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Abstract 

A two-stage latent prosody model-language model (LPM-LM)-based approach is proposed to 
identify two Mandarin accent types spoken by native speakers in Mainland China and Taiwan. 
The frontend LPM tokenizes and jointly models the affections of speaker, tone and prosody 
state of an utterance. The backend LM takes the decoded prosody state sequences and builds 
n-grams to model the prosodic differences of the two accent types. Experimental results on a 
mixed TRSC and MAT database showed that fusion of the proposed LPM-LM with a 
SDC/GMM+PPR-LM+UPR-LM baseline system could further reduced the average accent 
identification error rate from 20.7% to 16.2%. Therefore, the proposed LPM-LM method is a 
promising approach. 
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1. Introduction 

Over the past decades, many approaches have been proposed to deal with language 
identification (LID) tasks. They tried to capture the specific characteristics of different 
languages. These characteristics roughly fall into three categories: the phonetic repertoire, the 
phonotactics, and the prosody. The mainstream system (as shown in NIST language 
recognition evaluation (LRE) 2007) [1] is usually based on the fusion of multiple acoustic 
and phonotactic systems. 

 
Although LID is extensively studied, less works have been done on accent identification 

(AID), especially for native speakers, such as American and Indian English, Mainland China 
and Taiwan Mandarin, Hindi and Urdu Hindustani and Caribbean and non-Caribbean Spanish. 
Comparing with LID task, AID of native speakers is more challenging because, (1) some 
linguistic knowledge, such as syllable structure, may be of little use since native speakers 
seldom make such mistakes; (2) difference among those speakers is relatively smaller than 
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that among foreign (non-native) speakers. In other words, the capacities of the popular 
acoustic and phonotactic approaches may be limited in this case. 
 

Many approaches have been proposed to model the prosodic differences between 
languages, dialects or accents [2], recently. Most of them are based on direct modeling of 
surface prosodic features, i.e., the raw prosodic features. For example, frame-level pitch flux 
features and GMMs were proposed in [3]; segmental-level pitch features were extracted using 
Legendre polynomials and modeled by ergodic Markov model in [4]; and 
supra-segment-level prosodic features were captured by n-gram in [5]. 
 

 

Figure 1. The block diagram of the proposed LPM-LM-based 
Mandarin accent identification system. 
 
 

 

Figure 2. The block diagram of the proposed LPM framework  
(speaker factor is omitted to simply this figure). 
 
 

However, surface prosodic features are often affected by many other non-prosodic latent 
factors, such as channel, speaker, phonetic context, and so on. Therefore, it is necessary to 
apply some feature normalization methods [6] to alleviate the unwanted affections. To absorb 
those unwanted affections, in this study a two-stage latent prosody model-language model 
(LPM-LM)-based approach as shown in Fig. 1 and 2 is proposed. The aim is to discriminate 
two Mandarin accent types spoken by native speakers in Mainland China and Taiwan. 
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In this approach, the frontend LPM [7] tokenizes (with the help of automatic speech 
recognizers (ASRs)) an input utterance into smaller prosodic units (sub-syllable in our case) 
and artificially introduces latent prosody states to represent the prosodic status of each token 
in an utterance. It then jointly models the affections of speaker, tone and prosody state on 
surface prosodic features in order to decode more precise prosody state sequences of the 
utterance. The backend LM then takes the decoded prosody state sequences and builds an 
n-gram to model the supra-segmental prosodic charactistics of each accent type. 
 

In more detail, LPM as shown in Fig. 2 (1) introduces a two-level hierarchical structure 
of speech prosody [8] with prosodic states and state transition probabilities and (2) describes 
the joint affections of latent factors in a state by a variable-parameter probability density 
function whose parameters varies as a function of those latent factor-dependent parameters. 
The purpose is to explain the variant due to speaker, phonetic context and, especially, tone 
factors. 
 

It is worth noting that (1) the proposed LPM-LM framework is similar to the popular 
parallel phone recognizer (PPR)-LM approach. However, the phone recognizers are replaced 
by automatic prosodic state tokenizers/labelers and, especially, (2) the LPM module could be 
trained in an unsupervised way to avoid any human annotation efforts. 
 

