustic models, language models, pronunciation 
dictionary, and search algorithm. Different approaches to LBD are also investigated. By 
understanding the linguistic properties of monolingual Cantonese and English, as well as 
code-mixing speech, the major difficulties in code-mixing speech recognition are revealed and 
possible solutions are suggested. We propose a two-pass recognition system, in which the 
acoustic and linguistic knowledge sources are integrated with language boundary information. 
Simulation experiments are carried out to evaluate the performance of the whole system as 
well as individual system components. 

2. Difficulties in Code-mixing Speech Recognition 

2.1 Linguistic Properties of Cantonese and English 
Cantonese is a Chinese dialect. It is spoken by tens of millions of people in the provinces of 
Guangdong, Guangxi, Hong Kong, and Macau. A Chinese word in its written form is 
composed of a sequence of characters. In Cantonese, each Chinese character is pronounced as 
a monosyllable carrying a specific lexical tone (Ching et al., 2006). English is one of the most 
popular languages in the world. An English word is written as a sequence of letters. In spoken 
form, each word may consist of several syllables, some of which are designated to be stressed. 
Table 1 shows a pair of example words in Cantonese and English. 

Table 1. Examples of Cantonese and English words in written and spoken format. 
Written (orthographic transcription) Spoken (phonetic transcription) 

產生 /ts a n/ /s  / 

produce /p r ´ »d j u˘ s/ 

Syllables can be divided into smaller units, namely consonants (C) and vowels (V). 
Cantonese syllables take the structures of V, CV, CVC, or VC (Ching et al., 1994). If tonal 
difference is not considered, the number of distinct Cantonese syllables is around 600 (Ching 
et al., 2006). The syllable structure in English is more complicated than that in Cantonese. 
Although many English syllables share the same canonical forms as given above, there also 
exist combinations like CCV, VCC, CCCV, and CCCVCC (Wester, 2003), which are not 
found in Cantonese. 

There are 22 consonants and 22 vowels (including diphthongs) in Cantonese, and 24 
consonants and 14 vowels in American English (Ching et al., 1994; Ladefoged, 1999). Table 2 
lists the IPA (International Phonetic Alphabet) symbols of these phonemes. Some of the 
phonemes in the two languages are labeled with the same IPA symbols by phoneticians, 
meaning that they are phonetically very close. Some of the other phonemes are also 
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considered to be very similar although they are labeled differently in the two languages, e.g., 
/au/ in Cantonese and /aU/ in English. 

Table 2. Phonemes of Cantonese and English. The phonemes that are labeled with 
the same IPA symbols in both Cantonese and English are listed first and 
boldfaced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Cantonese phonemes 
IPA symbol Example 

p [p a] (爸)
m [m a] (媽)
f [f a] (花) 
t [t a] (打) 
tS [tS y] (朱) 
n [n a] (拿) 
s [s a] (沙) 
S [S y] (書) 
l [l a] (啦) 
j [j åu] (憂)
k [k a] (加) 
N [pH a N] (烹)
w [w a] 蛙 
h [h a] (蝦) 
I [s I k] (色)
i [s i] (絲) 
E [s E] (借) 
U [s U N] (鬆)
u [f u] (夫) 
pH [pH a] (扒)
tH [tH a] (他) 
ts [ts i] (之) 
tsH [tsH i] (痴)
tSH [tSH y] (處)
kH [kH a] (卡) 
kW [kW a] (瓜)
kWH [kWH a] (誇)
y [S y] (書) 
ø [h ø] (靴)
a [s a] (沙) 
å [s å p] (濕)
P [s P t] (恤)
ç [s ç] (梳) 
ei [h ei] (稀)
Eu [t Eu] (投)
ai [w ai] (威)
Py [s Py] (衰)
åi [s åi] (西)
ui [f ui] (灰)
iu [s iu] (燒) 
åu [s åu] (收)
au [s au] (筲)
çi [s çi] (鰓) 
ou [s ou] (鬚)

 

English phonemes 
IPA symbol Example 

p [p aI]    (pie) 
m [m aI]    (my) 
f [f l aI]    (fly) 
t [t aI]    (tie) 
tS [tS I n]    (Chin) 
n [n E t]    (net) 
s [s Q t]    (sat) 
S [S aI]    (shy) 
l [l aI]    (lie) 
j [j u]    (you) 
k [k aI t]    (kite) 
N [h Q N]    (hang) 
w [w aI]    (why) 
h [h aI]    (high) 
I [b I d]    (bid) 
i [b i t]    (beat) 
E [b E d]    (bed) 
U [g U d]    (good) 
u [b u t]    (boot) 
b [b aI]   (buy) 
v [v aI]    (vie) 
T [T I N]    (thing) 
D [D e I]    (they) 
d [d aI]    (die) 
z [z u]    (zoo) 
® [® E n t]    (rent) 

dZ [p e I dZ] (page) 
Z [Q Z ‘]    (azure) 
g [g aI]    (guy) 
e [b e I t]    (bait) 
Q [b Q d]    (bad) 
‘ [b ‘ d]    (bird) 
o [b o t]    (boat) 
A [p A d]    (pod) 
√ [b √ d]    (bud) 
aU [k aU]    (cow) 
aI [b aI]    (buy) 
çI [b çI]    (boy) 
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In this section, we use IPA symbols to facilitate an intuitive comparison between 
Cantonese and English. Language-specific phonemic symbols have been commonly used in 
monolingual ASR research, for examples, Pinyin for Mandarin, Jyut-Ping for Cantonese 
(LSHK, 1997), and ARPABET for American English (Shoup, 1980). In Section 4, where 
phoneme-based acoustic modeling is discussed, we will use Jyut-Ping and ARPABET for 
monolingual Cantonese and English respectively, and a combination of them for code-mixing 
speech. 

2.2 Properties of Cantonese-English Code-mixing Speech 
Table 3 gives an example of Cantonese-English code-mixing sentence spoken in Hong Kong. 
It contains an English segment with one word. In this case, the English word is used as a 
substitute for its Chinese equivalent. The grammatical structure is totally that of Cantonese. In 
our application, the mother tongue of the speaker is Cantonese, i.e., the matrix language. It is 
inevitable that the embedded English words carry Cantonese accent to certain extent. In many 
cases, the syllable structure of an English word changes to follow the structure of legitimate 
Cantonese syllables (Li, 1996). Such changes usually involve phone insertions or deletions. 
For example, the second consonant in a CCVC syllable of English may be softened, e.g., the 
word “plan” in the example of Table 3 is pronounced as /p æ n/ instead of /p l æ n/ by many 
Cantonese speakers. A monosyllabic word with the CVCC structure may become disyllabic by 
inserting a vowel at the end, e.g., /f Q n z/ (“fans”) becoming /f Q n s I/. It is also noted that 
the final stop consonant in an English word tends to be softened or dropped, e.g., /t E s t/ 
(“test”) becoming /t E s/. This is related to the fact that the stop coda of a Cantonese syllable 
is unreleased (Ching et al., 2006). In addition to phone insertion and deletion, there also exist 
phone changes in Cantonese-accented English. That is, an English phoneme that is not found 
in Cantonese is replaced by a Cantonese phoneme that people consider to sound similar. For 
example, /P r i/ (“three”) becomes /f r i/ in Cantonese-accented English. Cantonese speakers 
in Hong Kong sometimes create a Cantonese pronunciation for an English word. For example, 
the word “file” (/f aI l/) is transliterated as /f aI l o/ (快佬 in written form). It is not a 
straightforward decision whether such a word should be treated as English or Cantonese. This 
is known as “lexical borrowing” (Chan, 1992). 

In conclusion, English words in a code-mixing utterance must not be treated as being the 
same as those in a monolingual utterance from a native English speaker. For the design of 
ASR systems, special considerations are needed in acoustic modeling and lexicon 
construction. 

Code-mixing occurs less frequently in read-style speech than in casual conversational 
speech. There exist many pronunciation variations in casual Cantonese speech, especially 
when the speaking rate is fast. Speakers may not follow strictly the pronunciations as specified 
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in a standard dictionary. In the example of Table 3, the initial consonant /n/ of the first 
syllable is commonly pronounced as /l/ by the younger generation. Syllable fusion is often 
seen in fast speech, i.e., the initial consonant of the second syllable of a disyllabic word tends 
to be omitted or changed (Kam, 2003; Wong, 2004). 

Table 3. An example of a Cantonese-English code-mixing sentence 
Code-mixing speech 

  你哋       plan           咗       行程       未 ? 

You (plural)   plan       already    schedule     or not 
Transcription according to standard pronunciation dictionary 

/nei/ /tei/       /p l Q n/       /ts ç/       /h åN/ /ts I N/    /m ei/ 

Transcription according to typical pronunciation in code-mixing speech 

/lei/ /tei/       /p Q n/          /ts ç/       /h åN/ /ts I N/     /m ei/ 

English translation 
Have you planned your schedule already? 

2.3 Problems and Difficulties in Code-mixing Speech Recognition 
Large-vocabulary continuous speech recognition (LVCSR) systems deal with fluently spoken 
speech with a vocabulary of thousands of words or more (Gauvain & Lamel, 2000). As shown 
in Figure 1, the key components of a state-of-the-art LVCSR system are acoustic models, 
pronunciation dictionary, and language models (Huang et al., 2001). The acoustic models are 
a set of hidden Markov models (HMMs) that characterize the statistical variation of the input 
speech features. Each HMM represents a specific sub-word unit such as a phoneme. The 
pronunciation dictionary and language models are used to define and constrain the ways in 
which the sub-word units can be concatenated to form words and sentences. 

 
Figure 1. The flow diagram of an LVCSR system 
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For code-mixing speech recognition, the input utterance contains both Cantonese and 
English. Thus, the acoustic models are expected to cover all possible phonemes in the two 
languages. There are two possible approaches: (1) monolingual modeling with two separate 
sets of language-specific models; (2) cross-lingual modeling with some of the phoneme 
models shared between the two languages. Monolingual modeling has the advantage of 
preserving the language-specific characteristics and is most effective for monolingual speech 
from native speakers (Schultz & Waibel, 1998). In code-mixing speech where the English 
words are Cantonese-accented, an English phoneme tends to resemble or even become 
identical to a Cantonese counterpart. In this case, we may treat them as the same phoneme and 
establish a cross-lingual model to represent it. As shown in Table 2, Cantonese and English 
have a number of phonemes that are phonetically identical or similar to each other. The degree 
of similarity varies. In principle, cross-lingual modeling can be applied to those highly similar 
phonemes, while language-specific models would be more appropriate if the phonetic 
variation is relatively large. In Section 4, we are going to compare the effectiveness of 
cross-lingual and mono-lingual acoustic modeling and try to establish an optimal phoneme set 
for code-mixing speech recognition. 

The pronunciation dictionary for code-mixing speech recognition is a mixture of English 
and Cantonese words. Each word may correspond to multiple pronunciations, which are 
represented in the form of phoneme sequences. Due to the effect of the Cantonese accent, the 
English words in code-mixing speech are subject to severe pronunciation variation as 
compared to those in standard English by native speakers. It is essential to reflect such 
variation in the pronunciation dictionary. On the other hand, as discussed in Section 2.2, the 
common pronunciation variations in spoken Cantonese should also be included. 

In our application, the most common type of code-mixing is where one or more 
Cantonese words in the utterance being replaced by the English equivalent (Chan, 1992). The 
grammatical structure of code-mixing sentences is based largely on that of monolingual 
Cantonese. Word n-gram is by far the most commonly used technique for language modeling 
in LVCSR. To train a set of good n-gram models, a large number of spoken materials in 
computer-processable text format are needed. This presents a great challenge to our research 
since it is difficult in practice to find such materials for code-mixing speech. For the training 
of acoustic models, we need a large amount of code-mixing speech data. Development of 
speech and text corpora is therefore an important part of our work. 

3. Development of Code-mixing Speech Corpus 

In this section, the design, collection, and annotation of a Cantonese-English code-mixing 
speech corpus, named CUMIX, are described (Chan et al., 2005). CUMIX is intended mainly 
for acoustic modeling for large-vocabulary speech recognition. 
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3.1 Corpus Design 
There are three different types of utterances in CUMIX: 

1. Cantonese-English code-mixing utterances (CM) 

2. Monolingual Cantonese utterances (MC) 

3. Monolingual English words and phrases (ME) 

The CM utterances represent the typical code-mixing speech being dealt with in our 
application. There are practical difficulties in designing the content of code-mixing sentences. 
This is because spoken Cantonese is considered as a colloquial language that mainstream 
written publications do not use. Although the grammar of spoken Cantonese is similar to that 
of standard written Chinese, the lexical preference is quite different. An example pair of 
spoken Cantonese and written Cantonese sentences is shown in Table 4. Spoken Cantonese 
rarely appears in published text materials. Thus, text materials that involve code-mixing of 
spoken Cantonese and English are very limited. 

Table 4. Comparison of spoken Cantonese and standard Chinese 
Written Chinese: 你 吃過 午飯 了嗎? 

Spoken Cantonese: 你 食咗 晏 未? 

English translation (word by word): You eaten lunch or not? 

English translation (whole sentence): Have you had lunch? 

