
 

Computational Linguistics and Chinese Language Processing 

Vol. 14, No. 1, March 2009, pp. 1-18                                        1 

© The Association for Computational Linguistics and Chinese Language Processing 

[Received June 6, 2008; Revised May 12, 2009; Accepted May 15, 2009] 

Fertility-based Source-Language-biased 

Inversion Transduction Grammar for Word Alignment 

Chung-Chi Huang∗ and Jason S. Chang+ 

Abstract 

We propose a version of Inversion Transduction Grammar (ITG) model with 
IBM-style notation of fertility to improve word-alignment performance. In our 
approach, binary context-free grammar rules of the source language, accompanied 
by orientation preferences of the target language and fertilities of words, are 
leveraged to construct a syntax-based statistical translation model. Our model, 
inherently possessing the characteristics of ITG restrictions and allowing for many 
consecutive words aligned to one and vice-versa, outperforms the Bracketing 
Transduction Grammar (BTG) model and GIZA++, a state-of-the-art word aligner, 
not only in alignment error rate (23% and 14% error reduction) but also in 
consistent phrase error rate (13% and 9% error reduction). Better performance in 
these two evaluation metrics suggests that, based on our word alignment result, 
more accurate phrase pairs may be acquired, leading to better machine translation 
quality. 

Keywords: Inversion Transduction Grammar, Syntax-based Statistical Translation 
Model, Word Alignment. 

1. Introduction 

A statistical translation model is a model which detects word correspondences within sentence 
pairs, whether relying on lexical information or on syntactic aspects of the involved languages 
or both. In spite of the fact that methodologies vary, the intention is clear: to obtain better 
word alignment results so that a better translation model implies better performance in 
different linguistic applications. Among the methodologies are phrase-based (Och & Ney, 
2004; Chiang, 2005; Liu et al., 2006) and syntax-based machine translation systems (Galley et 
al., 2004; Galley et al., 2006). 
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Since the pioneering work of Brown et al. (1988), a myriad of research projects have 
focused on the statistical translation model. These could be classified into two main categories: 
one paying little attention to the grammar of the languages (Vogel et al., 1996; Och & Ney, 
2000; Toutanova et al., 2002) and the other explicitly utilizing languages’ structural or 
syntactic information (Wu, 1997; Yamada & Knight, 2001; Cherry & Lin, 2003; Gildea, 2004; 
Zhang & Gildea, 2005). With an increasing number of more accurate syntactic analyzers (e.g., 
part-of-speech tagger and Stanford parser) being developed and in view of the deficiency in 
modeling grammatical aspects of languages facing IBM-like models, the latter has received 
increasing attention. 

Recently, in order to incorporate languages’ syntax, Yamada and Knight (2001) 
transformed source-language (SL) (e.g., English) parse trees into target-language (TL) (e.g., 
Japanese) strings, using operations of reordering, inserting, and translating on tree nodes. 
Instead of accepting monolingual (i.e., SL or TL) parse trees to do the transformation, Wu’s 
ITG model (1997) first associates production rules (e.g., S→NP VP) commonly shared by two 
languages with (straight or inverted) word orientation and, based on these synchronous rules, 
constructs bilingual parse trees at run time. This data-oriented parsing methodology is 
reported to outperform tree-to-string model (i.e., (Yamada & Knight, 2001)) concerning 
word-level alignment (Zhang & Gildea, 2004). 

Even though the promising ITG is proposed, Wu (1997) conducts a word-aligning 
experiment leveraging a special case of ITG, minimal bracketing transduction grammar (BTG), 
in which languages’ grammars are assumed to be unavailable, constituent categories (e.g., NP 
and VP) are not differentiated (using only three symbols: one for lexical translation rules, 
another for straight binary production rules, the other for inverted), and the probabilities of the 
straight and inverted binary rules are all assigned constant. These imply that the choices of 
straight or inverted word orientations would be made solely based on the bonds of lexical 
translations rather than on the structural divergences of the involved languages and that the 
potential of the syntax-oriented ITG would not be fully explored. 

More recently, Zhang and Gildea (2005) presented a lexicalized BTG model where 
orientation choices are also dependent on the head words of the structural constituents. They 
expect lexical pairs passed up from the bottom (i.e., leaf nodes) of the bilingual parse tree will 
make BTG models more knowledgeable in determining straight/inverted word order. 
Nonetheless, they found that lexical information at the lower levels of trees is more 
deterministic in word orientations than that at the higher levels. 