This paper is organized as follows. Section 2 reviews the LPM framework. Section 3 
discusses the application of LPM-LM on Mandarin AID. Section 4 reports the experimental 
results on a Mainland China and Taiwan Mandarin corpus. Some conclusions are given in the 
last section. 
 
 

2. Latent Prosody Model of Speech Prosody 

 

Based on the proposed LPM framework shown in Fig. 2, an input training utterance is first 

tokenized into a sequence of smaller prosodic units (sub-syllable in this case) including 

voiced and unvoiced segments. For each token, a segment-level prosodic feature vector nx  

is extracted (coefficients of log-pitch and log-energy trajectories and the duration of the 

segment). Here, the coefficients of trajectories are computed using Legendre polynomial 

function from the raw log-pitch and log-energy contours. The speech prosody of an input 

utterance is thus represented by a sequence of segment-level prosodic feature vectors, i.e., 

 , 1,...,n n N X x . 

 

To well explain the variant of the observed prosodic feature vector sequence X  of the 
utterance, several latent factors are introduced including speaker s , tone  , 1,...,nt n N T  (or 

major/minor stress in toneless language) and prosody state sequence  , 1,...,nq n N Q  

(phonetic context is ignored in this study). The probability of X  is defined as follows: 

     
, ,

| , , , ,
s

p p s p s 
Q T

X X T Q T Q                            (1) 
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Assume that each observed nx  is dependent only on local prosodic state nq  and tone 

nt  (and the speaker s ), the first term in the right hand side of Eq. (1) is approximated as 

follows: 

   
1

| , , | , ,
N

n n n
n

p s p s t q


X T Q x                              (2) 

Assume that speaker, prosodic state and tone sequences are all independent variables 

and the probabilities of speaker s  and tone sequence T  are uniform distributions, the last 

term in the right hand side of Eq. (1) is approximated as follows: 

     1 1
2

, , |
N

n n
n

p s p q p q q 


 T Q                              (3) 

Finally, the distribution of the surface prosodic feature vector nx  is modeled by the 

following linearly additive [9] formulation: 

n nn n s t q   x y μ μ μ                                   (4) 

where ny  are prosodic feature vectors  representing the normalized prosodic contours of 

the n -th syllable in an utterance; sμ , 
nt

μ and 
nqμ are the contributions of speaker s , 

prosody state nq  and tone nt , respectively. The normalized pitch contour ny  is 

approximated using a zero mean Gaussian distribution ( ; , )nN y 0 Σ (where Σ  is diagonal 

matrix), or equivalently the observed prosodic feature vector nx  is modeled by 

   | , , ; ,
n nn n n n s t qp s t q   x x μ μ μ Σ                          (5) 

By this way, the likelihood function of an utterance given an LPM   is expressed by 

       1 1
1 2

| | , , |
N N

n n n n n
n n

L p s t q p q p q q 
 

  X x                       (6) 

Moreover, the optimal prosody state sequence Q̂  of an utterance could be 

automatically labeled using a Viterbi search algorithm (with or without tone tags given) 

which maximize the likelihood function  |L X ,  i.e., 

   1 1
1 2

ˆ argmaxlog ( | , , ) |
N N

n n n n n
n n

p s t q p q p q q 
 

 
  

 
 

Q
Q x             (7) 

 

3. LPM-based Mandarin Accent Identification 

 

Mandarin spoken in Taiwan exhibits several major prosody differences from the Mandarin 

spoken in Mainland China [10]. Especially, people from Taiwan usually speak slower with a 

lower voice, and they sound soft and gentle; while Mainlanders have more ups and downs in 

their intonation, and their voices are higher and faster. These characteristics are likely 
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attributable, at least in part, to influence from the Southern Fujianese dialect widely spoken 

throughout Taiwan. 

 

Since there are prosodic differences between Mainlander’s and Taiwanese Mandarin, a 

LPM-based accent identification approach is built to identify these two Mandarin accent 

types. In the following subsections, the tokenization front-end and the speaker normalization 

parts of the proposed LPM-based approach and its training procedure are described in detail. 