The design of CM sentences in CUMIX was based on a few local newspapers and online 
resources, including newsgroups and online diaries. We also consulted previous linguistic 
studies on Cantonese-English code-mixing. In Chan (1992), about 600 code-mixing sentences 
were analyzed. In 80% of the cases, the English segment contains a single word. The 
percentage distribution of nouns, verbs, and adjectives/adverbs are 43%, 24%, and 13%, 
respectively. There are very few cases involving prepositions and conjunctions. We try to 
follow these distributions in our corpus design. 

A total of 3167 distinct code-mixing sentences were manually designed. Each sentence 
has exactly one English segment, which may contain one or more words. There are a total of 
1097 distinct English segments. Each of them may appear more than once in the corpus, and if 
it does, the Cantonese contents of the respective sentences are different. The selected English 
words/phrases are commonly found in code-mixing speech and cover different part-of-speech 
categories. 

The monolingual Cantonese sentences (MC) are identical to the CM sentences except 
that the English segments are replaced by the corresponding Cantonese words. The number of 
distinct MC sentences is smaller than that of CM ones because some of the English segments 
do not have Cantonese equivalents. Table 5 gives an example pair of CM and MC sentences. 
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In this example, the code-switched word “bonus” is replaced by the Cantonese word “花紅”. 

Table 5. A CM sentence and the corresponding MC sentence 

CM sentence: 我覺得今年有 bonus  嘅機會好渺茫。 

MC sentence: 我覺得今年有  花紅  嘅機會好渺茫。 

English translation: I believe that it is very unlikely to have a bonus this year. 

We also need English speech data for acoustic modeling of the English segments. 
Existing English databases like TIMIT and WSJ (Garofolo et al., 1993; Lamel et al., 1986; 
Paul & Baker, 1992) do not serve the purpose as they cannot reflect the phonetic and 
phonological properties of Cantonese-accented English. The amount of English speech data in 
the CM utterances is very limited. Thus, monolingual English utterances (ME) were also 
included as part of CUMIX to enrich the training data for the English acoustic models. The 
ME utterances contain English words and phrases, numbers and letters, which are most 
commonly used in Cantonese-English code-mixing speech. 

3.2 Data Collection & Verification 
The speech data in CUMIX were recorded from 34 male and 40 female native Cantonese 
speakers. Most of the speakers were university students. The average age was 22. The 
recording was carried out in a quiet room using a high-quality headset microphone. Each 
speaker was given a list of pre-selected sentences or phrases. He/she was requested to read 
each sentence fluently and naturally at a normal speaking rate. The speaker was also advised 
to adopt the pronunciations that they use in daily life. 

Each recorded utterance was checked manually. The instants of language switching were 
marked. For those containing undesirable content or recording artifacts, the speakers were 
requested to record them again or the utterances were simply discarded. Each verified 
utterance is accompanied by an orthographic transcription, which is a sequence of Chinese 
characters with English words inserted in-between. In addition, the Cantonese pronunciations 
of the characters were also provided in the form of Jyut-Ping symbols. 

3.3 Corpus Organization 
Based on the usage, the utterances were organized into two parts, namely training data and test 
data. The training data set includes utterances from 20 male and 20 female speakers. Each 
speaker has 200 CM utterances and 100 ME utterances. Test data are intended for 
performance evaluation of the code-mixing speech recognition system and language boundary 
detection algorithms. There are 14 male and 20 female speakers in the test data. Each of them 
has 120 CM utterances and 90 MC utterances. Among the 34 test speakers, 5 males and 5 
females were reserved as development data, which is intended for the tuning of various 
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weighting parameters and thresholds in the system design. Table 6 gives a summary of the 
CUMIX corpus. 

Table 6. A summary of CUMIX 

  Training data Test data 
 20 male, 20 female 14 male, 20 female 

CM 

Duration: 7.5 hours 4.25 hours 
Duration of English segments: 1.13 hours 0.57 hours 
Total no. of utterances: 8000 3740 
No. of unique sentences: 2087 2256 
No. of unique English segments: 1047 1069 

MC 
Duration: 

 
2.75 hours 

Total no. of utterances: 3060 
No. of unique sentences: 1742 

ME 
Duration: 1.5 hours 

 Total no. of utterances: 4000 
No. of unique sentences: 1000 

4. Acoustic Modeling 

This part of research aims at designing an appropriate phoneme inventory for acoustic 
modeling of Cantonese-English code-mixing speech. It is expected that some of the phoneme 
models are language-specific and the others are shared between Cantonese and English. 
Speech recognition experiments are carried out to evaluate the performances of three different 
sets of acoustic models in terms of syllable and word accuracy. In addition to CUMIX, two 
large-scale monolingual speech databases, namely TIMIT and CUSENT, are involved. 
CUSENT is a read-speech database developed for Cantonese LVCSR applications (Lee et al., 
2002). TIMIT is a phonetically balanced speech database of American English with hundreds 
of speakers (Garofolo et al., 1993). 

Table 7 explains the three sets of acoustic models, which are denoted by ML_A, ML_B, 
and CL, respectively. ML_A and ML_B are language-dependent phoneme models, in which 
Cantonese and English phonemes are separated despite the fact that some of them are 
phonetically similar. There are 56 Cantonese phonemes as listed in Table 8. They are adequate 
to compose all legitimate syllables of Cantonese. The English phoneme set has 39 elements as 
shown in Table 9. This phoneme set has been the most widely used in previous research (Lee 
& Hon, 1989). The difference between ML_A and ML_B is that they are trained with different 
training data as shown in Table 7. 
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CL is a set of cross-lingual models, designed to accommodate both Cantonese and 
English. As the matrix language, all Cantonese phonemes are included in the cross-lingual 
phoneme set. The English phonemes are divided into two parts. Phonemes that are unique to 
English are modeled separately, while the others are treated as Cantonese phonemes. In our 
work, the merging between English and Cantonese phonemes is based largely on phonetic 
knowledge (Chan, 2005). Due to the Cantonese accents, a number of English phonemes in the 
code-mixing speech are found to be sharable with Cantonese. It is also practically preferable 
to reduce the total number of phonemes as far as possible to facilitate effective utilization of 
training data. As a result, a total of 70 phonemes are selected for CL (Chan et al., 2006). They 
are listed in Table 10. In addition to the 56 Cantonese phonemes in Table 8, a number of 
Cantonese diphthongs that have English equivalents are included. There are only 7 
English-specific phonemes, while the others are mapped to some Cantonese equivalents. 

Table 7. Different acoustic models being evaluated 
Model Phoneme inventory Training data 

ML_A 
39 English phonemes 
56 Cantonese phonemes 

English: 
Cantonese: 

TIMIT 
CUSENT 

ML_B 
39 English phonemes 
56 Cantonese phonemes 

English: 
Cantonese: 

CUMIX 
CUSENT & CUMIX 

CL 70 Cross-lingual phonemes 
English: 
Cantonese: 

CUMIX 
CUSENT & CUMIX 

Table 8. 56 Cantonese phonemes for monolingual modeling (ML_A & ML_B). 
Jyut-Ping symbols are used. “f-“ represents a syllable-initial consonant 
and “-m” represents a syllable coda. “k-/kw-” means that the two initial 
consonants are merged as one. “s-(yu)” represents a variant of “s-” 
when followed by the vowel “yu”. 

Consonant f-, h-, k-/kw-, g-/gw-, l-/n-, m, m-, -m, -n, ng, ng-, -ng, null, b-, p-, s-, 
s-(yu), z-, z-(yu), c-, c-(yu), d-, t-, w-, j- 

Vowel a, aa, o, e, eo, i, i(ng), oe, u, u(ng), yu 
Vowel-stop ap, at, ak, aap, aat, aak, ep, et, ek, ut, uk, yut, ip, it, ik, op, ot, ok, eot, oek 

Table 9. English phonemes for monolingual modeling (ML_A & ML_B). 
APRABET symbols are used to label the phonemes. 

Consonant dh, th, f, v, w, z, zh, s, sh, t, d, b, p, ch, g, h, jh, k, l, m, n, ng, y, r 
Vowel aa, ae, ah, ao, aw, ay, eh, er, ey, ih, iy, ow, oy, uh, uw 
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Table 10. Phonemes for cross-lingual modeling (CL). English-specific phonemes 
start with the prefix “E_” and are labeled with ARPABET symbols. 

Consonant (30) 
f-, h-, k-/kw-, g-/gw-, l-/n-, m, m-, -m, -n, ng, ng-, -ng, null, b-, p-, s-, 
s-(yu), z-, z-(yu), c-, c-(yu), d-, t-, w-, j-, 
E_t, E_d, E_k, E_r, E_z 

Vowel/diphthong (20)
a, aa, o, e, eo, i, i(ng), oe, u, u(ng), yu, iu, aai, ai, au, ou, oi, ei, 
E_ah, E_el 

Vowel-stop (20) ap, at, ak, aap, aat, aak, ep, et, ek, ut, uk, yut, ip, it, ik, op, ot, ok, eot, oek 

The English phoneme models in ML_A are trained with TIMIT, and the Cantonese 
models are trained with CUSENT. The English words in TIMIT sentences are transcribed into 
phoneme sequences based on the CMU pronunciation dictionary (CMU). The Cantonese 
syllables in CUSENT utterances are transcribed into phoneme sequences using a standard 
Cantonese pronunciation dictionary (LSHK, 1997). All training data are assumed to follow the 
standard pronunciations. 

For ML_B, the English phoneme models are trained with the code-switched English 
segments in the CM and ME utterances of CUMIX. The Cantonese phoneme models are 
trained with CUSENT and the Cantonese part of CUMIX. Moreover, the pronunciation 
dictionaries used for transcribing the utterances include not only standard English but also 
Cantonese-accented English and common pronunciation variants of Cantonese syllables. Thus, 
there may exist multiple pronunciations for a lexical entry. For each of the possible 
pronunciations, the acoustic likelihood of the word or syllable segment is computed. The 
pronunciation with the highest likelihood is adopted for the training of ML_B. 

For CL, we use the same training data as for ML_B. We also use the same transcriptions 
as determined for ML_B except that the language-dependent phoneme symbols are converted 
into the cross-lingual phoneme symbols in Table 10. 

The effectiveness of ML_A, ML_B, and CL are evaluated by syllable/word recognition 
experiments. The test data include the CM and the MC test utterances of CUMIX. The 
acoustic feature vector has 39 components: 13 MFCC and their first and second-order time 
derivatives. All phoneme models are context-dependent triphone HMMs. Each model consists 
of three emitting states, each of which is represented by a mixture of Gaussian density 
functions. States in models are clustered and tied using a decision-tree based technique with 
pre-set phonetic questions. ML_A and ML_B use 16 Gaussian components per state, while CL 
has 32 Gaussian components. The grammar network used for recognizing CM utterances is 
illustrated in Figure 2. For MC utterances, the recognition network is simplified into a syllable 
loop. 
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Figure 2. Grammar network for syllable/word recognition of code-mixing speech 

The recognition performance is measured in terms of syllable accuracy for Cantonese 
and word accuracy for English. The test results are given in Figure 3. For code-switched 
English words, ML_A attains a very low accuracy of 18.9%. This confirms that 
Cantonese-accented English is very different from the native American English found in 
TIMIT. ML_B improves greatly in recognizing English words due to better matched training. 
Nevertheless, the accuracy of 40.5% is still on the low side because of the limited amount of 
training data and the language-dependent nature of the models. The English words in CUMIX 
carry Cantonese accents, such that some of the English phoneme models are very close to 
certain Cantonese phoneme models. In other words, similar acoustic features are captured by 
two different models. Hence, the confusion between English words and Cantonese syllables 
tends to increase. The Cantonese syllables are easily misrecognized as English words, and 
vice-versa. This also explains why the performance of ML_B in recognizing Cantonese 
syllables declines. 
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Figure 3. Syllable/word accuracy of the three acoustic models 
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For Cantonese speech in the code-mixing utterances (CM), the recognition accuracies 
attained by ML_A and ML_B are 60.9% and 45.9% respectively. The poor performance of 
ML_B is related to the use of language-dependent models as discussed above. The 
performance difference between ML_A and ML_B for monolingual Cantonese utterances 
(MC) is not as significant as for the CM utterances. This is because the grammar network used 
for MC utterances does not include an English segment, and therefore there should be no 
recognition error caused by the confusion between similar Cantonese and English phonemes. 

CL uses a large number of shared phoneme models between English and Cantonese. It 
attains the best recognition accuracy of 59% for the embedded English words, and at the same 
time, it maintains a reasonable performance on Cantonese. It is believed that the existing 
design of cross-lingual models can be improved further with more understanding about the 
phonetic variation in code-mixing speech. More training data will also be helpful. 

