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Features
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Abstract

Propositional terms in a research abstract (RA) generally convey the most important
information for readers to quickly glean the contribution of a research article. This paper
considers propositional term extraction from RAs as a sequence labeling task using the IOB
(Inside, Outside, Beginning) encoding scheme. In this study, conditional random fields
(CRFs) are used to initially detect the propositional terms, and the combined association
measure (CAM) is applied to further adjust the term boundaries. This method can extract
beyond simply NP-based propositional terms by combining multi-level features and inner
lexical cohesion. Experimental results show that CRFs can significantly increase the recall
rate of imperfect boundary term extraction and the CAM can further effectively improve the

term boundaries.
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1. Introduction

Researchers generally review Research Abstracts (RAs) to quickly track recent research
trends. However, many non-native speakers experience difficulties in writing and reading
RAs [1]. The author-defined keywords and categories of the research articles currently
utilized to provide researchers with access to content guiding information are cursory and
general. Therefore, developing a propositional term extraction system is an attempt to exploit
the linguistic evidence and other characteristics of RAs to achieve efficient paper
comprehension. Other applications of the proposed method contain sentence extension, text
generation, and content summarization.

A term is a linguistic representation of a concept with a specific meaning in a particular
field. It may be composed of a single word (called a simple term), or several words (a
multiword term) [2]. A propositional term is a term that refers to the basic meaning of a
sentence (the proposition) and helps to extend or control the development of ideas in a text.
The main difference between a term and a propositional term is that a propositional term,
which can guide the reader through the flow of the content, is determined by not only syntax
or morphology but semantic information. Take RAs to illustrate the difference between a term
and a propositional term. Cheng [3] indicted that a science RA is composed of background,
manner, attribute, comparison and evaluation concepts. In Figure 1, the terms underlined are
the propositional terms which convey the important information of the RA. In the clause

“we present one of the first robust LVCSR systems that use a syllable-level acoustic unit for

LVCSR,”  the terms “LVCSR systems” , “syllable-level acoustic unit”  and

“LVCSR”  respectively represent the background, manner and background concepts of the
research topic, and can thus be regarded as propositional terms in this RA. The background
concepts can be identified by clues from the linguistic context, such as the phrases

“most...LVCSR systems” and “in the past decade” , which indicate the aspects of
previous research on LVCSR. For the manner concept, contextual indicators such as the
phrases “present one of...” , “thatuse” and “for LVCSR” express the aspects of the
methodology used in the research. Propositional terms may be composed of a variety of word
forms and syntactic structures and thus may not only be NP-based, and therefore cannot be
extracted by previous NP-based term extraction approaches.

Most large vocabulary continuous speech recognition (LVCSR) systems in the past decade have used a
context-dependent (CD) phone as the fundamental acoustic unit. In this paper, we present one of the
first robust LVCSR systems that use a syllable-level acoustic unit for LVCSR on telephone-bandwidth
speech. This effort is motivated by the inherent limitations in phone-based approaches-namely the lack
of an easy and efficient way for modeling long-term temporal dependencies. A syllable unit spans a
longer time frame, typically three phones, thereby offering a more parsimonious framework for
modeling pronunciation variation in spontaneous speech. We present encouraging results which show
that a syllable-based system exceeds the performance of a comparable triphone system both in terms of
word error rate (WER) and complexity. The WER of the best syllable system reported here is 49.1% on
a standard SWITCHBOARD evaluation, a small improvement over the triphone system. We also report
results on a much smaller recognition task, OGI Alphadigits, which was used to validate some of the
benefits syllables offer over triphones. The syllable-based system exceeds the performance of the
triphone system by nearly 20%, an impressive accomplishment since the alphadigits application

consists mostly of phone-level minimal pair distinctions.

Figurel. A Manually-Tagged Example of Propositional Terms in an RA

In the past, there were three main approaches to term extraction: linguistic [4], statistical
[5, 6], and C/NC-value based [7,8] hybrid approaches. Most previous approaches can only
achieve a good performance on a test article composed of a relatively large amount of words.
Without the use of large amount of words, this study proposes a method for extracting and



weighting single- and multi-word propositional terms of varying syntactic structures.

