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Abstract 

Current readability formulae have often been criticized for being unstable or not valid. They 
are mostly computed in regression analysis based on intuitively-chosen variables and graded 
readings. This study explores the relation between text readability and the conceptual 
categories proposed in Prototype Theory. These categories form a hierarchy: Basic level 
words like guitar represent the objects humans interact with most readily. They are acquired 
by children earlier than their superordinate words (or hypernyms) like stringed instrument 
and their subordinate words (or hyponyms) like acoustic guitar. Therefore, the readability of 
a text is presumably associated with the ratio of basic level words it contains. WordNet, a 
network of meaningfully related words, provides the best online open source database for 
studying such lexical relations. Our preliminary studies show that a basic level word can be 
identified by its frequency to form compounds (e.g. chair  armchair) and the length 
difference from its hyponyms in average. We compared selected high school English 
textbook readings in terms of their basic level word ratios and their values calculated in 
several readability formulae. Basic level word ratios turned out to be the only one positively 
correlated with the text levels.  
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1. Introduction 

Reading process is the core of language education. Teachers now have access to a vast 
amount of texts extractable from the Internet inter alia, but the materials thus found are rarely 
classified according to comprehension difficulty. It is not uncommon to see foreign language 
teachers using texts not compatible with the students’ reading abilities.  
 Traditional methods of measuring text readability typically rely on the counting of 
sentences, words, syllables, or characters. However, these formulae have been criticized for 
being unstable and incapable of providing deeper information about the text. Recently, the 
focus of readability formula formation has shifted to the search for meaningful predictors and 
stronger association between the variables and the comprehension difficulty.  

We start our research by assuming in line with Rosch et al.’s Prototype Theory [1] that 
words form conceptual hierarchies in that words at different hierarchical levels pose different 
processing difficulties. This processing difficulty is presumably correlated with the reading 
difficulty of the text containing the words. Putting the logic into templates, the measurement 
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of text readability can be done by calculating the average hierarchical levels at which the 
words of a text fall.  

Our study comprises two stages. In the preliminary experiments, we utilized WordNet 
[2], an online lexical database of English, to identify basic level words. In the subsequent 
experiment, we compared selected readings in terms of their basic level word ratios and their 
values calculated in several readability formulae. Basic level word ratios turned out to be the 
only one positively correlated with the text levels.  

The remainder of this paper is organized as follows: Section 2 reviews the common 
indices the traditional readability formulae are based on and the criticism they have received. 
In Section 3, we first review an approach that centers on ontology structure, and then propose 
our own ontology-based approach. Section 4 is about methodology – how to identify basic 
level words, and how to assess the validity of our method against other readability formulae. 
Section 5 reports the results of the assessment and discusses the strength and weaknesses of 
our approach. In this section, we also suggest what can be done in further research.   
 
2. Literature Review 

In this section we first summarize the indices of the traditional readability formulae and then 
give an account of the criticism these formulae face.  
 
2.1 Indices of Readability – Vocabulary, Syntactic, and Semantic Complexity 

The earliest work on readability measurement goes back to Thorndike [3] where word 
frequency in corpus is considered an important index. This is based on the assumption that 
the more frequent a word is used, the easier it should be. Followers of this logic have 
compiled word lists that include either often-used or seldom-used words whose presence or 
absence is assumed to be able to determine vocabulary complexity, thus text complexity. 
Vocabulary complexity is otherwise measured in terms of word length, e.g., the Flesch 
formula [4] and FOG formula [5]. This is based on another assumption that the longer a word 
is, the more difficult it is to comprehend [6].  
 Many readability formulae presume the correlation between comprehension difficulty 
and syntactic complexity. For Dale and Chall [7], Flesch formula [4], and FOG index [5], 
syntactic complexity boils down to the average length of sentences in a text. Heilman, 
Collins-Thompson, Callan, and Eskenazi [8] also take morphological features as a readability 
index for morphosyntactically rich languages. Das & Roychoudhury’s readability index [9] 
for Bangla has two variables: average sentence length and number of syllables per word.  
 Flesch [4] and Cohen [10] take semantic factors into account by counting the abstract 
words of a text. Kintsch [11] focuses on propositional density and inferences. Wiener, M., 
Rubano, M., and Shilkret, R. [12] propose a scale based on ten categories of semantic 
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relations including, e.g., temporal ordering and causality. They show that the utterances of 
fourth-, sixth-, and eighth-grade children can be differentiated on their semantic density scale.  
 Since 1920, more than fifty readability formulae have been proposed in the hope of 
providing tools to measure readability more accurately and efficaciously [13]. Nonetheless, it 
is not surprising to see criticism over these formulae given that reading is a complex process.  
 
2.2 Criticism of the Traditional Readability Formulae 

One type of criticism questions the link between readability and word lists. Bailin and 
Grafstein [14] argue that the validity of such a link is based on the prerequisite that words in a 
language remain relatively stable. However, different socio-cultural groups have different 
core vocabularies and rapid cultural change makes many words out of fashion. The authors 
also question the validity of measuring vocabulary complexity by word length, showing that 
many mono- or bi-syllabic words are actually more unfamiliar than longer polysyllabic terms.  

These authors also point out the flaw of a simple equation between syntactic complexity 
and sentence length by giving the sample sentences as follows: 
(1)  I couldn’t answer your e-mail. There was a power outage. 
(2)  I couldn’t answer your e-mail because there was a power outage. 
 (2) is longer than (1), thus computed as more difficult, but the subordinator “because” 
which explicitly links the author’s inability to e-mail to the power outage actually aids the 
comprehension. The longer passage is accordingly easier than the shorter one.  

Hua and Wang [15] point out that researchers typically select, as the criterion passages, 
standard graded texts whose readability has been agreed upon. They then try to sort out the 
factors that may affect the readability of these texts. Regression analyses are used to 
determine the independent variables and the parameters of the variables. However, the 
researchers have no proof of the cause-effect relation between the selected independent 
variables and the dependent variable, i.e., readability.  

Challenge to the formula formation is also directed at the selection of criterion passages. 
Schriver [16] argue that readability formulae are inherently unreliable because they depend 
on criterion passages too short to reflect cohesiveness, too varied to support between-formula 
comparisons, and too text-oriented to account for the effects of lists, enumerated sequences 
and tables on text comprehension. 

The problems of the traditional readability formulae beg for re-examination of the 
correlation between the indices and the readability they are supposed to reflect.  
 
3. Ontology-based Approach to Readability Measurement 

3.1 An ontology-based method of retrieving information 

Yan, X., Li, X., and Song, D. [17] propose a domain-ontology method to rank documents on 
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the generality (or specificity) scale. A document is more specific if it has broader/deeper 
Document Scope (DS) and/or tighter Document Cohesion (DC). DS refers to a collection of 
terms that are matched with the query in a specific domain. If the concepts thus matched are 
associated with one another more closely, then DC is tighter. The authors in their subsequent 
study [18] apply DS and DC to compute text readability in domain specific documents and 
are able to perform better prediction than the traditional readability formulae.  
 In what follows we describe the approach we take in this study, which is similar in spirit 
to Yan et al.’s [18] method.  
 
3.2 An Ontology-based Approach to the Study of Lexical Relations 

In this small-scaled study, we focus on lexical complexity (or simplicity) of the words in a 
text and adopt Rosch et al.’s Prototype Theory [1]. 
 
3.2.1 Prototype Theory 

 According to Prototype Theory, our conceptual categorization exhibits a three-leveled 
hierarchy: basic levels, superordinate levels, and subordinate levels. Imagine an everyday 
conversation setting where a person says “Who owns this piano?”; the naming of an object 
with ‘piano’ will not strike us as noteworthy until the alternative “Who owns this string 
instrument?” is brought to our attention. Both terms are truth-conditionally adequate, but only 
the former is normally used. The word ‘piano’ conveys a basic level category, while ‘string 
instrument’ is a superordinate category. Suppose the piano in our example is of the large, 
expensive type, i.e., a grand piano, we expect a subordinate category word to be used in e.g.  
“Who owns this grand piano?” only when the differentiation between different types of 
pianos is necessary.  
 Basic level is the privileged level in the hierarchy of categorical conceptualization. 
Developmentally, they are acquired earlier by children than their superordinate and 
subordinate words. Conceptually, basic level category represents the concepts humans 
interact with most readily. A picture of an apple is easy to draw, while drawing a fruit would 
be difficult, and drawing a crab apple requires expertise knowledge. Informatively, basic level 
category contains a bundle of co-occurring features – an apple has reddish or greenish skin, 
white pulp, and a round shape, while it is hard to pinpoint the features of ‘fruit’, and for a 
layman, hardly any significant features can be added to ‘crab apple’.  
 Applying the hierarchical structure of conceptual categorization to lexical relations, we 
assume that a basic level word is easier for the reader than its superordinate and subordinate 
words, and one text should be easier than another if it contains more basic level words.  
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3.2.2 WordNet – An Ontology-Based Lexical Database of English 

WordNet [2] is a large online lexical database of English. The words are interlinked by means 
of conceptual-semantic and lexical relations. It can be used as a lexical ontology in 
computational linguistics. Its underlying design principle has much in common with the 
hierarchical structure proposed in Prototype Theory illustrated in 3.2.1. In the vertical 
dimension, the hypernym/hyponym relationships among the nouns can be interpreted as 
hierarchical relations between conceptual categories. The direct hypernym of ‘apple’ is 
‘edible fruit’. One of the direct hyponyms of ‘apple’ is ‘crab apple’. Note, however, 
hypernyms and hyponyms are relativized notions in WordNet. The word ‘crab apple’, for 
instance, is also a hypernym in relation to ‘Siberian crab apple’. An ontological tree may well 
exceed three levels. No tags in WordNet tell us which nouns fall into the basic level category 
defined in Prototype Theory. In the next section we try to retrieve these nouns.  
 
4. Methodology 

4.1 Experiment 1 

We examined twenty basic level words identified by Rosch et al. [1], checking the word 
length and lexical complexity of these basic level words and their direct hypernyms as well as 
direct hyponyms in WordNet [2]. A basic level word is assumed to have these features: (1) It 
is relatively short (containing less letters than their hypernyms/hyponyms in average); (2) Its 
direct hyponyms have more synsets1 than its direct hypernyms; (3) It is morphologically 
simple. Notice that some entries in WordNet [2] contain more than one word. We assume that 
an item composed of two or more words is NOT a basic level word. A lexical entry composed 
of two or more words is defined as a COMPOUND in this study. The first word of a 
compound may or may not be a noun, and there may or may not be spaces or hyphens 
between the component words of a compound.  

Table 1: Twenty basic level words in comparison with their direct hypernyms and hyponyms 
       on (average) word length, number of synsets, and morphological complexity*   

Basic Level Direct Hypernym Direct Hyponym 
Item 

W. Length M. Complexity W. Length Synsets M. Complexity W. Length Synsets M. Complexity

guitar 6 A 18 1 B 10 6 A, B 
piano 5 A 18 3 B 10 3 A, B 
drum 4 A 20 1 B 7.4 8 A, B 
apple 5 A 7.5 2 A, B 10.67 3 A, B 
peach 5 A 9 1 B 9 0 N/A 

                                                 
1 A synset is a set of synonyms. The direct hypernym of ‘piano’, for instance, is grouped into three synsets: (1)   
keyboard instrument, (2) stringed instrument, and (3) percussion instrument, percussive instrument. 
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grape 5 A 11 1 B 11.8 3 A, B 
hammer 6 A 8 1 B 9.7 9 A, B 

saw 2 A 8 1 B 8.7 7 A, B 
screwdriver 11 A 8 1 B 19.8 3 B 

pants 5 A 7 1 A 8.9 18 A, B 
socks 4 A 7 1 A 7.2 5 A, B 
shirt 5 A 7 1 A 7.56 9 A, B 
table 5 A 5 1 A 13.8 6 A, B 
lamp 4 A 20 1 B 9.88 17 A, B 
chair 5 A 4 1 A 11.2 15 A, B 
car 3 A 12 1 A, B 7 31 B 
bus 3 A 15 1 A, B 8 3 B 

truck 5 A 12 1 A, B 8 11 B 
dog 3 A 10 2 A, B 7 18 B 
cat 3 A 6 1 A, B 9 2 B  

*A refers to “single word” and B refers to “compound”.  
 
The results confirm our assumption. First, the average word length (number of letters) of 

both the hypernyms and the hyponyms is much longer than that of the basic level words. 
Second, the hyponyms have a lot more synsets than the hypernyms. Third, in contrast to the 
basic level words which are morphologically simple, their direct hypernyms and hyponyms 
are more complex. Many of the hypernyms are compounds. The hyponyms are even more 
complex. Every basic level word (except ‘peach’) has at least one compounded hyponym. 

 
4.2 Experiment 2 

In this experiment, we examined the distribution of the compounds formed by the basic level 
words and their hypernyms and hyponyms. We also randomly came up with five more words 
that seem to fall into the basic level category defined by Rosch et al. [1]. These basic level 
words (e.g. ‘guitar’) are boldfaced in each item set in Table 2 below. Above each basic level 
word is its (or one of its) direct hypernym(s) (e.g. ‘stringed instrument’), under the basic level 
word is the first-occurring direct hyponym (e.g. ‘acoustic guitar’). When the basic level word 
has more than one level of hyponym, the first word at the second hyponymous level was also 
examined (e.g. ‘movable barrier’, ‘door’, ‘car door’, ‘hatchback’). For words that have more 
than one sense, we focused only on the sense defined in Rosch et al. [1]. For example, the 
noun ‘table’ has six senses in WordNet; we only focused on the sense ‘a piece of furniture’.  
 For each target item, we clicked on its FULL HYPONYM in WordNet 3.0 [2] to find the 
compounds formed by the target item. The next step was to count the compounds formed by 
the target words. For example, among the twelve hyponyms of ‘guitar’, five are compounds 
formed by ‘guitar’ – ‘acoustic guitar’, ‘bass guitar’, ‘electric guitar’, ‘Hawaiian guitar’, and 
‘steel guitar’. In contrast, only one hyponym of ‘stringed instrument’ is a compound 
containing ‘stringed instrument’. As for ‘acoustic guitar’, it has no hyponyms. We assume 
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that basic level words are more apt to form compounds than their hypernyms as well as 
hyponyms, so their compound ratios are calculated: Number of compounds is divided by 
number of hyponyms. We also keep record of the level where a compound occurs. 