5. Language Modeling 

5.1 Collection and Selection of Text Data 
There are practical difficulties in collecting a large amount of text material to facilitate 
statistical language modeling for Cantonese-English code-mixing speech. Cantonese is a 
spoken dialect; many colloquial Cantonese words do not have a standard written form. In 
addition, written Cantonese is neither taught in schools nor recommended for official and 
documentary usage. Nevertheless, a limited amount of Cantonese text data can be found in 
certain columns of local newspapers, magazines, advertisements, and online articles (Snow, 
2004). On the other hand, code-mixing is a domain-specific phenomenon. It is found in the 
discourses that involve contemporary and cross-cultural issues, e.g., computer, business, 
fashion, food, and showbiz (Li, 1996). In our study, Cantonese text data are selected from 
three major sources, namely newspaper, magazines, and online diaries. Preliminary manual 
inspection was done to identify the sections or columns that are highly likely to contain 
code-mixing text. A total of 28 Chinese characters that are frequently used in spoken 
Cantonese but rarely used in standard Chinese were identified, e.g., 嘅, 嘢, 咁 (Snow, 2004). 
Articles that contain these characters were considered to be written in Cantonese. As a result, 
a text database with 6.8 million characters was compiled. There are about 4600 distinct 
Chinese characters and 4200 distinct English segments in the database. About 10% of these 
English segments are included in the CUMIX utterances. 

5.2 Training of Language Models 
The text data were used to train character tri-grams. Four different models were trained: 

CAN_LM: mono-lingual Cantonese language model; 
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CM_LM: code-mixing language model; 

CLASS_LM: class-based language model; 

TRANS_LM: translation-based language model. 

For CAN_LM, all English words were removed from the training text. They were 
considered as out-of-vocabulary (OOV) words during the evaluation. OOV words are assigned 
zero probability so that they may be missed in recognition. For CM_LM, all code-switched 
segments in the training text were mapped to the same word ID during the training process, no 
matter whether the words were found in the training text or not. By doing so, the likelihood of 
English segments is made much higher than that of the Cantonese characters, thus, Cantonese 
words may be easily misrecognized as English words. In CLASS_LM, code-switched 
segments were divided into 15 classes according to their parts of speech (POS) or meanings. 
Most of the classes were for nouns. TRANS_LM involves English-to-Cantonese translation, 
by which code-switched segments are translated into their Cantonese equivalents. 
Nevertheless, since not all of the code-switched terms have Cantonese equivalents, the POS 
classes being used in CLASS_LM were considered as well. 

The language models were evaluated in the phonetic-to-text (PTT) conversion task. 
Assuming that the true phonetic transcription is known, language models were used to 
determine the word sequence that best matched the transcription. For Chinese languages, PTT 
conversion is often formulated as a problem of syllable-to-character or Pinyin-to-text 
conversion. Statistical language models have proven to be very effective (Gao et al., 2002). In 
our study, PTT conversion was treated as a sub-task of decoding for speech recognition. The 
proposed code-mixing speech recognition system employs a two-pass decoding algorithm (see 
Section 7 for details). The first pass generates a syllable/word lattice using acoustic models 
and bilingual dictionary. Language models are used in the second pass to decode the Chinese 
character sequence. PTT conversion can be done by skipping the first pass and using the true 
syllable-level transcription to replace the hypothesized syllable lattice. In this way, the 
effectiveness of language models can be assessed. The true syllable transcription of the CM 
test utterances is used as the input. The PTT conversion accuracy attained by different 
language models is given in Table 11. 

Table 11. Phonetic-to-text conversion rate by different language models 

Language model PTT conversion rate 
(character accuracy) 

Monolingual Cantonese (CAN_LM) 88.8% 

Code-mixing (CS_LM) 89.3% 

Class-based (CLASS_LM) 91.5% 

Translation-based (TRANS_LM) 86.1% 
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The four language models are close to each other in performance because their 
differences are mainly on the code-switched segments. The translation approach (TRANS_LM) 
achieves the lowest PTT conversion rate. This is due to some of the translated Cantonese 
characters not appearing in the character list of the original Cantonese language models. This 
leads to the n-gram probabilities that are related to these characters being very low in 
TRANS_LM. The low likelihood affects the decision on the neighboring characters and leads 
to degradation of the overall conversion rate. Moreover, the code-switched segments are 
translated into Cantonese, and each translated term may contain more than one character. This 
causes a discrepancy in the computed values of the PTT conversion rate. 

6. Language Boundary Detection 

Language identification (LID) is an important process in a multilingual speech recognition 
system (Ma et al., 2007). The language identity information allows the use of two 
monolingual recognizers. However, the LID for recognizing code-mixing speech is not 
straightforward mainly because the speech segments that can be used for decisions are 
relatively short. For code-mixing speech, LID can be considered as a problem of language 
boundary detection (LBD). We consider two approaches below (Chan et al., 2006). 

6.1 LBD based on syllable bigram 
The syllable bigram probability of Cantonese is defined as the probability that a specific 
syllable pair occurs. In our study, these probabilities were computed from a transcribed 
Cantonese text database. In a code-mixing utterance, the Cantonese part is expected to have 
high syllable bigram probability, while the embedded English segments have relatively low 
syllable bigram probability, because of the mismatch in phonological and lexical properties. 
We use a Cantonese syllable recognizer based on the cross-lingual acoustic model CL as 
described in Section 4. For each pair of adjacent syllables in the recognized syllable sequence, 
the syllable bigram is retrieved. If the probability is higher than a threshold, this syllable-pair 
segment is considered to be Cantonese; otherwise, it is English or at the code-mixing 
boundary. It is possible that more than one English segment is detected within an utterance. 
Under the assumption that each utterance consists of exactly one English segment, we need to 
select one of the hypotheses. Our current strategy is to select the segment with the longest 
duration. On the other hand, if no English segment is found, the threshold is increased until 
the English segment includes at least one syllable. 

To evaluate the performance of an LBD algorithm, the detected boundaries of a language 
segment are compared to the true boundaries. If the detection errors on both sides of the 
segment exceed a threshold, an LBD error is recorded. In this study, the threshold was set to 
0.3 second. With the syllable bigram based detection algorithm, an LBD accuracy of 65.9% 
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was attained for the CM test utterances. 

6.2 LBD based on Syllable Lattice 
This approach makes use of the syllable/word lattice generated by a bilingual speech 
recognizer, which will be described in the next section. Syllable lattice is a compact 
representation of recognition output, which covers not only the best syllable sequence but also 
other possible alternatives. The lattice produced by our system contains Cantonese syllable 
units and English word/phrase units. English words/phrases generally have longer duration 
than Cantonese syllables since they may contain multiple syllables. The English segment with 
the longest duration in the lattice is most likely to indicate a correct recognition result, and the 
start and end time of the segment are taken as the language boundaries. With a properly 
selected insertion penalty, the LBD accuracy for CM test utterances was 82.3%. 

7. A Code-mixing Speech Recognition System 

7.1 System Overview and Decoding Algorithm 

 

Figure 4. The proposed code-mixing speech recognition system 
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A code-mixing speech recognition system was developed as shown in Figure 4. It consists of 
the cross-lingual acoustic models, the bilingual pronunciation dictionary, and the class-based 
language models as described in previous sections. It is assumed that the input utterance is 
either code-mixing speech with exactly one English segment, or monolingual Cantonese 
speech. The decoding algorithm is implemented with the HTK Toolkits (Young et al., 2001). 
It consists of two passes as described below. 

First pass 

In the first pass, the cross-lingual acoustic models and the bilingual pronunciation dictionary 
are used to construct a recognition network as shown in Figure 2. In the case where the input 
utterance is monolingual Cantonese, the recognition network is simplified into a syllable loop. 
Language models are not involved at this stage. The recognition network represents all 
possible hypotheses, from which the most likely ones are to be determined. The first-pass 
decoding is based on a token-passing algorithm. Each token refers to a partial hypothesis 
starting from the first frame of the utterance. At each time step, a feature vector is taken up 
and the existing tokens are extended through the HMM states in the recognition network. If 
there are many competing tokens at a network node, only the best N tokens are kept and the 
others are discarded. In this way, a syllable/word graph is generated as a compact 
representation of multiple hypotheses. The basic elements of the graph are nodes and arcs. 
Each arc represents a hypothesized Cantonese syllable or a hypothesized English word/phrase. 
It records the acoustic likelihood, the start time, and end time of the syllable or words/phrases. 
An example of mixed syllable/word graphs is shown in Figure 5. 

Figure 5. An example of mixed syllable/word graphs 
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Second pass 

In the second pass, the most likely code-mixing sentence is determined from the syllable/word 
graph. In addition to the acoustic likelihoods, language boundary information and language 
models are utilized in the search process. Firstly, the language boundary information is 
integrated to the syllable/word lattice by modifying the acoustic likelihood of hypothesized 
words. If a hypothesized word is in the same language as the recognized language, the 
acoustic likelihood is increased by a pre-determined value; otherwise, it is decreased by the 
same value. The optimal value of this bonus/penalty score is derived from development data. 
Secondly, the modified acoustic scores are integrated with the language model scores to form 
a character lattice. The hypothesized syllables in the graph are mapped to Chinese characters 
using a pronunciation dictionary (LSHK, 1997). Since a Cantonese syllable may correspond to 
more than one Chinese character, the resulting character graph is in fact an expanded version 
of the syllable graph. The English words/phrases in the graph remain untouched. In the word 
graph, the posterior probability of a hypothesized word can be computed by summing the 
posterior probabilities of all sentence hypotheses that share the word segment w at the same 
time interval. In Soong et al. (2004), the generalized word posterior probability (GWPP) was 
formulated mainly to deal with the inconsistent dynamic ranges of acoustic models and 
language models, and with the alignment ambiguities between different sentence hypotheses. 
The effectiveness of GWPP has been demonstrated in Cantonese large-vocabulary continuous 
speech recognition (Qian et al., 2006). 

Let w  denote a hypothesized word or syllable in the graph, with the start time s  and 
end time t . The GWPP of w  during the time interval [ , ]s t  is calculated from all word 
strings that contain w  with a time interval overlapping with [ , ]s t , i.e., 
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M M MW w s t w s t w s t= …  denotes a specific word string that 

contains M  words, and ;[ , ]n n nw s t  refers to the nth word in the string, which starts at time 

ns  and ends at nt . The conditions of nw w=  and [ , ] [ , ]n ns t s t∪ ≠ Φ  mean that the 
hypothesized word appears in this word string over approximately the same time 
interval. ( )m

m

t
msP x w  and 1

1( )m
mP w w −  denote respectively the acoustic model scores and the 

language model scores. The prior probability 1( )TP x  can be calculated by summing up all 
forward strings probabilities or backward string probabilities in the word graph. The 
weighting factors α  and β  are jointly optimized by using a held-out set of development 
data with a goal to achieve the minimum word error rate. 
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7.2 Experimental Results 
The performance of the code-mixing speech recognition system in Figure 4 was evaluated 
using the CM and MC test utterances. For the CM utterances, the character accuracy was 
measured for the Cantonese part and the word accuracy is measured for the embedded English 
segments. From the development data in CUMIX (see Section 3.3), the best values α  and 
β  were found to be 0.009 and 1.1 respectively. This leads to an overall accuracy of 55.1% for 
the development utterances. 

Without the use of language boundary detection, the overall recognition accuracy for CM 
and MC utterances were 55.3% and 50.3%, respectively, when the class-based language 
models CLASS_LM were used. The detailed results are given in Table 12. 

Table 12. Recognition accuracy without using language boundary information 

 Overall accuracy Cantonese Character 
accuracy English Word accuracy 

CM test utterances 55.3% 56.0% 48.4% 
MC utterances 50.3% 50.3%  

We also attempted to incorporate the detected language boundaries into the recognition 
process. Table 13 compares the effectiveness of the two LBD approaches described in Section 
6. With LBD based on syllable bigram, the overall recognition accuracy increases from 55.3% 
to 57.0%. For the syllable-lattice based LBD, although the overall accuracy does not increase 
significantly, there is a noticeable improvement on the recognition accuracy for the English 
words. Among the recognition errors on English words, 39.0% of them are deletion errors, 
while 44.2% are substitution errors. Deletion error means that no English word is found in the 
top-best hypothesis string. Substitution errors are mainly caused by incorrect language 
boundary thus the hypothesis English word and the reference English word have no or just 
very little overlap in time duration. For example, the word “evening” is mistakenly recognized 
as “even”, and “around” became “round”. 

It was also noted that the English word accuracy could be improved to 81.1% if the true 
language boundaries are used in the recognition process. It is believed that the recognition 
performance can be improved, when better language boundary detection algorithms become 
available. 

Table 13. Recognition accuracy attained with the incorporation of language 
boundary information. Only CM test utterances are used. 

 Overall 
accuracy 

Cantonese Character 
accuracy 

English Word 
accuracy 

Without LBD 55.3% 56.0% 48.4% 
LBD based on syllable bigram 57.0% 57.6% 49.0% 
LBD based on syllable lattice 56.0% 56.4% 53.0% 
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For Cantonese, the character accuracy was close to our expectation. The character 
accuracy (56.4%) was roughly equal to the syllable accuracy (59.7%) multiplied by the PTT 
conversion rate (91.5%). 

8. Conclusion 

Code-mixing speech recognition is a challenging problem. The difficulties are two-fold. 
Firstly, we have little understanding about this highly dynamic language phenomenon. Our 
study clearly reveals that code-mixing is not a simple insertion of one language into another. It 
comes with a lot of phonological, lexical, and grammatical variation with respect to 
monolingual speech spoken by native speakers. Unlike in monolingual speech recognition 
research, there are very few linguistic studies that can be consulted. We have to understand the 
problems by actually working on them. Secondly, it is practically difficult to collect sufficient 
code-mixing data for effective acoustic modeling and language modeling. The existing 
CUMIX database needs to be enhanced, especially in the amount of English speech. 