To explore the power of ITG a little more (and inspired by Zhang et al. (2006), who 
suggest that binarized rules improve both speed and accuracy of a syntax-based machine 
translation system), in this paper, we describe a version of ITG model where the binary 
grammatical rules (e.g., S→NP VP) of the source language (e.g., English) are used as the 
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skeleton of our synchronous rules. Since the rules are biased toward the syntactic labels of the 
source language, our model is referred to as bITG model, short for biased ITG model. In our 
model, based on word-aligned sentence pairs, binary SL CFG rules are automatically 
annotated with the target language’s word orientations and the associated orientation 
probabilities are automatically computed via Maximum Likelihood Estimation (MLE). 

For example, take the languages of English, Chinese, and Japanese. The higher 
probability of our binary bITG rule VP→[VP NP], where the square brackets denote the same 
ordering (straight) of the two right-hand-side constituents in both languages when expanding 
the left-hand-side symbol, indicates a similar VO construct exists in English (SVO language) 
and Chinese (SVO language). On the contrary, the different VO construct in English and 
Japanese (SOV language) is modeled through the high inverted probability of the binary bITG 
rule VP→<VP NP> where the pointed brackets denote that we expand the left-hand-side 
symbol into two right-hand-side symbols in reverse orientation in two languages. Notice that 
these two bITG rules originate from the same binary CFG rule (VP→VP NP) of the source 
language, English, only with different ordering tendencies on the TL (i.e., Chinese or Japanese) 
end. 

In addition, we leverage IBM-style fertility probabilities of words to accommodate 
many-to-one or one-to-many word alignment links. In other words, in our model, many 
contiguous words in the source can be aligned to one word in the target and vice-versa. 
Originally, Wu’s BTG model (1997) only allowed for a maximum of one-to-one word 
correspondences, which may affect the performance on word alignments and the accuracy of 
the bilingual parse trees. This one-to-one mapping restriction is especially not suitable for a 
language pair involving a language without clear word delimiters since the tokenization (or 
segmentation) of sentences of that language (e.g., Chinese) prior to word alignment is 
independent of words of another (e.g., English), resulting in tokens being under- or 
over-segmented for the corresponding words and, subsequently, abundant 
many-to-one/one-to-many word alignments. 

The paper is organized as follows. Sections 2 and 3 describe our model in detail. Section 
4 shows empirical results. Discussions are made before the conclusion in Section 6. 

2. Method 

In this section, we begin with an example of how bITG rules and fertilities of words are 
utilized to assist in word-aligning sentence pairs. Thereafter, a more formal description of our 
model will be discussed. 
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2.1 An Example 

 

 
Figure 1. An example sentence pair and its bilingual parse tree 

Once a sentence pair and the part-of-speech (POS) information of the SL sentence are fed into 
our model, it synchronously parses the sentence pair using unary lexical translation rules (e.g., 
JJ→positive/積極 where / denotes word correspondence in two languages) and binary SL 
CFG rules attached with orientation preferences in the target language (e.g., VP→[VP NP]). 
Also, the leaves of the bilingual parse tree are the word alignment results for this sentence pair. 

During bilingual parsing, the model assigns probabilities to substring pairs of the bitext 
after each of them is associated with possible syntactic labels on the source side. For example, 
take the sentence pair and its parse in Figure 1, where spaces in the Chinese sentence are used 
to distinguish the boundaries of segments, ε  stands for NULL, and * denotes the inverted 
orientation of the node’s two children on the target. The substring pair (positive role, 積極 作
用) associated with linguistic symbol NP will be assigned a probability. In this particular parse, 
the probability is the product of probabilities of the straight binary bITG rule, NP→[JJ NN], 

S 

English sentence:  These factors will continue to play a positive role after its return. 

English POS tags:  DT NNS MD VB TO VB DT JJ NN IN PRP$ NN 

Chinese sentence:  香港 回歸 後 這些 條件 將會 繼續 發揮 積極 作用 
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and the lexical rules of bITG, JJ→positive/積極, and NN→role/作用. In our model, the higher 
probability of rule NP→[JJ NN] than the probability of the corresponding inverted rule 
NP→<JJ NN> does not merely instruct the model to align the two right-hand-side 
counterparts (i.e., JJ and NN) of two languages in a straight fashion more, but also implies 
English and Chinese exhibit similar word-order regularity regarding the syntactic constituents. 