Table 2: Compound ratios and distribution of compounds in hyponymous levels  
Number of Compounds at Hyponymous Levels Hypernym 

Basic Level Word 
Hyponym 

Cpd # / 
Hyponym # 

Cpd 
Ratio 
(%) 1st 

Level 
2nd 

 Level
3rd 

Level 
4th 

Level 
5th 

Level 
6th 

Level 

stringed instrument  1 / 86 1 1 0 0 0  
guitar   5 / 12 42 5   

acoustic guitar 0 / 0 0   

keyboard 0 / 35 0 0 0 0   
piano 8 / 16 50 4 4   

grand piano 3 / 8 38 3   

baby grand piano 0 / 0 0   

percussion 0 / 68  0 0 0 0   
drum 5 / 14 36 5   

bass drum 0 / 0 0   

edible fruit 0 / ... 0 0 0 0 0  
apple 5 / 29 17 5 0 0   

crab apple 2 / 8 25 2   

Siberian crab 0 / 0 0   

N/A N/A N/A   
peach 0 / 0  0   

N/A N/A N/A   

edible fruit 0 / ... 0 0 0 0 0  
grape  6 / 17 35 3 2 1   

muscadine 0 / 0 0   

hand tool 0 / ... 0 0 0 0 0  
hammer 7 / 16 44 7 0   

ball-peen hammer 0 / 0 0   

hand tool 0 / ... 0 0 0 0 0 0 
saw 25 / 30 83 13 12 0   

bill 0 / 0 0   

hand tool  0 / ... 0 0 0 0 0 0 
screwdriver  4 / 4 100 4   

flat tip screwdriver 0 / 0 0   

garment  4 / 448 0 3 1 0 0 0 
pants 9 / 49 18 8 1   

bellbottom trousers 0 / 0 0   

hosiery 0 / 29 0 0 0   
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socks 5 / 13 38 5   

anklet 0 / 0  0   

garment  4 / 448 0 3 1 0 0 0 
shirt 8 / 17 47 8 0   

camise 0 / 0 0   

furniture 4 / ... 0 4 0 0 0 0 
table 39 / 79 49 32 7 0 0  

alter 0 / 0 0   

source of 0 / 108 0 0 0 0 0 0 
lamp  27 / 68 40 14 12 1 0  

Aladdin's lamp 0 / 0 0   

seat 6 /102 6 2 3 1 0  
chair 31 / 48 65 17 14 0   

armchair 0 / 10 0 0 0   

captain’s chair 0 / 0 0   

motor vehicle 0 / 153 0 0 0 0 0  
car 21 / 76 28 19 2   

amphibian 0 / 2 0 0   

public transport  0 / 38 0 0 0 0   
bus 3 / 5 60 3   

minibus 0 / 0 0   

motor vehicle 0 / 153 0 0 0 0 0  
truck 15 / 48 31 10 5 0   

dump truck 0 / 0 0   

canine 0 / ... 0 0 0 0 0 0 0
dog 51 / 279 18 13 20 16 2 0 

puppy 0 / 0 0   

feline 0 / ... 0 0 0 0   
cat 35 / 87 40 4 31   

domestic cat 0 / 33 0 0   

kitty 0 / 0 0   

publication 1 / 211 0 0 1 0 0 0 
book 39 / 145 27 21 14 4 0 0 

authority 0 / 7 0 0   
power of 

i t t
0 / 0 0   

language unit 0 / ... 0 0 0 0 0 0 0
word 35 / 220 16 28 7 0 0 0 

anagram 0 / 1 0 0   

antigram 0 / 0 0   

materialʳ 16 / ... 0 14 2 0 0  
paper 59 / 210 28 40 18 1   
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card 14 / 57 25 6 8   

playing card 0 / 48 0   

movable barrier 0 / 46 0 0 0 0   
door 18 / 23 78 13 5   

car door 0 / 1  0 0   

hatchback 0 / 0 0   

leaf 2 / 23 9 2 0 0   
page  5 / 20 25 5 0   

full page 0 / 0 0   
 
Note: The symbol “#” stands for “number”. Cpd refers to “compound”. The three dots indicate that the number of 
hyponyms is too many to count manually. The number is estimated to exceed one thousand. 

The most significant finding is that basic level words have the highest compound ratios. 
In comparison with their hypernyms and hyponyms, they are much more frequently used to 
form compound words. Although some hyponyms like ‘grand piano’ and ‘crab apple’ also 
have high compound ratios, they should not be taken as basic level items because such 
compounds often contain the basic level words (e.g. ‘Southern crab apple’), indicating that 
the ability to form compounds is actually inherited from the basic level words.  
 Our data pose a challenge to Prototype Theory in that a subordinate word of a basic level 
word may act as a basic level word itself. The word ‘card’, a hyponym of ‘paper’, is of this 
type. With its high compound ratio of 25%, ‘card’ may also be deemed to be a basic level 
word. This fact raises another question as to whether a superordinate word may also act as a 
basic level word itself.   
 Many of the basic level words in our list have three or more levels of hyponym. It seems 
that what is cognitively basic may not be low in the ontological tree. A closer look at the 
distribution of the compounds across the hyponymous levels reveals another interesting 
pattern. Basic level words have the ability to permeate through two to three levels of 
hyponyms in forming compounds. By contrast, words at the superordinate levels do not have 
such ability, and their compounds mostly occur at the direct hyponymous level. 
 
4.3 Experiment 3 

The goal of this experiment is to show that whether a word belongs to the basic level affects 
its readability. This in turn affects the readability of a text and should be considered a 
criterion in measuring text readability. An easy text presumably contains more basic level 
words than a difficult one. Put in fractional terms, the proportion of basic level words in a 
text is supposed to be higher than that of a more difficult text.  

To achieve this goal, we need independent readability samples to be compared with our 
prediction. As readability is subjective judgment that may vary from one person to another, 
such independent samples are extremely difficult, if ever possible, to obtain. In this study, we 
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resorted to a pragmatic practice by selecting the readings of English textbooks for senior high 
school students in Taiwan. Three textbooks from Sanmin Publishing Co., each used in the 
first semester of a different school year, were selected. We tried to choose the same type of 
text, so that text type will not act as a noise. Furthermore, since we do not have facility to run 
large-scale experiment yet, we limited the scope to two-hundred-word text at each level. 
Accordingly, the first two hundred words of the first reading subjectively judged as narrative 
were extracted from the textbooks (Appendix 1). All the nouns occurring in these texts, 
except proper names and pronouns, were searched for in WordNet [2]. Considering the fact 
that for a word with more than one sense, the distribution of hyponyms differs from one sense 
to another, we searched for the hyponyms of the word in the particular sense occurring in the 
selected readings. We know that this practice, if used in a large-scale study, is applicable only 
if sense tagging is available, and we hope that it will be available in the near future. 

Based on the results of the two preliminary experiments, we assume that basic level 
words have at least the following two characteristics: (1) They have great ability to form 
compounded hyponyms; (2) Their word length is shorter than the average word length of 
their direct hyponyms. These characteristics can be further simplified as the Filter Condition 
to pick out basic level words:  

(1) Compound ratio of full hyponym Њ 25%;  
(2) Average word length of direct hyponym minus target word length Њ 4.  

Note in passing that the second criterion differs fundamentally from the commonly used 
criterion of word length. Ours compares the target word with its full hyponyms. Word length 
is measured in relative terms: What is counted is the word length difference, not the word 
length itself. Based on the two assumed characteristics of our filter condition, the information 
for each noun we need includes: (1) Length of the target word, i.e. how many letters the word 
contains; (2) Compound ratio of the target word, i.e. how many hyponyms of the word are 
compounds formed by the word. Note that here the hyponyms refer to the full hyponyms, so 
all the words in every hyponymous synset were counted; (3) Average word length of the 
direct hyponyms. The next section reports the computed information via WordNet [2].  
 
5. Results and Discussion 

The three selected readings contain sixty nouns in total, of which twenty-one conform to the 
proposed Filter Condition of basic level words. They are given in Table 3 below. A 
comprehensive list of all the sixty nouns are given in Appendix 2 at the end of this paper. 
Note in passing that the level numbers refer to the presumed difficulty levels of the selected 
readings. Level 1 is presumably the easiest; Level 3, the hardest. These numbers should not 
be taken as ratio measurement. Level 3, for example, is not assumed to be three times harder 
than Level 1. We intend these numbers to stand for ordinal relations.   
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Table 3: Basic Level Words from the 200-word Texts at Three Levels  

Target Word Level 
Compound Ratio 

(%) 

Length of Target 

Word 

Average Length of Direct 

Hyponyms 
food 1 53 4 8 
apple 1 56.6 5 10 

vinegar 1 60 7 11 
potato 1 62.5 6 11 
cold 1 66.6 4 8 
test 1 72.7 4 9 

orange 1 88.8 6 11 
soap 1 93 4 9 

language 2 35.12 8 12 
job 2 37.5 3 8 

heart 2 40 5 15 
technology 2 47.22 10 19 

factor 2 63.64 6 12 
culture 2 85.19 7 19 
physics  3 32.84 7 12.6 
question 3 35.71 7 15 

barometer 3 40 9 13.25 
system  3 60.95 6 12.93 
time  3 62.22 4 10 

office  3 72.22 6 11.5 
call  3 93.33 4 11 

 In order to measure the text difficulty, basic level word ratios of the selected texts were 
computed. Table 4 shows the statistics. Diagrammatically, it is clear in Figure 1 that the basic 
level word ratios are decreasing as the difficulty levels of the selected readings increase. The 
text from Level-1 has the highest basic level word ratio; the text from Level-3 has the lowest 
basic level word ratio. This finding conforms to the levels of these textbooks, and proves the 
usefulness of the basic level word concept in the measurement of readability. 
 
                  Table 4: Basic level word ratio at different levels  

 Number of nouns Number of Basic 

Level Words 

Ratio ofʳBasic Level 

Words  

Level-1 17 8 47.1 

Level-2 15 6 40.0 

Level-3 28 7 25.0 
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Figure 1: Basic Level Word Ratio of Selected Texts 

 Table 5 shows the readability scores of the selected readings measured by several 
readability formulae. Figure 2 displays the overall tendency computed by these formulae: 
Level-1 is the easiest, while Level-2 and Level-3 are at about the same difficulty level. The 
readability formulae seem not to be able to decipher the difference between the texts of 
Level-2 and Level-3 while our basic level word ratio can easily show their different difficulty 
levels.  
 

Table 5: Readability of the 200-word Texts Computed by Several Readability Formulae  

 Dale-Chall 
Flesch 
Grade 
Level 

FOG Powers SMOG FORCAST Spache 

Level-1 4.6 2.1 7.8 4 6.4 7.7 2.4 

Level-2 7.4 8.3 18.9 6.2 10.2 11.8 3.9 

Level-3 6.3 9.5 16.4 5.9 10.5 9.1 4.8 

 
 
 
 
 
 

 

 

 
       
       Figure 2: Readability of the 200-word Texts Computed by Several Formulae 
 
 This paper is just the first step to measure readability by lexical relations retrieved from 
WordNet [2]. Twenty-five percent of the twenty basic level words defined by Rosch et al. [1] 
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are NOT identified by our Filter Condition (e.g. ‘truck’, ‘shirt’, socks’). Among the identified 
basic level words in the three selected texts, some look rather dubious to us (e.g. ‘barometer’, 
‘technology’). The filter condition proposed in this study certainly leaves room to be 
fine-tuned and improved in at least two respects. First, the two criteria of compound ratios 
and word length difference have been used as sufficient conditions. We will postulate the 
possibility of weighting these criteria in our subsequent research. Second, in addition to the 
lexical relations proposed in this study, there are presumably other lexical relations between 
basic level words and their hypernyms/hyponyms that are retrievable via WordNet [2]. 
Doubts can also be raised as to whether all basic level words are equally readable or easy. 
Can it be that some basic level words are in fact more difficult than others and some 
hypernyms/ hyponyms of certain basic level words are actually easier than certain basic level 
words?  
 We thank our reviewers for raising the following questions, and will put them in the 
agenda of our subsequent study: (1) The examined words in this study are all nouns. Can we 
find relationships between verbs, adjectives, and even adverbs like the hypernym/hyponym 
relationships with the basic level “nouns”? The tentative answer is yes and no. Take the 
example of the verb ‘run’. It has hypernyms in WordNet (‘speed’, ‘travel rapidly’, etc.). It 
also has subordinate lexical relation called ‘troponym’, which is similar to hyponym of nouns. 
Admittedly, English verbs do not constitute compounds so often as English nouns, but other 
lexical relations may exist between the verbs, and the relations are likely to be retrievable. (2) 
Although the small scale size of our experiments makes the validity of the results 
challengeable, the exciting findings of this study have provided the outlook of a large-scale 
project in the future. (3) Are basic level words frequent words in general? Can we use 
frequency to substitute for ‘basichood’ if the two criteria have approximately the same 
indexing power? We like to extend this question and ask whether the ontological relations 
between the lexical units in WordNet are correlated with word frequency. We hope we will be 
able to answer this question in a study of larger scale.  
 Laying out the groundwork for further research, we aim to tackle the following issues 
too. All traditional readability formulae implicitly suppose an isomorphic relation between 
form and meaning as if each word has the same meaning no mater where it occurs. We 
acknowledge that one of the biggest challenges and the most badly needed techniques of 
measuring readability is to disambiguate the various senses of a word in text since the same 
word may have highly divergent readability in different senses. Another tacit assumption 
made by the traditional readability formulae is that the units of all lexical items are single 
words. This assumption overlooks many compounds and fixed expressions and affects the 
validity of these formulae.  
 Although our research has provided the study of readability a brand new perspective and 
has offered exciting prospects, our challenges are still many and the road is still long.   
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Appendix 1: Three Pieces of 200-word-text from a Senior High School   
   Textbook 

 
Level 1: Book 1 Lesson 2 

Scientist say that your tongue can recognize only four tastes. It can tell if something is sour 
( like vinegar) or bitter ( like soap). But that’s all. To tell different foods apart, we also have to 
use our noses. 
    Can you remember a time when you had a bad cold? Your food tasted very plain then. It 
seemed to have little taste at all. That wasn’t because your tongue wasn’t working. It was 
because your nose was stopped up. You couldn’t smell the food, and that made it seem 
tasteless. You can prove this to yourself. Try eating something while you pinch your nose 
shut. It won’t seem to have much taste. 

Here’s another test. It shows how important the nose is in tasting. First you blindfold a 
person. Then you put a piece of potato in his mouth. You tell him to chew it. At the same time, 
you hold a piece of apple under his nose. Then ask what food is in his mouth. Most people 
will say, “ An apple.” The smell of the apple fools them. The test works best when two foods 
feel the same in the mouth. It won’t work well with apple and orange slices. 
 
Level 2: Book 3 Lesson 2 

When people from different cultures live and work together much more than before, change 
takes place. The languages of the world’s dominant cultures are replacing the languages of 
the smaller cultures. You’re learning English right now. Could this be the beginning of the 
end for the Chinese language? Of course not. Mandarin remains the healthy, growing 
language at the heart of Chinese culture. Mandarin steadily continues to spread among 
Chinese people worldwide. Elsewhere, Swahili grows in Africa. Spanish continues to thrive 
in South America. Hindi rules India. And of course almost everyone these days wants to learn 
English. However, many less common regional languages haven’t been so lucky, because 
most young people have stopped learning them. 
    When less common languages disappear, two factors are to blame: trade and technology. 
Most international trade takes place in major world languages such as English or Mandarin. 
Cultures that isolate themselves from international business and major world languages have 
difficulty prospering. 