We have shown that cross-lingual acoustic models are more appropriate than 
language-dependent models. The proposed cross-lingual models attain an overall recognition 
accuracy of nearly 60% for code-mixing utterances. To design a cross-lingual phoneme set, 
we need to measure the similarity between the phonemes of the two languages. Our current 
approach is based on phonetic knowledge. It can be improved further with comprehensive 
acoustic analysis of real speech data. For language modeling, grouping English words into 
classes seems to be inevitable due to data sparseness. The class-based language models were 
shown to be effective in code-mixing speech recognition. 

Two different methods of language boundary detection have been evaluated. LBD based 
on syllable bigram exploits the phonological and lexical differences between Cantonese and 
English. LBD based on syllable lattice makes use of the intermediate result of speech 
recognition, which is more informative than the prior linguistic knowledge. Therefore, this 
method attains a significantly higher accuracy than the former one in language boundary 
detection. 

A complete speech recognition system for Cantonese-English code-mixing speech has 
been developed. The two-pass search algorithm enables flexible integration of additional 
knowledge sources. The overall recognition accuracy for Cantonese syllables and English 
words in code-mixing utterances is 56.0%. 
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Corpus, Lexicon, and Construction: A Quantitative 

Corpus Approach to Mandarin Possessive Construction1 

Cheng-Hsien Chen∗ 

Abstract 

Taking Mandarin Possessive Construction (MPC) as an example, the present study 
investigates the relation between lexicon and constructional schemas in a 
quantitative corpus linguistic approach. We argue that the wide use of raw 
frequency distribution in traditional corpus linguistic studies may undermine the 
validity of the results and reduce the possibility for interdisciplinary 
communication. Furthermore, several methodological issues in traditional corpus 
linguistics are discussed. To mitigate the impact of these issues, we utilize 
phylogenic hierarchical clustering to identify semantic classes of the possessor NPs, 
thereby reducing the subjectivity in categorization that most traditional corpus 
linguistic studies suffer from. It is hoped that our rigorous endeavor in 
methodology may have far-reaching implications for theory in usage-based 
approaches to language and cognition. 

Keywords: Discourse-functional Grammar, Construction Grammar, Quantitative 
Corpus Linguistics, Possession, Clustering. 

1. Introduction 

It has been observed that grammatical structures or patterns often serve as routinized formats, 
fulfilling specific communicative purposes in our daily interaction (Biq, 2001; Chui, 2000; 
Huang, 2003; Ono & Thompson, 1996; Tao & Thompson, 1994; Thompson & Couper-Kuhlen, 
2005; Thompson & Hopper, 2001; Wray, 2002). Speakers’ knowledge of their native 
languages is argued to consist of “a structured inventory of conventional linguistic units, a unit 

                                                       
1 An earlier version of this paper was presented at The 2008 International Conference on Language, 
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Huang, Chiarung Lu, Iwen Su, Shuchuan Tseng for invaluable advice. Any remaining errors remain 
the author's responsibility. 
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being defined in processing terms as a cognitive routine” (Langacker, 1991, p.: 511: 511). In 
other words, language may provide indicative evidence for our cognitive understanding of the 
world (Croft, 2001; Fillmore & Atkins, 1992; Fillmore, Kay, & O'Connor, 1988; Grady, 1997; 
Lakoff, 1993; Lakoff & Johnson, 1980; Tyler & Evans, 2003). 

While considerable research has been devoted to a corpus-based approach to 
constructional schemas, rather little attention has been paid to the methods that are used to 
further "interpret" the observations. The state of art is that, after surveying the behavioral 
patterns of a target construction, most cognitive or discourse-functional linguists may still 
resort to an introspective and intuitive method to identify its sub-patterns. While we do not 
wish to deny the important role that introspection ultimately plays in the advancement of 
theorizing, we expect a bottom-up procedure may lend more objectivity, thus credibility, to 
the empirical results. Therefore, a burgeoning research paradigm - corpus linguistics - now 
utilizes corpora to investigate the usage patterns and the semantic profiles of these 
conventional schemas in pursuit of a thorough understanding of our cognitive 
conceptualization. 

A traditional corpus linguistic study on discourse-functional or cognitive grammar often 
adopts the following approach, as shown in Figure 1 (Biq, 2004a, 2004b, 2004c; Chang, 2002; 
Chui, 2000; Liu, 2002; Su, 1998, 2004; Tao, 2003b; Wang, Katz, & Chen, 2003).  

Figure 1. A typical procedure for traditional corpus linguistic studies 

Initially, all the target constructions are collected from a corpus (Data collection). Second, all 
the relevant target constructions are manually labeled according to some researcher-defined 
features (Data labeling). Third, based on those manually-labeled features, the analyst tries to 
identify the “types” of these constructions and generate descriptive statistics to obtain a 
general distribution of the categories identified (Categorization). Finally, conclusions and 
implications are drawn on the basis of the constructional types of the highest raw frequency 
counts (Conclusion). It should be noted that such a working pipeline in traditional corpus 
linguistics has established itself in previous decades as more and more researchers submit to 
the view that corporal data reflect our grammatical knowledge. Therefore, if one commits him 
or herself to such a functional view of grammar, one would first collect data from the corpus, 
label them, categorize them into groups, and make generalizations based on the collected data. 
We take issue with the detailed procedure of how each step in the pipeline is achieved, namely, 
how the data is collected, how the data is labeled, and how the data is categorized. 
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A Quantitative Corpus Approach to Mandarin Possessive Construction 

Take Biq’s (2004b) study on the patterns of Mandarin stative verb hao ‘good’ for 
example. In order to find the co-occurrence patterns of hao, she first collects all the relevant 
instances from a 15-hour spoken database and narrows her emphasis to two collocation 
patterns hao + le and hai + hao. Instances containing the target pattern are then further 
categorized on the basis of her operationally-defined syntactic and pragmatic criteria, and the 
distribution of these identified types is given in Table 1. 

Table 1. The various senses/functions of hao+ le found in conversational data 
SENSE/FUNCTION NUMBER PERCENTAGE 
Topic transition 11 7.10% 
Hao = resultative 13 8.30% 
Hao = SV 21 13.50% 
Conditional 46 29.50% 
Recommendatory 65 41.60% 
TOTAL 156 100.00% 

Finally, conclusions are drawn based on the distribution of the type frequency. While such a 
traditional corpus linguistic approach has been widely adopted by most discourse-functional 
and cognitive grammarians, several methodological issues may merit more careful 
consideration. 

In the first step of a traditional corpus linguistic study, the size of the corpus has long 
been a controversial issue in that small samples may undermine the validity of the results. For 
instance, even though “Recommendatory” serves as the most frequent type in Biq’s 
observation, 156 tokens may still undermine the credibility of the distribution or even increase 
the possibility of the by-chance observation. Nevertheless, for most discourse-functional 
linguists who work on spontaneous speech, the problem of the sample size may appear 
inevitable due to the enormous manual labor of spoken corpus construction. Given this 
limitation of the spoken corpus, it is suggested that analysts might as well pursue further 
statistical analysis so as to increase the confidence level of their numbers. That is, given the 
maximal recall of the target construction in a corpus of considerable size, it would be 
theoretically more convincing if the distribution could be statistically tested so as to 
compensate for the deficiency in small-scale sampling. 

With respect to the second step, the features for identifying the types of the target 
construction are often criticized for being researcher-dependent and lacking basis for 
cross-analyst comparison. In the case of Biq’s study, linguists may differ in how they 
categorize the pragmatic functions of hao + le, thus leading to difficulty in comparing 
different analyst’s categorizations of the same construction. Of crucial importance is the third 
step in a traditional corpus linguistic approach, where only the distribution of the raw 
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frequency is consulted when conclusions are being drawn. While we acknowledge the fact that 
frequency plays a crucial role in the formation of our grammatical knowledge (Bybee, 2005; 
Bybee & Hopper, 2001), we believe that such frequency effects should exclude the by-chance 
possibilities due to sampling in corpus linguistics. In Table 1, chances are that in daily 
interaction, recommendatory speech acts may be frequent in general, thus contributing to its 
higher frequency in the hao + le co-occurrence patterns. If that is the case, it could be argued 
that, for all the constructions capable of performing recommendatory acts, this use will 
eventually emerge as the most frequent type among its pragmatic categorization. In other 
words, inferential statistics are needed to test whether the recommendatory act is indeed far 
more frequent than expected. In view of these potential challenges, a quantitative corpus 
linguistic approach has emerged (c.f. Baayen (2008) for an overview ). 

In a quantitative corpus linguistic study, the analyst’s subjectivity is hoped to be reduced 
to a minimum. In terms of sampling, (semi-)automatic retrieval of the target pattern is usually 
adopted to ensure a better recall rate in a large balanced corpus. Second, the features for 
categorizing the constructional tokens are rigorously quantified in an operationally-defined 
way so that inter-analyst comparison of the results can be easily made. Most crucially, the 
categorization of the target patterns is made in a bottom-up procedure to replace the analyst’s 
manual efforts as well as subjective factors. Gries and Stefanowitsch (to appear) adopts 
hierarchical agglomerative cluster analysis to objectively determine semantic classes of 
constructional sub-patterns. Furthermore, hierarchical cluster analysis has proven itself useful 
in a wide range of linguistic analyses such as semantic profiles of polysemy (Divjak & Gries, 
2006), typology (Croft, 2008), language phylogeny (Atkinson & Gray, 2005; Dunn, Terrill, 
Reesink, Foley, & Levinson, 2005; McMahon & McMahon, 2003), grammaticization (Hilpert, 
2007), and language development (Wiechmann, 2008). Such sophistication in the analytic 
process facilitates the communication between discourse-functional grammarians of different 
research paradigms. 

The present study, therefore, aims to investigate the interaction between lexicon and 
construction in a quantitative corpus-based approach. With special focus on a case study of 
Mandarin Possessive Construction (NP1-DE-NP2), this paper addresses one fundamental 
question for every potential constructional schema: Does this constructional schema have any 
basic semantic patterns or any other sub-patterns? Specifically, the predictions are: 1) If 
NP1-DE-NP2 Construction has a basic meaning, the NP1-NP2 pairs will yield us such 
semantic sub-patterns as the major category. 2) If NP1-DE-NP2 Construction has no basic 
meaning, the NP1-NP2 pairs will yield us some other heterogeneous sub-patterns, or none. 
Meanwhile, we will compare the rank-ordering of the raw frequency counts in a traditional 
corpus linguistic approach with our sophisticated measures to illustrate the potential danger in 
relying on the former for theorizing. 
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The rest of the paper is structured as follows. In Section 2, a brief layout of our 
methodological framework - collostructional analysis - is introduced with a special emphasis 
on the covarying collexeme analysis. Section 3 will briefly describe the data source and our 
research methods and demonstrate the inferential statistics used in the evaluation of our data. 
Results and discussion will be provided in Section 4, illustrating the weaknesses of traditional 
corpus linguistic studies and the strengths of quantitative corpus linguistic studies. Section 5 
concludes this paper with directions for future research and theoretical implications. 

2. Lexicon and Construction 

While the importance of constructional schemas has come to be the central focus of 
discourse-functional grammarians (c.f., Croft & Cruse, 2004), it still remains unclear how 
these constructional analyses can be compared and evaluated given that different linguists 
resort to different evidence and methods. For instance, some linguists may base their 
description of the constructional profiles on their own native intuition without quantitative 
corpus data (Fillmore, et al., 1988; Kay & Fillmore, 1999; Langacker, 2003; Michaelis, 2003; 
Michaelis & Lambrecht, 1996; Tyler & Evans, 2003). Traditional corpus linguists may take a 
step further to capitalize on the raw frequency distribution of the words occurring in the target 
construction (Biq, 2004a; Dancygier & Sweetser, 2000; Goldberg, 1998; Liu, 2002; Su, 2002, 
2004; Wang, et al., 2003). Methodologically speaking, little headway has been made in 
examining the statistical validity of the traditional quantification and little attempt has been 
made to define an operational method for an analyst to generate the semantic classes of a 
constructional schema. Occupying the niche, collostructional analysis, proposed by 
Stefanowitsch and Gries (2003), provides a more rigorous approach to identifying the meaning 
of a grammatical construction. 

Collostructional analysis represents one rigorous corpus-based methodology in 
discourse-functional linguistics. It makes theoretical commitments to a holistic and symbolic 
view of linguistic units and, at the same time, bases its quantitative methods on sophisticated 
statistical analyses. This empirical approach not only flavors the research of usage-based 
grammar with a more serious emphasis on statistical evaluation but also refreshes the direction 
of corpus linguistics with a more construction-specific focus on lexico-structural relations. It 
serves as an umbrella term, referring to research that investigates the correlation/association 
between words and constructional schemas. 