On the other hand, in the example sentence pair, the beginning half, “These factors will 
continue to play a positive role,” is translated into the back of the Chinese sentence whereas 
the ending half, “after its return,” is translated into the beginning. Inverted rules (e.g., S→<S 
PP>) are designed to capture such systematic differences in the languages’ grammars. 

What is more, since only monolingual information is exploited to segment Chinese 
sentences, it is likely that the word alignments will not be constrained to one-to-one, 
one-to-zero, and zero-to-one mappings. For instance, 香港 is often segmented as a word in 
Chinese but needs to be aligned to two words (Hong and Kong) in English, a case of 
two-to-one mapping. Therefore, we incorporate notion of fertility into our model. 

As for the example of “Hong Kong” aligned to “香港”, three possible word-aligning 
scenarios concerning fertility will be considered at runtime parsing: zero fertility of Hong and 
singular fertilities of Kong and 香港 where Hong is aligned to NULL but Kong is aligned to 
香港; zero fertility of Kong and singular fertilities of Hong and 香港 where Kong is aligned 
to NULL but Hong is aligned to 香港; singular fertilities of Hong and Kong and dual fertility 
of 香港 where both Hong and Kong are aligned to 香港. 

Taking into account the probabilities of lexical translations, binary grammatical rewrite 
rules, and fertilities of words, our model manages to find a better parse tree that applies more 
appropriate synchronous rules to match the structural divergences and more suitable lexical 
mapping relations (one-to-one, one-to-two, et al.) in two languages. Better parses are more 
likely to yield better word alignment results. 

We actually estimate the probabilities of bITG rules, consisting of unary lexical 
translation rules and binary SL CFG rules with word orientation on the TL, and those of the 
fertilities of words from a parallel corpus and an SL CFG. We will discuss the training 
algorithm in more detail in Section 3. 

2.2 Formal Description 
We now formally describe our statistical translation model. To be comparable to previous 
work, the English-French notation is used throughout this paper. E and F denote the source 
and target language, respectively, and ie  stands for the i-th word in sentence e in language E 
and jf  for the j-th word in sentence f in F. 

Given ( ),e f = ( )1 1,m ne e f f  and the POS tag sequence of e , τ , our model aims 
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to construct the most probable bilingual parse tree  *
tB ,  satisfying  ( ){ }arg max Pr , ,

t
t

B
B e f τ , 

with the by-product of word-level correspondences. Intuitively, the probability of a bilingual 
parse tree tB  provided with e, f, and τ  is modeled as the product of probabilities associated 
with grammatical rewrite rules and lexical information: 

( ) ( ) ( )Pr , , Pr , , Pr , ,tB e f e f e fτ τ τ= ×D A                      (1) 

where, by inspecting the parse tree tB , D, and A represent the set of its production rules with 
syntactic labels on the right hand side (e.g., NP→JJ NN) and the set of rules with word 
alignments on the right (e.g., JJ→positive/積極), respectively. 

For simplicity, we use kα  to denote internal nodes (NP, JJ, etc) of the tree tB , whereas 
we use kβ  to denote leaf nodes (e.g., these/這些, positive/積極). Tree nodes in tB  can be 
divided into three groups according to the number of children they are connected to: the first, 
denoted by set 2N , consists of nodes with two children; the second, denoted by set 1N , is 
made up of nodes with one child; the last, denoted by set 0N , comprises nodes without a 
child. For notation convenience, each 2kα ∈N  has two children represented by 2kα  and 

2 1kα + , and each 1kα ∈N  has one child kβ . 

In our model, the probability of constructing tB  is the product of the probabilities of 
two sources: the first estimating the probabilities of the applied binary bITG rules; the second 
estimating those of the unary lexical translation rules and the fertilities of words in the tree. 
Assuming each applied rule is independent of one another, we rewrite the grammatical-related 
term in Equation (1) as 

( ) ( )1 2 2 1Pr , , P  
k

k k ke f λ

α
τ α α α +

∈
≅ →∏

2N
D                  (2) 

where  can be straight [ ]  or inverted . On the other hand, the lexical-related term 
in Equation (1) is decomposed into three factors, as shown in Equation (3): one for the product 
of probabilities of lexical translation rules given τ , another for the product of fertility 
probabilities of words in e, and the other for the product of fertility probabilities of words in f. 