Most children respect their own culture and traditions. But when it comes to getting a 
job, knowing a major world language if often essential. It may mean the difference between 
success and failure. For many, using a less common reginal language simply isn’t 
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Level 3: Book 5 Lesson 2  

Some time ago, I received a call from a colleague who asked if I would be the referee on the 
grading of an examination question. He was about to give a student a zero for his answer to a 
physics question, while the student claimed he should receive a perfect score and would if the 
system were not set up against the student. The instructor and the student agreed to submit 
this to an impartial judge, and I was selected.  
    I went to my colleagues’ office and read the examination question: “Show how it is 
possible to determine the height of a tall building with the aid of a barometer.” The student 
had answered: “Take the barometer to the top of the building, attach a long rope to it and 
lower the barometer to the street. Then bring it up and measure the length of the rope. The 
length of the rope is the height of the building.”  

I pointed out that the student really had a strong case for full credit, since he had 
answered the question completely and correctly. On the other hand, if full credit were given, 
it could well contribute to a high grade for the 

 

Appendix 2: Nouns Extracted from the Three Pieces of 200-word-text. 
Target Item  Direct Hyponyms 

Item Level  Cpd # / 

Hyponym #

Cpd Ratio

(%) 

Length Avg. Length Number 

scientist 1 37/174 21 9 13 20 
tongue 1 0/4 0 6 0 0 
taste 1 4/34 11.7 5 6 9 
vinegar 1 3/5 60 7 11 3 
soap 1 14/15 93 4 9 8 
food 1 1234/2310 53 4 8 15 
nose 1 4/22 18 4 6 8 
time 1 1/0 0 4 0 0 
cold 1 2/3 66.6 4 8 1 
test 1 8/11 72.7 4 9 5 
person 1 3152/13235 23.8 6 8 401 
potato 1 10/16 62.5 6 11 5 
mouth 1 3/10 30 5 4 6 
apple 1 17/30 56.6 5 10 3 
smell 1 2/23 8.6 5 6 4 
orange 1 8/9 88.8 6 11 3 
slice 1 2/10 20 5 6 2 
culture 2 23/27 85.19 7 19 7 
language 2 425/1210 35.12 8 12 16 
world 2 2/9 22.22 5 11 3 
end 2 23/54 42.59 3 6 14 
heart 2 2/5 40 5 15 2 
factor 2 14/22 63.64 6 12 6 
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trade 2 16/66 24.24 5 10 3 
technology 2 17/36 47.22 10 19 7 
business 2 54/163 33.13 8 8 12 
child 2 34/55 61.82 5 7 21 
tradition 2 0/7 0 9 6 4 
job 2 3/8 37.5 3 8 15 
difference 2 0/11 0 10 10 9 
success 2 24/58 41.38 7 7 5 
failure 2 7/50 14 7 7 8 
time  3 28/45 62.22 4 10 16 
call  3 14/15 93.33 4 11 8 
colleague  3 0/0 0 9 N/A N/A 
referee  3 0/0 0 7 N/A N/A 
grading  3 0/0 0 7 N/A N/A 
examination 3 20/32 62.5 11 9 24 
question 3 10/28 35.71 7 15 3 
student  3 16/48 33.33 7 9.25 20 
zero  3 0/0 0 4 N/A N/A 
answer  3 0/2 0 6 8 2 
physics  3 22/67 32.84 7 12.6 18 
score  3 1/5 20 5 8.5 4 
system  3 103/169 60.95 6 12.93 28 
instructor  3 30/55 54.55 10 10.86 21 
judge 3 7/33 21.21 5 7.33 3 
office  3 13/18 72.22 6 11.5 8 
height  3 0/7 0 6 7.5 2 
building  3 212/485 43.71 8 9.76 54 
aid  3 0/1 0 3 8 1 
barometer 3 2/5 40 9 13.25 4 
top  3 0/9 0 3 5.8 5 
rope  3 15/37 40.54 4 7.21 19 
street 3 22/32 68.75 6 8.95 21 
length  3 1/19 5.26 6 8.8 5 
case  3 0/2 0 4 8 1 
credit 3 1/9 11.11 6 7 3 
hand 3 0/1 0 4 4 1 
grade 3 1/5 20 5 8.5 4 

 
Note 1: Level ranges from 1 to 3, which respectively represents the English textbooks of Book I for the 

first-year senior high school students, Book III for the second-year, and Book V for the third-year 
senior high school students in Taiwan.  

Note 2: Cpd ratio refers to the ratio of compounds formed by the target item to the total number of the target 
item’s full hyponyms.  

Note 3: Direct hyponyms refer to the lexical items at the level immediate below the target item.  
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㐀天ġ
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叿ㆹᾹ⇑䓐婆シ⎰ㆸ䘬夷⇯憅⮵ảỽ㕘䘬⭂慷娆⍣䓊䓇῁怠䘬婆シ堐忼⺷ʕ 䃞⼴ㆹᾹ⛐

⽆婧㔜婆㕁普⎰⍣姕妰婆シ妋㬏夷⇯炻⇑䓐┇䘤⺷婆シ妋㬏夷⇯嶇⍫侫ᶲᶳ㔯䘬娆Ἦ妋

㰢⭂慷娆䘬⺋佑䞍䵚堐忼⺷䘬㬏䔘炻⮎槿栗䣢⛐婆シ㍐⮶嶇妋㬏ᷳ⼴㚱 ĹĹĦ䘬㬋䡢䌯 ġʕ

Abstract 

In this paper, we take Determinative-Measure Compounds as an example to demonstrate how 
the E-HowNet semantic composition mechanism works in deriving the sense representations 
for all determinative-measure (DM) compounds which is an open set. We define the sense of 
a closed set of each individual determinative and measure word in E-HowNet representation 
exhaustively. We then make semantic composition rules to produce candidate sense 
representations for any newly coined DM. Then we review development set to design sense 
disambiguation rules. We use these heuristic disambiguation rules to determine the correct 
context-dependent sense of a DM and its E-HowNet representation. The experiment shows 
that the current model reaches 88% accuracy in DM identification and sense derivation. 

斄挝娆烉婆シ⎰ㆸ炻⭂慷墯⎰娆炻婆シ堐忼炻⺋佑䞍䵚炻䞍䵚 

Keywords: Semantic Composition, Determinative-Measure Compounds, Sense 

Representations, Extended How Net, How Net 

 

1. Introduction 

Building knowledge base is a time consuming work. The CKIP Chinese Lexical Knowledge 
Base has about 80 thousand lexical entries and their senses are defined in terms of the 
E-HowNet format. E-HowNet is a lexical knowledge and common sense knowledge 
representation system. It was extended from HowNet [1] to encode concepts. Based on the 
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framework of E-HowNet, we intend to establish an automatic semantic composition 
mechanism to derive sense of compounds and phrases from lexical senses [2][3]. 
Determinative-Measure compounds (abbreviated as DM) are most common compounds in 
Chinese. Because a determinative and a measure normally coin a compound with unlimited 
versatility, the CKIP group does not define the E-HowNet representations for all DM 
compounds. Although the demonstrative, numerals, and measures may be listed exhaustively, 
their combination is inexhaustible. However their constructions are regular [4]. Therefore, an 
automatic identification schema in regular expression [4] and a semantic composition method 
under the framework of E-HowNet for DM compounds were developed.  
 
In this paper, we take DMs as an example to demonstrate how the E-HowNet semantic 

composition mechanism works in deriving the sense representations for all DM compounds. 

The remainder of this paper is organized as follows. The section 2 presents the background 

knowledge of DM compounds and sense representation in E-HowNet. We�’ll describe our 

method in the section 3 and discuss the experiment result in the section 4 before we make 

conclusion in the section 5. 

 

2. Background 

There are numerous studies on determinatives as well as measures, especially on the types of 
measures.1 Tai [5] asserts that in the literature on general grammar as well as Chinese 
grammar, classifiers and measures words are often treated together under one single 
framework of analysis.  Chao [6] treats classifiers as one kind of measures.  In his 
definition, a measure is a bound morpheme which forms a DM compound with the 
determinatives enumerated below.  He also divides determinatives word into four 
subclasses: 

i. Demonstrative determinatives, e.g. 忁�” this�”, that�”恋�”�… 
ii. Specifying determinatives, e.g. 㭷�”every�”, ⎬�” each�”�… 

iii. Numeral determinatives, e.g. Ḵ�”two�”, 䘦↮ᷳᶱ�”three percentage�”, ⚃䘦Ḽ⋩�” four 
hundred and fifty�”�… 

iv. Quantitative determinatives, e.g. ᶨ�” one�”, 㺧�” full�”, 姙⣂�” many�”�… 
Measures are divided into nine classes by Chao [6]. Classifiers are defined as �‘individual 
measures�’, which is one of the nine kinds of measures. 

i. classifiers, e.g. 㛔�”a (book)�”,  
                                                 
1 Chao [6] and Li and Thompson [7] detect measures and classifiers.  He [8] traces the diachronic names of 

measures and mentions related literature on measures.  The dictionary of measures pressed by Mandarin Daily 

News Association and CKIP [9] lists all the possible measures in Mandarin Chinese. 
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ii. classifier associated with V-O constructions, e.g. ㇳ �“hand�”,  
iii. group measures, e.g. ⮵�”pair�”,  
iv. partitive measures, e.g. ṃ�”some�”,  
v. container measures, e.g. 䙺�“box�”,  

vi. temporary measures, e.g. 幓�”body�”,  
vii. Standard measures, e.g. ℔⯢�”meter�”,  

viii. quasi-measure, e.g. ⚳�”country�”,  
ix. Measures with verb, e.g. 㫉�”number of times�”.  

As we mentioned in the section of introduction, Chao considers that determinatives are 
listable and measures are largely listable, so D and M can be defined by enumeration, and 
that DM compounds have unlimited versatility.  However, Li and Thompson [7] blend 
classifiers with measures.  They conclude not only does a measure word generally not take a 
classifier, but any measure word can be a classifier.  In Tai�’s opinion [5], in order to better 
understand the nature of categorization in a classifier system, it is not only desirable but also 
necessary to differentiate classifiers from measure words.  These studies on the distinction 
between classifiers and measures are not very clear-cut.  In this paper, we adopt the CKIP 
DM rule patterns and Part-of-Speeches for morpho-syntactic analysis, and therefore inherit 
the definition of determinative-measure compounds (DMs) in [10]. Mo et al. define a DM as 
the composition of one or more determinatives together with an optional measure. It is used 
to determine the reference or the quantity of the noun phrase that co-occurs with it. We use 
the definition of Mo et al. to apply to NLP and somewhat different from traditional linguistics 
definitions. 
2.1 Regular Expression Approach for Identifying DMs  

Due to the infinite of the number of possible DMs, Mo et al. [10] and Li et al. [4] propose to 

identify DMs by regular expression before parsing as part of their morphological module in 

NLP.  For example, when the DM compound is the composition of one determinative, e.g. 

for numerals in (1), roughly rules (2a), (2b) or (2c) will be first applied, and then rules (2d), 

(2e) or (2f) will be applied to compose complex numeral structures, and finally rules (2g) will 

generate the pos Neu of numeral structures.  From the processes of regular expression, the 

numerals 534 and 319 in (1) is identified and tagged as Neu.2 

(1) 溻⊝534Ṣ⬴ㆸ319悱ᷳ㕭 

guli wubaisanshisi ren wancheng sanbaiyishijiu xiang zhi lu 

encourage 534 persons to accomplish the travel around 319 villages 

                                                 
2 The symbol �“Neu�” stands for Numeral Determinatives. Generation rules for numerals are partially listed in
(2).
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(2) a.  NO1     = { ,ᶨ,Ḵ,ℑ,ᶱ,⚃,Ḽ,ℕ,ᶫ,ℓ,ḅ,⋩,⺧,⋭,䘦,⋫,叔,€,⃮,暞,
⸦}; 

    b.  NO2    = {⢡,屛,⍫,倮,ẵ,映,㝺,㋴,䌾,㊦,Ἐ,ẇ,叔,€,⃮,暞,⸦}; 

    c.  NO3     = {烀,烁,烂,烃,烄,烅,烆,烇,烈,炿,䘦,⋫,叔,€,⃮}; 

    d.  IN1     -> { NO1*, NO3*} ; 

    e.  IN2     -> NO2* ; 

    f.  IN3     -> {IN1,IN2} {⣂,检,Ἦ,⸦} ({叔,€,⃮}) ; 

    g.  Neu     -> {IN1,IN2,IN3 } ; 

 

Regular expression approach is also applied to deal with ordinal numbers, decimals, 

fractional numbers and DM compounds for times, locations etc..  The detailed regular 

expressions can be found in [4]. Rule patterns in regular expression only provide a way to 

represent and to identify morphological structures of DM compounds, but do not derive the 

senses of complex DM compounds. 

 

2.2 Lexical Sense Representation in E-HowNet 
Core senses of natural language are compositions of relations and entities. Lexical senses are 
processing units for sense composition. Conventional linguistic theories classify words into 
content words and function words. Content words denote entities and function words without 
too much content sense mainly serve grammatical function which links relations between 
entities/events. In E-HowNet, the senses of function words are represented by semantic 
roles/relations [11].  For example, �‘because�’ is a function word. Its E-HowNet definition is 
shown in (1).  
 (1) because|⚈䁢  def: reason={};  
which means reason(x)={y} where x is the dependent head and y is the dependent daughter 
of �‘⚈䁢�’. 
In following sentence (2), we�’ll show how the lexical concepts are combined into the sense 
representation of the sentence. 
 (2) Because of raining, clothes are all wet. ⚈䁢ᶳ暐炻堋㚵悥㽽Ḯ 
In the above sentence, �‘㽽 wet�’, �‘堋㚵 clothes�’ and �‘ᶳ暐 rain�’ are content words while �‘悥 
all�’, �‘瀈 Le�’ and �‘⚈䁢 because�’ are function words. The difference of their representation is 
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that function words start with a relation but content words have under-specified relations. If a 
content word plays a dependent daughter of a head concept, the relation between the head 
concept and this content word will be established after parsing process. Suppose that the 
following dependent structure and semantic relations are derived after parsing the sentence 
(2). 
 (3) S(reason:VP(Head:Cb:⚈䁢|dummy:VA:ᶳ暐)|theme:NP(Head:Na:堋㚵) | quantity: 
Da:悥 | Head:Vh:㽽|particle:Ta:瀈)ˤ  
After feature-unification process, the following semantic composition result (4) is derived. 
The sense representations of dependent daughters became the feature attributes of the 
sentential head �‘wet|㽽�’. 
 (4) def:{wet|㽽: 

theme={clothing|堋䈑}, 
aspect={Vachieve|忼ㆸ}, 
manner={complete|㔜}, 
reason={rain|ᶳ暐}} 

In (3), function word �‘⚈䁢 because�’ links the relation of �‘reason�’ between head concept �‘㽽 
wet�’ and �‘ᶳ暐 rain�’. The result of composition is expressed as reason(wet|㽽)={rain|ᶳ暐}, 
since for simplicity the dependent head of a relation is normally omitted. Therefore 
reason(wet|㽽)={rain|ᶳ暐} is expressed as reason={rain|ᶳ暐}; theme(wet|㽽)={clothing|堋
䈑} is expressed as theme={clothing|堋䈑} and so on. 
 