We would like to briefly introduce the terminology and principles in collostructional 
analysis for the ease of the following exposition. First, lexemes that are attracted to a 
particular construction are referred to as collexemes of the construction. Crucially, 
collostructional analysis considers the overall distribution of the words in the corpora in 
calculating the association strength of those words to a specific constructional schema. The 
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association strength between a collexeme and a construction is measured by submitting all the 
raw frequency counts of each word in the specific slot of the construction to the Fisher-Yates 
Exact Test (Pedersen, 1996). Each word occurring in the slot of the construction will be 
ordered by collostrength - defined as the log-transformed p-value (to the base of 10) with a 
positive/negative sign that indicates attraction/repulsion to the construction. This association 
measure allows a cognitive linguist to probe into human conceptualization through a 
quantitative study of the relation between words and constructional schemas. 

In addition, as constructional schemas often encode a relational meaning, observations on 
pairs of collexemes in a construction may play an even more crucial role in the identification 
of the construction semantic profile. Under a usage-based cognitive-linguistic framework, 
grammatical patterns have been studied in terms of colligations, i.e., linear co-occurrence 
preferences and restrictions held between specific lexical items and its surrounding 
syntagmatic contexts (Bybee & Scheibman, 1999; Hunston & Francis, 1999; Scheibman, 2002; 
Thompson, 2002; Thompson & Hopper, 2001). All of these findings point to the hypothesis 
that the meaning of one construction relies on the words co-occurring most often with the 
construction. The assumption behind this reasoning is: a word may occur in a construction if it 
is semantically compatible with the meaning of the construction (Goldberg, Casenhiser, & 
Sethuraman, 2004; Stefanowitsch & Gries, 2005). Following this hypothesis, we would expect 
that, given a construction with two variable slots, observations on the co-occurring patterns in 
these slots may yield useful empirical evidence for the (semantic) relation encoded by the 
construction. In this respect, Gries and Stefanowitsch (2004) extend collostructional analysis 
to covarying collexeme analysis, and seek pairs of collexemes that are statistically attracted to 
each other within a construction (i.e., covarying collexemes). Furthermore, Gries and 
Stefanowitsch (to appear) further adopt a clustering-based approach to identify the potential 
sub-patterns of covarying collexemes in reflection of the semantic profiles of the target 
construction. 

The present study is by and large compatible with Gries and Stefanowitsch (to appear), to 
which it is indebted for part of its general outlook, but poses some rather different questions, 
which we will identify in Section 3. Therefore, in order to investigate the semantic coherence 
of MPC, a closer look at the correlation between NP1 and NP2 in MPC may present itself as a 
rewarding endeavor. In Section 3, we will provide a more detailed illustration of our 
hypotheses and methods. 

3. Method 

The present study adopts a quantitative corpus-based approach. Initially, the data was 
collected from the Academia Sinica Balanced Corpus of Mandarin Chinese. This is the major 
Chinese corpus with detailed parts-of-speech tagging, and it includes a fairly wide range of 
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genres and styles (mostly formal registers). Instances of Mandarin Possessive Construction 
(MPC) “NP1 + DE + NP2” were automatically retrieved via regular expressions2. Retrieval of 
the constructional instances was done in Java scripts written by the author. 

Subsequently, we looked for quantified operationally-defined features to further 
categorize our MPC tokens. Unlike a traditional corpus linguistic approach, we aimed to 
reduce the involvement of the analyst’s judgment to a minimum. Nevertheless, after collecting 
instances of the target pattern, traditional corpus linguists usually adopt two types of methods 
to categorize the target construction. One method is to first formulate the possible semantic 
categories that the target construction tokens may belong to, then label each token with an 
appropriate category label. In other words, this approach packages all the categorization 
process into the analyst’s mind and the reader could only see the overall distribution of these 
predetermined semantic categories. How each target token is categorized into certain semantic 
category (i.e., the operationally defined criteria) is often obscure to the readers. The other 
method that a traditional corpus linguistic study may adopt is to formulate a set of 
researcher-dependent features, usually nominal variables, then manually mark each token with 
the values of each feature. Then, the analyst categorizes all of the tokens according to the 
feature values in an introspective fashion. The disadvantage of this approach is obvious. On 
the one hand, the features tagged for each token usually vary from linguist to linguist and are 
often categorical and not quantified. On the other hand, even though the features are 
operationally workable, an introspective way of categorization invites a considerable degree of 
subjectivity in determining the clusters from the dataset. For instance, the semantic relations 
can be summarized into 10 labels as in Stefanowitsch (2003) or can be further elaborated into 
35 as in Moldovan et al. (2004). Different linguists may have different labels and it would be 
hard to determine if two similar labels are truly semantic equivalents in both analysts’ minds, 
thereby reducing the possibility of comparing the conclusions from different studies. 
Therefore, both ways of traditional corpus linguistic studies may lead to difficulty in 
comparing research findings with each other. More challenges to traditional corpus linguistic 
approach will be elaborated in Section 4.3. 

Following Gries and Stefanowitsch (to appear), we adopt a specific type of hierarchical 
clustering algorithm known as neighbor-joining clustering. A typical process of hierarchical 
cluster analysis includes: 1) comparing pairwise (dis)similarities between the items in a 
(dis)similarity matrix via a vector-based representation of the items; 2) successively 
                                                       
2 Based on the POS tagging principles elaborated in CKIP Technical Report 95-02/98-04, only nouns 

tagged as Na, Nc, Nd, and Nh were included as our relevant MPC constructional instances. We 
excluded proper names (Nb), determiners (Ne), classifiers (Nf), and postpositions (Ng). Furthermore, 
for all the nouns preceding DE, we retrieved the rightmost noun as our possessor NP1; for all the 
nouns following DE, we retrieved the first noun tagged with Na, Nc, Nd, or Nh as our possessed NP2. 
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amalgamating all items into clusters based on the (dis)similarity matrix, which reaches 
maximal intra-cluster similarity and inter-cluster dissimilarity; 3) visualizing the hierarchical 
structure of the datasets in the form of a tree-like dendrogram. Specifically, neighbor-joining 
clustering is often used in phylogeny estimation in biology (Saitou & Nei, 1987), aiming to 
reconstruct phylogenetic trees from evolutionary distance data under the principle of minimum 
evolution. Dunn et al. (2005) also successfully extends neighbor-joining clustering to the 
reconstruction of phylogeny in Oceanic languages. Our reason for choosing this algorithm lies 
in the assumption that constructional semantic profiles evolve similarly to phylogenic 
evolution in the sense that different semantic patterns of a construction, like different senses of 
a lexical word, may form a structured polysemy (Goldberg, 1995; Tyler & Evans, 2003). 
Furthermore, it is suggested that structured polysemy usually emerges from the conventional 
usage of high frequency via conceptual mechanisms of metaphor and metonymy (Hopper & 
Traugott, 1993; Traugott & Dasher, 2002; Tyler & Evans, 2003). In other words, semantics of 
a constructional schema is argued to evolve with language use (Bybee, 1998; Hopper, 1987; 
Huang, 1998; Tao, 2003a). It is this emergent or evolutionary nature of grammar and 
semantics that leads us to the decision of adopting phylogenetic clustering in our study. 
Specifically, in neighbor-joining clustering, not every node on the bottom should be collapsed 
into one ancestor node. This flexibility allows the possibility that not every sub-pattern comes 
from one prototypical pattern of the constructional instantiations. 

From a perspective of the discourse-functional approach to language, the meaning of a 
word or a construction is defined by how speakers use it in their daily interaction (Scheibman, 
2002; Tao, 2003b; Thompson & Couper-Kuhlen, 2005). In order to look for the semantic 
coherence encoded by MPC, two possibilities may be pursued: 1) to cluster NP1 based on NP2; 
2) to cluster NP2 based on NP1. In the present study, we choose the former approach on a 
discourse functional basis. It has been observed that the possessor NP in MPC often serves as 
a topic to which new information encoded by the possessed NP is attached. Therefore, the 
clustering patterns of the NP1 may shed light on the overall semantic domains of the MPC 
instance. Furthermore, in the MPC context, the cooccurrence pattern of each NP1 with their 
NP2 may serve as traces on how speakers frequently make reference to the possessor NPs, 
thus reflecting the semantic coherence of NP1. That is, a look at how each NP1 is correlated 
with different types of NP2 in MPC may shed light on their similarity in their references of 
their possessed entities. If two types of NP1 are correlated with similar types of NP2, they are 
more inclined to form a semantically coherent class, where their possessed entities are of great 
similarity. For instance, if in NP1 position, shi4chang3 ‘market’ and chan3pin3 ‘product’ 
often co-occur with similar groups of NP2 such as gong1zuo4 ‘job’, xu1qiu2 ‘demand’, 
qing2kuang4 ‘condition’, fan3ying4 ‘reaction’ in MLC, they may easily form a cluster, thus 
suggesting their similarity in their reference of their possessed entities (i.e., both being 
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conceptualized as consisting of similar groups of entities). Also, if an abstract entity and a 
concrete entity are clustered together at an early stage, they may be argued to bear great 
resemblance in metaphorical conceptualization. Based on these correlation patterns, we can 
then infer if semantic coherences do exist among different types of NP1. Our working 
assumption is: 

-If MPC has coherent meanings, the NP1 clustering will yield us such semantic sub-patterns 
as prominent categories at the early stage; 

-If MPC has grammaticized as a pure syntactic formative, the NP1 clustering will yield us 
more heterogeneous sub-patterns, or none. 

As clustering approaches are sensitive to the problem of data sparseness and often yield 
their best results when applied to moderately frequent cases (Kaufman & Rousseeuw, 2005 
[1990]), we make a compromise that strikes a balance between the representativeness of the 
sample and the efficiency of the algorithm. Figure 2 shows the relationship between covarying 
NP frequency threshold and data preservation percentage. We choose to include 83% of the 
NP2 by setting a threshold of 5 for the frequency of NP2 and cluster only the top 100 frequent 
NP1, amounting to 32% of all the NP1. That is, only those covarying NP2 occurring at least 5 
times in our original dataset are considered a feature for NP1 in the subsequent vector 
representation and clustering. 

After data filtering, we transform each type of NP1 into vectors based on their 
association with each covarying collexeme NP2, as tabulated in Table 3. Now that we have a 
definition for the features or dimensions of each NP1 vector (NP2 of frequency larger than 5), 
we need measures of association between each NP1 and a given feature (i.e., each type of 
NP2). It has been observed that cooccurrence raw frequency, as shown in Table 3, is a poor 
measure of association between a word and a context feature (Jurafsky & Martin, 2008 [2000], 
p.: 661: 661; Manning & Schütze, 1999, p.: 156: 156). We may require a weighting or 
measure of association that asks how much more often than chance the feature co-occurs with 
each type of NP1. Following Gries and Stefanowitsch (to appear), we adopt collostrength from 
covarying collexeme analysis as our measure of association between each type of NP1 and its 
covarying NP2 feature.3 

                                                       
3 For further justification for the use of p-values as a measure of association strength, please refer to 

Footnote 6 in Stefanowitsch and Gries (2003). In this analysis, we also tried t score as our measure of 
association, as suggested in Manning and Schütze (1999), and the results were similar to what we had 
obtained from collostrength measure. 
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Figure 2. Threshold for NP1 and NP2 and the percentage of data perserved 

For example, let us consider the distribution of zheng4fu3 ‘government’ and zheng4ce4 
‘policy’ in MPC (i.e., zheng4fu3 DE zheng4xe4 ‘the policy of the government’) as shown in  

Table 2 (parentheses indicate expected frequencies and italics indicate observed 
frequencies). Applying the Fisher-Yates Exact test to this table yields a p-value of 1.11e-59, 
corresponding to a plog10-value, i.e., collostrength, of 58.95. This extreme p-value indicates 
that the association between zheng4fu3 and zheng4ce4 in MPC is a relatively strong one. 

Table 2. The distribution of zheng4fu3 and zheng4ce4 in Mandarin Possessive 
Construction 

zheng4ce4 Other NP2 Row Totals 

zheng4fu3 40(1) 410(449) 450 

Other NP1 230(269) 207829(207790) 209059 

Column Totals 270 208239 208509 

Table 4 shows part of the co-occurrence table with the collostrength of each covarying 
collexeme pair in the cell. Higher collostrength may suggest a stronger association between 
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NP1 and NP2. 

