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Abstract
In this paper, we investigate the noise-robustness of features based on thecepstral time coef-

ficients (CTC). By cepstral time coefficients, we mean the coefficients obtained from applying the
discrete cosine transform to the commonly used mel-frequency cepstral coefficients (MFCC). Fur-
thermore, we apply temporal filters used for computing delta and acceleration dynamic features to the
CTC, resulting in delta and acceleration features in the frequency domain. We experiment with five
different variations of such CTC-based features. The evaluation is done on the Aurora 3 noisy digit
recognition tasks with four different languages. The results show all but one such feature set perfor-
mance gain, the other feature sets actually lead to performance gains. The best feature set achieves an
improvement of 25% over the baseline feature set of MFCC.
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1. Introduction

A front-end of a speech recognition system may consist of several stages for noise-robustness to
achieve good performance. In the early stage of spectral domain, well-known methods such as spectral
subtraction [1] and Wiener filter [2] may be applied. In the middle stage of cepstral domain, the
mel-frequency cepstral coefficients (MFCC) are commonly used as the static feature set. In the post-
processing stage, there may be normalization, temporal information integration, and transformation
modules.

It has been observed that simple normalization approaches, such as the cepstral mean subtraction
(CMS) [3], cepstral variance normalization (CVN) [4], and histogram normalization (HEQ) [5] can
lead to significant performance improvement in recognition accuracy in noisy environment. Appar-
ently such methods are capable of alleviating themismatchbetween the clean and noisy data.

In this paper we investigate novel features based on simple transformation methods. Specifically,
we insert a window of static cepstral vectors in a matrix and then apply thediscrete cosine transform
(DCT) along the temporal axis. The coefficents after the DCT is called the cepstral time coefficients,
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Figure 1: The block diagram of the proposed feature transformation methods.

and the resultant matrix is called the cepstral time matrix (CTM) [6,7]. After CTM for each frame is
extracted, we further apply normalization and routines for delta and acceleration feature extraction to
the cepstral time coefficients. The transformed features are combined with the static MFCC features
to form the final feature vector.

This paper is organized as follows. Section 2 defines the cepstral time matrix and introduces the
investigated feature transformations. The experimental setup and recognition results are described in
Section 3. In Section 4, we draw conclusions.

2. Feature Transformations

Our feature extraction and transformation process is illustrated in Figure 1. We begin with a review
of the cepstral time matrix, which is followed by the mathematical definition of the proposed additive
transformation methods.

2.1. Cepstral Time Coefficients

We first insert a fixed number of adjacent feature vectors in a matrix

Ct ,









Ct
11 Ct

12 . . . Ct
1T

...
. . .

...

Ct
K1 Ct

K2 . . . Ct
KT









,

[

f
t

f
t+1 . . . f

t+T−1
]

. (1)

HereK is the feature vector dimension, andf
t is the feature vector of framet, Ct is the matrix whose

column vectors are theT consecutive feature vectors starting from framet.
The cepstral time matrix at framet, Dt, is related toCt by the discrete-cosine transform. Each

row of Dt is the discrete-cosine transform of the corresponding row ofCt. That is,

Dt
i: = DCT (Ct

i:). (2)

HereDt
i: is thei-th row of matrixD.1 We callDt

in thenth cepstral time coefficient (CTC) of channel
i at framet. D is also called cepstral time matrix (CTM). It represents the spectral information of
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cepstral coefficient in an analysis window of frames.1Since our matrix index starts from1 instead of
0, here the DCT needs to be

Dt
in =

T
∑

τ=1

Ct
iτ cos

(

(2τ − 1)(n − 1)π

2T

)

. (3)

2.2. CTC-Based Features

In this paper, we have5 different transforms applied to CTC, each leading to a different feature vector.

2.2.1. Method E

The first transform is dividing the first column ofDt by the number of frames (T ), while leaving other
columns unchanged. LetEt be the new feature matrix, we have

{

Et
:1 = Dt

:1/T

Et
:n = Dt

:n, n 6= 1
(4)

NoteEt
:1 has a physical meaning. According to (2), it is the mean of the cepstral coefficients within

an analysis window (whileDt
:1 is the sum).

We then compute a novel feature set based onEt. Specifically, we treat the columns inEt as a
temporal sequence and apply the delta and acceleration feature extraction steps. That is,

{

Ĕt
:2 = Et

:2 − Et
:1

Ĕt
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:3 − 2Et
:2 + Et

:1.
(5)

We add theĔ(t)
:2 andĔ

(t)
:3 to the static MFCCs, resulting in a feature vector of
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2.2.2. Method F

An alternative transform is to normalize the feature values in the first column to the range of[−1, 1].
This is achieved by dividingDt

:1 by the maximum magnitude of the first column. LetF t be defined
by

{

F t
:1 = Dt

:1/N
t

F t
:n = Dt

:n, n 6= 1
(7)

whereN t is the maximum magnitude in the first column, i.e.,

N t = max
d

|Dt
d1|.