 

3.1. Tokenization front-end 

 

The operation of the tokenization front-end is shown in Fig. 3. It firstly extracts the raw 

prosodic contours (log-pitch and log-energy) of an input utterance. The pitch and energy 

contours are then segmented by an ASR engine. The output is a sequence of voiced and 

unvoiced segments. 

 

 
Figure 3.  A typical segmentation results of the tokenization front-end 

(from top to bottom panel: spectrum, syllable and sub-syllable 

segmentations, log-pitch and log-energy contours). 

 

 

For each voiced segment, six dimensional prosodic features are extracted including 

coefficients of 3-order Legendre polynomial function for approximating the log-pitch contour, 

the log-energy mean and duration of the segment. On the other hand, for each unvoiced 

segment, only its log-energy mean and duration are utilized. 
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3.2. LPM training algorithm 

 

To estimate the parameters of the LPM, an unsupervised sequential optimization procedure 

based on the maximum likelihood criterion is adopted. The training procedure sequentially 

decodes latent prosody state sequences using Eq. (7) and updates the affecting factors (i.e., 

tone and prosody state) to optimize the likelihood function in Eq. (6). 

 

In more detail, the sequential optimization training procedure executes the following 

steps until a convergence has been reached. It is worth noting that each step updates a subset 

of LPM parameters. 

 

Step 0: Initialization 

‧ Derive the initial affecting factors sμ  and 
nt

μ of tones by averaging all prosodic feature 

vector nx  of a speaker or the whole training data, respectively. 

‧ Cluster and label the prosody state of each segment by vector quantization (VQ) using 

the residue prosodic feature vector 
nn n s t   x x μ μ and derive the initial prosody state 

affecting factors 
nqμ . 

‧ Derive the initial covariance matrix Σ . 

‧ Derive the initial prosody state transition probabilities using the statistics of labeled 

prosody states. 

Step 1: Re-Label 

‧ Re-label the prosody state sequence of all utterance using Eq. (7). 

Step 2: Re-Estimate 

‧ Update the affecting factors sμ of speakers, 
nt

μ of tones or 
nqμ of prosody states with all 

other parameters fixed. 

‧ Update the covariance matrix Σ  and the prosody state transition probabilities. 

Step 3: Iteration 

‧ Repeat step 1 to 2 until the likelihood function Eq. (6) is converged. 
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4. Experimental Results 

4.1. Corpus 

 

To evaluate the proposed LPM approach, two telephone speech corpora were mixed together, 

one is Mandarin across Taiwan (MAT) [11] released by Association for Computational 

Linguistics and Chinese Language Processing (ACLCLP), Taiwan, and the other is 

500-people telephone reading speech corpus (TRSC) [12] released by Chinese Corpus 

Consortium (CCC), China. There are about 4500 (MAT-2000+MAT-2500) Taiwanese and 500 

Mainlander speakers in MAT and TRSC, respectively. The mixed corpus is randomly divided 

into a training, a development and a test set. The detail of speaker and utterance information 

is listed in Table. 1. The evaluation is executed utterance by utterance and the average length 

of an utterance is about 5 seconds. 

 

Table 1. Detail information of the MAT ad TRSC corpora 

    including number of speakers and utterances. 

 

Training Development Test 

spk utt spk utt spk utt 

MAT 3936 67633 3742 20192 238 2009 

TRSC 409 43340 120 12594 20 2042 

 

4.2. LPM training results 

 

For all following LPM experiments, the number of prosody states was empirically set to 11 (8 

for voiced, 3 for unvoiced states) and there are 5 different tones in Mandarin. 

 

Figure 4.  The learning curves of the LPMs training on MAT and TRSC 

training sets (left: MAT, right: TRSC), respectively. 

131



First of the all, the learning curves of the LPMs were examined. Fig. 4 shows the 

likelihood functions on the MAT and TRSC training sets, respectively, along with the number 

of training iterations. It could be found from the figure that LPMs converged quickly, 

especially for the TRSC set. 