Table 3. Co-occurrence table of the NP1 (row) with the covarying NP2 (column) in 
MPC (raw frequency count as assoication measure) 

NP1     NP2 ren2 
'man' 

sheng1huo2 
'life' 

xin1 
'heart' 

wen4ti2 
'problem'

hai2zi5 
'child' 

she4hui4 
'society' … 

ta1 'he' 63 49 49 17 23 6  

wo3 'I' 46 35 152 25 90 2  

zi4ji3 'self' 24 102 26 26 55 8  

ren2 'man' 21 44 40 20 5 6  

ta1 'she' 27 21 39 12 18 1  

wo3men5 'we' 11 55 25 8 48 110  

ni3 'you' 21 25 28 11 38 3  

ta1men5 'they' 11 45 19 8 18 11  

Tai2wan1 
'Taiwan' 13 9 3 8 2 18  

…  

Table 4. Co-occurrence table of the NP1 (row) with the covarying NP2 (column) in 
MPC (collostrength as assoication measures) 

NP1   NP2 ren2 
'man' 

sheng1huo2 
'life' 

xin1 
'heart' 

wen4ti2 
'problem'

hai2zi5 
'child' 

she4hui4 
'society' …

ta1 'he' 0.248008 0.063422 1.211847 1.18E-05 0.006771 0  

wo3 'I' 0.040219 0.006473 Inf 0.02988 Inf 0  

zi4ji3 'self' 6.10E-07 Inf 0.045449 0.064862 5.841638 6.70E-07  

ren2 'man' 0.019297 3.341083 5.632644 0.548443 0.000205 0.000827  

ta1 'she' 0.171652 0.071817 5.323306 0.033664 0.550925 8.00E-08  

wo3men5 
'we' 3.46E-05 7.69897 1.44626 0.003065 Inf Inf  

ni3 'you' 0.187166 0.858615 3.448672 0.110468 Inf 0.00024  

ta1men5 
'they' 0.003388 7.522879 1.313479 0.037517 1.585381 0.298076  

Tai2wan1 
'Taiwan' 0.03479 0.008238 0.000383 0.07051 0.000245 2.061541  

…  
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Next, we compute pairwise distance matrix among these 100 types of NP1. As 
summarized in Jurafsky and Martin (2008 [2000]: 663-667), correlation similarity measures 
are more prone to detect and to use curvature of vectors in multidimensional space; these 
measures may work better for word similarity in information/document retrieval as compared 
to distance dissimilarity measures. Moreover, according to Manning and Schütze (1999: 299), 
among all the distance-based measures, the cosine is the most frequently-used measure in the 
comparison of semantic similarity (c.f., Curran (2004)).4 Therefore, we compute a pairwise 
cosine distance matrix and submit this matrix to neighbor-joining clustering. The statistical 
evaluation is computed in R scripts written by the author, using the ape package developed by 
Paradis (2004). 

Furthermore, we compare the lists ordered by raw frequency and collostrength, 
respectively, by submitting these two rank-orderings to Friedman’s rank test for correlated 
samples. This test is the nonparametric analogue of the one-way repeated-measures ANOVA, 
often being applied to test if two rank-orderings differ significantly. By so doing, we 
demonstrate the degree to which raw frequency overlaps with the collostrength, thus 
highlighting the potential danger in relying on the raw frequency in theorizing. 

Before the discussion of the results, let us briefly turn to the question of why we chose 
Mandarin Possessive Construction as our pilot study. Even though we name this construction 
as "possessive" here, its constructional meaning is not as uncontroversial as the naming 
suggests. The reason for choosing this as our target construction is mainly due to the 
cross-linguistic complexity of possessive or genitive constructions (Baron, Herslund, & 
Sorensen, 2001; Dong, 2003; Heine, 2001; Lyons, 1986; Nikiforidou, 1991; Stefanowitsch, 
2003; Taylor, 1996). As implied in its alias as "associative phrases" (Li & Thompson, 1981), 
MPC has been notorious for its encoding of diversified semantic relations between two NPs to 
the extent that Li and Thompson (1981) even argue that "the precise meaning…is determined 
entirely by the meanings of the two noun phrases involved". While a typical possessive 
construction may encode a semantic relation of "possession", including ownership, kinship, 
and component-part relations (Nikiforidou, 1991; Stefanowitsch, 2003; Taylor, 1996), it is 
still unclear whether MPC indeed exhibits semantic coherences in its distributional patterns, or 
should better be analyzed as a semantic-general syntactic formative. Hopefully, the empirical 
evidence from the covarying collexemes may help solve this controversial issue. 

                                                       
4  Curran (2004) evaluated a wide range of similarity measures by comparing the results with 

gold-standard thesauri and concluded that Dice and Jaccard methods perform best as measures of 
vector similarity. As a result, we also computed the similarity matrix based on these methods and 
submitted them to hierarchical clustering. The results were by and large similar to what we had 
obtained from the cosine similarity measure. Therefore, we shall base our discussion on the results 
from the cosine similarity measure. 
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4. Results and Discussion 

208509 tokens of MPC were extracted from the Academia Sinica Corpus of Mandarin Chinese. 
These MPC instances consist of 26005 types of NP1 and 25987 types of NP2, amounting to 
159645 types of NP1-NP2 pairs, i.e., covarying collexemes. Each distinct type of NP1-NP2 
was submitted to statistical evaluations, and the results are as follows. 

4.1 Semantic Coherence in MPC 
We cluster NP1 according to its covarying NP2 in MPC. After filtering our infrequent NP1 
and NP2 types, we cluster the most frequent 100 NP1 according to their covarying NP2 of 
frequency larger than 5. This boils down to a 100 by 4372 contingency table with 58470 
tokens of MPC in total, as shown earlier in Table 3. All of the possessor NPs (NP1) are then 
transformed into vector representations based on their collostrength with each type of 
covarying collexeme NP2, as shown previously in Table 4. The cooccurrence measures 
between NP1 and NP2 serve as criteria for classification of the NP1. We then compute the 
cosine distance between each pair of NP1 and submit the distance matrix to neighbor-joining 
clustering to obtain a tree-like representation of the NP1 categorization. 

In a tree size with 100 tips (i.e., 100 types of NP1), the information that is supposed to be 
summarized is likely to be no longer visible. Therefore, instead of plotting out the whole tree, 
obscuring the clustering information that is sought, we choose to plot only a portion of the full 
dendrogram at a time, while indicating its context - how it relates to the rest of the tree. In the 
following illustration, the original dendrogram is divided into three parts, where the whole tree 
is plotted on the left and the subtree on the right. The location of the subtree is indicated with 
the color on the whole tree. 

The results from Figure 3 to Figure 5 are moderately revealing in that several coherent 
semantic frames in NP1 emerge from the dendrograms. Specifically, 7 semantically coherent 
categories emerge from the amalgamative process: Human, Time, Country, Enterprise, Culture, 
Knowledge, and Institution. Based on these correlation patterns, we suggest that semantic 
coherences do exist among different types of NP1, supporting the claim that MPC has not 
fully grammaticized as a pure syntactic formative. 
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Figure 3. Subtree one of the dendrogram 
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Figure 4. Subtree two of the dendrogram 
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Figure 5. Subtree three of the dendrogram 

Figure 6 shows the distribution of the significant covarying pairs in each semantic frame. 
Among all the significant covarying collexemes, about 35 percent of the NP1 falls into the 
HUMAN semantic frame. A further Chi-square test suggests that the distribution of these 
covarying pairs in different semantic frames is significant (χ2

(8) = 862.25, p < 0.01). 
Furthermore, among the semantic frames we identify, HUMAN presents itself as the most 



 

 

                       Corpus, Lexicon, and Construction:                    321 

A Quantitative Corpus Approach to Mandarin Possessive Construction 

concrete category. This may suggest that the HUMAN frame serves as a basis for the 
metaphorical extension of the possessive relations encoded by MPC and that other semantic 
frames may be argued to derive from this basis through cognitive mechanisms. 

In the semantic classes generated, however, there are still quite a range of covarying 
pairs that are difficult to label with appropriate semantic categories (i.e., OTHER in Figure 6). 
Nearly one-fifth of the NP1s do not yield coherent clustering patterns at the early stage of the 
dendrogram. While these clusters generated in the dendrogram may not be suggestive in 
reaching a coherent semantic category, they are revealing in the respect that they show how 
one entity is conceptualized similarly to another under the context of a possessive relation. On 
the top of the subtree in Figure 3, it is observed that sheng1huo2, sheng1ming4, and 
ren2sheng1 are often portrayed as the “end point” (zui4hou4) in discussing their possessed 
properties. Similarly, the bottom of the subtree in Figure 3 shows that the properties of the 
abstract entities such as world, history, times, value, and meaning are often cast in the past 
background as those abstract NPs (shi4jie4, li4shi3, shi2dai4, jia4zhi2, yi4yi4) are clustered 
together with guo4qu4. Furthermore, in the middle of the subtree in Figure 4, it is suggested 
that time and space is conceptualized as one coherent domain as shi2jian1 and kong1jian1 are 
clustered together at the early stage. Of similar nature is the grouping of yu3yan2 with 
wang3lu4 and xi4tong3, suggesting that native speakers often conceptualize the Internet and 
language in a similar fashion. Instead of being a blow to the credibility of our clustering 
method, these cases may serve as prima facie evidence for the degree of grammaticization in 
MPC toward becoming a pure "associative" syntactic formative. This paradox should not 
come as a counter-expectation at all to discourse-functional grammarians as the more frequent 
a construction gets used the more its semantics gets bleached (Hopper & Traugott, 1993; 
Traugott & Dasher, 2002). Yet, compared with the other 76% of the semantically coherent 
clusters, this small portion of the heterogamous patterns may not necessarily stop us from 
claiming that MPC indeed has semantic coherence in its usage. 

Figure 6. distribution of the significant covaryign collexemes in different 
           semantic frames 
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Although the clusters are automatically yielded by the algorithm, what each cluster 
represents still relies on the analyst’s manual labeling, thus drawing criticism that such 
endeavors are still introspective and subjective. Nevertheless, it should be noted that the 
distribution in Figure 6 differs greatly from the raw frequency distribution used in traditional 
corpus linguistic studies. First of all, collostrength, rather than raw frequency, is used to 
reduce the possibility of making a by-chance observation. Second, even though the label for 
each semantic category may be analyst-dependent, the members of each cluster are objectively 
generated by the quantified features and a sophisticated algorithm. When adopting the same 
algorithm on the same dataset, different quantitative corpus linguists will obtain the same 
clustering results, although their labels for those semantic frames may differ. This advantage 
provides the possibility for research on the same construction to compare their conclusions 
and theoretical implications. 

On the one hand, we still need a more objective way to decide what kind of semantic 
relations are maintained in each semantic frame. In the current stage, synsets in WordNet 
provide a promising possibility for an automatic identification of semantic relations (c.f., 
Moldovan & Badulescu, 2005). The present study only provides a coarse-grained 
categorization for the semantic domains of the possessor NPs. With a semantically 
disambiguated and syntactically parsed corpus such as WordNet, we could conduct the 
covarying collexeme analysis on a “synset,” rather than “word,” basis. Furthermore, clustering 
possessor NP1 according to possessed NP2 (or the other way around) will not provide us a 
clear picture of the semantic relations encoded by MPC. To automatically identify such 
semantic relations between NP1 and NP2, we need to cluster the whole MPC according to its 
covarying lexemes/constructions, such as the coocurring predicates. 

On the other hand, the labeling of the semantic frame for the clusters generated may be 
expected to proceed automatically in the near future by making reference to the hypernyms in 
Chinese WordNet as well. For instance, for all the NP1s that are clustered together, we can 
generate a list of their hyponyms for each sense of the NP1 in WordNet and look for potential 
higher-order semantic domains among all these NP1s. A sophisticated extension to the 
synonyms of these NP1s may also facilitate the search for a common superordinate domain. In 
other words, the analyst's subjectivity may be reduced to the minimum once Chinese Wordnet 
is available. Also, it should be noted that cluster analysis here is not intended to completely 
substitute for manual classification (or in any sense bearing absolute superiority over the 
latter). Instead, the goal here is to show that, in order to introduce findings and observations 
from discourse-functional linguistics into the modeling of natural language processing, an 
automatic constructional sense induction may be needed for efficient implementation. 
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4.2 A Closer Look at each Semantic Frames 
Before we start to look at some examples from each cluster generated, we would like to 
emphasize that the labels of semantic relations in the following discussion are mainly for 
exposition5. Furthermore, we leave for future consideration whether it is feasible to reach a 
consensus among discourse-functional grammarians regarding a unanimous set of semantic 
relations (See 4.3 below for more discussion). Rather, these brief sketches of the covarying 
collexemes in each cluster are to support our claim that the clusters generated by the 
neighbor-joining algorithm are indeed semantically coherent. 

First of all, two types of HUMAN frames - specific and generic - can be clearly 
identified in Figure 4. One consists of personal pronouns while the other includes noun 
phrases mostly referring to the generic idea of “people” or “human beings”. The former 
semantic frame, dubbed as HUMAN-specific, demonstrates prototypical “ownership” (e.g., 
ta1 DE xiao3shuo1), “component-whole” (e.g., ta1 DE shou3) as well as “interpersonal 
relation” (e.g., ta1 DE zhang4fu5 ) relation between NP1 and NP2 and the covarying 
collexemes of higher collostrength are included in (1)6. In the latter, the HUMAN-generic 
frame, NP2 often refers to the key components of a human life or human beings in general, 
thus maintaining a component-whole relation with the NP1. Typical examples are included in 
(2). 

