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Abstract 

Word boundary detection in variable noise-level environments by support vector 
machine (SVM) using Low-band Wavelet Energy (LWE) and Zero Crossing Rate (ZCR) 
features is proposed in this paper. The Wavelet Energy is derived based on Wavelet 
transformation; it can reduce the affection of noise in a speech signal. With the inclusion of 
ZCR, we can robustly and effectively detect word boundary from noise with only two 
features. For detector design, a Gaussian-kernel SVM is used. The proposed detection 
method is applied to detection word boundaries for an isolated word recognition system in 
variable noisy environments. Experiments with different types of noises and various 
signal-to-noise ratios are performed. The results show that using the LWE and ZCR 
parameters-based SVM, good performance is achieved. Comparison with another robust 
detection method has also verified the performance of the proposed method.  
 

Keywords: Speech detection, word boundary detection, support vector machine, wavelet 
transform, noisy speech recognition.  
 
1. INTRODUCTION 

For speech recognition, the detection of speech affects recognition performance. A 
robust word boundary detection method in the presence of variable-label noises is necessary 
and is studied in this paper. Depending on the characteristics of speech, a variety of 
parameters have been proposed for boundary detection. They include the time energy (the 
magnitude in time domain), zero crossing rate (ZCR) [1] and pitch information [2]. These 
parameters usually fail to detect word boundary when signal-to-noise ratio (SNR) is low. 
Another parameter concerning frequency domain has also been recently proposed. According 
to the frequency energy, the time-frequency (TF) parameter [3] which sums the energy in 
time domain and the frequency energy was presented. The TF-based algorithm may work 
well for fixed-level background noise. However, its detection performance degrades for 
background noise of various levels. For this problem, some modified TF parameters are 
proposed [4]. In [5], the idea of using Wavelet transform features as speech detection features 
was proposed. In this paper, we present a new Low-band Wavelet Energy (LWE) parameter 
which separates the speech from noise in the domain of Wavelet transform. Computation of 
the WE parameter is easier than the modified TF parameters, and it is shown in the 
experiment section that a better detection performance is achieved.  
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After the features for detection have been extracted, the next step is to determine 
thresholds and decision rules. Many decision methods based on computational intelligence 
techniques have been proposed, such as fuzzy neural networks (FNNs) [4] and neural 
networks (NNs) [6]. Generalization performance may be poor when FNNs and NNs are 
over-trained. To cope with the low generalization ability problem, a new learning method, the 
Support Vector Machine (SVM), has been proposed [7, 8]. SVM is a new and useful learning 
method whose formulation is based on the principle of structural risk minimization. Instead 
of minimizing an objective function based on training, SVM attempts to minimize a bound on 
the generalization error. SVM has gained wide acceptance due to its high generalization 
abilities for a wide range of applications. For this reason, this paper used a SVM as a 
detector. 

The rest of the paper is organized as follows. Section II introduces the derivation and 
analysis of the WE and ZCR parameters. Section III describes the SVM detector. 
Experiments on word boundary detection for noisy speech recognition are studied in Section 
IV. Finally, Section V draws conclusions.  

2. ROBUST DETECTION PARAMETERS 

Wavelet Transform (WT) is a technique for analyzing the time-frequency domain that is 
most suited for a non-stationary signal [9]. For short-time analysis and discrete speech signal, 
discrete-time WT (DTWT) is used. Let the amplitude of the k th point in the i th frame of a 
noisy speech signal be denoted by ( , )s i k  and the frame length in sample number be 
represented by N . The DTWT of the i -th speech frame is as follows, 
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where ( )ψ ⋅  represents a wavelet basis function, 0
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In this paper, the Harr wavelet is used in Eq. (2), where  
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Generally, the DTWT is computed at scales 0
ma  for, theoretically, all m . The output of 

DTWT can be regarded as finding the output of a bank of band-pass filters, where different 
values of scales corresponds to different band-pass filters. The outputs of DTWT at different  
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Fig. 1. (a) The LWEs of clean speech (b) The LWEs of speech with white noise added at 
SNR5. 
 
scales contain different amounts of speech and noise information, and only the crucial scale(s) 
that contains maximum word signal information and is robust to noise should be used. 
Therefore, energy of the crucial scale is adopted as detection parameter for distinction 
between speech and noise in this paper.  