2.3 The sense representation for determinatives and measures in E-HowNet 
The sense of a DM compound is determined by its morphemes and the set of component 
morphemes are determinatives and measures which are exhaustively listable. Therefore in 
order to apply semantic composition mechanism to derive the senses of DM compounds, we 
need to establish the sense representations for all morphemes of determinatives and measures 
first. Determinatives and measure words are both modifiers of nouns/verbs and their semantic 
relation with head nouns/verbs are well established. We thus defined them by a semantic 
relation and its value like (5) and (6) bellowed. 
 
 (5)  The definition of determinatives in E-HowNet 

this 忁  def: quantifier={definite|⭂㊯} 
first椾  def: ordinal={1} 
oneᶨ  def: quantity={1} 

 
We find some measure words contain content sense which need to be expressed, but for some 
measure words, such as classifiers, their content senses are not important and could be 
neglect. So we divided measure words into two types: with or without content sense, their 
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sense representations are exemplified below: 
 
 (6) The definition of measure words in E-HowNet 
  a) Measure words with content sense 

 bowl䠿  def: container={bowl|䠿} 
 meter䰛  def: length={meter|℔⯢} 
 month㚰  def: time={month|㚰} 

  
  b) Measure words without content sense 

 㛔 copy  def:{null} 
 攻 room  def:{null} 
 㧋 kind  def:{null} 

3. Semantic Composition for DM Compounds 

To derive sense representations for all DM compounds, we study how to combine the 
E-HowNet representations of determinative and measure words into a DM compound 
representation, and make rules for automatic composition accordingly. Basically, a DM 
compound is a composition of some optional determinatives and an optional measure. It is 
used as a modifier to describe the quantity, frequency, container, length�…etc. of an entity. 
The major semantic roles played by determinatives and measures are listed in the Table 1.  

The basic feature unification processes [12]: 

If a morpheme B is a dependency daughter of morpheme A, i.e. B is a modifier or an 
argument of A, then unify the semantic representation of A and B by the following steps. 

Step 1: Identify semantic relation between A and B to derive relation(A)={B}. Note: the 
possible semantic relations are shown in Table 1. 

Step 2: Unify the semantic representation of A and B by insert relation(A)={B} as a 
sub-feature of A. 

It seems that a feature unification process can derive the sense representation of a DM 
compound, as exemplified in (7) and (8), once its morpheme sense representations and 
semantic head are known. 
(7) oneᶨ def:quantity={1} + bowl䠿 def: container={bowl|䠿}  

one bowlᶨ䠿  def: container={bowl|䠿:quantity={1}} 
(8) this忁 def: quantifier={definite|⭂㊯} + 㛔 copy def:{null}    

this copy忁㛔  def: quantifier={definite|⭂㊯} 

Table 1. Major semantic roles played by determinants and measures 

Semantic Role D/M 
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quantifier e.g. 忁ˣ恋ˣ㬌ˣ娚ˣ㛔ˣ屜ˣ㔅ˣ℞ˣ㝸ˣ媠 

ordinal e.g. 䫔ˣ椾 

qualification e.g. ᶲˣᶳˣ⇵ˣ⼴ˣ柕ˣ㛓ˣ㫉ˣ椾ˣ℞Ṿˣ℞检ˣ

⇍ˣ㕩ˣṾˣ⎎ˣ⎎⢾ˣ⎬ 

quantity e.g. ᶨˣḴˣ叔ˣ暁ˣ㭷ˣảỽˣᶨˣℐˣ㺧ˣ㔜ˣᶨ

↯ˣ劍⸚ˣ㚱䘬ˣᶨṃˣ悐ấˣ㚱ṃˣ姙⣂ˣ⼰⣂ˣ⤥

⣂ˣ⤥⸦ˣ⤥ṃˣ⮹姙ˣ⣂ˣ姙姙⣂⣂ˣ⸦姙ˣ⣂㔠ˣ

⮹㔠ˣ⣏⣂㔠ˣ㲘⋲ˣᶵ⮹ˣᾳ㈲ˣ⋲㔠ˣ媠⣂ 

Formal={.Ques.} e.g. ỽˣ┍ˣṨ湤 

Quantity={over, 

approximate, exact} 

e.g. 检ˣ姙ˣ嵛ˣᷳ⣂ˣ↢柕ˣ⤥⸦ˣ攳⢾ˣ㔜ˣ㬋 

position e.g. 㟴⫸ˣ昊⫸ˣ⛘ˣ⯳⫸ˣ㰈ˣ僼ˣ⭞⫸ 

container e.g. 䙺(⫸)x ⋋(⫸)x 䭙(⫸)x 㩫⫸x 㪍(⫸)x 䯫(⫸)x 䮵(⫸)x

䆸⫸ˣ⊭(⃺)x 堳(⃺)x 㰈⫸ˣ䒞(⫸)x 㠞(⫸)x 倥ˣ仸(⫸)ˣ

䙮(⫸)ˣ拳(⫸)ˣ䰈(⫸)ˣ䚌(⫸)ˣ䠿ˣ㜗(⫸)ˣ⊢(⫸)ˣ

⋁(㸗⋁)x 䫺(⫸)x 㑼(⫸)x 䰖䫸ˣ㛻(⫸)x 勞⋁ˣ⢢ˣ䙭ˣ

䫸ˣ䒊ˣ挔ˣ仠 

length e.g. ℔⍀ˣ℔↮ˣ℔⮠ˣ℔⯢ˣ℔ᶰˣ℔⺽ˣ℔慴ˣⶪ

⯢ˣ䆇忈  ⯢ˣ⎘⯢ˣ⎳(inch)ˣ⏶(feet)ˣ䡤(yard)ˣ⒑

(mile)ˣ  (㴟)㴔ˣ⹡ˣ☂ˣ⯢ˣ慴ˣ慸ˣ⮠ˣᶰˣ䰛ˣ

⍀ˣ⍀䰛ˣ㴟  ⒑ˣ劙⯢ˣ劙慴ˣ劙⏶ˣ劙⮠ˣ䰛䨩ˣ

䰛⯢ˣ⽖䰛ˣ㮓䰛ˣ 劙⎳ˣ劙⒑ˣ⃱⸜ 

size e.g. ℔䔅ˣ℔枫ˣⶪ䔅ˣ䆇忈䔅ˣ✒ˣ䔅ˣ↮ˣ䓚ˣ枫ˣ

⸛㕡℔慴ˣ⸛㕡℔⯢ˣ⸛㕡℔↮ˣ⸛㕡⯢ˣ⸛㕡劙⒑ˣ

劙䔅 

weight e.g. ℔⃳ˣ℔㕌ˣ℔☠ˣⶪ㕌ˣ⎘ℑˣ⎘㕌(㖍㕌)ˣ䙶⎠

(㕗)ˣ䡭ˣ℔㑼ˣ℔堉ˣ℔ℑˣ⃳㉱ˣ㕌ˣℑˣ拊ˣ☠ˣ

⃳ˣ劙䡭ˣ劙ℑˣ℔拊ˣ㮓⃳ˣ㮓↮ˣẇ⃳ˣ℔㮓 

volume e.g. ℔㑖ˣ℔⋯(ⶪ⋯)ˣ䆇忈⋯ˣ⎘⋯(㖍⋯)ˣ䙶⎠ˣ⑩

僓(pint)ˣ≈Ἶ(gallon)ˣ呚⺷俛(bushel)ˣ℔㔿ˣ℔䞛ˣ℔

䥱ˣ℔⎰ˣ℔⊢ˣ㔿ˣ㮓⋯ˣ⣠ˣ⣠䈡ˣ⣠䇦ˣ䩳㕡䰛ˣ

䩳㕡⍀䰛ˣ䩳㕡℔↮ˣ䩳㕡℔⮠ˣ䩳㕡℔⯢ˣ䩳↮℔慴ˣ

䩳㕡劙⯢ˣ䞛ˣ㕃ˣ大大 

time e.g. ⽖䥺ˣ慸䥺ˣ䥺ˣ䥺揀ˣ↮ˣ↮揀ˣ⇣ˣ⇣揀ˣ溆ˣ

溆揀ˣ㗪ˣ⮷㗪ˣ㚜ˣ⣄ˣ㖔ˣ䲨(廒, 12⸜) ˣᶾ䲨ˣ⣑

(㖍)x 㗇㛇(䥖㊄ˣ忙ˣ␐) ˣ㚰ˣ㚰ấˣ⬋ˣ⸜(庱ˣ㬚) ˣ

忙⸜ˣ␐㬚ˣ⸜ấˣ㘂ˣ⭧ˣᶾˣ廑ˣ廑⫸ˣẋˣ⬠㛇ˣ

⬠⸜ˣ⸜ẋ 
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address e.g. ⚳ˣ䚩ˣⶆˣ䷋ˣ悱ˣ㛹ˣ捖ˣ惘ˣ慴ˣ悉ˣ⋨ˣ

䪁ˣ⶟ˣ⺬ˣ㭝ˣ嘇ˣ㦻ˣ埾ˣⶪˣ㳚ˣ⛘ˣ埿 

place e.g 悐ˣ⎠ˣ婚ˣ昊ˣ䥹ˣ䲣ˣ䳂ˣ偉ˣ⭌ˣ⺛ 

duration e.g昋(⫸)ˣ㚫ˣ㚫⃺ˣᶳ⫸ 

 
However there are some complications need to be resolved. First of all we have to clarify the 
dependent relation between the determinative and the measure of a DM in order to make a 
right feature unification process. In principle, a dependent head will take semantic 
representation of its dependent daughters as its features. Usually determinatives are modifiers 
of measures, such as 忁䠿, ᶨ䠿, 忁ᶨ䠿. For instance, the example (9) has the dependent 
relations of  
NP(quantifier:DM(quantifier:Neu:ᶨ|container:Nfa:䠿)|Head:Nab:湝) 

 

Figure 1. The dependent relations of ᶨ䠿湝�”a bowl of noddle�”. 

After feature unification process, the semantic representation of �“ᶨ def: quantity={1}�” 
becomes the feature of its dependent head �“䠿 def: container={bowl|䠿} and derives the 
feature representation of �“one bowlᶨ䠿 def: container={bowl| 䠿 :quantity={1}}�”. 
Similarly, �“one bowlᶨ䠿�” is the dependent daughter of �“noodle|湝 def:{noodle|湝}�”. After 
unification process, we derive the result of (9). 
 (9)one bowl of noodle|ᶨ䠿湝 def:{noodle|湝:container={bowl|䠿:quantity={1}}} 
 
The above feature unification process written in term of rule is expressed as (10).  
 
 (10) Determinative + Measure (D+M)  def: semantic-role(M) = 
{Sense-representation(M): Representation(D)}  
The rule (10) says that the sense representation of a DM compound with a determinative D 
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and a measure M is a unification of the feature representation of D as a feature of the sense 
representation of M as exemplified in (9). 
However a DM compound with a null sense measure word, such as �‘this copy|忁㛔�’ , �‘ a 
copy|ᶨ㛔�’, or without measure word, such as �‘this three|忁ᶱ�’, will be exceptions, since the 
measure word cannot be the semantic head of DM compound. The dependent head of 
determinatives become the head noun of the NP containing the DM and the sense 
representation of a DM is a coordinate conjunction of the feature representations of its 
morphemes of determinatives only. 
 
For instance, in (8), �‘copy�’ has weak content sense; we thus regard it as a null-sense measure 
word and only retain the feature representation of the determinative as the definition of �“this 
copy|忁㛔�”. The unification rule for DM with null-sense measure is expressed as (11). 
 
 (11) Determinative + {Null-sense Measure} (D+M)  def: Representation(D);  
 
If a DM has more than one determinative, we can consider the consecutive determinatives as 
one D and the feature representation of D is a coordinate conjunction of the features of all its 
determinatives. For instance, �“this one|忁ᶨ�” and �“this one|忁ᶨ㛔�” both are expressed as 
�“quantifier={definite|⭂㊯}; quantity={1}�”. 
Omissions of numeral determinative are occurred very often while the numeral quantity is 
�“1�”. For instance, �“忁㛔�” in fact means �“this one|忁ᶨ㛔�”. Therefore the definition of (8) 
should be modified as: 
忁㛔 def: quantifier={definite|⭂㊯}; quantity={1}; 
The following derivation rules cover the cases of omissions of numeral determinative. 
 
 (12) If both numeral and quantitative determinatives do not occur in a DM, then the 
feature quantity={1} is the default value of the DM. 
 
Another major complication is that senses of morphemes are ambiguous. The feature 
unification process may produce many sense representations for a DM compound. Therefore 
sense disambiguation is needed and the detail discussions will be in the section 3.1. 
 
Members of every type of determinatives and measures are exhaustively listable except 
numeral determinatives. Also the formats of numerals are various. For example, �“5020�” is 
equal to �“Ḽ暞Ḵ暞�” and �“Ḽ⋫暞Ḵ⋩�” and �“Ḽ⋫Ḵ⋩�”. So we have to unify the numeral 
representation into a standard form. All numerals are composition of basic numeral as shown 
in the regular expressions (2). However their senses are not possible to define one by one. We 
take a simple approach. For all numeral, their E-HowNet sense representations are expressed 
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as themselves. For example, 5020 is expresses as quantity={5020} and will not further define 
what is the sense of 5020. Furthermore all non-Arabic forms will be convert into Arabic 
expression, e.g. �“Ḽ⋫暞Ḵ⋩�” is defined as quantity={5020}. 
 
The other problem is that the morphological structures of some DMs are not regular patterns. 
Take �“ℑᾳ⋲ two and half�” as an example. �“⋲ half�” is not a measure word. So we collect 
those word like �“⣂many, ⋲half, ⸦many, ᶲup, ⣏big, Ἦmore�” for modify the quantity 
definition. So we first remove the word �“⋲�” and define the  �“ℑᾳ�” as quantity={2}. 
Because the word �“⋲�” means quantity={0.5}, we define the E-HowNet definition for �“ℑᾳ
⋲�” as quantity={2.5}. For other modifiers such as �“⣂ many, ⸦ many, 检 more, Ἦ more�”, 
we use a function over() to represent the sense of �“more�”, such as �“⋩⣂ᾳ more than 10�” is 
represented as quantity={over(10)} 
 
The appendix A shows the determinatives and measures used and their E-HowNet definition 
in our method. Now we have the basic principles for compositing semantics of DM under the 
framework of E-HowNet.  
Below steps is how we process DMs and derive their E-HowNet definitions from an input 
sentence. 