2. System Design and Development

This research extracts the propositional terms beyond simply the NP-based propositional
terms from the abstract of technical papers and then regards propositional term extraction as a
sequence labeling task. To this end, this approach employs an IOB (Inside, Outside,
Beginning) encoding scheme [9] to specify the propositional term boundaries, and
conditional random fields (CRFs) [10] to combine arbitrary observation features to find the
globally optimal term boundaries. The combined association measure (CAM) [11] is further
adopted to modify the propositional term boundaries. In other words, this research not only
considers the multi-level contextual information of an RA (such as word statistics, tense,
morphology, syntax, semantics, sentence structure, and cue words) but also computes the
lexical cohesion of word sequences to determine whether or not a propositional term is
formed, since contextual information and lexical cohesion are two major factors for
propositional term generation.
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Figure 2. The System Framework of Propositional Term Extraction

The system framework essentially consists of a training phase and a test phase. In the
training phase, the multi-level features were extracted from specific domain papers which
were gathered from the SCI (Science Citation Index)-indexed and SCIE (Science Citation
Index Expanded)-indexed databases. The specific domain papers are annotated by experts
and then parsed. The feature extraction module collects statistical, syntactic, semantic and
morphological level global and local features, and the parameter estimation module calculates
conditional probabilities and optimal weights. The propositional term detection CRF model
was built with feature extraction module and the parameter estimation module. During the
test phase users can input an RA and obtain system feedback, i.e. the propositional terms of
the RA. When the CRF model produces the preliminary candidate propositional terms, the
propositional term generation module utilizes the combined association measure (CAM) to
adjust the propositional term boundaries. The system framework proposed in this paper for
RA propositional term extraction is shown in Figure 2. A more detailed discussion is
presented in the following subsections.



2.1. Assisted Resource

In order to produce different levels of information and further assist feature extraction in the
training and test phases, several resources were employed. This study chooses the ACM
Computing Classification System (ACM CSS) [12] to serve as the domain terminology list
for propositional term extraction from computer science RAs. The ACM CSS provides
important subject descriptors for computer science, and was developed by the Association for
Computing Machinery. The ACM CSS also provides a list of Implicit Subject Descriptors,
which includes names of languages, people, and products in the field of computing. A
mapping database, derived from WordNet (http://wordnet.princeton.edu/) and SUMO
(Suggested Upper Merged Ontology) (http://ontology.teknowledge.com/) [13], supplies the
semantic concept information of each word and the hierarchical concept information from the
ontology. The AWL (Academic Words List) (http://www.vuw.ac.nz/lals/research/awl/) [14] is
an academic word list containing 570 word families whose words are selected from different
subjects. The syntactic level information of the RAs was obtained using Charniak’s parser
[15], which is a “maximum-entropy inspired” probabilistic generative model parser for
English.

2.2. Conditional Random Fields (CRFs)

—f
W ={w,w,,...,

For this research goal, given a word sequence Wn}, the most likely propositional

term label sequence S =855} in the CRF framework with the set of weights ¥ can be

obtained from the following equation.

S = arg maxg P\*,(S|W) (1)

A CREF is a conditional probability sequence as well as an undirected graphical model
which defines a conditional distribution over the entire label sequence given the observation
sequence. Unlike Maximum Entropy Markov Models (MEMMs), CRFs use an exponential
model for the joint probability of the whole label sequence given the observation to solve the
label bias problem. CRFs also have a conditional nature and model the real-world data
depending on non-independent and interacting features of the observation sequence. A CRF
allows the combination of overlapping, arbitrary and agglomerative observation features from
both the past and future. The propositional terms extracted by CRFs are not restricted by
syntactic variations or multiword forms and the global optimum is generated from different
global and local contributor types.

The CRF consists of the observed input word sequence W ={%-W.--} and label state

sequence 5 =155-5} such that the expansion joint probability of a state label sequence

given an observation word sequence can be written as
1
P(S |W)=Z—exp(zz/ik fo (S SoW )+ DD 14,9, (st,W)j
0 t ok t ok (2)
where (50%W) are the transition features of the global observation sequence and the states

at positions t and t-1 in the corresponding state sequence, and 9(s:W) g a state feature

function of the label at position t and the observation sequence. Let A be the weight of each

1
fk, Hc be the weight of % and Z be a normalization factor over all state sequences,



where Z, = Zexp(ZZﬁk f (S SoW )+ DD 149, (st,W)j.
S t k t ok

The set of weights in a CRF model, ¥ =(Aem) , 1s usually estimated by maximizing the
conditional log-likelihood of the labeled sequences in the training data D= {sm,w“)}“

i=1
(Equation (3)) For fast training, parameter estimation was based on L-BFGS (the
limited-memory BFGS) algorithm, a quasi-Newton algorithm for large scale numerical
optimization problems [16]. The L-BFGS had proved [17] that converges significantly faster
than Improved Iterative Scaling (IIS) and General Iterative Scaling (GIS).