 

 

Figure 5.  The learned tone affecting patterns on MAT and TRSC corpora  

(top 5 panels: MAT, bottom 5 panels: TRSC), respectively. 
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After LPM training was converged, the learned 5 tone affecting patterns of Taiwanese 

and Mainlanders’ Mandarin, respectively, were drawn in Fig. 5. It is found that the major tone 

differences between Taiwan and Mainland China is the pattern of tone 3 and 5. This is 

consistent with common linguistic knowledge [10]. 

These results suggest that LPMs could automatically learn the accent-specific 

characteristics of Taiwanese and Mainlanders’ Mandarin. We therefore expect that 

LPM-LM-based approach could be successfully used to discriminate these two Mandarin 

accents. 

 

4.3. Acoustic and Phonotactic baselines 

 

To set up a reference baseline, two popular phonotactic and one acoustic approaches were 

first tested including (1) PPR-LM, (2) universal phone recognizer (UPR)-LM and (3) shifted 

delta cepstral (SDC)/Gaussian mixture model (GMM). 

 

For PPR-LM and UPR-LM, 39-dimensional mel-frequency cesptrum coefficient (MFCC) 

feature vectors were utilized to train the front-end phone recognizers. There are in total 50 

phonemes in Mandarin for PPR-LM. But for UPR-LM, the number of phonemes is extended 

to 63 to reflect the major pronunciation differences (retroflex and nasal-endings sounds) 

between Mainlander’s and Taiwanese Mandarin. All MFCCs were pre-processed by cepstral 

normalization (CN) to partially compensate the channel and database mismatch. Beside, 

tri-gram LM backbends were adopted for both PPR-LM and UPR-LM. Moreover, the 

parameters of SDC were empirically set to 7-3-3-7 and the number of mixtures in GMMs was 

512. 

 

Table 2. Experimental results of the individual acoustic, phonotactic  

                 and prosodic approaches and their fusion on a mixed TRSC  

and MAT database. 

Approach Error (%) System Fusion Error (%) 

(1): PPR-LM 24.88 (5):  (1)+(2) 21.84 

(2): UPR-LM 23.79 (6):  (1)+(3) 22.53 

(3): SDC-GMM 29.11 (7):  (1)+(2)+(3) 20.68 

(4): LPM-LM 31.34 (8):  (7)+(4) 16.18 

 

 

133



Table 2 shows the performances of the individual systems and their fusion results. The 

fusion was done using a softmax-output multi-layer perceptual (MLP) and trained with the 

development sets. From Table 2, it is found that (1) PPRLM and UPRLM worked better than 

SDC/GMM and (2) the best performance, 20.68% error rate, was achieved by the fusion of 

the PPR-LM, UPR-LM and SDC/GMM systems. 

 

4.4. Prosodic approach 

 

The proposed LPM-LM approach was then evaluated. In training phase, the correct tone tags 

were given but in testing phase MLP-based tone recognizers are adopted to provide estimated 

tone tags online [7]. 

 

Table 2 shows the performances of the proposed LPM-LM and the fusion of LPM-LM 

with the acoustic and phonotactic baseline. The fusion was also done using the same 

softmax-output MLP and trained with the development sets. Different from acoustic feature, 

the prosodic feature extracts another characteristic (example: tone). From Table 2, it is found 

that LPM-LM worked compatible with the SDC/GMM but is worse than the acoustic and 

phonotactic baseline. It was caused by just using prosodic feature rather than strong acoustic 

feature. However, the fusion of LPM-LM and the acoustic and phonotactic baseline could 

further reduce the error rate from 20.68% to 16.18%. This result may suggest the 

complementary of those methods. 

 

5. Conclusions 

 

In this paper, a LPM-LM-based approach is proposed to identify two Mandarin accent types 

spoken by native speakers in Mainland China and Taiwan. Experimental results on a mixed 

TRSC and MAT database showed that fusion of the proposed LPM-LM and a 

SDC/GMM+PPR-LM+UPR-LM baseline system could further reduced the average accent 

identification error rate from 20.7% to 16.2%. Therefore, the proposed LPM method is a 

promising approach. 
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