I. Input: a Chinese sentence. 
II. Apply regular expression rules for DM to identify all possible DM candidates in the 

input sentence. 
III. Segment DM into a sequence of determinatives and measure words. 
IV. Normalize numerals into Arabic form if necessary 
V. Apply feature unification rules (10-12) to derive candidates of E-HowNet 

representations for every DM. 
VI. Disambiguate candidates for each DM if necessary. 
VII. Output: DM Compounds in E-HowNet representation. 

For an input Chinese sentence, we use the regular expression rules created by Li et al. [2006] 
to identify all possible DMs in the input sentence. Then, for every DM compound, we 
segment it into a sequence of determinatives and measures. If any numeral exists in the DM, 
every numeral is converted into decimal number in Arabic form. For every DM, we follow 
the feature unification principles to composite semantics of DM in E-HowNet representations 
and produce possible ambiguous candidates. The final step of sense disambiguation is 
described in the following section. 
 
3.1 Sense Disambiguation 
Multiple senses will be derived for a DM compound due to ambiguous senses of its 
morpheme components. For instance, the measure word �”柕 head�” has either the sense of 
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{柕|head}, such as �“㺧柕䘥檖 full head of white hairs�” or the null sense in �”ᶨ柕䈃 a cow�”.  
Some DMs are inherent sense ambiguous and some are pseudo ambiguous. For instances, the 
above example �“ᶨ柕�” is inherent ambiguous, since it could mean �“full head�” as in the 
example of �“ᶨ柕䘥檖 full head of white hairs�” or could mean �“one + classifier�” as in the 
example of �”ᶨ柕䈃 a cow�”. For inherent ambiguous DMs, the sense derivation step will 
produce ambiguous sense representations and leave the final sense disambiguation until 
seeing collocation context, in particular seeing dependent heads. Some ambiguous 
representations are improbable sense combination. The improbable sense combinations 
should be eliminated during or after feature unification of D and M. For instance, although 
the determiner �“ᶨ�” has ambiguous senses of �“one�”, �“first�”, and �“whole�”, but �“ᶨ℔⯢�” has 
only one sense of �“one meter�”, so the other sense combinations should be eliminated. 
The way we tackle the problem is that first we find all the ambiguous Ds and Ms by looking 
their definitions shown in the appendix A. We then manually design content and context 
dependent rules to eliminate the improbable combinations for each ambiguous D or M types. 
For instance, according to the appendix A, �“柕�” has 3 different E-HowNet representations 
while functions as determinant or measure, i.e. �“def:{null}�”, �“def:{head|柕 }�”, and 
�“def:ordinal={1}�”. We write 3 content or context dependent rules below to disambiguate its 
senses.  

  (13) 柕�”head�”, Nfa, E-howNet: �“def:{null}�” : while E-HowNet of head word is �“≽
䈑({animate|䓇䈑}�” and it�’s subclass.  

(14) 柕�“head�“, Nff, E-howNet: �“def:{柕}�” : while pre-determinant isᶨ(Neqa)�”one�” 
or 㺧�”full�” orℐ�”all�” or 㔜�”total�”. 

  (15) 柕�”first�”, Nes, E-howNet: �“def:ordinal={1}�” : while this word is being a 
demonstrative determinatives which is a leading morpheme of the compound. 

The disambiguation rules are shown in appendix B. In each rule, the first part is the word and 
its part-of-speech. Then the E-HowNet definition of this sense is shown, and followed by the 
condition constraints for this sense. If there is still ambiguities remained after using the 
disambiguation rule, we choice the most frequent sense as the result. 
 

4. Experiment and Discussion 

We want to know how good is our candidate production, and how good is our disambiguation 
rule. We randomly select 40628 sentences (7536 DM words) from Sinica Treebank as our 
development set and 16070 sentences (3753 DM words) as our testing set. We use 
development set for designing disambiguation rules and semantic composition rules. Finally, 
we derive 36 contextual dependent rules as our disambiguation rules. We randomly select 
1000 DM words from testing set. We evaluate the composition quality of DMs with 
E-HowNet representation before disambiguation. For 1000 DM words, the semantic 
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composition rules produce 1226 candidates of E-HowNet representation from 939 words. The 
program fails to produce E-HowNet representations for the rest of 61 words because of 
undefined morphemes. There are 162 words out of the 939 words having ambiguous senses. 
The result shows that the quality of candidates is pretty good. Table 2 gives some examples of 
the result. For testing the correctness of our candidates, we manually check the format of 
1226 candidates. Only 5 candidates out of 1226 are wrong or meaningless representations. 
After disambiguation processes, the resulting 1000 DM words in E-HowNet representation 
are judged manually. There are 880 correct E-HowNet representations for 1000 DM words in 
both sense and format. It is an acceptable result. Among 120 wrong answers, 57 errors are 
due to undefined morpheme, 28 errors are unique sense but wrong answer and the number of 
sense disambiguation errors is 36. Therefore accuracy of sense disambiguation is 
(162-36)/162=0.778. 

Table 2. The result of semantic composition for DM compounds. 

DM Compounds E-HowNet Representation 
Ḵ⋩叔⃫ def:role={money|屐⸋:quantity={200000}} 
⎎ᶨᾳ def:qualification={other|⎎},quantity={1} 
Ḵ䘦ᶱ⋩ℕ↮ def:role={↮㔠:quantity={236}} 
⇵Ḽ⣑ def:time={day| 㖍 :qualification={preceding| ᶲ 㫉 }, 

quantity={5}} 
ᶨ䘦ᶨ⋩ℕ溆ᶫ

€伶⃫ 
def:role={伶⃫:quantity={11670000000}} 

 
After data analysis, we conclude the following three kinds of error types.  

A. Unknown domain error: 
ᶫ㡺�”7th batter�”, ᶫ⯨�”7th inning�” 
Because there is no text related to baseball domain in development set, we get poor 
performance in dealing with the text about baseball. The way to resolve this problem is 
to increase the coverage of disambiguation rules for the baseball domain. 

B. Undefined senses and morphemes: 
㭷ᶱᾳ�“each three�” 
We do not define the sense of 㭷 �”each�” and we only define㭷 �”all�”, so we have to 
add the sense of �“each�” in E-HowNet representation about㭷. 
㚱ᶱỵ �”there are three persons�”, ⎴ᶨᾳ �”the same�”  
Because 㚱 �“have�” and⎴ �”the same�” do not appear in our determinative list, it is not 
possible to composite their E-HowNet definitions. 

C. Sense ambiguities: 
  In parsed sentence: NP(property:DM:ᶲ⋲⟜�”first half �”|Head:DM:Ḵ⋩↮�”twenty 
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minutes or twenty points�”) . The E-HowNet representation ofḴ⋩↮�”twenty minutes or 
twenty points�” can be defined as �“def:role={↮㔠:quantity={20}}�” or �“def:time={↮
揀:quantity={20}}�”. More context information is needed to resolve this kind of sense 
ambiguity.  

For unknown domain error and undefined rule, the solution is to expand the disambiguation 
rule set and sense definitions for morphemes. For sense ambiguities, we need more 
information to disambiguate the true sense. 

5. Conclusion 

E-HowNet is a lexical sense representational framework and intends to achieve   sense 
representation for all compounds, phrases, and sentences through automatic semantic 
composition processing. In this paper, we take DMs as an example to demonstrate how the 
semantic composition mechanism works in E-HowNet to derive the sense representations for 
all DM compounds. We analyze morphological structures of DMs and derive their 
morphological rules in terms of regular expression. Then we define the sense of all 
determinatives and measure words in E-HowNet definition exhaustively. We make some 
simple composition rules to produce candidate sense representations for DMs. Then we 
review development set to write some disambiguation rules. We use these heuristic rules to 
find the final E-HowNet representation and reach 88% accuracy. 
The major target of E-HowNet is to achieve semantic composition. For this purpose, we 
defined word senses of CKIP lexicon in E-HowNet representation. Then we try to automate 
semantic composition for phrases and sentences. However there are many unknown or 
compound words without sense definitions in the target sentences. DM compounds are 
occurring most frequently and without sense definitions. Therefore our first step is to derive 
the senses of DM words. In the future, we will use similar methods to handle general 
compounds and to improve sense disambiguation and semantic relation identification 
processing. We intend to achieve semantic compositions for phrases and sentences in the 
future and we had shown the potential in this paper.  
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Appendix A. Determinative and measure word in E-HowNet representation 

⭂娆(Determinative word) 

⭂㊯ 
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D1-> 忁ˣ恋ˣ㬌ˣ娚ˣ㛔ˣ屜ˣ㔅ˣ℞ˣ㝸ˣ媠 def: quantifier={definite|⭂
㊯}烊忁ṃˣ恋ṃ def: quantifier={definite|⭂㊯}, quantity={some|ṃ} 

D2-> 䫔ˣ椾 def: ordinal={D4} 

 D3-> ᶲ ˣ ⇵ def: qualification={preceding| ᶲ 㫉 } ˣ ᶳ ˣ ⼴ def: 
 qualification={next|ᶳ㫉}ˣ柕ˣ椾 def:ordinal={1}ˣ㛓 def:  qualification={last| 㚨
⼴}ˣ㫉 def:ordinal={2}  

ᶵ⭂㊯ 

D4-> ᶨˣḴˣ叔ˣ暁... def: quantity={1ˣ2ˣ10000ˣ2...} or def:ordinal={1ˣ2ˣ
10000ˣ2...} 

D5-> 䓚ˣḁ... def: ordinal={1ˣ2...}      

D6-> ℞Ṿˣ℞检ˣ⇍ˣ㕩ˣṾˣ⎎ˣ⎎⢾ def: qualification={other|⎎} 

D7-> 㭷ˣảỽˣᶨˣℐˣ㺧ˣ㔜ˣᶨ↯ def: quantity={all|ℐ} 

D8-> ⎬ def: qualification={individual|↮⇍䘬} 

D9-> 劍⸚ˣ㚱䘬ˣᶨṃˣ悐ấˣ㚱ṃ def: quantity={some|ṃ} 

D10-> ⋲ def: quantity={half|⋲} 

D11-> ⣂⮹ˣ⸦⣂ def: quantity={.Ques.} 

D12-> ỽˣ┍ˣṨ湤 def: fomal={.Ques.} 

D13->㔠ˣ姙⣂ˣ⼰⣂ˣ⤥⣂ˣ⤥⸦ˣ⤥ṃˣ⣂ˣ姙姙⣂⣂ˣ⣂㔠ˣ⣏⣂㔠ˣ
ᶵ⮹ˣ㲘⋲ˣ⋲㔠ˣ媠⣂ def: quantity={many|⣂}x ⮹姙ˣ⮹㔠ˣ⸦姙ˣᾳ㈲ def: 
quantity={few|⮹} 

D14->检ˣ姙ˣᷳ⣂ def: approximate()ˣ嵛ˣ㔜ˣ㬋 def: exact()ˣ↢柕ˣ⤥⸦ˣ
攳⢾ˣ⣂ def: over();  

D15->0ˣ1ˣ2ˣ3ˣ4ˣ5ˣ6ˣ7ˣ8ˣ9 def: quantity={1ˣ2ˣ3ˣ4...} 
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慷娆(Measure word)  

㚱婆シ慷娆(Measures with content sense ) 

Nff-> 㙓㗪慷娆�—幓ˣ柕ˣ共ˣ滣⫸ˣ◜ˣ偂⫸ˣㇳˣ儛 def:{幓,柕, �…} 

Nff-> 㙓㗪慷娆�—㟴⫸ˣ昊⫸ˣ⛘ˣ⯳⫸ˣ㰈ˣ僼ˣ⭞⫸ def: position={㟴⫸,
昊⫸...:quantity={all|ℐ}} 

Nfe-> ⭡☐慷娆�—䙺(⫸)ˣ⋋(⫸)ˣ䭙(⫸)ˣ㩫⫸ˣ㪍(⫸)ˣ䯫(⫸)ˣ䮵(⫸)ˣ䆸
 ⫸ˣ⊭(⃺)ˣ堳(⃺)ˣ㰈⫸ˣ䒞(⫸)ˣ㠞(⫸)ˣ倥ˣ仸(⫸)ˣ䙮(⫸)ˣ拳(⫸)ˣ
 䰈(⫸)ˣ䚌(⫸)ˣ䠿ˣ㜗(⫸)ˣ⊢(⫸)ˣ⋁(㸗⋁)ˣ䫺(⫸)ˣ㑼(⫸)ˣ䰖䫸ˣ 㛻
(⫸)ˣ勞⋁ˣ⢢ˣ䙭ˣ䫸ˣ䒊ˣ挔ˣ仠 def: container={䙺,⋋,...} 

Nfg-> 㧁㸾慷娆�— 

堐攟⹎䘬炻⤪烉℔⍀ˣ℔↮ˣ℔⮠ˣ℔⯢ˣ℔ᶰˣ℔⺽ˣ℔慴ˣⶪ⯢ˣ䆇

忈  ⯢ˣ⎘⯢ˣ⎳(inch)x ⏶(feet)x 䡤(yard)x ⒑(mile)x   (㴟)㴔ˣ⹡ˣ☂ˣ
⯢ˣ慴ˣ慸ˣ⮠ˣᶰˣ䰛ˣ⍀ˣ⍀䰛ˣ㴟  ⒑ˣ劙⯢ˣ劙慴ˣ劙⏶ˣ劙⮠ˣ
䰛䨩ˣ䰛⯢ˣ⽖䰛ˣ㮓䰛ˣ  劙⎳ˣ劙⒑ˣ⃱⸜ˤ def: length={℔↮,...} 

堐朊䧵䘬炻⤪烉℔䔅ˣ℔枫ˣⶪ䔅ˣ䆇忈䔅ˣ✒ˣ䔅ˣ↮ˣ䓚ˣ枫ˣ⸛㕡

℔慴ˣ⸛㕡℔⯢ˣ⸛㕡℔↮ˣ⸛㕡⯢ˣ⸛㕡劙⒑ˣ劙䔅 dʕef: size={℔䔅,...} 

堐慵慷䘬炻⤪烉℔⃳ˣ℔㕌ˣ℔☠ˣⶪ㕌ˣ⎘ℑˣ⎘㕌(㖍㕌)ˣ䙶⎠(㕗)ˣ
䡭ˣ℔㑼ˣ℔堉ˣ℔ℑˣ⃳㉱ˣ㕌ˣℑˣ拊ˣ☠ˣ⃳ˣ劙䡭ˣ劙ℑˣ℔拊ˣ

㮓⃳ˣ㮓↮ˣẇ⃳ˣ℔㮓ˤdef: weight={℔⃳,...} 

堐⭡慷䘬炻⤪烉℔㑖ˣ℔⋯(ⶪ⋯)x 䆇忈⋯ˣ⎘⋯(㖍⋯)x 䙶⎠ˣ⑩僓(pint)ˣ
≈Ἶ(gallon)ˣ呚⺷俛(bushel)ˣ℔㔿ˣ℔䞛ˣ℔䥱ˣ℔⎰ˣ℔⊢ˣ㔿ˣ㮓
⋯ˣ⣠ˣ⣠䈡ˣ⣠䇦ˣ䩳㕡䰛ˣ䩳㕡⍀䰛ˣ䩳㕡℔↮ˣ䩳㕡℔⮠ˣ䩳㕡℔