( ) ( ) ( ) ( )2 2 2

1 1 1
Pr , , P P P

i j
k

k k
m n

e f
i j

e f λ λ λ

α
τ α β τ φ φ

∈ = =
≅ → × Φ = × Φ =∏ ∏ ∏

N
A     (3) 

In Equation (3), Φ  is the random variable for fertilities of words, and 
ieφ  and 

jfφ  
denote fertilities of ie  and jf , respectively. From Equations (1) to (3), we estimate the 
probability of a parse tree via 
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( ) ( )1 2 2 1Pr , , P  
k

k k ktB e f λ

α
τ α α α +

∈
≅ → ×∏

2N
 

( ) ( )2 2

1 1
P P

i i
k

k k
m

e e
i

λ λ

α
α β τ φ

∈ =
→ × Φ = ×∏ ∏

N
 

( )2

1
P

j j

n
f f

j
λ φ

=
Φ =∏                 (4) 

in which the sum of the weight 1λ  and 2λ  is one. 

2.3 Runtime Parsing 
In this subsection, we depict a CYK-like parsing algorithm for obtaining the most likely 
bilingual parse tree given the sentence pair ( ),e f = ( )1 1,m ne e f f , the pre-determined 
POS tag sequence, ( )1, , mt t , of sentence e, and the grammar G in E (i.e., SL grammar). 
Notice that our model is a data-driven one as is Wu (1997). In other words, it synchronously 
parses sentence pair via bITG rules without a monolingual (SL or TL) parse tree. Figure 2 
shows the run-time parsing algorithm. 

Parsing Algorithm 
//Initial Step 

For  1 ,1i m j n≤ ≤ ≤ ≤  

(1)  ( ) ( ) ( )2 2 2, 1, , 1, P P 1 P 1
ii ji i j et i i j j ft e fλ λ λδ − − = → × Φ = × Φ =  

(2)  For every  in iL t G E→ ∈  

(3)    ( ) ( ) ( )2 2 2, 1, , 1, P P 1 P 1
i ji j eL i i j j fL e fλ λ λδ − − = → × Φ = × Φ =  

For  1 ,0i m j n≤ ≤ ≤ ≤  

(4)  ( ) ( )2 2, 1, , , P P 0
ii i i et i i j j t eλ λδ ε− = → × Φ =  

(5)  For every  in iL t G E→ ∈  

(6)    ( ) ( )2 2, 1, , , P P 0
ii eL i i j j L eλ λδ ε− = → × Φ =  

For 0 ,1 , syntactic labels on  endi m j n L E≤ ≤ ≤ ≤ ∈  

(7)   ( ) ( )2 2, , , 1, P P 0
jjL i i j j fL fλ λδ ε− = → × Φ =  

 
//Recurrent Step 

For any possible (s,t,u,v) //1 , ,1 ,s t m u v n≤ ≤ ≤ ≤  
    For any possible grammatical label p 
        If ( t s≥ and v u≥ ) and not ( t s=  and v u= ) 
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(8)           

[ ]( )

( )

1

1, syntax labels on 
           
           

, , , , , , , ,
, , , ,

, , , , , , , ,

P  ,

P  
max

q r E
s s t
u u v

q s s u u r s t u v
p s t u v

q s s u v r s t u u

p q r

p q r

λ

λ

δ δ
δ

δ δ∈
′≤ ≤
′≤ ≤

′ ′ ′ ′

′ ′ ′ ′

→ × ×
=

→ × ×

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

             //for backtracking 
               

[ ]( )

( )

1

1, syntax labels on 
           
           

, , , , , , , ,
, , , ,

, , , , , , , ,

P  ,
    b

P  
arg max

q r E
s s t
u u v

q s s u u r s t u v
p s t u v

q s s u v r s t u u

p q r

p q r

λ

λ

δ δ

δ δ∈
′≤ ≤
′≤ ≤

′ ′ ′ ′

′ ′ ′ ′

→ × ×
=

→ × ×

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

(9) Backtrack() 
Figure 2. Run-time parsing. 

During a parse of a sentence pair in our model, a table of , , , ,p s t u vδ , the best probability 
for parsing substring pair ( )1 1,s t u ve e f f+ +  attached with a syntactic symbol p  on E  
side, is constructed. 

In Step (1) of Figure 2, we compute the probability of a one-to-one word correspondence 

i je f  with ei’s pre-determined POS tag it , according to the probability of the unary bITG 
rule i i jt e f→  and the probabilities of fertilities of ie  and jf  (fertilities are 1s for 
one-to-one mapping). Since the POS tag it  can be derived from some possible phrasal 
constituents in G (Step (2)) (e.g., NN can be derived from NP), we also compute their 
associated probabilities (Step (3)). Similarly, in Steps (4) to (7), we calculate the probabilities 
of the one-to-zero and zero-to-one word correspondences limited to the scope of the sentence 
pair. 