L= Y log(R, (" W) 3)

After the CRF model is trained to maximize the conditional log-likelihood of a given
training set P(S|W), the test phase finds the most likely sequence using the combination of
forward Viterbi and backward A* search [18]. The forward Viterbi search makes the labeling
task more efficient and the backward A* search finds the n-best probable labels.

2.3. Multi-Level Features

According to the properties of propositional term generation and the characteristics of
the CRF feature function, this paper adopted local and global features which consider
statistical, syntactic, semantic, morphological, and structural level information. In the CRF
model, the features used were binary and were formed by instantiating templates, and the
maximum entropy principle was provided for choosing the potential functions. Equation (4)
shows an example of a feature function, which was set to 1 when the word was found in the
rare words list (RW).

n)z{l, if s, =SNiSRW (W,) @

gSW W ,...,W, (st’Wl .
T 0, otherwise

2.3.1. Local Feature
(1). Morphological Level:

Scientific terminology often ends with similar words, e.g. “algorithm” or “model”, or is
represented by connected words (CW) expressed with hyphenation, quotation marks or
brackets. ACMCSS represents entries in the ACM Computing Classification System (ACM
CSS). The last word of every entry in the ACM CSS (ACMCSSATY) satisfies the condition
that it is a commonly occurring last word in scientific terminology. The existing propositional
terms of the training data were the seeds of multiword terms (MTSeed).

Words identified as acronyms were stored as useful features, consisting of IsNenadic,
IsISD, and IsUC. IsNenadic was defined using the methodology of Nenadi¢, Spasi¢ and
Ananiadou [19] to acquire possible acronyms of a word sequence that was extracted by the
C/NC value method. IsISD refers to the list of Implicit Subject Descriptors in the ACM CCS
and IsUC signifies that all characters of the word were uppercase

(2). Semantic Level:

MeasureConcept  infers that the word was found wunder SUMO’s



“UNITS-OF-MEASURE” concept subclass and SeedConcept denotes that the concept of the
word corresponded to the concept of a propositional term in the training data.

(3). Frequency Level:

A high frequency word list (HF) was generated from the top 5 percent of words in the
training data. A special words list (SW) consists of the out-of-vocabulary and rare words.
Out-of-vocabulary words are those words that do not exist in WordNet. Rare words are words
not appearing in the AWL or which appear in less than 5 different abstracts.

(4). Syntactic Level:

This feature was set to 1 if the syntactic pattern of the word sequence matched the
regular expression “(NP)*(preposition)?(NP)*” (SynPattern), or matched the terms in the
training data (SeedSynPattern). SyntaxCon means that concordances of ACMCSSAff or
ACMCSSA(ftSyn (ACMCSSAff synonyms) used the keyword in context to find the syntactic
frame in the training data. If the part-of-speech (POS) of the word was a cardinal number,
then this feature CDPOS was set to 1.

(%). Statistical and Syntactic Level:

This research used the CRF model to filter terms extracted by the C/NC value approach
with no frequency threshold

2.3.2. Global Feature
(1). Cue word:

KeyWord infers that the word sequence matched one of the user’s keywords or one word
of the user’s title. IsTransW and IsCV represent that a word was found in an NP after TransW
or CV respectively. TransW indicates summative and enumerative transitional words, such as
“in summary”, “to conclude”, “then”, “moreover”, and “therefore”, and CV refers to words
under SUMQO’s “communication” concepts, such as “propose”, “argue”, “attempt” and so on.

(2). Tense:

If the first sentence of the RA is in the past tense and contains an NP, then the word
sequence of that NP was used as a useful feature PastNP. This is because the first sentence
often impresses upon the reader the shortest possible relevant characterization of the paper,
and the use of past tense emphasizes the importance of the statement.

3). Sentence structure:

Phrases in a parallel structure sentence refers to the phrases appearing in a sentence
structure such as Phrase, Phrase, or (and) Phrase, and implies that the same pattern of words
represents the same concept. ParallelStruct indicates that the word was part of a phrase in a
parallel structure.

2.4. Word Cohesiveness Measure

By calculating the cohesiveness of words, the combined association measure (CAM) can
assist in further enhancing and editing the CRF-based propositional term boundaries for
achieving a perfect boundary of propositional terms. CAM extracts the most relevant word
sequence by combining endogenous linguistic statistical information, including word form
sequence and its POS sequence. CAM is a variant of normalized expectation (NE) and



mutual expectation (ME) methods.

To characterize the degree of cohesiveness of a sequence of textual units, NE evaluates
the average cost of loss for a component in a potential word sequence. NE is defined in
Equation (5) where the function c(-) means the count of any potential word sequence. An
example of NE is shown in Equation (6).