⯢ˣ䩳↮℔慴ˣ䩳㕡劙⯢ˣ䞛ˣ㕃ˣ大大ˤdef: volume={℔㑖,℔⋯,...} 

堐㗪攻䘬炻⤪烉⽖䥺ˣ慸䥺ˣ䥺ˣ䥺揀ˣ↮ˣ↮揀ˣ⇣ˣ⇣揀ˣ溆ˣ溆揀ˣ

㗪ˣ⮷㗪ˣ㚜ˣ⣄ˣ㖔ˣ䲨(廒, 12⸜) ˣᶾ䲨ˣ⣑(㖍)ˣ㗇㛇(䥖㊄ˣ忙ˣ
␐) ˣ㚰ˣ㚰ấˣ⬋ˣ⸜(庱ˣ㬚) ˣ⸜ấˣ㘂ˣ⭧ˣˤdef:temporal={⽖
䥺,㚰�…}, 忙⸜ˣ␐㬚 def:duration={⸜} 

堐拊⸋䘬炻⤪烉↮ˣ奺(㮃)ˣ⃫(⚻)ˣ⟲ˣℑˣ⃰Ẍˣ䚏㭼ˣ㱽恶(㚿)ˣ彐
⢓ˣ楔⃳ˣ挲ˣ䚏ⶫˣ伶⃫ˣ伶慹ˣὧ⢓ˣ慴㉱ˣ㖍⃫ˣ⎘⸋ˣ㷗⸋ˣṢ

㮹⸋ˤdef: role={↮, �…,money|屐⸋, �…䚏ⶫ�…} 

℞Ṿ烉↨ˣㇻ(dozen)x Ẍˣ䵠(⋩㡅)x 嗧(gross)x ⣏䰖(great gross)x 䃎俛ˣ
⋫⌉ˣẇ⌉ˣ䆕⃱ˣ⋫䒎ˣẇ䒎ˣặ䈡ˣ楔≃ˣ䇦㟤(erg)ˣ䒎䈡ˣ䒎ˣ⌉
嶗慴ˣ⌉ˣẇ崓ˣỵ⃫ˣ卓俛ˣ㮓⶜ˣ⋫崓ˣ㫸⥮ˣ忼⚈ˣ⃮崓ˣ㱽㉱䫔ˣ

䈃枻ˣ崓ˣ⬱➡ˣ␐㲊ˣ崓勚ˣ↮居ˣ㮓⬱➡ˣ⯭慴ˣ⽖⯭慴ˣ㮓⯭慴ˤ

def: quantity={↨,ㇻ,�…,䃎俛,...} 
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Nfh-> 㸾慷娆�— 

㊯埴㓧㕡朊炻⤪烉悐x ⎠x 婚x 昊x 䥹x 䲣x 䳂x 偉x ⭌x ⺛ʕ def: location={悐,
⎠...} 

㊯㗪攻㕡朊炻⤪烉ᶾˣ廑ˣ廑⫸ˣẋˣ⬠㛇ˣ⬠⸜ˣ⸜ẋ def: time={⬠㛇,
⸜ẋ,...} 㚫ˣ㚫⃺ˣ昋(⫸) ˣᶳ⫸ def: duration={TimeShort|䞕㗪攻}  

㊯㕡⎹䘬炻⤪烉朊(⃺)ˣ㕡朊ˣ怲(⃺)ˣ㕡ˤdef: direction={EndPosition|
䪗}ˣ柕(⃺) def: direction={aspect|“} 

㊯枛㦪䘬炻⤪烉㉵ˣ㜧ˣ⮷䭨ˤdef: quantity={㉵,㜧...} 

㊯柣䌯䘬炻⤪:⚆ˣ㫉ˣ念ˣ嵇ˣᶳˣ怕ˣ枧ˣ⚰ˣ㈲ˣ斄ˣ儛ˣ⶜㌴ˣ
㌴ˣ㊛柕ˣ㊛ˣ䛤ˣ⎋ˣ↨ˣ㥴ˣ㥴⫸ˣ㜧ˣ䇰⫸ˣ杕ˣ杕⫸ˣ㡺ˣ㡵ˣ

㡵⫸ˣ憅ˣ㥵䞃ˣ㥵ˣ䟚ˣ⹎ˣ廒ˣ␐ˣ嶌ˣ⚆⎰ˣ䤐ˤDef:frequency={D4, 
D15} ↮ def:role={ ↮ 㔠 :quantity={D4,D15}} ˣ 㬍 def:{ 㬍 } ˣ 䭕
def:role={䭕:quantity={D4,D15}}ˣ㚚 def:{㚚:quantity={D4,D15}} 

Nfc-> 佌 橼 慷 娆�— ⮵ ˣ 暁 def:quantity={double| 墯 }ˣ↿ ( 䲣↿ ) ˣ ㌺
 def:quantity={mass|䛦 :manner={ InSequence|㚱⸷ }}ˣ⣿ def:quantity={mass|
 䛦 :manner={relevant|䚠斄 }}ˣᷚ def:quantity={mass|䛦 :dimension={linear|䶂 }}ˣ
 ㍃ˣ⸓ˣ佌ˣề(⣍)ˣ䤐ˣ㈡ def: quantity={mass|䛦}ˣ䳬 def: quantity={mass| 䛦 : 
manner={relevant|䚠斄}}ˣ䩑 def: quantity={mass|䛦:cause={assemble|倂 普 }}ˣ䧖ˣ
栆ˣ㧋 def: {kind({object|䈑橼})}  ˣ䮯 def:quantity={mass| 䛦 :cause={assemble| 倂
普}}ˣ䔲 def:quantity={mass|䛦:cause={pile|➮㓦}}ˣ䳖 def:quantity={mass|
䛦:cause={wrap|⊭䳖}}ˣ⎊ def:quantity={mass| 䛦 :cause={assemble|倂普 }}ˣ昲
def:quantity={mass|䛦:manner={ InSequence|㚱 ⸷}}ˣ⺷ def:{kind({object|䈑橼})} 

  Nfd->悐↮慷娆�—ṃ def:quantity={some|ṃ}ˣ悐↮(ấ)ˣ㲉ˣ䵡ˣ㑖ˣ偉ˣ䀀ˣ 
   㰒ˣⷞˣ㇒ˣ䭨 def: quantity={fragment|悐}ˣ⛀ def: quantity={fragment| 
   悐:shape={round|⚻}}x ➮ def: quantity={ fragment|悐:cause={pile|➮㓦}}x ㈲ def: 
   quantity={ fragment|悐:cause={hold|㊧}}ˣⰌˣ慵 def: quantity={ fragment| 
   悐:shape={layered|䔲}} 

   

䃉婆シ慷娆(null-sense Measures) 

Nfa-> ᾳ橼慷娆�—㛔ˣ㈲ˣ䒋ˣ悐ˣ㝬ˣ⸲ˣ嗽ˣ㛇ˣ漋ˣ⟜ˣ㛝ˣ枪ˣ⟝ˣ
忻ˣ枻ˣ拈ˣ㢇(⸊)ˣ㨼(㨼⫸)ˣ⮩ˣⷭˣ䘤ˣ↮(ấ)ˣ㚵ˣᾳ(䬯)ˣ㟡ˣ埴ˣ
㇞ˣẞˣ⭞ˣ㝞ˣ⌟ˣ℟ˣ敽ˣ䭨ˣ⎍ˣ⯮ˣ㌚ˣ∹ˣ晣ˣ⮲ˣ䚆ˣ⻝ˣ㝅(㓗)ˣ
㦩ˣⷨˣ⎒ˣ㟒ˣ㉀ˣ䁟ˣ庠ˣ⎋ˣ㢝ˣ㫦ˣ⭊ˣ廃ˣ䰺ˣ廒ˣ㝂ˣ朊ˣ攨ˣ

ⷽˣ⋡ˣ䭯ˣ䇯ˣ㇨ˣ刀ˣ㇯ˣ椾ˣḀˣ多ˣ柕ˣ㡅ˣ⎘ˣ㋢ˣ➪ˣⶾˣ柮ˣ

⹏ˣ⇯ˣℲˣảˣ⯦ˣ␛ˣỵˣ枩ˣ叱ˣ㇧ˣ⻶ˣ䎕ˣ⒉ˣ䥹ˣᷠˣ⎵ˣ枭ˣ

崟ˣ攻ˣ柴ˣ䚖ˣ㊃ˣ偉ˣ⚆ˤdef: {null} 
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Nfc-> 佌橼慷娆�—⬿ˣ䔒ˣ䔎ˣ梸ˣ埴ˣ∗(Ẁ)ˣ咔ˣ䫮ˣ㇧ˣ䴹(㋮)ˣ偶ˣ
◇☽ˣ悐ˣ㳦ˣ嶗ˣ⢇ˣ句ˣ㜇ˣⷕˣ刚ˣ㓌ˣ枭ˤdef: {null} 

Nfd-> 悐↮慷娆�—⎋ˣ⟲ˣ㺜ˣ㪬ˣ㌏ˣ㉙ˣ㭝ˣ䴚ˣ溆ˣ䇯ˣ䷟ˣ✐ˣ⋡ˣ
䔳ˣ昶ˣ㈼ˣ㲊ˣ忻ˤdef: {null} 

Nfb-> 徘屻⺷⎰䓐䘬慷娆�—忂ˣ⎋ˣ枻ˣ䚌ˣ⯨ˣ䔒ˤdef: {null} 

Nfi-> ≽慷娆�—⚆ˣ㫉ˣ念ˣ嵇ˣᶳˣ怕ˣ䔒ˣ倚ˣ枧ˣ⚰ˣ㈲ˣṿˣ奢ˣ枻ˣ
斄ˣㇳ 炷x⶜炸㌴ˣ㊛炷柕炸x ㊛ˣ䛤ˣ⎋ˣ㥴(⫸)x 㜧(⫸)x 杕(⫸)x 㡺ˣ㡵炷⫸炸x
 昋ˣ憅ˣ䭕ˣ㥵炷䞃炸x 㥵ˣ䟚ˣ⟜ˣ⹎ˣ廒ˣ㚚ˣ嶌ˣ姀ˣ⚆⎰ˣ䤐ˤdef: {null} 

Nfh-> 㸾慷娆 

㊯㚠䯵㕡朊炻⤪烉䇰ˣℲˣ䶐ˣ⚆ˣ䪈ˣ朊ˣ⮷䭨ˣ普ˣ⌟ˤdef: {null} 

㊯䫮∫㕡朊炻⤪烉䫮ˣ∫(⃺)ˣ㨓ˣ寶ˣ䚜ˣ㐯ˣ㌢ˣ㊹ˣ⇼ˣ戌(⃺)ˣ
㉸ˣ溆ˣ㟤(⃺)ˤdef: {null} 

℞Ṿ烉 

䦳ˣἄ(ἳ:ᶨ⸜㚱ℑἄ)ˣ᾵ˣㆸˤdef: {null} 

⍀(ἳ:⸜⇑Ḽ⍀ˣᶨ↮ᶨ⍀悥ᶵ傥拗)ˤdef: {null} 

㮓(叔↮ᷳᶨ)ˣ䴚(⋩叔↮ᷳᶨ)(ἳ:ᶨ䴚ᶨ㮓悥ᶵⶖ)ˤ 

⚵ˣ㊯ˣ尉旸ˣ⹎ˤdef: {null} 

攳(㊯攳慹)ˣ倗(ἳ:ᶲᶳ倗ᶵ⮵䧙)ˤdef: {null} 

幵ˣⷓˣ㕭ˣ⛀ˣ䆇ˣẵˣ䎕ˣ㌺ˣ忋ˣ䎫ˣ㲊ˣ䪗ˤdef: {null} 

⚆⎰ˣ㉀ˣ㐢ˣ㳩ˣ䫱ˣ䤐ˣ㠧ˣ㡺ˣ倚ˣ㫉ˤdef: {null} 

Appendix B. The rule for candidate disambiguation 

head-based rule 

e.g.ᶨ, Neu, def:quantity={1}, while part-of-speech of head word is Na, except the 
 measure word is 幓 �”body�” or 共 �”face�” or 滣⫸ �”nose�” or ◜ �”mouth�” or 偂
 ⫸�”belly�” or 僼�”cavity�” . 

e.g.⟲,Nfg,def:role={money|屐⸋}, while E-HowNet representation of head word is 
 �“{money|屐⸋}�”  or {null}, or head word is 拊�”money�” or 伶慹�”dollar�” or the s
 uffix of word is⸋�”currency�” and previous word is not D1. 

   ⟲,Nfd,def:{null}, otherwise, use this definition. 

e.g.朊,Nfa,def:{null}, while part-of-speech of head word is Nab. 
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   朊,Nfh,def:direction={aspect|“}, otherwise use this one. 

e.g.柕,Nfa,def:{null}, while head word is Nab and E-HowNet representation of head 
 word is �“≽䈑{animate|䓇䈑}�” and it�’s subclass. 

   柕,Nfh,def:direction={EndPosition|䪗} , if part-of-speech of head word is Na, do 
 not use this definition. The previous word usually are 忁 �”this�” or 恋 �”that�” or 
 ⎎�”another�”. 

e.g.All Nfi, def:frequency={}, while part-of-speech of head word is Verb, i.e. E-HowNet 
 representation of head word is {event|ḳẞ} and it�’s subclass. Except POS V_2 and 
 VG. 

   All Nfi,def:{null}, while part-of-speech of head word is Noun, i.e. E-HowNet of 
head  word is {object|䈑橼} and it�’s subclass. 

e.g.悐, 偉�…,Nfh,def:location={ }, if part-of-speech of head word is Na or previous 
word  is 忁�”this�” or恋�”that�” or㭷�”every�”, do not use this definition. 

   悐,偉�…,Nfa,def:{null}, otherwise use this definition. 

e.g. 䚌 ,Nfe,def:container={plate| 䚌 },while head word is food, i.e. E-HowNet 
 representation of head word is {edible|梇䈑} and it�’s subclass.     

    䚌,Nfb,def:{null},otherwise use this one. 

e.g.↮ ,Nfg, def:role={↮ }, while head word is 拊  �“money�”, i.e. E-HowNet 
 representation of head word is {money|屐⸋} and it�’s subclass. 

    ↮,Nfg, def:size={ ↮ }, while head word is ⛘  �“land�”, i.e. E-HowNet 
 representation of head word is {land|映⛘} and it�’s subclass. 