Afterwards, relying on the work done previously, word correspondences and parsing 
results of longer substring pairs would unveil themselves in a bottom-up manner. In Step (8), 
s’ divides the substring 1s te e+ , labeled as p, into two parts, 1 's se e+  and ' 1s te e+ , 
with q as a possible grammatical symbol of the first part and r as a possible symbol of the 
second, while u’ divides the substring 1u vf f+  into 1 'u uf f+  and ' 1u vf f+ . As the 
substring 1 's se e+  can be aligned to 1 'u uf f+  or ' 1u vf f+ , both straight and inverted 
orientation of the SL CFG rules “p→q r ” ought to be considered. Note that the computation in 
Step (8) does not properly deal with the cases of many-to-one or one-to-many word-level 
alignments. For many-to-one alignments, , , , 1,p s t u uδ −  should further incorporate the parsing 
candidate: 

( )( ) [ ]( ) ( ) ( )( )
2 1

2 2, syntax
labels on 

, , 1, 1, , 1, , 1,P max P  
P 1 P 1u

u u
q r

E

q s s u u r s t u u
f

f f
t s p q r

t s
λ λ

λ λ

δ δ

∈

+ − + −
⎧ ⎫
⎪ ⎪Φ = − × → × ×⎨ ⎬

Φ = Φ = − −⎪ ⎪⎩ ⎭
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where , 1, , 1,r s t u uδ + −  needs to be constructed from many-to-one or one-to-one word mapping 
relation since words 1s te e+  are all aligned to uf . A similar principal applies to 
one-to-many mapping (i.e., the calculation of , 1, , ,p s s u vδ − ). 

Finally, using the standard CYK backtracking technique, we can find the most probable 
bilingual parse tree of the sentence pair with word alignment results. The integration of 
fertilities of words into the model aims to improve the parsing and the word-aligning quality. 

2.4 Pruning 
Although the complexity of the described algorithm is polynomial-time (proportion to 3 3m n ), 
the execution time grows rapidly with the increase in the variety of syntactic labels, from three 
structural labels (Wu, 1997) to the grammatical categories of the source language’s syntax in 
our model. As a result, pruning techniques are essential to reduce the time spent on parsing. 

We adopt pruning in the following two manners. The first pruning technique is, for a 
given SL substring 1 tse e+  and a given TL substring’s length, to only keep parse trees 
whose probabilities fall within the best N σ× , where N  is the number of possible parses 
for a SL substring 1 tse e+  and a length of the TL substring, and σ  is a real number 
between 0 and 1. In other words, we remove inferior parse trees that are not in the set of the 
best N σ×  ones. Since N varies from case to case (depending on the SL substring and the 
length of TL substring), only the more probable trees within the ratio (i.e., σ ) of N will 
remain. 

The second pruning technique is related to the ratio of the length of the SL and TL 
substring. , , , ,p s t u vδ  will not be calculated if t s

v u
−
−

 is smaller than ratioθ  or larger than 
1 ratioθ  where 0 1ratioθ≤ ≤ , since few words will be aligned to more than 1 ratioθ  words 
in another language. 

By applying the aforementioned pruning techniques, the time spent on parsing each 
sentence pair can be reduced by more than half. Empirically, pruning unlikely parses has little 
affect on the word alignment quality but reduces computational overhead significantly. 

3. Probability Estimation 

In this section, we describe how to estimate the probabilities of our unary bITG rules (e.g., 
JJ→positive/積極) and binary bITG rules (e.g., VP→[VP NP]) which denote the association of 
bilingual lexical words and model the structural divergences of the two languages, respectively. 
Figure 3 shows the probabilistic estimation procedure. 
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(1) =H WA  

(2) ( ) ( )2 2 2 2

1 1 1 1
For , , , , , , , , , , ,i j i j

i j i jr e f L rhs rel r e f L rhs rel′ ′
∈ ∈′ ′ ′ ′ ′H H  have not been considered 

(3)    ( )2 1If 1i i′= −  
(4)        For every   in L L L G E′′ ′→ ∈  
(5)            ( )2 1 2If 1j j j δ′+ ≤ ≤ +  

(6)                ( ){ }2 2
1 1

, , , ,  ,ji
i jr e f L L L Straight′′ ′′ ′= ∪H H  

(7)            ( )2 1 2If 1j j j δ′ ′+ ≤ ≤ +  

(8)                ( ){ }2 2
1 1

, , , ,  ,i j
i jr e f L L L Inverted′

′ ′′ ′= ∪H H  

(9)    similar strategy applies when 2 1 1i i′ = −  
Incorporate words aligned to null, each of which is denoted using 6-tuple representation, 
in both languages into H. 