To find the crucial scale, some observations on the effect of additive noise are made on 

different scales of DTWT. It is found that at the scale of 6
0 2ma = , distribution of the STWT 

amplitudes matches well with the speech interval.  

After computing DTWT for each time frame of a speech signal at the scale 6
0 2ma = , 

the next step is to find an energy parameter to stand for the amount of word signal 
information at this scale. It is found the speech section corresponds to large DTWT amplitude 
values. Thus, summation of the amplitudes over n  can be used as a parameter to stand for 
the amount of word signal information. It is also found that the amplitudes of noise tend to 
become larger when translation index n  is larger than 0.8N . Thus, summation is 
performed only from n =0 to 0.8n N= . This novel detection parameter, called low-band  
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Fig. 2. Distributions of speech/non-speech frames in the LWE-ZCR plane with noise ranging 
from SNR20 to SNR0, where “×” and “ +” denote non-speech and speech, respectively.  
 
wavelet energy (LWE), is computed as follows, 
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For illustration, a clean speech and its corresponding WE parameters of each frame are 
shown in Fig. 1(a). The speech with white noise and its corresponding WE parameters at 
SNR5 is shown in Fig. 1(b). This example shows that the WE parameter can robustly 
represent the energy of speech signal at different SNRs.  

In addition to the WE parameter which is used to measure speech energy, the other 
parameter used for speech detection is the Zero Crossing Rate (ZCR). The reason for using the 
ZCR is that it is particularly suitable for un-voiced detection due to the high-frequency nature 
of the majority of fricatives.  

Figure 2 shows distributions of speech/non-speech frames in the LWE-ZCR plane with 
noise levels SNR=20, 15, 10, and 5. The results show that the speech frames locate in a 
certain region of the two dimensional feature space.  

3. SUPPORT VECTOR MACHINE DETECTOR 
SVM is based on the statistical learning theory developed by Vapnik [7]. SVM first 

maps the input points into a high dimensional feature space and finds a separating hyperplane 
that maximizes the margin between two classes in this space. Suppose we are given a set S  

of labeled training set, 1 1 2 2{( , ), ( , ), , ( , )}N NS x y x y x y= K K K" , where n
ix ∈K \ , and { }1, 1iy ∈ + − . 

Considering that the training data is linearly non-separable, the goal of SVM is to find an 
optimal hyperplane such that 
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Fig. 3. The sequence of speech used for SVM training. 
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where nw∈K \ , b ∈\ , and 0iξ ≥ is a slack variable. For 1iξ > , the data are misclassified. 

To find an optimal hyperplane is to solve the following constrained optimization problem: 

,
1

1Min    
2

Subject to   ( ) 1

N
T

w i
i

T
i i i

w w C

y w x b

ξ ξ

ξ
=

+

+ ≥ −

∑K K

K K
                       (6) 

where C  is a user defined positive cost parameter and iξ∑ is an upper bound on the 

number of training errors. After solving Eq. (2), the final hyperplane decision function is 
achieved, and  
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where iα  is a Lagrange multiplier and the training samples for which 0iα ≠  are support 
vectors (SVs). A detailed derivation process can be found in [8]. 

The above linear SVM can be readily extended to a nonlinear classifier by first using a 
nonlinear operator Φ  to map the input data into a higher dimensional feature space. In this 
way, it can solve nonlinear problems. By replacing xK  in Eqs. (1) and (2) with the feature 
space ( )xΦ K  and solving the constrained optimization problem, the decision function  
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is achieved, where  ( , ) ( ) ( )j jK x x x x= Φ ⋅ΦK K K K  is called a kernel function. This paper uses a 

Gaussian-kernel SVM with ( , )jK x xK K =
2

exp( / )jx x γ− −K K , where γ  is the width of a 

Gaussian-kernel. The two-dimensional inputs of the Gaussian-kernel SVM detector are ZER 
and LWE. For SVM, there is only one output and the desired output is “1” and “ 1− ” if the 
input frame is speech and non-speech, respectively. During test, the SVM output indicates 
where or not the input frame is speech.  
4. EXPERIMENTS 