The remaining operations are similar to MethodE. That is,
{

F̆ t
:2 = F t

:2 − F t
:1

F̆ t
:3 = F t

:3 − 2F t
:2 + F t

:1.
(8)

1In general, we will use notationAi: to denote thei-th row vector andA:j to denote thej-th column vector, of matrixA.
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We addF̆ (t)
:2 andF̆

(t)
:3 to the static MFCCs, resulting in a feature vector of
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2.2.3. Method G

In Method G, we add the first and second columns of CTM, which represents the zeroth and first
cepstral time coefficients, to the static MFCC vector,
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2.2.4. Method H

In Method H, we add the second and third columns of CTM, which represent the first and second
cepstral time coefficients, to the static MFCC vector,
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2.2.5. Method I

In Method I, we no longer use the MFCC. Instead, we simply use the zeroth, first, and second cepstral
time coefficients,
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2.2.6. Method B

For completeness, we describe our baseline features as Method B. Our baseline simply uses the12
MFCCs (c1, . . . , c12), the log energy, and the delta and delta-delta features. Therefore, the feature
vector has a dimension of39, which agrees with other methods. Furthermore, our baseline results
agree with the Aurora 3 baseline results [8,9].

3. Experiments

3.1. Experimental Database

We evaluate the proposed CTC-based speech features on the Aurora 3 noisy-digit recognition
tasks [8, 9]. Aurora 3 is a multi-lingual speech database, consisting of digit-string utterances in Dan-
ish, German, Finnish and Spanish. It provides a platform for fair comparison between systems of
different front-ends. All the results reported in this paper follow the Aurora 3 evaluation guidelines.
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3.2. Results

We first evaluate the number of vectors to be included inCt, and decide to useT = 15. For the static
features we use12 MFCC features and the log energy, makingK = 13. Therefore, the initial matrix
Ct is of size13 × 15.

Table 1 lists the experimental results on the Aurora 3 database. The entries in the table are the
averaged relative improvements of word error rates over the baseline.

Consistent performance across different methods have been observed in the experiments. Specif-
ically, Method H achieves the best performance, while Method G yields the worst performance, in
all languages. Given that Method G and Method H differ only in the cepstral time coefficients they
include in the final feature vector, it is fair to say thatthe zeroth cepstral time coefficient is detrimental
to recognition accuracy.

Methods E, Method F, and Method I yield mixed results. In Finnish, Method E outperforms
Method F and Method I. In Spanish and Danish, Method F outperforms Method I and Method E.
Method E and Method F are similar in the sense that the first column (zeroth cepstral time coefficients)
are normalized, and then used in procedures similar to delta and acceleration feature extraction, in
the frequency domain rather than in the time domain. It is not surprising that they have similar
performance level.

Table 1:The overall (averaged over conditions) relative improvements of the word error rates in the
Aurora 3 tasks.

German Spanish Finnish Danish

E -12.4 16.2 16.5 16.3

F -10.5 22.4 10.8 16.3

G -58.1 -29.0 -42.9 -19.2

H 7.5 26.6 25.4 23.2

I -10.8 19.8 8.5 13.1

The comparison of Method G and H concludes that the zeroth CTC is detrimental of recognition
accuracy. The zeroth CTC corresponds to the first column of CTM. Therefore in Method E and F, we
try schemes of normalizing the first column of CTM. In Method E we divide the first column of CTM
by T, and in Mthod F we normalize the value of first column to the range−1 to 1. The performance
of E and F given in Table 1 are better than the baseline. Lastly, we also try Method I, which uses only
CTCs, and excludes MFCCs. Its recognition accuracy is also better than the baseline.

Figure 2 plots the temporal sequences of the fifth dimension of the third column (Dimension31 out
of 39) of the feature vectors of Method B, F, and H of a pair of Danish utterances. The pair consists of
an utterance of Channel 0 (the cleaner instance) and an utterance of Channel 1 (the noisier instance).
Specifically, using our previously defined notations, Figure 2(B) is the plot of△2f t

5, Figure 2(F) is the
plot of F̆ t

53, and Figure 2(H) is the plot of̆H t
53. It appears that the difference between Channel 0 and

Channel 1 is smaller in the cases of (F) and (H) than in the case of (B). Therefore the mismatchedness
is reduced.

Table 2 lists the experimental results of Method H on the Aurora 3 database, given as per-
cent word error rate (WER) results. These results include the four Aurora 3.0 languages (Finnish,
Spanish, German, and Danish) and the Well-Matched(WM), Medium-Matched(MM), and Highly-
Mismatched(HM) training/testing cases.
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Table 2: Our most recent Aurora 3.0 results using the method H, given as percent word error rate
(WER) results. These results include the four Aurora 3.0 languages (Finnish, Spanish, German, and
Danish) and the Well-Matched(WM), Medium-Matched(MM), and Highly-Mismatched(HM) train-
ing/testing cases.

Aurora3 Reference Word Error Rate

German Spanish Finnish Danish

WM 9.4 13.1 9.5 20.4

MM 21.9 26.3 27.5 50.6

HM 25.7 57.8 69.6 66.8

Aurora3 Word Error Rate, Method H

German Spanish Finnish Danish

Well 9.1 9.7 7.0 15.4

Mid 19.8 18.4 21.3 39.0

High 21.7 45.4 50.2 52.4

Aurora3 Relative Percentage Improvement

German Spanish Finnish Danish Avg.

Well 4.4 26.0 26.2 24.5 20.3

Mid 5.3 29.9 22.7 22.9 20.2

High 15.5 23.0 27.9 21.5 22.0

overall 7.5 26.6 25.4 23.2 20.7

4. Conclusion and Future Work

In this paper, we use five difference feature sets based on the cepstral time coefficients. Method
E and F, which first normalize the first column and then apply the delta and delta-delta operations on
the first3 columns of CTM, lead to performance gains over the baseline. Method G and H, which
combine different sets of columns of CTM with the raw MFCC vector, lead to mixed results. Method
I, which uses all cepstral time coefficients, leads to improvement. Overall, the combination of raw
MFCC and the second and the third columns of CTM yields the best results among all experimented
feature sets.
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