(1)  HUMAN - specific (H-s) 

她 ta1 'she'    丈夫 zhang4fu5 'husband' 

她 ta1 'she'    女兒 nu3er2 'daughter' 

他 ta1 'he'    小說 xiao3shuo1 'novel' 

他 ta1 'he'    太太 tai4tai5 'wife' 

我 wo3 'I'    心 xin1 'heart' 

我 wo3 'I'    心情 xin1qing2 'mood' 

他 ta1 'he'    手 shou3 'hand' 

我 wo3 'I'    日記 ri4ji4 'diary' 

 

 

 

 

                                                       
5 Our semantic relations are based on a more complete list of semantic relations proposed by Moldovan 

et al. (2004). 
6 The covarying collexemes listed as examples here are all of significant collostrength (p < 0.01). 
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(2)  Humans - generic (H-g) 

人 ren2 'man'    一生 yi1sheng1 'all one's life' 

人 ren2 'man'    天性 tian1xing4 'nature' 

自己 zi4ji3 'self'    生命 sheng1ming4 'life' 

人民 ren2min2 'people'    生活 sheng1huo2 'life' 

個人 ge4ren2 'individual'    自由 zi4you2 'freedom' 

我們 wo3men5 'we'    社會 she4hui4 'society' 

我們 wo3men5 'we'    孩子 hai2zi5 'child' 

我們 wo3men5 'we'    祖先 zu3xian1 'ancestor' 

自己 zi4ji3 'self'    家 jia1 'home' 

人類 ren2lei4 'humanity'    理性 li3xing4 'sense' 

人 ren2 'man'    尊嚴 zun1yan2 'dignity' 

 

In Figure 3, three semantic frames are identified: TIME, COUNTRY, and ENTERPRISE. 
Typical significant covarying collexemes in the TIME frame are included in (3). The purpose 
of this Time frame appears to contextually "position" the NP2 within a specific temporal space 
denoted by NP1. Therefore, it can be observed that the prominent semantic relation is 
attribute-holder between NP1 and NP2. 

 

(3)  TIME (T) 

當時 dang1shi2 'then'    心情 xin1qing2 'mood' 

今天 jin1tian1 'today'    主題 zhu3ti2 'theme' 

當時 dang1shi2 'then'    台灣 Tai2wan1 'Taiwan' 

現在 xian4zai4 'modern'    年輕人 nian2qing1ren2 'young people' 

目前 mu4qian2 'at the present time'    狀況 zhuang4kuang4 'condition' 

 

For the COUNTRY frame, significant covarying collexemes are listed in (4). The 
components of a country are clearly shown in the covarying collexemes of this category as 
component-whole relation appears to be a dominant semantic relation in this semantic frame. 
Quite a range of fundamental components of a country manifest clearly, from concrete entities 
like min2zhong4 or ren2min2 to more abstract assets such as zheng4zhi4, jing1ji4, wen2hua4, 
and fa3lu4. As far as the purpose of the present study is concerned, this COUNTRY frame 
may be argued to exhibit a metaphorical conceptualization, where a basic possessive relation - 
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component-whole - is extended to a higher abstract level of political entities. Also, the 
prominence of this semantic category may reflect the nature of the material collected in 
Academia Sinica Corpus as local news accounts for the majority of the data sources. 

 

(4)  COUNTRY (CO) 

地區 di4qu1 'area'    人民 ren2min2 '(the) people' 

國家 guo2jia1 'country'    人民 ren2min2 '(the) people' 

台灣 Tai2wan1 'Taiwan'    主權 zhu3quan2 'sovereignty' 

台灣 Tai2wan1 'Taiwan'    民主 min2zhu3 'democracy' 

當地 dang1di4 'local'    民俗 ming2shu2 'customs' 

地區 di4qu1 'area'    民眾 min2zhong4 'people' 

當地 dang1di4 'local'    居民 ju1min2 'resident' 

國家 guo2jia1 'country'    法律 fa3lu:4 'law' 

台灣 Tai2wan1 'Taiwan'    政治 zheng4zhi4 'politics' 

美國 Mei3guo2 'America'    軍事 jun1shi4 'military affairs' 

台灣 Tai2wan1 'Taiwan'    原住民 yuan2zhu4min2 'indigenous peoples' 

大陸 da4lu4 'mainland'    煤 mei2 'coal' 

大陸 da4lu4 'mainland'    經濟 jing1ji4 'economy' 

日本 Ri4ben3 'Japan'    經濟 jing1ji4 'economy' 

 

Let us now consider the ENTERPRISE frame, as illustrated in Figure 3. There is quite a 
bit noise in this group, where NP1 and NP2 may hold an ownership relation (gong1si1 DE 
lao3ban3), or producer-product (gong1si1 DE chan3pin3) and some other typical behaviors or 
expectations of a social institution (shi4chang3 DE gong1xu1 and shi4chang3 DE 
jing4zheng1). Nonetheless, this may suffice as to argue that an ENTERPRISE frame is 
emergent from our daily uses of MPC as all these possessor NPs (NP1) bear great resemblance 
in reference with their possessed entities (NP2). Furthermore, the amalgamation of wei4lai2 
with this ENTERPRISE cluster may suggest that in the discourse context these enterprises are 
often cast as futuristic entities in that possibilities and potentials are more emphasized. 
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(5)  ENTERPRISE (E) 

未來 wei4lai2 'future'    方向 fang1xiang4 'direction' 

未來 wei4lai2 'future'    走向 zou3xiang4 'trend' 

未來 wei4lai2 'future'    主人翁 zhu3ren2weng1 'master (of one's own destiny, 
etc.)' 

市場 shi4chang3 'market'    主流 zhu3liu2 '(n) main stream of a fluid' 

公司 gong1si1 '(business) company'    老闆 lao3ban3 'boss' 

產品 chan3pin3 'goods'    行銷 xing2xiau1 'marketing' 

市場 shi4chang3 'market'    佔有率 zhan4yau3lu4 'percentage of coverage' 

市場 shi4chang3 'market'    供需 gong1xu1 'supply and demand' 

公司 gong1si1 '(business) company'    股東 gu3dong1 'stockholder' 

產品 chan3pin3 'goods'    品質 pin3zhi4 'quality' 

公司 gong1si1 '(business) company'    董事長 dong3shi4zhang3 'chairman of the 
board' 

市場 shi4chang3 'market'    競爭 jing4zheng1 'to compete' 
 

In the subtree of Figure 5, three more semantic frames are identified: CULTURE, 
KNOWLEDGE, and INSTITUTION. Typical examples of the first frame are illustrated in (6). 
The NP1 in the CULTURE frame often refers to the products out of our socialization, such as 
she4hui4, wen2hua4, and yun4dong4. Typical cases of a component-whole relation in this 
frame may include she4hui4 DE cheng2yuan2, yun4dong4 DE chuan4shi3ren2, or wen2hua4 
DE ren2qun2. Of particular interest here is that most possessive relations maintained between 
these covarying collexemes are also deemed metaphorical in the sense that the possessor and 
the possessed refer to abstract social entities, rather than concrete animate subjects. 
 

(6)  CULTURE (CU) 
社會 she4hui4 'society'    成員 cheng2yuan2 'member' 

運動 yun4dong4 'movement'    創始人 chuang4shi3ren2 ‘founder' 

文化 wen2hua4 'culture'    人群 ren2qun2 'a crowd' 

社會 she4hui4 'society'    良心 liang2xin1 'conscience' 

社會 she4hui4 'society'    現象 xian4xiang4 'appearance' 

文化 wen2hua4 'culture'    精髓 jing1sui3 'marrow' 

文化 wen2hua4 'culture'    影響 ying3xiang3 'influence' 

文化 wen2hua4 'culture'    差異 cha1yi4 'difference' 

文化 wen2hua4 'culture'    產物 chan3wu4 'product' 
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Another semantic frame identified in Figure 5 - KNOWLEDGE - illustrates possessive 
relations in a variety of knowledge-based domains, such as ke1xue2, zhu3yi4, yi4shu4, and 
wen2xue2. Of particular interest here is the inclusion of wen4ti2 into this cluster. In other 
words, the former disciplines such as ke1xue2, zhu3yi4, and yi4shu4 may be argued to behave 
similarly to wen4ti2 under the context of making references to their possessed entities (i.e., 
NP2). This amalgamated pattern may suggest that the other disciplines in this KNOWLEDGE 
frame are often viewed as a question to which we quest for a possible solution or answer. 

 

(7)  KNOWLEDGE (K) 

         科學 ke1xue2 'science'    方法 fang1fa3 'method' 

         問題 wen4ti2 'problem'    方法 fang1fa3 'method' 

         主義 zhu3yi4 'creed'    色彩 se4cai3 'tint' 

         藝術 yi4shu4 'art'    形式 xing2shi4 'form' 

         問題 wen4ti2 'problem'    時候 shi2hou5 'time' 

         藝術 yi4shu4 'art'    創作 chuang4zuo4 'to create' 

         問題 wen4ti2 'problem'    答案 da2an4 'answer' 

         問題 wen4ti2 'problem'    辦法 ban4fa3 'means' 

         問題 wen4ti2 'problem'    關鍵 guan1jian4 'crucial' 

         問題 wen4ti2 'problem'    癥結 zheng1jie2 'bottleneck' 

         文學 wen2xue2 'literature'    性格 xing4ge2 'nature' 

         科學 ke1xue2 'science'    知識 zhi1shi5 'intellectual' 

 

The final semantic frame - INSTITUTION - refers to goal-oriented social formations, 
ranging from concrete entities like xue2xiao4, da4xue2, and shu1, to more abstract ones like 
zhong1xin1, huo2dong4, and jiao4yu4. In terms of basic possessive relations, NP2 in this 
frame often consists of the components of NP1 such as zhong1xin1 DE ren2yuan2, xue2xiao4 
DE lao3shi1, shu1 DE zuo2zhe3, zheng4fu3 DE fa3ling4, da4xue2 DE xiao4zhang3, and 
xue2xiao4 DE she4bei4. Nonetheless, a look at the NP2 shared by the NP1 in this frame 
suggests the goal-oriented nature of this category, as in zheng4fu3 DE zhu3zhang1, jiao4yu4 
DE mu4di4, hau2dong4 DE mu4di4, and shu1 DE zhu3zhi3. More examples are listed in (8). 
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(8)  INSTITUTION (I) 

         中心 zhong1xin1 'center'    人員 ren2yuan2 'staff' 

         學校 xue2xiao4 'school'    老師 lao3shi1 'teacher' 

         書 shu1 'book'    作者 zuo2zhe3 'author' 

         政府 zheng4fu3 'government'    法令 fa3ling4 'decree' 

         大學 da4xue2 'university'    校長 xiao4zhang3 'president' 

         學校 xue2xiao4 'school'    設備 she4bei4 'equipment' 

         活動 huo2dong4 'activity'    內容 nei4rong2 'content' 

         書 shu1 'book'    內容 nei4rong2 'content' 

         教育 jiao4yu4 'to educate'    內容 nei4rong2 'content' 

         政府 zheng4fu3 'government'    主張 zhu3zhang1 'to advocate' 

         活動 huo2dong4 'activity'    目的 mu4di4 'purpose' 

         教育 jiao4yu4 'to educate'    目的 mu4di4 'purpose' 

         政府 zheng4fu3 'government'    決策 jue2ce4 'decision' 

         書 shu1 'book'    主旨 zhu3zhi3 '(n) gist' 

4.3 Raw Frequency and Collostrength 
As the rank-ordering of the raw frequency has been greatly utilized in the literature of 
traditional corpus linguistic studies, we would now like to express some issues with the 
validity of this approach. In order to examine the relationship between the raw frequency (i.e., 
the counts of the covarying collexemes in our collected sample) and the collostrength (i.e., the 
association strength of the covarying collexemes with each other in the construction), we 
compare the ordering of these two measures for the most frequent N covarying collexemes. 
The procedure is as follows. First, the most frequent N covarying collexemes are selected and 
their corresponding raw frequency and collostrength are submitted to Friedman’s rank test to 
see if the rank-ordering of the raw frequency and the collostrength differs significantly among 
these top frequent N cases. The results are shown in Table 5. 

Table 5. The p-values from Friedman’s rank test and Kendall’s τ coefficient for the 
ordering of raw frequency and collostrength among the top frequent N 
covarying collexemes 

For top frequent N covarying collexemes Friedman test p-value Kendall's τ 
3 0.083265 1 
4 0.0455 0.666667 
5 0.025347 0.4 
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6 0.014306 0.466667 
7 0.008151 0.52381 
8 0.004678 0.357143 
9 0.0027 0.055556 

10 0.001565 0.022222 
11 0.000911 0.163636 
12 0.003892 0.090909 
13 0.002282 0.102564 
14 0.001341 0.230769 
15 0.000789 0.314286 
16 0.000465 0.383333 
17 0.000275 0.441176 
18 0.000162 0.503268 
19 9.60E-05 0.54386 
20 5.70E-05 0.463158 

Table 5 illustrates the correlation between the raw frequency and the collostrength for the 
most frequent N covarying collexemes. The second column lists the p-value from Friedman 
test and the third column gives the Kendall’s τ coefficient as the degree of correspondence 
between the two rankings of raw frequency and collostrength. As can be seen, while raw 
frequency may have explanatory power in the topmost frequent cases, the rank ordering itself 
may be legitimately applied only to the most frequent cases (N < 7). Starting from the most 
frequent 7 covarying collexemes, the rank-ordering of the raw frequency differs significantly 
from that of the collostrength (χ2

(1) = 7, p-value < 0.01). Furthermore, Kendall’s τ coefficient 
shows the association strength of the rankings between raw frequency and the collostrength 
weakens with the inclusion of more covarying collexeme types. In other words, a study based 
on the most frequent 6 covarying collexemes may yield the same conclusions as one based on 
the covarying collexemes of the top 6 collostrength. Nonetheless, a study based on more than 
6 covarying collexemes is likely to yield somewhat different patterns from one based on a 
more statistically sophisticated measure, i.e., collostrength. Whether the index for 
rank-ordering is statistically sophisticated may be trivial for the most frequent few cases. Yet, 
as far as the majority of the covarying collexemes are concerned, the statistical sophistication 
of the rank-ordering index is non-trivial and crucial in drawing conclusions. Nevertheless, 
what most traditional corpus-based studies do is to base their theorizing on the rank ordering 
of the raw frequency in all cases, which in our view may seriously undermine the validity of 
such corpus-based endeavor. Therefore, we suggest that a certain level of sophistication is 
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needed in the use of the raw frequency in traditional corpus-based studies.7 

Let us now take a closer look at the differences between the ordering of raw frequency 
and that of collostrength. Table 6 shows the top 20 covarying collexemes sorted by their raw 
frequency in a descending order. If an analyst bases a study on the ordering of the raw 
frequency, they may easily reach the conclusion that the possessors in MPC overwhelmingly 
fall into the human category. Nevertheless, the high frequency of the covarying pairs in table 6 
may derive from the fact that those NP1 are indeed words of high frequency in the overall 
corpora. If the frequency of the NP1 is high, the pairs containing NP1 are expected to be 
higher. In other words, the significance of the high constructional frequency may be 
diminished by the frequency of its parts. Most importantly, it remains unclear whether the 
observed frequency is significantly higher than the expected. 