The wave files of speech are recorded by 11.025 kHz sample rate, mono channel and 16-bit 
resolution. For SVM training, the training sequence length is 13 seconds and is shown in Fig. 
3. It consists of 20 words and is corrupted by white noise whose energy level increases from 
the start to SNR=0 and then decreases till the end of the sequence. For testing, the speech 
database is built of sequences of transcriptions from the same male speaker, where each 
sequence consists of ten isolated Mandarin words “0”, “1”," , “9”. There are a total of 50 
test sequences used for playing the judicial role in performance comparison. The noise added 
to the speech sequence is of variable noise level during the sequence. Figure 4(a) shows the 
flowchart of training by  

(a)  

 
(b) 

 
Fig. 4. (a) Flowchart of SVM training. (b) Flowchart of LWE-based SVM for test data. 

SVM 

SVM 
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Fig. 5. Training performance of C  in the range in the range [1, 85], where the range is 
spaced to 17 equal scales.  

 
Fig. 6. Word boundary results by LWE-based SVM and RTF-based RSONFIN in variable 
noise level environment.  
 
LWE-based SVM is shown, and Fig.4 (b) shows test of LWE-based SVM. 

The classification rate defined in Eq. (9) is used as training performance index.  

Classification rate Correctly detected frame number
total frame number in training sequance

=             (9) 

For SVM, the value of C  influences the training performance. Fig. 5 shows the 
training performance of C  in the range [1, 85], where the range is spaced to 17 equal scales. 
The cost value C  is set to 40 in the following experiments, where there are a total of 1050 
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(a)                                         (b)  

  

Fig. 7. Noisy speech recognition results by different word boundary detection methods. (a) 
white noise (b) factory noise. 
 
SVs in the trained SVM.  

To get a quick view on the test performance, some illustrative examples are 
experimented and shown in Fig. 6, where white noise with sharp variation in amplitude is 
added to the clean speech. Most word boundaries are correctly detected. For comparison, Fig. 
6 also shows the performance of refined time-frequency (RTF) feature –based recurrent 
self-organizing neural fuzzy inference network (RTF-based RSONFIN) [4] detection method. 
The result shows that RTF-based RSONFIN almost fails to detect most of the words, and the 
performance of LWE-based SVM shows much better performance than RTF-based 
RSONFIN.  

Next, the ten Mandarin digital words in each sequence of transcriptions in the test 
database are to be recognized. The words in each sequence are detected by the two methods 
respectively. When the number of successive frames being detected as speech is larger than 
0.1 second, we regard it as word for recognition, otherwise these frames are discarded. So the 
number of words  
detected in each sequence of transcription may be larger or smaller than exact ten words. 
Considering this phenomenon, we define the following recognition rate  

T E U Srecognition rate 100%
T

− − −= × ,                  (10) 

where T is the total number of words in the reference transcriptions, E is the number of words 
recognized incorrectly, U is un-detect words of reference transcriptions, and S is surplus 
words of reference transcriptions. 

For the recognizer, the hierarchical singleton-type recurrent neural fuzzy network 
(HSRNFN) [9] that put SNR20 white noise as training data is used. The reason we use 
HRNFN is that it achieves high recognition rate and is robust to different types of noise under 
different SNR. With HSRNFN recognizer, the recognition results by hand-segment, 
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LWE-based SVM, and RTF-based RSONFIN methods under white and factory noise are 
shown in Fig. 7. The results show that recognition rate of the LWE-based SVM method is 
slightly lower than that of hand segmentation, but is much larger than that of the 
RTF-RSONFIN method.  
5. CONCLUSIONS 

Two research results on robust speech detection in variable noise-level environment 
have been presented this paper, one is the robust LWE-based parameters, and the other is 
detector design by SVM. Variable noise-level instead of fixed noise-level is added to each 
sequence of transcript. Distributions of the LWE-based parameters in the 2-dimensional 
feature space for different SNRs have shown that the LWE-based parameters are feasible for 
speech detection over variable level noise. The LWE-based SVM can be applied to a speech 
recognition system as demonstrated in the experiments.  
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