C([w..w..w,]) (5)
;(C([W,...wi...wn])+ C([Wl...Wi...Wn])]

NE ([large vocabulary continuous speech recognition])

NE ([w,..w..w,]) =

n
i=2

C ([large vocabulary continuous speech recognition])

- (c ([large vocabulary continuous speech recognition]) (6)
+C ([large continuous speech recognition])
~| +C([large vocabulary speech recognition )

+C ([large vocabulary continuous recognition)

+C ([large vocabulary continuous speech])

Based on NE and relative frequency, the ME of any potential word sequence is defined
as Equation (7), where function P(-) represents the relative frequency.

ME ([w,..w,..w, ]) = P ([w,..w,..w, ]) x NE ([w,..w,..w, ]) (7)

CAM considers that the global degree of cohesiveness of any word sequence is
evaluated by integrating the strength in a word sequence and the interdependence of its POS.
Thus CAM evaluates the cohesiveness of a word sequence by the combination of its own ME
and the ME of its associated POS sequence. In Equation (8), CAM integrates the ME of word
form sequence [w,..w..w,] and its POS [p,...p...p,]. Let a be a weight between 0 and 1,

which determines the degree of the effect of POS or word sequence in the word cohesiveness
measure.

CAM ([W,... .., ]) = ME ([w,..\%;..w, ])" x ME ([ p,...p;...p, ]) " (8)

This paper uses a sliding window moving in a frame and compares the CAM value of
neighboring word sequences to determine the optimal propositional term boundary. Most
lexical relations associate words distributed by the five neighboring words [20]. Therefore
this paper only calculates the CAM value of the three words to the right and the three words
to the left of the CRF-based terms. Figure 3 represents an illustration for the CAM
computation that was fixed in the [(2*3) + length(CRF-Based term)] frame size with a sliding
window. When the window starts a forward or backward move in the frame, the three
marginal words of a term are the natural components of the window. As the word number of
the CRF term is less than three words, the initial sliding windows size is equal to the word
number of the term.



Frame Size =(2*3)}+length(CRF-based Term)
| CRF-based Term |
WI1[W2 W3 W4 W35 We W7 W8 W9 W10 W11 ]WI2
W1 [ W2 W3 W4 W5 We W7 W8 %W]U Wil ] wiz
9

W1 W2 [W3 W4 WS W6e W7 WB W9 WI0 W11 ] Wi2
W1 [[W2 W3 W4 WS W6 W7 WB W9 W10 W11 ] Wi2

Figure 3. An [llustration for the CAM Computation Steps

To find the optimal propositional term boundary, this study calculates the local
maximum CAM value by using the Modified CamLocalMax Algorithm. The principle of the
original algorithm [21] is to infer the word sequence as a multiword unit if the CAM value is
higher than or equal to the CAM value of all its sub-group of (n-1) words and if the CAM
value is higher than the CAM value of all its super-group of (n+1) words. In the Modified
CamLocalMax Algorithm, when the CAM value of the combination of CRF-based single
word propositional terms and its immediate neighbor word is higher than the average of the
CAM value of bi-gram propositional terms in the training data, the components of the
CRF-based single word propositional terms are turned into a bi-gram propositional term. The
complete Modified CamLocalMax Algorithm is shown in the following, where cam means
the combined association measure, size(-) returns the number of words of a possible
propositional term, M represents a possible propositional term, € denotes the set of all the
possible (n+1)grams containing M, Q,; denotes the set of all the possible (n-1)grams
contained in M, and bi-term typifies bi-gram propositional terms in the training data.

”E WI1[W2 W3 W4 W5 W6 W7 W8 W10 W1l ] wi2
» WI[W2 W3 W4 W5 W6 W7 W8 W9 WI0WI11 | WIZ
T OWI[W2 W3 W4 W5 We W7 W8 WOIWIO|W1l ] WI2
2 WI[W2 W3 W4 W3 We W7 W8 W9 WI0WII [ Wiz
T OWI[W2 W3 W4 W5 We W7 WEB W9 WI0OWI1 | WIi2
2 WI[ W2 W3 W4/W5 We W7 WE W9 WI0WII1 |Wi2
T owl [ W2 W3 [W4|W35 We W7 W8 W9 WIOWI1 | Wi2
£ WI[W2[W3 W4 W5 W6 W7 W8 W9 WI0 W11 | WI2
TOWI[W2 (W3 W4 W5 We W7 W8 W9 W10 Wil | WI2
:,_(.