↮,Nfa, def:{null}, while part-of-speech of head word is Na or Nv. For example: 
ᶨ↮侽俀烊⋩↮≃㯋烊Ḽ↮䅇. 

  e.g.溆,Nfh;Nfd,def:{null}, while part-of-speech of head word is Nab. If part-of-speech 
of   head word is V, Naa or Nad, do not use this definition. 

collocation-based rule 

e.g.↮,Nfh,def:role={score|↮㔠:quantity={D4,D15}}, while the sentence also contains 
 the words侫 �”give an exam�” (E-HowNet representation is {exam|侫娎}) or  ⼿ �”get�” 
(E-HowNet representation is {obtain|⼿⇘}) or⣙�”lose�” (E-HowNet  representation is 
{lose|⣙⍣}), then use this definition. 
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e.g.↮,Nfg,def:time={minute|↮揀}, if the sentence contains the word㗪�”hour�” or揀
 柕�”hour�”. 

e.g.ℑ ,Nfg,def:weight={ℑ}, if the sentence contains the word 慵�”weight�” or 慵
 慷�”weight�”. 

   ℑ,Nfg,def:role={money|屐⸋}, if the sentence contains the word 戨�”sliver�” or
 拊�”money�” or 湫慹�”gold�” 

pre-determinant-based rule 

e.g.柕 , Nff,def:{head|柕}, while pre-determinant is ᶨ(Neqa)�”one�” or 㺧�”full�” or
 ℐ�”all�” or 㔜�”total�”. 

e.g.儛, Nff,def:{leg|儛}, while pre-determinant is ᶨ(Neqa)�”one�” or 㺧�”full�” or ℐ
 �“all�” or 㔜�”total�” and part-of-speech of head word is not Na. 

儛, Nfi,def:frequency={}, while part-of-speech combination is V+D4,D15+儛. 

e.g.溆,Nfg, def:time={溆 }, while part-of-speech of pre-determinant is D4 or 
 D15(1~24) and part-of-speech of previous word is not D1 or previous word is not
 㚱�”have�”. 

e.g.廒,Nfg,def:time={廒}, while pre-determinant is 䫔 �” a function word placed in 
 front of a cardinal number to form an ordinal number�” or 椾�”first�”. 

determinative-based rule 

e.g.ᶨˣḴ...1ˣ2...ℑ..., Neu, def:ordinal={}, the determinant of word is䫔, 㮹⚳, 
 ℔⃫, 大⃫, ⸜嘇, ᶨḅ XX  or 12XX, (four digits number). 

   ᶨˣḴ...1ˣ2...ℑ..., Neu,def:quantity={}, otherwise use this definition. 

e.g.柕,Nes,def:ordinal={1},the word柕�”head�” is determinant word. 

e.g.ℑ ,Neu,def:quantity={}, the word ℑ�”a unit of weight equal to 50 grams�” is 
 determinant word. 

measure word based rule 

 e.g.ᶨ,Neqa,def:quantity={all|ℐ}, the part-of-speech of the measure word behindᶨ 
  is Nff, or the suffix of the measure word is ⫸, (for example,㩫⫸�” cabinet�”, 䒞
  ⫸�”bottle�”)or䰖䫸�” large basket�”. 
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Abstract 

We propose a new method for organizing the numerous collocates into semantic thesaurus 
categories. The approach introduces a thesaurus-based semantic classification model 
automatically learning semantic relations for classifying adjective-noun (A-N) and verb-noun 
(V-N) collocations into different categories. Our model uses a random walk over weighted graph 
derived from WordNet semantic relation. We compute a semantic label stationary distribution 
via an iterative graphical algorithm. The performance for semantic cluster similarity and the 
conformity of semantic labels are both evaluated. The resulting semantic classification 
establishes as close consistency as human judgments. Moreover, our experimental results 
indicate that the thesaurus structure is successfully imposed to facilitate grasping concepts of 
collocations. It might improve the performance of the state-of-art collocation reference tools. 
 
Keywords: Collocations, Semantic classification, Semantic relations, Random walk algorithm, 

Meaning access index. 

1. Introduction 

Submitting queries (e.g., a search keyword “beach” for a set of adjective collocates) to 
collocation reference tools typically return many collocates (e.g., collocate adjectives with a 
pivot word “beach”: “rocky”, “golden”, “beautiful”, “pebbly”, “splendid”, “crowded”, “superb”, 
etc.) extracted from a English corpus. Applications of automatic extraction of collocations such 
as TANGO (Jian, Chang & Chang, 2004) have been created to answer queries of collocation 
usage. 

Unfortunately, existing collocation reference tools sometimes present too much information 
in a batch for a single screen. With web corpus sizes rapidly growing, it is not uncommon to find 
thousands collocates for a query word. An effective reference tool might strike a balance between 
quantity and accessibility of information. To satisfy the need for presenting a digestible amount 
of information, a promising approach is to automatically partition words into various categories 
to support meaning access to search results and thus give a thesaurus index. 

Instead of generating a long list of collocates, a good, better presentation could be 
composed of clusters of collocates inserted into distinct semantic categories. We present a robust 
thesaurus-based classification model that automatically group collocates of a given pivot word 
focusing on: (1) the adjectives in adjective-noun pairs (A-N); (2) the verbs in verb-noun pairs 
(V-N); and (3) the nouns in verb-noun pairs (V-N) into semantically related classes. 

Our model has determined collocation pairs that learn the semantic labels automatically 
during random walk algorithm by applying an iterative graphical approach and partitions 
collocates for each collocation types (A-N, V-N and V-N mentioned above). At runtime, we start 
with collocates in question with a pivot word, which is to be assigned under a set of semantically 
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related labels for the semantic classification. An automatic classification model is developed for 
collocates from a set of A-N and V-N collocations. A random walk algorithm is proposed to 
disambiguate word senses, assign semantic labels and partition collocates into meaningful 
groups. 

As part of our evaluation, two metrics are designed. We assess the performance of 
collocation clusters classified by a robust evaluation metric and evaluate the conformity of 
semantic labels by a three-point rubric test over collocation pairs chosen randomly from the 
results. Our results indicate that the thesaurus structure is successfully imposed to facilitate 
grasping concepts of collocations and to improve the functionality of the state-of-art collocation 
reference tools. 

2. Related Work 

2.1 Collocations 
The past decade has seen an increasing interest in the studies on collocations. This has been 

evident not only from a collection of papers introducing different definitions of the term 
“collocation” (Firth, 1957; Benson, 1985; Lewis, 1997), but also from a number of research on 
collocation teaching/acquisition associating to language learning (Lewis, 2000; Nation, 2001). 
When analyzing Taiwanese EFL writing, Chen (2002) and Liu (2002) investigated that the 
common lexical collocational error patterns include verb-noun (V-N) and adjective-noun (A-N). 
Furthermore, with the technique progress of NLP, Word Sketch (Kilgarriff & Tugwell, 2001) or 
TANGO (Jian, Chang & Chang, 2004) became the novel applications as collocation reference 
tools. 

2.2 Meaning Access Indexing 
Some attention has been paid to the investigation of the dictionary needs and reference 

skills of language learners (Scholfield, 1982; Béjoint 1994), especially the structure for easy 
comprehending. According to Tono (1992 & 1997), menus that summarize or subdivide 
definitions into groups ahead of entries in dictionaries would help users with limited reference 
skills. The System “Signposts” of the Longman Dictionary of Contemporary English, 3rd edition, 
the index “Guide Word” of the Cambridge International Dictionary of English, as well as the 
“Menus” of the Macmillan English Dictionary for Advanced Learners all value the principle. 

2.3 Similarity of Semantic Relations 
The construction of practical, general word sense classification has been acknowledged to 

be one of the most ambitious and frustrating tasks in NLP (Nirenburg & Raskin, 1987), even 
WordNet with more significant contribution of a wide range of lexical-semantic resources 
(Fellbaum, 1998). Lin (1997) presented an algorithm for word similarity measure by its 
distributional similarity. Unlike most corpus-based word sense disambiguation (WSD) 
algorithms where different classifiers are trained for separate words, Lin used the same local 
context database as the knowledge sources for measuring all word similarities. Distributional 
similarity allows pair wise word similarity measure to deal with infrequent words or unknown 
proper nouns. However, compared to distributional similarity measure, our model by random 
walk algorithm has remarkable feature to deal with any kind of constraints, thus, not limited to 
pair-wise word similarities, and can be improved by adding any algorithm constraints available.  

More specifically, the problem is focused on classifying semantic relations. Approaches 
presented to solve problems on recognizing synonyms in application have been studied (Lesk, 
1986; Landauer and Dumais, 1997). However, measures of recognizing collocate similarity are 
not as well developed as measures of word similarity, the potential applications of semantic 
classification are not as well known. Nastase and Szpakowicz (2003) presented how to 

39



automatically classify a noun-modifier pair, such as “laser printer”, according to the semantic 
relation between the head noun (printer) and the modifier (laser). Turney (2006) proposed the 
semantic relations in noun pairs for automatically classifying. As for VerbOcean, a 
semi-automatic method was used to extract fine-grained semantic relations between verbs 
(Chklovski & Pantel, 2004). Hatzivassiloglou and McKeown (1993) presented a method towards 
the automatic identification of adjectival scales. More recently, Wanner et al. (2006) has sought 
to semi-automatically classify the collocation from corpora by using the lexical functions in 
dictionary as the semantic typology of collocation elements. Nevertheless, there is still a lack of 
fine-grained semantically-oriented organization for collocation. 

3. Methodology 

We focus on the preparation step of partitioning collocations into categories: providing each 
word with a semantic label and thus presenting collocates under thesaurus categories. The 
collocations with the same semantic attributes by the batch size are then returned as the output. 
Thus, it is crucial that the collocation categories be fairly assigned for users’ easy-access. 
Therefore, our goal is to provide a semantic-based collocation thesaurus that automatically 
adopts characterizing semantic attributes. Figure 1 shows a comprehensive framework for our 
unified approach. 

 

 
Figure 1.A comprehensive framework for our classification model. 

3.1 Problem Statement 
We are given (1) a set of collocates Col = {C1, C2, …, Cn} (e.g., sandy, beautiful, superb, 

rocky, etc.) denoted with a set of part-of-speech tags P, {P  Pos | P = adjective Padj, verb Pv, or 
noun Pn} for a pivot word X (e.g., beach) extracted from a corpus of English texts (e.g., British 
National Corpus); (2) a combination of thesaurus categories (e.g., Roget’s Thesaurus), TC = {(W, 
P, L) | W  Voc, P  Pos, L  Cat}, where Voc is the thesaurus vocabulary words W, ordered by 
general-purpose topics hereinafter called the semantic labels (e.g., feelings, materials, art, food, 
time, etc.), Cat = {L1, L2, …, Lm}, with conceptual-semantic attributes as the basis for 
organization; and (3) a lexical database (e.g., WordNet) as our word sense inventory SI for 
semantic relation population. SI is equipped with a measure of semantic relatedness of W, REL(S, 
S’) encoding semantic relations REL  SR holding between word sense S and S’.  

Our goal is to partition Col into subsets Sub of similar collocates, Sub  Col, by means of 
an integrated semantic knowledge crafted from the mapping of TC and SI that is likely to express 
closely related meanings of Col in the same context of X mentioned herein beach. For this, we 
use a graph-based algorithm to give collocations a thesaurus index by giving each collocate in 
Col a semantic label L. 

Extension 

A Thesaurus 
 

Word Sense Inventory  
(e.g., WordNet) 

Random Walk on Word 
Sense Assignment 

Integrated Semantic Knowledge (ISK) Enriched ISK 

Random Walk on Semantic 
Label Assignment 

Uncategorized 
Collocates 

A 

Collocation 

Thesaurus 

40



3.2 Learning to Build a Semantic Knowledge by Iterative Graphical Algorithms 
Recall that we attempt to provide each word with a semantic label and partition collocations 

into thesaurus categories. In order to partition a large-scale collocation input and reduce the 
out-of-vocabulary (OOV) words occurred, automating the task of building an integrated semantic 
knowledge base is a necessary step, but also imposes a huge effort on the side of knowledge 
integration and validation. An integrated semantic knowledge (ISK) is defined to interpret a word 
in triples (W, L, S), i.e., the given word, a semantic label representing one of thesaurus categories, 
and its corresponding word sense, as cognitive reference knowledge. At this first stage, 
interconnection is still between words and labels from the given thesaurus category TC and not 
between word senses and semantic labels. For interpreting words in triples (W, L, S) as an ISK 
and corresponding to the fact that there’s a limited, almost scarcely found, resource that is 
intended for such semantic knowledge, we proceeded as follows to establish one comprehensive 
ISK allowing concentrating on our task of populating it with new semantic relations between 
words and labels, overcoming the problem of constructing a resource from scratch.  

3.2.1 Word Sense Assignment for Integrated Semantic Knowledge 
In the first stage of the learning process, we used a graph-based sense linking algorithm 

which automatically assigns senses to all words under a thesaurus category by exploiting 
semantic relations identified among word senses. It creates a graph of vertices representing a set 
of words and their admissible word senses in the context of a semantically consistent list. The 
pseudo code for the algorithm is shown as Figure 2.  

By adding synonymous words through semantic relations, it can broaden the word coverage 
of TC, which may reduce significantly the number of OOV words in TC and cope with the 
problem of collocates that form a group by itself. This strategy relies on a set of general-purpose 
topics as semantic labels L in a thesaurus category TC and a word sense inventory SI encoding 
semantic relations. TC and SI are derived from separate lexicographical resources, such as 
Longman Lexicon of Contemporary English and WordNet. 

The algorithm assumes the availability of a word sense inventory SI encoding a set of 
semantic relations as a measure of semantic relatedness. Given a set of words with corresponding 
admissible senses in SI, we build a weighted graph G = (V, E) for SI such that there is a vertex V 
for each admissible sense, and a directed edge E for each semantic relation between a pair of 
senses (vertices). 
 The input to this stage is a word sense inventory SI encoding a set of semantic relations SR 
attributing the senses of SI, and a set of words W = {w1, w2, …, wn} listed under Li in a set of 
semantic labels Cat used in a thesaurus TC. The semantic relations SR comprise REL(S, S’) 
where S and S’ are admissible senses in SI, and REL is a semantic relation (e.g., synonyms, 
hypernyms, and hyponyms holding between senses) existing between S and S’ and explicitly 
encoded in SI. Notice that semantic relations typically hold between word senses but not 
necessarily between words. We apply semantic relations to identify the intended senses for each 
word in the list. Accordingly these intended senses will form a semantically consistent set with 
maximal interconnecting relations 

We use random walk on the weighted graph G encoding admissible senses as vertices V and 
semantic relations SR as edges E with a view to discovering the most probable sense S* for W. 
The edges will be stepped through by imaginary walkers during the random walk in a 
probabilistic fashion. Through the random walk on G, the probability of intended senses will 
converge to a higher than usual level because of the influx via incoming edges representing 
semantic relations. All vertices in the weighted graph G start with a uniform probability 
distribution. The probability is reinforced by edges that participate in a SR until the 
reinforcement of probability converges for the given sense consistency, leading to a stationary 

41



distribution over sense probability Ps, represented as scores Qs attached to vertices in the graph. 
In all, the weights on G indicating the sense strength converge to arrive at the consistency of 
senses, which become the output of this learning stage. The procedure is repeated for all word 
lists in TC. Recall that these most probable senses are useful for extending the limited coverage 
of TC and reducing the number of OOV words effectively. 