( )2 2
1 1

For , , , , ,i j
i jr e f L rhs rel ∈H  

     ( )If  is not a lexical pairrhs  

(10)     [ ]( ) ( )( )1 2
1 2

count *,*,*, ,  , ;
P  

L R R Straight
L R R→ =

H
H

 

(11)     ( ) ( )( )1 2
1 2

count *,*,*, ,  , ;
P  

L R R Inverted
L R R→ =

H
H

 

     Else  

(12)     ( ) ( )( )count *,*,*, , ,* ;
P

i j
i j

L e f
L e f→ =

H

H
 

(13) ( ) ( )Based on  and , estimate P  and P  via MLE
i je fΦ ΦWA C  

Figure 3. The procedure of probabilistic estimation. 

In Step (1) of our training procedure, an existing word-aligning strategy or tool (e.g., 
GIZA++) is employed to obtain the word alignments (i.e., WA) of a parallel corpus C. WA 
comprises elements of the form ( )2 2

1 1
, , , , ,i j

i jr e f L rhs rel , which represents that the substring 
pair ( )1 2 1 2

,i i j je e f f  in sentence pair r  has L rhs→  as the production rule leading to 
the bilingual structure and has rel  (either straight or inverted) as the cross-language 
word-order relation of the constituents of rhs . rhs  denotes either a sequence of syntactic 
labels or a terminating bilingual word pair. Following this format, the example parses of 
(positive,積極)JJ and (after its return,香港 回歸 後)PP in Figure 1 would be denoted by the 
6-tuple (193, 8 9

8 9,e f ,JJ,positive/ 積極 ,don’t_care) and (193, 12 3
10 1,e f ,PP,IN NP,Inverted) 

respectively, where 193 is the record number of this sentence pair. 

Then, we recursively select two sections of a sentence pair, which have not yet been 
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paired up, from H (Step (2)). If the SL substring of the first section (i.e., 2
1

i
ie ) is adjacent to 

that of the second (i.e., 2
1

i
ie ′
′ ) on the right (Step (3)), based on word alignment result (Step (5) 

and Step(7)), a new straight-ordered (Step (6)) or inverted-ordered (Step (8)) section 
representing these two will be added into H. Specifically, once the SL substrings are related to 
some possible binary SL CFG rules, the right-hand-side constituents of these rules will be 
associated with an orientation on the TL end based on word alignment links. Since our model 
is a synchronous bilingual parsing one, without a monolingual parse tree, it enumerates all 
possible syntactic symbols to derive L and L′  in Step (4). Note that, in Steps (5) and (7), δ , 
a small positive integer, is utilized to tolerate aligning errors introduced by the automatic word 
aligner or explicitness issue 1  during translation from one language to another, when 
determining cross-language straight/inverted word order phenomenon. 

From Step (10) to Step (12), in which |W| stands for the number of entries in set W and 
count(p;Q) for the frequency of p in set Q, we estimate probabilities of bITG rules via 
Maximum Likelihood Estimation. In our model, the probabilities of lexical translation rules 
(e.g., JJ→positive/積極) and binary bITG rules (e.g., VP→[VP NP]) are estimated from the 
same source (i.e., H). Alternative probabilistic estimation of these two kinds of rules can be 
adopted. For example, the probabilities of lexical translation rules can be derived from pure 
word alignment set WA while those of binary bITG rules can be derived from set H without 
word-level alignment links. We employ the former estimation approach and, in experiments, it 
yields satisfying results (see Section 4), suggesting word-order tendencies of the two 
languages are properly modeled. 

Finally, fertility probabilities related to words in both languages are also calculated (Step 
(13)). 

4. Experiments 

In experiments, we trained our model on a large English-Chinese parallel corpus. We 
examined word alignments produced by our bITG model using the evaluation metrics 
proposed by Och and Ney (2000). For comparison, we also trained GIZA++, a state-of-the-art 
word-aligning system, on the same parallel corpus. 