3

Input: M, a possible propositional term, vy e Q __  the set of all the possible (n+1)grams
containing M, vxeQ, , the set of all the possible (n-1)grams contained in M
Output: CT={cty,cty,...ct}, a CRF+CAM-based propositional term set
If (sizeqM)=2and cam(M) > cam(y))
or (size(M)>2and cam(M) = cam(x) and cam(M) >cam(y))
or ( size(M)=1 and cam(bi-gram) = cam(M))
End if
Return ct

n+l»

2.5. Propositional Term Generation Algorithm

The Propositional Term Generation algorithm utilizes the CRF model to generate a
CRF-based propositional term set T={t,t,,...t,} and calculates the CAM value to produce a
CRF+CAM-based propositional term set CT={ct;,ct,,...ct,}. The detailed processes of the

Propositional Term Generation algorithm are as follows
k

b : the word form sequence from the first word 1 to last word k of CRF-based propositional term t;

Input: Word sequence W’

Output: T={ty,t,,...t,}, @ CRF-based propositional term set and, CT={ct;,ct,,...ct,}, a CRF+CAM-based
propositional term set

Input W,"to generate T={t,t,,...t,} by CRF

Forall t;ieT
Fora=0toa =2 Step 1



cti=Modified_CamLocalMax(t;"* t:**" t<*#")

CT € CT Ut
End for
Ift; ¢ CT Then
Fora=0toa =-2 Step -1

cti=Modified_CamLocalMax(t;**,t;**" t;"*"!)

CT < CT Uk
End for
End if
End for
Return T, CT

2.6. Encoding Schema

The 10B encoding scheme was adopted to label the words, where I represents words Inside
the propositional term, O marks words Outside the propositional term, and B denotes the
Beginning of a propositional term. It should be noted that here the B tag differs slightly from
Ramshaw and Marcus’s definition, which marks the left-most component of a baseNP for
discriminating recursive NPs. Figure 4 shows an example of the IOB encoding scheme that
specifies the B, I, and O labels for the sentence fragment “The syllable-based system exceeds
the performance of the triphone system by...”. An advantage of this encoding scheme is that it
can avoid the problem of ambiguous propositional term boundaries, since IOB tags can
identify the boundaries of immediate neighbor propositional terms, whereas binary-based
encoding schemes cannot. In Figure 4, “syllable-based system”, and “exceeds” are individual
and immediate neighbor propositional terms distinguished by B tags.

Input: The syllable-based system exceeds the performance of'the triphone system by

I0OB: O B I 1 B [ ] o O B I 0
-
Ters: [svllable-based system] [exceeds] [triphone system)

Figure 4. An Example of the IOB Encoding Scheme
3. Evaluation

3.1. Experimental Setup

To facilitate the development and evaluation of the propositional term extraction method,
experts manually annotated 260 research abstracts, including speech, language, and
multimedia information processing journal papers from SCI and SCIE-indexed databases. In
all, there were 109, 72, and 79 annotated research abstracts in the fields of speech, language,
and multimedia information processing, respectively. At run time, 90% of the RAs were
allocated as the training data and the remaining 10% were reserved as the test data for all
evaluation.

In system implementation, the CRF++: Yet Another CRF toolkit 0.44 [22] was adopted.
The training parameters were chosen using ten-fold cross-validation on each experiment.

The proposed system was compared with three baseline systems. The first was the
C/NC-value algorithm with no frequency threshold, because the C/NC-value algorithm is a
hybrid methodology and its historical result is better than the linguistic and statistical
approaches. The second baseline system proposed by Nenadi¢ et al. [8] is a variant of the



C/NC-value algorithm enriched by morphological and structural variants. The final baseline
system 1is a linguistic approach proposed by Ananiadou [4]. That study, however, made no
comparisons with statistical approaches which are suitable for a document containing a large
amount of words.

To evaluate the performance in this study, two hit types for propositional term extraction:
perfect and imperfect [23] are employed. A perfect hit means that the boundaries of a term’s
maximal term form conform to the boundaries assigned by the automatic propositional term
extraction. An imperfect hit means that the boundaries assigned by the automatic
propositional term extraction do not conform to the boundaries of a term’s maximal term
form but include at least one word belonging to a term’s maximal term form. Taking the word
sequence “large vocabulary continuous speech recognition” as an example, when the system
detects that “vocabulary continuous speech recognition” is a propositional term, it then
becomes an imperfect hit. There is only one perfect hit condition where “large vocabulary
continuous speech recognition” is recognized. The metrics of recall and precision were also
used to measure the perfect and imperfect hits. The definition of recall and precision of
perfect hits and imperfect hits are shown in Equation (9) and Equation (10). Thus, our system
is evaluated with respect to the accuracies of propositional term detection and propositional
term boundary detection. That is, our motivation for propositional term extraction was to
provide CRF and CRF+CAM for accurate detection of propositional terms and the
improvement of the detected propositional term boundaries.