Table 6. A list of covarying collexemes ranked by their respective raw frequency 

NP1 NP2 N Collostrength 

我 wo3 'I' 心 xin1 'heart' 152 101.9261 

我們 wo3men5 'we' 社會 she4hui4 'society' 110 81.6629 

自己 zi4ji3 'self' 生活 sheng1huo2 'life' 102 27.86079 

他 ta1 'he' 作品 zuo4pin3 'works (of art)' 100 40.82442 

我 wo3 'I' 孩子 hai2zi5 'child' 90 41.54748 

我 wo3 'I' 手 shou3 'hand' 78 40.03977 

他 ta1 'he' 話 hua4 'dialect' 77 28.52847 

自己 zi4ji3 'self' 身體 shen1ti3 '(human) body' 77 46.91627 

人 ren2 'man' 生命 sheng1ming4 'life' 72 49.52095 

她 ta1 'she' 手 shou3 'hand' 67 46.39019 

自己 zi4ji3 'self' 生命 sheng1ming4 'life' 66 28.51615 

月 yue4 'moon' 時間 shi2jian1 'time' 66 94.69845 

我 wo3 'I' 朋友 peng2you5 'friend' 65 28.84368 

他 ta1 'he' 人 ren2 'man' 63 1.48E-05 

他 ta1 'he' 朋友 peng2you5 'friend' 61 21.59611 

他 ta1 'he' 手 shou3 'hand' 58 19.41221 

                                                       
7 For a thorough review of statistical measures of association, please refer to Chapter 20 in Jurafsky and 

Martin (2008 [2000]). 
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自己 zi4ji3 'self' 孩子 hai2zi5 'child' 55 17.00112 

自己 zi4ji3 'self' 能力 neng2li4 'ability' 55 16.34834 

我們 wo3men5 'we' 生活 sheng1huo2 'living' 55 15.38543 

我 wo3 'I' 意思 yi4si5 'idea' 51 28.90842 

我 wo3 'I' 話 hua4 'dialect' 51 14.85332 

類型 lei4xing2 'type' 人 ren2 'man' 51 51.11585 

他 ta1 'he' 心 xin1 'heart' 49 9.045286 

他 ta1 'he' 生活 sheng1huo2 'life' 49 1.698984 

方面 fang1mian4 'respect' 問題 wen4ti2 'problem' 48 29.34759 

我們 wo3men5 'we' 孩子 hai2zi5 'child' 48 23.34222 

我 wo3 'I' 眼睛 yan3jing1 'eye' 47 24.80487 

我 wo3 'I' 人 ren2 'man' 46 1.54E-06 

他 ta1 'he' 父親 fu4qin1 'father' 46 25.52748 

你 ni3 'you' 忠告 zhong1gao4 'advice' 45 79.65025 

Even though we have adopted collostrength of the covarying collexemes as a reference or 
approximation to their association to the construction, we still do not know what kind of 
semantic relations MPC encodes most often. A traditional corpus linguist may proceed to label 
the semantic relations between NP1 and NP2 manually. In order to demonstrate a traditional 
corpus linguistic approach, we take the top 20 covarying collexeme pairs as an illustration. 
Table 7 shows the top 20 covarying collexeme pairs that are significantly attracted to each 
other in MPC. The list is ranked according to their collostrength in a descending order. In the 
rightmost column, we manually label these significant covarying collexemes with possible 
semantic profiles, i.e., a semantic relation between NP1 and NP2. Our labels for the semantic 
relations in Table 7 are purely descriptive, as stated in Section4.2; no theoretical significance 
is attached to the precise labels used to characterize the semantic relations. 
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Table 7. A list of covarying collexemes ranked by their respective collostrength 
NP1 NP2 N Collostrength Semantic 

relation 

不久 bu4jiu3 'not long 
(after)' 

將來 jiang1lai2 'future' 35 107.7124 Idiom 

我 wo3 'I' 心 xin1 'heart' 152 101.9261 Component- 
Whole 

月 yue4 'moon' 時間 shi2jian1 'time' 66 94.69845 Attribute- 
Holder 

我們 wo3men5 'we' 社會 she4hui4 'society' 110 81.6629 ownership 

你 ni3 'you' 忠告 zhong1gao4 'advice' 45 79.65025 Participant- 
Event 

政府 zheng4fu3 
'government' 

政策 zheng4ce4 'policy' 40 59.58043 Participant- 
Event 

魔王 mo2wang2 'fiend' 左手 zuo3shou3 'left-hand' 14 51.66222 Component- 
Whole 

類型 lei4xing2 'type' 人 ren2 'man' 51 51.11585 Attribute- 
Holder 

人 ren2 'man' 生命 sheng1ming4 'life' 72 49.52095 ownership 

最後 zui4hou4 'final' 獵人 lie4ren2 'hunter' 19 49.42944 idiom 

媒體 mei2ti3 'media' 報導 bao4dao3 'coverage' 24 49.00789 Participant- 
Event 

自己 zi4ji3 'self' 身體 shen1ti3 '(human) 
body' 

77 46.91627 Component- 
Whole 

她 ta1 'she' 手 shou3 'hand' 67 46.39019 Component- 
Whole 

問題 wen4ti2 'problem' 癥結 zheng1jie2 'bottleneck' 20 42.58891 Component- 
Whole 

龍 long2 'dragon' 傳人 chuan2zen2 'heir' 12 41.89946 idiom 

我 wo3 'I' 孩子 hai2zi5 'child' 90 41.54748 Interpersonal 
relations 

因素 yin1su4 'element' 影響 ying3xiang3 
'influence' 

22 41.51503 Participant- 
Event 

他 ta1 'he' 作品 zuo4pin3 'works' 100 40.82442 ownership 

我 wo3 'I' 手 shou3 'hand' 78 40.03977 Component- 
whole 

生命 sheng1ming4 'life 意義 yi4yi4 'meaning' 37 40.03224 Attribute- 
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(force)' Holder 

學者 xue2zhe3 'scholar' 社區 she4qu1 'community' 16 38.85216 ownership 

異樣 yi4yang4 
'discrimination' 

眼光 yan3guang1 
'judgment' 

14 38.56742 Attribute- 
Holder 

國王 guo2wang2 'king' 新衣 xin1yi1 'new clothes' 11 38.10723 idiom 

動詞 dong4ci2 'verb' 論元 lun4yuan2 'argument' 11 38.03616 Component- 
Whole 

人 ren2 'man' 一生 yi1sheng1 'all one's 
life' 

35 37.90407 Participant- 
Event 

挫折 cuo4zhe2 'setback' 時候 shi2hou5 'time' 22 36.72331 Time-Event 

瘤子 liu2zi5 'lump' 老公公 lao3gong1gong1 
'old man' 

9 36.0871 Attribute- 
Holder 

他 ta1 'he' 妻子 qi1zi5 'wife' 44 35.55265 Interpersonal 
Relations 

方面 fang1mian4 'respect' 知識 zhi1shi5 'knowledge' 30 34.97364 Attribute- 
Holder 

用戶 yong4hu4 'user' 需求 xu1qiu2 'requirement' 19 34.68546 Participant- 
Event 

In Table 7, several covarying collexemes of low frequency do jump out as prominent 
instances of MPC, such as mo2wang2 DE zuo3shou3, long2 DE chuan2zen2, guo2wang2 DE 
xin1yi1, and dong4ci2 DE lun4yuan2. These significant pairs are not only indicative of the 
constructional semantic profiles but also suggestive of the topics covered in the corpora. 
Crucially, these phrases would not have emerged on the analyst’s list if one had adopted only 
raw frequency as their measure of association. 

Interpretable as it may seem, even the results based on the ordering of the collostrength 
still raise several methodological issues. Although we have flavored a traditional corpus 
linguistic approach with a quantitative nature using collostrength, such a traditional approach 
still needs to face the fact that a predetermined list of semantic relations is needed in order to 
label all the covarying pairs. It comes as no surprise that our labeling for the semantic 
relations in Table 7 may draw adverse criticism from researchers of a different paradigm. 
Linguists differ greatly in the number of possible semantic relations encoded by possessive 
constructions and different linguists may adopt different terms. For instance, the semantic 
relations can be summarized into 10 labels as in Stefanowitsch (2003) or can be further 
elaborated into 35 as in Moldovan et al. (2004). Furthermore, while a small sample of the 
significant covarying collexemes may be indicative of the basic semantic profiles of MPC, 
there is still a potential drawback. We choose the top 20 covarying collexemes only for 
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demonstration of a traditional corpus linguistic approach. A traditional corpus linguistic study 
could have chosen the top 200, 2000, or even 20000. In other words, to the size of the sample 
from the ordering list may have great impact on the validity of the results. As long as a 
traditional corpus linguist likes to investigate all the semantic relations between NP1 and NP2 
in MPC, they are bound to face these potential challenges. Most importantly, it would be 
difficult for them to bypass the issue of how to classify all the MPC tokens in an objective 
way. While a wedge of cheese like the top 20 (or more) covarying collexemes may be 
suggestive for the semantic coherence of MPC, a step further can be made to include more 
data so as to generate the semantic coherence of MPC in a more objective fashion. This is 
exactly the niche we are trying to occupy. 

5. Concluding Remarks 

Based on our empirical investigation, the overall results suggest that Mandarin Possessive 
Construction does exhibit a considerable degree of semantic coherence that holds between 
covarying collexemes, and the relative consistency among different sets of covarying 
collexemes. In addition, we further ensure the objectivity in identifying semantic classes of the 
possessor NPs by submitting a sample of covarying collexemes into phylogenic hierarchical 
clustering. The generated dendrogram appears to support the claim that semantic coherence 
does hold between covarying collexemes of the construction in question and NP1 exhibits 
several clear semantic classes where possessive relations are often contextualized, namely, 
HUMAN, COUNTRY, ENTERPRISE, INSTITUTION, KNOWLEDGE, and CULTURE. 
Nevertheless, some of the clusters have failed to manifest a coherent category of their own. 
While the prominent semantic frames identified may explain why most linguists still 
recognize this construction as a possessive construction in Mandarin, these heterogeneous 
clusters may account for the fact that some would describe it as a pure contextually-driven 
formative for any possible association. Therefore, noise in our results may serve as 
preliminary evidence for its degree of grammaticization toward becoming a pure "associative" 
syntactic formative. 

The purpose of the present study should be clear. While construction grammar has 
emerged as one of the dominant theoretical frameworks in the usage-based research paradigm, 
its insights may be further supported by more quantitative empirical data. It is argued that 
covarying collexeme analyses may serve as a compelling approach in identifying 
constructional sub-patterns, thus lending more credibility to the empirical results. Also, 
various statistical tools may not only facilitate the difficult task of categorization for the 
analysts but reduce the subjectivity of the judgment to the minimum as well. 

Furthermore, with more and more quantitative methods being incorporated into linguistic 
studies, these findings are more likely to be taken seriously by other interdisciplinary scholars. 
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Differences in methodology only widen the gap for the possible interdisciplinary interaction 
and comparison. Crucially, while other disciplines like biology, psychology, and cognitive 
science have long been viewing classification as a quantitative problem and have been using 
computer programs to identify a best parsimonious tree from an unorganized dataset, it would 
be less advantageous for traditional linguists to opt for an intuition-based approach where 
classifications are acceptable as long as scholars of the same research paradigm agree that they 
are acceptable. Even though traditional corpus linguistics has made a step further in 
contributing a great deal to the linguistic theorizing in general, such an approach does not 
typically produce data which are interpretable and usable by neighboring disciplines, 
especially in natural language processing. While other disciplines provide results based on 
rigorous quantitative design, they would hardly buy the story of linguists who generate 
conclusions via purely descriptive statistics. Therefore, a more rigorous quantitative method 
may serve as an objective platform where more interdisciplinary dialogue on human cognition 
can be made. While discourse-functional and cognitive linguists are sifting the wheat from the 
chaff in the massive harvest of corpus data, it is hoped that such rigorous emphasis on 
methodology may lend more objectivity and credibility to their revealing insights. 
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