4.1 Training Proposed Model 
We used the news portion of Hong Kong Parallel Text2 (HKPT) distributed by Linguistic Data 
Consortium as our sentence-aligned corpus C, which consisted of 739,919 English-Chinese 

                                                       
1 Some translations may be omitted for conciseness, or some of the function words in one language may 

have no counterparts in another. 
2 LDC2004T08 
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sentence pairs. The average length was 24.4 words for English and 21.5 words for Chinese. 

In our model, English sentences were considered to be the source while Chinese 
sentences were the target. SL sentences were POS tagged and TL sentences were segmented 
prior to word alignment. During training (as described in Section 3), we employed a GIZA++ 
run with default settings to obtain the word alignment set WA and our binary SL CFG G was 
based upon PTB section 233 production rules distributed by Andrew B. Clegg. 

4.2 Evaluation 
To evaluate our statistical translation model, 114 sentence pairs were chosen randomly from 
the news portion of HKPT as our testing data set. For the sake of execution time, we only 
selected sentence pairs whose SL and TL length did not exceed 15. Sentence pairs satisfying 
such a length constraint covered approximately 40% of the sentence pairs in the news portion 
of HKPT and were expected to be better word aligned via GIZA++. 

We examined the word-aligning performance using the metrics of alignment error rate 
(AER) proposed by Och and Ney (2000), in which the quality of a word alignment result A  
produced by an automatic system is evaluated by: 

precision
∩

=
A P

A
,  recall

∩
=

A S
S

 and  ( ), ; 1AER
∩ + ∩

= −
+

A S A P
S P A

A S
. In AER, S 

(sure) denotes the set whose alignments are not ambiguous and P (possible) denotes the set 
consisting of alignments that might or might not exist ( )⊆S P . Thus, human annotations may 
contain many-to-one, one-to-many, or even many-to-many word alignments. Table 1 shows the 
experimental results of GIZA++, the BTG model (Wu, 1997), and our fertility-based SL-biased 
ITG model. 

Table 1. Results of test data of different systems 
 P R AER F 

E to F .891 .385 .459 .537 
F to E .882 .533 .333 .664 

Refined .879 .635 .261 .737 
BTG .844 .610 .290 .708 
bITG 

w/o fertility 
.866 .638 .263 .735 

bITG 
w/ fertility 

.878 .692 .224 .774 

                                                       
3 http://textmining.cryst.bbk.ac.uk/acl05/ 
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In this table4, P, R, and F stand for precision, recall, and F-measure5, respectively. The 
performance of the E-to-F alignments (E stands for English and F for Chinese), the F-to-E 
alignments, and the refined alignments (proposed by Och and Ney (2000)) from both E-to-F 
and F-to-E directions of GIZA++ are shown in first three rows, along with that of BTG, which 
also trained on the word-aligning output of GIZA++. The results of our translation model 
without or with the capability of making many-to-one/one-to-many links are listed in the last 
two rows. 

Compared with the BTG model that does not distinguish the constituent categories and 
makes the orientation choices merely on lexical evidence (without the information of 
languages’ grammars), our model without fertility probability which allows for at most 
one-to-one alignment, as the BTG model does, achieved 9% reduction in the alignment error 
rate. This indicates that the binary SL CFG rules encoding with TL ordering preference in our 
model do capture the linguistic information of the languages such as word-order regularities or 
grammar and do impose more realistic and accurate reordering constraints on word alignment 
in the language pairs. 

Furthermore, in comparison to the refined alignments of both word-aligning directions, 
our model with the concept of fertility (allowing for many-to-one/one-to-many links), which is 
quite similar to the refined approach accommodating many-to-many word mappings, 
increased the recall by 9% while maintaining high precision and achieved 14% alignment 
error reduction overall (increased F-measure by 5%). 

As suggested by Table 1, it is safe to say that the proposed model yields more accurate 
bilingual parse trees, thus better word alignment quality, by introducing binary CFG rules of a 
language (i.e., the source language) and fertility notation of IBM models into ITG model. 

5. Discussion 

In this section, we examine how the learnt similarities (straight) and differences (inverted) in 
word orders of two languages aid the word-aligning process of our model by means of the 
adjacency feature and cohesion constraint, mentioned in Cherry and Lin (2003). Subsequently, 
to evaluate the possibility of better machine translation quality by providing our model’s 
output (i.e., word correspondences), we adopt the recently-proposed metric, consistent phrase 
error rate (CPER) by Ayan and Dorr (2006). 