Recall=Hits Perfect (or Imperfect)
Target Termforms ©)

Precision= Hits Perfect (or Imperfect)/

Extracted Termforms (10)

3.2. Experimental Results

This study evaluated empirically two aspects of our research for different purposes. First, the
performance of propositional term extraction for CRF-based and CRF+CAM-based
propositional term sets on different data was measured. Second, the impact of different level
features for propositional term extraction using CRF was evaluated.

Evaluation of Different Methods
Table 1. The Performance of Imperfect Hits on Different Data

Method R P F R P F
- _All Data : Language Data
CRF Inside Testing ©932 945 939 :967 981 974
CRF +CAM Inside Testing 96.6 96.0 963 984 99.6  99.0
CRF Outside Testing 77.1 74.1 75.6 78.6  76.3 77.4
CRF +CAM Outside Testing 82.6 |825 82.6 85.8 | 88.8 87.2
C/NC Value 534 653 58.8 48.1 533 50.6
Ananiadou 513 70.0 592 524 684 593
Nenadié et al. 580 723 644 60.1 690 643
Speech Data Multimedia Data
CRF Inside Testing 96.6 199.0 |982 98.0 1992 |98.6
CRF +CAM Inside Testing 975 990 994 98.6 993 99.0
CRF Outside Testing 749  76.1 74.3 612 650 @ 63.1
CRF +CAM Outside Testing 82.6 |839 | 842 654 | 712 | 682
C/NC Value 535 790 627 677 532 596
Ananiadou 1531 684 598 654 600 | 626




| Nenadi¢ et al. 1596 722 653 689 552 613 |

Table 1 lists the recall rate, the precision rate and F-score of propositional term
extraction for imperfect hits of different domain data. In each case, the recall and precision of
imperfect hits using CRF inside testing was greater than 93%. The CRF outside test achieved
approximately 73% average recall and 73% average precision for imperfect hits, and the
CAM approach improved the original performance of recall and precision for imperfect hits.
The C/NC-value approach achieved approximately 56% average recall and 63% average
precision for imperfect hits. The performance of Ananiadou’s approach was about 56%
average recall and 67% average precision for imperfect hits. Another baseline, the approach
of Nenadi¢, Ananiadou and McNaught, obtained approximately 62% average recall and 67%

average precision for imperfect hits.
Table 2. The Performance of Perfect Hits on Different Data

Method R P F R P F
All Data Language Data
CRF Inside Testing 66.5 66.2 66.3 66.4 67.5 67.0
CRF +CAM Inside Testing 69.0 68.6 - 688 69.4 69.9 69.6
CRF Outside Testing 39.8 422 419 43.2 37.3 40.0
CRF +CAM Outside Testing 43.5 49.2 46.2 453 454 45.3
C/NC Value 27.6 37.8 31.9 28.9 29.1 29.0
Ananiadou 26.3 37.9 31.1 31.3 37.7 34.2
Nenadi¢ et al. 30.2 41.0 34.8 31.2 40.9 354
Speech Data Multimedia Data
CREF Inside Testing 62.3 61.0 61.7 70.9 70.3 70.6
CRF +CAM Inside Testing 69.6 67.9 68.7 73.1 70.3 71.6
CRF Outside Testing 36.9 41.6 39.1 42.1 42.5 423
CRF +CAM Outside Testing ©428 489 456 456 450 443
C/NC Value 29.0 40.0 33.6 34.6 29.9 32.1
Ananiadou 27.4 37.7 31.7 29.3 38.0 33.1
Nenadic et al. 300 386 337 353 376 353

Table 2 summarizes the recall rates, precision rates and F-score of propositional term
extraction for perfect hits of data from different domains. The CRF inside test achieved
approximately 67% average recall and 66% average precision on perfect hits, but the CRF
outside test did not perform as well. However, the CAM approach still achieved an increase
of 1%-7% for perfect hits. The C/NC-value approach obtained approximately 30% average
recall and 34% average precision for perfect hits. Ananiadou’s approach achieved
approximately 29% average recall and 38% average precision for perfect hits. The
performance of Nenadi¢, Ananiadou and McNaught’s approach was about 32% average recall
and 40% average precision for perfect hits.