 

                                                       
4 

S

P
 is 85.56% in human-annotated test data. 

5 Calculated using the formula ( )2 P R P+R× × . 
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5.1 Straight/Inverted Orientation 
Table 2 shows the accuracy of adjacent alignments made by our model, and the accuracy 
achieved by the refined approach is shown for comparison. If compared against the gold 
standard in the sure set (i.e., S in Section 4), our model with bITG rules relatively increased 
the accuracy by more than 3%, suggesting the similar (or straight) word orientations of the 
binary syntactic constituents (e.g., JJ and NN) in the languages are better captured in our 
model than in GIZA++. Note that alignments must have orders before an adjacency feature 
exists (see Cherry and Lin (2003)) in them. Therefore, an ordering, depending on the position 
of the English word in the sentence, was imposed to examine the feature. 

Table 2. Examination of adjacent links 

 Compared tosure 
links 

Compared to possible 
links 

Refined .835 .869 

bITG 
w/ fertility 

.863 .881 

Additionally, we examined whether the inverted binary bITG rules captured the 
diversities of the two grammars and helped to make correct crossing (or reverse) alignment 
links or not. For that purpose, we first acquired the dependency relations of the source (i.e., 
English) sentences via a Stanford parser, and computed the percentage of links violating the 
cohesion constraint (see Cherry and Lin (2003)). The ratios of having crossing dependencies 
in the mapped Chinese dependency trees6 are summarized in Table 3. As suggested by Table 
3, our model reduced sixteen percent of the links violating the cohesion constraint (compared 
to the refined approach). 

Table 3. Percentage of links violating cohesion constraint 

 Percentage 

Refined .044 

bITG 
w/ fertility 

.037 

The above statistics indicate that the probabilities related to straight and inverted word 
orders of bITG rules in our model not only impose a more suitable alignment constraint but 
properly model the systematic similarities and differences in two languages’ grammars. 

 

                                                       
6 Chinese dependency trees are mapped from English dependency trees based on word correspondences. 
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5.2 CPER 
According to Ayan and Dorr (2006), the intrinsic evaluation metric of AER (Och and Ney, 
2000) examines only the quality of word-level alignments and correlates poorly with the 
MT-community metric—BLEU score. As a result, we exploited consistent phrase error rate 
(CPER) to evaluate words alignments in the context of machine translation. CPER is reported 
to better correlate with translation quality (the smaller the CPER is, the better the translation 
quality) in that it evaluates phrase-level alignments and in that phrase-level alignments 
(bilingual phrase pairs) constitute the key essences of a MT system. 

In Ayan and Dorr (2006), precision (P), recall (R), and CPER are computed via: 

P ,  RA G A G

A G

P P P P
P P
∩ ∩

= = ,  and 2 P RCPER 1
P R
× ×

= −
+

 where AP  and GP  stand for two 

sets of phrases generated by an automatic alignment A and manual alignment G, respectively. 
In Table 4, the proposed fertility-based source-language-based ITG model yielded the lowest 
CPER. This indicates that MT systems, accepting our word alignment output, are more likely 
to lead to better translation performance. 

Table 4. Reports on CPER 

 P R CPER 

E to F .479 .383 .574 

F to E .544 .518 .470 

Refined .573 .606 .411 

BTG .569 .569 .431 

bITG 
w/o fertility 

.598 .597 .402 

bITG 
w/ fertility 

.624 .626 .375 

6. Conclusion and Future Work 

To combine the strengths of the competing models, a thought-provoking fusion of IBM-style 
fertility with syntax-based ITG model is described. In our model, the orientation probabilities 
of the binary SL-based ITG rules are automatically estimated based on a word-aligned parallel 
corpus and are devised to better capture structural divergences of the involved languages. The 
proposed bITG model with fertility reduces AER by 14% and 23%, and reduces CPER by 9% 
and 13% compared to GIZA++ and Wu’s BTG (1997), respectively. Lower CPER suggests 
MT systems chained after our statistical translation model are likely to yield better translation 
quality. In this paper, the performance of ITG models trained on large-scale bitexts is shown 
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for the first time with quite encouraging results. 

As for future work, we would like to explore methods (e.g. (Brown, 1992)) for 
partitioning long sentences into shorter ones so that the time spent on bilingual parsing in our 
model can be reduced. We also like to see whether word-aligning quality can be further 
improved if our bITG rules are lexicalized, especially when lexical contents play an important 
role in determining word orders of the languages. 
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