The results show that the C/NC-value does not demonstrate a significant change over
different fields, except for the multimedia field, which had slightly better recall rate. The
main reasons for errors produced by C/NC-value were propositional terms that were single
words or acronyms, propositional terms that were not NP-based, or propositional terms that
consisted of more than four words.

Ananiadou’s approach was based on a morphological analyzer and combination rules for
the different levels of word forms. Experimental results showed that this approach is still
unable to deal with single words or acronyms, and propositional terms that are not NP-based.

Nenadi¢ et al.’s approach considered local morphological and syntactical variants using
C value to determine the propositional terms. This approach had slightly better performance
than the C/NC value methodology. Acronyms were included in the propositional term



candidates but were filtered by frequency, as they often appear only a few times. This
approach also ignored single words, and propositional terms that were not NP-based.
Furthermore, none of these three baseline systems are suitable for handling special symbols.

For CRF inside testing, both the precision and recall rates were significantly better for
imperfect hits, but the precision and recall rates were reduced by about 30% for perfect hits in
most RAs. Due to insufficient training data, CRF no longer achieved outstanding results. In
particular, the large variability and abstract description of the multimedia field RAs led to
huge differences between measures. For example, in the sentence “For surfaces with varying
material properties, a full segmentation into different material types is also computed”, “full
segmentation into different material types” is a propositional term that it isn’t concretely
specified as a method. CRF achieved a better result in recall rate, but failed on propositional
term boundary detection, unlike the C/NC-value approach.

The CAM approach effectively enhanced propositional term boundary detection by
calculating word cohesiveness, except in the case of multimedia data. The CAM approach
couldn’t achieve similar performance for the multimedia data as a result of the longer word
count of terms that differ from the data of other fields. However, the CAM approach
performed best with o equal to 0.4, which demonstrates that the POS provided a little more
contribution for multiword term construction. The CAM approach not only considered the
POS sequence but also the word sequence, therefore the results are a little better for speech
data, which is the biggest part of the training data (SCI and SCIE-indexed databases).

The above results show that the CRF approach exhibited impressive improvements in
propositional term detection. The major reason for false positives was that the amount of the
data was not enough to construct the optimal model. Experimental results revealed that the
CAM is sufficiently efficient for propositional term boundary enhancement but the longer
word count of propositional terms were excluded.

Evaluation of Different Level Features

In order to assess the impact of different level features on the extraction method, this
paper also carried out an evaluation on the performance when different level features were
omitted. Table 3 presents the performance of CRF when omitting different level features for
imperfect hits and the symbol “-” denoted the test without a level feature. For all data, the
recall rate was reduced by approximately 1%- 5% and the precision rate was reduced by
approximately 2%- 6% in inside testing result. In all data outside testing, the recall rate was
reduced by 2%-10% and the precision rate was reduced by 1%-5%. The recall and precision
for speech data retained similar results from semantic level features, but showed little impact
from other local features. For language data, without morphological, syntactic, frequency, and
syntactic & statistical level features the performance was slightly worse than the original
result and without semantic level features the original performance was preserved. The
performance for multimedia data was affected greatly by semantic level features. A slight
improvement without morphological, and syntactic & statistical level features and similar

results were obtained when frequency and syntactic level features were omitted.
Table 3. The Performance of CRF Excepting Different Level Features for Imperfect Hits

ST Data Type All ~ Speech  Language = Multimedia |
Testing Type D R P R P R P R
Inside -Frequency Features 92 92 94 97 95 97 ~ 98
Inside -Morphological Features 88 90 92 96 93 9% - 97
Inside -Syntactic Features 90 &9 94 96 95 97 97
Inside -Semantic Features 92 92 96 98 97 98 | 95
Inside -Syntactic & Statistical Features 90 93 93 95 95 9% 96
Inside Testing 93 95 97 99 97 98 = 98
Outside -Frequency Features 74 73 71 73 76 74 i 60




Outside -Morphological Features 71 71 59 69 70 68 58 65

Outside -Syntactic Features 67 69 60 71 - 71 71 - 59 64 |
Outside -Semantic Features 75 175 075 1 76 1 78 76 41 | 60
Outside -Syntactic &Statistical Features 71 73 67 71 70 70 55 65
Outside Testing 77 0 74 0 75 L 76 | 79 | 76 | 6l 65

In Table 4, it can be noticed that the omission of any single level features results in a
deterioration in the performance of perfect hits. Removing the syntactic level features had the
most pronounced effect on performance for all, speech and language data, while removing the
semantic level features had the least effect on performance for all, speech and language data.
According to the experimental results, the use of the frequency features did not result in any
significant performance improvement for the multimedia data, and the use of the syntactic
and syntactic & statistical level features did not result in any performance improvement for
the multimedia data. Removing the semantic level features had the greatest effect on the

performance for the multimedia data.
Table 4. The Performance of CRF without Different Level Features for Perfect Hits

Data Type All Speech Language  Multimedia
Testing Type R P R P R P R P
Inside -Frequency Features 63 60 56 55 61 64 = 60 60
Inside -Morphological Features 61 61 57 54 61 64 70 68
Inside -Syntactic Features 60 60 55 57 63 65 68 67
Inside -Semantic Features 65 62 59 60 66 69 62 @ 62 |
Inside -Syntactic &Statistical Features 62 61 57 52 62 64 71 68
Inside Testing 67 66 6 6l 66 68 71 70 |
Outside -Frequency Features 36 38 34 | 35 | 37 34 40 @ 40
Outside -Morphological Features 33 35 32 36 35 34 40 39
Outside -Syntactic Features 35 36 32 38 37 32 39 40 |
Outside -Semantic Features 38 40 36 40 41 36 1 29 31
Outside -Syntactic &Statistical Features 38 39 32 37 35 33 | 40 40
Outside Testing 40 42 37 42 42 37 | 42 42

Overall the five different level features were all somewhat effective for propositional
term extraction. This suggests that propositional terms are determined by different level
feature information which can be effectively used for propositional term extraction. The
frequency level features contributed little for propositional term extraction in all and speech
data. This may be due to the fact that speech data comprised the main portion of the training
data. In the multimedia case, the semantic level features were useful. Although semantic level
features may include some useful information, it was still a problem to correctly utilize such
information in the different domain data for propositional term extraction. Syntactic and
morphological level features obtained the best performance for all, speech and language data.
This may be due to the amount of training data in each domain and the various word forms of
propositional terms in the multimedia data. The syntactic and statistical level features
improved or retained the same performance, which indicates the combined effectiveness of
syntactic and statistical information.

3.3. Error Analysis

Table 5 shows the distribution of error types on propositional term extraction for each
domain data using outside testing. This study adopts the measure used in [24] to evaluate the
error type, where M indicates the condition when the boundary of the system and that of the
standard match, O denotes the condition when the boundary of the system is outside that of
the standard and I denotes the condition when the boundary of the system is inside that of the
standard. Therefore, the MI, IM, II, MO, OM, 10, OI and OO error types were used to



evaluate error distribution. The relative error rate (RER) and the absolute error rate (AER)
were computed in error analysis, the relative error rate was compared with all error types, and
the absolute error rate was compared with the standard. In the overall error distribution, the
main error type was “IM” and “MI” and the CRF+CAM can significantly reduce those two
error types.

Table 5. Distribution of Error Types on Propositional Term Extraction

Error Type CRF CRF+CAM CRF CRF+CAM
RER AER RER AER RER AER RER AER
_ AllData _ _ Speech Data
MI 2462 611 1800 290 2490 641 2030  3.03
M 3648 872 2850 @ 4.88 3822 806 @ 3250 @ 4.08
Il 1867 496 2340 3.88 1237 288 1480  2.05
MO, OM, 10, Ol 749 308 1250  1.07 1050 246 1285  1.85
00 1274 291 17.60 208 1401 455 19.55  2.53
Language Data Multimedia Data
MI 2301 403 1850  2.67 19.18 658 1725  4.64
M 3125 9.08 2850 356 2572 9.00 19.10 4.0
11 2648 7.50 3100 407 3634 1063 3434 830
MO,0M,I0,0I 812 103 1245 189 642 500 10.09  1.53
00 _11.04 | 206 | 955 | 120 | 12.34 485 1922  3.85

4. Conclusion

This study has presented a conditional random field model and a combined association
measure approach to propositional term extraction from research abstracts. Unlike previous
approaches using POS patterns and statistics to extract NP-based multiword terms, this
research considers lexical cohesion and context information, integrating CRFs and CAM to
extract single or multiword propositional terms. Experiments demonstrated that in each
corpus, both CRF inside and outside tests showed an improved performance for imperfect
hits. The proposed approach further effectively enhanced the propositional term boundaries
by the combined association measure approach which calculates the cohesiveness of words.
The conditional random field model initially detects propositional terms based on their local
and global features, which includes statistical, syntactic, semantic, morphological, and
structural level information. Experimental results also showed that different multi-level
features played a key role in CRF propositional term detection model for different domain
data.
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