 

Algorithm 1.  Graph-based Word Sense Assignment 

Input: A word W from a set annotated with a semantic label L under a category Cat from a thesaurus TC;
A word sense inventory SI with a measure of semantic relatedness of W, REL (S, S’) encoding semantic 
relations REL  SR holding between word meanings S and S’. 
S is one of the admissible senses of W listed in SI, and so as S’ of W’. 

Output: A list of linked word sense pairs (W, S* )  
Notation: Graph G = {V, E} is defined for admissible word senses and their semantic relations, where a 
vertex v  V is used to represent each sense S whereas an edge in E represents a semantic relation in SR 
between S and S’. Word sense inventory SI is organized by semantic relations SR, where REL (S, S’), REL 

 SR is used to represent one of the SR holding between word sense S of W and S’ of W’. 

PROCEDURE AssignWordSense(L,SI) 

Build weighted graph G of word senses and semantic relations 
(1) INITIALIZE V and E as two empty sets 

FOR each word W in L 
FOR each of n admissible word sense S of W in SI, n = n(W) 

ADD node S to V 
FOR each node pair (S,S’) in V  V 

IF (S  REL S’)  SR and S  S’ THEN ADD edge E(S,S’) to E 
FOR each word W AND each of its word senses S in V 

(2)      INITIALIZE Ps = 1/n(W) as the initial probability 
(2a)      ASSIGN weight (1-d) to matrix element MS,S 
(2b)      COMPUTE e(S) as the number of edges leaving S 

FOR each other word W’  W in L AND each of W’ senses S’ 
(3)           IF E(S,S’)  E THEN ASSIGN Weight d/e(S) to MS,S’ 

OTHERWISE ASSIGN 0 to MS,S’   

Score vertices in G 
REPEAT 

FOR each word W AND each of its word senses S in V 
(4)           INTIALIZE QS to PS * MS,S 

FOR each other word W’ W in L AND each of W’ senses S’ 
(4a)           INCREMENT QS by PS’ * MS’,S  

FOR each word W AND  
     Sum QS over n(W) senses as Nw 

FOR each sense S of W 
(4b)           Replace PS by QS/Nw  so as normalize to sum to 1  

UNTIL probability PS converges 

Assign word sense 
(5) INITIALIZE List as NULL 

FOR each word W  
(6)      APPEND (W,S*) to List where S* maximizes Ps 
(7) OUTPUT List 

Figure 2.Algorithm for graph-based word sense assignment. 
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 The algorithm (referring to Figure 2) for the best sense assignment S* for W consists of 
three main steps: (1) construction of a word sense graph; (2) sense scoring using graph-based 
probability ranking algorithm; and (3) word sense assignment.  

In Step 1, the weighted graph G = (V, E) is built by populating candidate n(W) admissible 
senses S of each given word W as vertices from SI, such that for each word W and its sense S, 
there is a vertex V for every intended sense S. In addition, the edge E(S, S’) in E, a subset of V  
V, is built up by adding a link from vertex S to vertex S’ for which a semantic relation REL(S, S’) 
between the two vertices is derived, where S is one of the admissible senses of W and S’ of W’. 
 In Step 2, we initialize the probability Ps to a uniform distribution over each vertex S. And 
we set the weight of self-loop edge as (1-d) (Step 2a), and the weights of other outbound edges as 

d/e(S), calculated as '

( ')
s

s s
d pQ Q
e S

 

In our ranking algorithm for the weighted graph, the decision on what edge to follow during 
a random walk considers the weights of outbound edges. One with a higher probability follows 
an edge that has a larger weight. The ranking algorithm is particularly useful for sense 
assignment, since the semantic relations between pairs of senses (vertices) are intrinsically 
modeled through weights indicating their strength, rather than a decision on binary 0/1 values. 

As described in Step 3, the weights are represented as a matrix M for which the weights of 
all outbound edges from S are normalized to sum to 1. Our random walk algorithm holds that an 
imaginary walker who is randomly stepping over edges will eventually stop walking. The 
probability, at any step, that the walker will continue is a damping factor, a parameter usually 
denoted by d. The d factor is defined as the vertex ratio of the outgoing edges and the self-loop 
edge as the result of dividing the vertex weight of the damping constant. The damping factor is 
subtracted from 1. The value for (1-d) introduced is the principal eigenvector for the matrix M. 
The value of the eigenvector is fast to approximate (a few iterations are needed) and in practice it 
yields fairly optimal results. In the original definition of a damping factor introduced by 
PageRank (Brin and Page, 1998), a link analysis algorithm, various studies have tested different 
damping factors, but it is generally assumed that the damping factor will be set around 0.85 
whereas we use variant value for d in our implementation. 

In Step 4 of vertex scoring, we compute the probabilistic values of each vertex at every 
iteration. The set of probabilities Qs of each sense S for the next iteration is computed by 
multiplying the current probability Ps with the matrix Ms,s. For instance (Step 4a), suppose a 
walker is to start at one vertex of the graph. The probability of Qs is the probability of a walker 
stands at a vertex of S forming a self-loop plus the sum of the influx of Ps’ weighted by Ms’,s. In 
Step 4b, we normalize Qs for the probability of all admissible senses with each word to sum to 1 
and replace Ps by Qs. 

 The normalized weighted score is determined as:  

Wsensesl
l

s
s

WQ
WQWP  

Subsequently, in Step 5, we calculate the ranking score of maximum probability Ps that 
integrates the scores of its start node. And thus the resulting stationary distribution of 
probabilities can be used to decide on the most probable set of admissible senses for the given 
word. For instance, for the graph drawn in Figure 3, the vertex on the vertical axis represented as 
the sense #3 of “fine” will be selected as the best sense for “fine” under the thesaurus category 
“Goodness” with other entry words, such as, “lovely”, “superb”, “beautiful”, and “splendid”. The 
output of this stage is a set of linked word sense pairs (W, S*) that can be used to extend the 
limited thesaurus coverage. The overall goal of ranking admissible senses is to weight highly the 
senses that tend to arrive at the consistency of word senses. 
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Figure 3.Highest scoring word sense under category “Goodness” assigned automatically by 

random walk. 
Recall that our goal is to select the word senses for each specific collocate, categorized by 

the corresponding semantic label, for example, sandy, rocky, pebbly beach with label Materials; 
beautiful, lovely, fine, splendid, superb beach with Goodness. In order for the word coverage 
under thesaurus category to be comprehensive and useful, we need to expand the words listed 
under a label. This output dataset of the learning process is created by selecting the optimal 
linked word sense pairs (W, S*) from each semantic relation in our word sense inventory where 
the specific semantic relation is explicitly defined. 
 Although alternative approaches can be used to identify word senses of given words, our 
iterative graphical approach has two distinctive advantages. First, it enables a principled 
combination of integrated similarity measure by modeling through a multiple types of semantic 
relations (edges). Secondly, it transitively merits local aggregated similarity statistics across the 
entire graph. To perform sense propagation, a weighted graph was constructed. On the graph, 
interconnection of edges is aggregated on a semantic relatedness level by random walk. The 
sense edge voltage is transitively propagated to the matching sense vertex. The effect depends on 
the reinforcement of the semantic relations (edges) and magnitude of the sense relations 
(vertices), creating a flexible amplitude-preserving playground like no other optional way of 
modeling a transcended graph propagation of senses. By doing so, our model is carved out to be 
a robust, more flexible solution with possible alternatives of combining additional resources or 
more sophisticated semantic knowledge. This approach is relatively computationally inexpensive 
for unsupervised approach to the WSD problem, targeting the annotation of all open-class words 
in lexical database using information derived exclusively from categories in a thesaurus. The 
approach also explicitly defines semantic relations between word senses, which are iteratively 
determined in our algorithm. 

3.2.2 Extending the Coverage of Thesaurus 
Automating the task of building a large-scale semantic knowledge base for semantic 

classification imposes a huge effort on the side of knowledge integration and validation. Starting 
from a widespread computational lexical database such as WordNet overcomes the difficulties of 
constructing a knowledge base from scratch. In the second stage of the learning process, we 
attempt to broaden the limited thesaurus coverage as the basis of our applied semantic 
knowledge that may induce to unknown words in collocation label assignment in Section 3.3. 
The sense-annotated word lists generated as a result of the previous step are useful for extending 
the thesaurus and reducing OOV words that may render words that form a group by itself. 

In the previous learning process, “fine” with other adjective entries “beautiful, lovely, 
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splendid, superb” under semantic label “Goodness” can be identified as belonging to the word 
sense fine#3 “characterized by elegance or refinement or accomplishment” rather than other 
admissible senses (as shown in Table 1). Consider the task of adding similar word to the set of 
“fine#3” in the thesaurus category “Goodness”. We apply semantic relation operators for novel 
word extension for “fine#3”. Some semantic relations and semantic operators available in the 
word sense inventory are shown in Table 2. 

In this case, “similar_to”, the semantic relation operator of “fine#3” can be applied to derive 
similar word “elegant#1” as the extended word for “fine#3” identified with the sense definition 
“characterized by elegance or refinement”. 

 
Table 1.Admissible senses for adjective “fine.” 

 
Table 2.Some semantic operators in word sense inventory. 

SR Operators Description Relations Hold 
for 

syn operator synonym sets for every word that are interchangeable in some 
context all words 

sim operator adjective synsets contained in adjective clusters adjectives 

3.3 Giving Thesaurus Structure to Collocation by Iterative Graphical Algorithms 
The stage takes full advantage of the foundation built in the prior learning process, 

established an extended semantic knowledge to build a thesaurus structure for online collocation 
reference tools. We aim to partition collocations in groups according to semantic relatedness by 
exploiting semantic labels in a thesaurus and assign each collocate to a thesaurus category.  

In this stage of the process, we apply the previously stated random walk algorithm and 
automatically assign semantic labels to all collocations by exploiting semantic relatedness 
identified among collocates. By doing so, our approach for collocation label assignment can 
cluster collocations together in groups, which is helpful for dictionary look-up and learners to 
find their desired collocation or collocations under a semantic label.  

We use a set of corresponding admissible semantic labels L to assign labels under thesaurus 
category L  Cat to each collocate C  Col, such that the collocates annotated with L can be 
partitioned into a subset corresponding to a thesaurus category, Sub = { (C, L) | C  Col, L  Cat 

 TC }, which facilitate meaning-based access to the collocation reference for learners. We 
define a label graph G = (V, E) such that there is a vertex v  V for every admissible label L of a 
given collocate C, and there is an edge e  E between two vertices where the two vertices have 
the same label. Edge reinforcement of the label (vertex) similarity distance between pairs of 
labels is represented as directed edges e  E, defined over the set of vertex pairs V  V. Such 
semantic label information typically lists in a thesaurus.  
 Given such a label graph G associated with a set of collocates Col, the probability of each 

Sense 
Number Definition Example Synsets of 

Synonym 

fine #1 (being satisfactory or in 
satisfactory condition) 

“an all-right movie”; “everything’s fine”; 
“the passengers were shaken up but are all 
right”; “things are okay” 

all ight#1, 
o.k.#1,ok#1, 

okay#1 

fine #3 
(characterized by 

elegance or refinement or 
accomplishment) 

“fine wine” ; “a fine gentleman”;  
“fine china and crystal”; “a fine violinist” elegant#1 

fine #4 (thin in thickness or 
diameter) 

“a fine film of oil”; “fine hairs”; 
“read the fine print” thin#1 
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label PL can be iteratively determined using a graph-based ranking algorithm, which runs over the 
graph of labels and identifies the likelihood of each label (vertex) in the graph. The iterative 
algorithm is modeled as a random walk, leading to a stationary distribution over label 
probabilities PL, represented as scores QL attached to vertices in the graph. These scores QL are 
then used to identify the most probable semantic label L* for each collocate C, resulting in a list 
of annotations (C, L*) for all collocates in the input set. The algorithm is quite similar to the one 
for graph-based word sense assignment shown in Figure 2. But note that the overall goal of 
ranking admissible labels is to weight highly the semantic labels that help arrange collocations in 
a thesaurus category and provide learners with a thesaurus index. 

In other word, our goal is to assign corresponding semantic labels to each specific collocate, 
for example, “sandy, rocky, pebbly beach with label Materials.” In order for the semantic 
structure to be comprehensive and useful, we try to cover as much OOV words as possible by 
applying semantic relation operators (e.g., derivational relations). We propose the replacement of 
OOV words for their derivational words such as the replacement of “rocky” for “rock” and 
“dietary” for “diet”. For a few number of derivationally substitutable OOV words occurred, such 
as pebbly beach, we apply the built-in vocabulary of words, i.e., pebble, as a substitution for 
pebbly by exploiting the derivational relations from the obtainable sense inventory as we will 
discuss in more detail in the section of experimental set-up. 

The output of this stage is a list of linked label-annotated collocate pairs (C, L*) that can be 
used to classify collocations in categories. 

4. Experimental Settings 

4.1 Experimental Data 
In our experiments, we applied random walk algorithm to partitioning collocations into 

existing thesaurus categories, thus imposing a semantic structure on the raw data. In analysis of 
learners’ collocation error patterns, the types of verb-noun (V-N) and adjective-noun (A-N) 
collocations were found to be the most frequent error patterns (Liu, 2002; Chen, 2002). Hence, 
for our experiments and evaluation, we focused our attention particularly on V-N and A-N 
collocations. 
 Recall that our classification model starts with a thesaurus consisting of lists of semantic 
related words extended by a word sense inventory via random walk Algorithm. Then, the 
extended semantic knowledge provides collocates with topic labels for semantic classification of 
interest. Preparing the semantic knowledge base in our experiment consists of two main steps: (1) 
Integration, and (2) Extension. Two kinds of resources are applied as the input data of this 
learning process of semantic knowledge integration described below. 

4.1.1 Input Data 1: A Thesaurus for Semantic Knowledge Integration 
We selected the set of thesaurus categories from the dictionary of Longman Lexicon of 

Contemporary English (LLOCE). LLOCE contains 15,000 distinct entries for all open-class 
words, providing semantic fields of a pragmatic, everyday common sense index for easy 
reference. The words in LLOCE are organized into approximately 2,500 semantic word sets. 
These sets are divided into 129 semantic categories and further organized as 14 semantic fields. 
Thus the semantic field, category, and semantic set in LLOCE constitute a three-level hierarchy, 
in which each semantic field contains 7 to 12 categories and each category contains 10 to 50 sets 
of semantic related words. The LLOCE is based on coarse, topical semantic classes, making them 
more appropriate for WSD than other finer-grained lexicon. 

4.1.2 Input Data 2: A Word Sense Inventory for Semantic Knowledge Extension 
For our experiments, we need comprehensive coverage of word senses. Word senses can be 
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easily obtained from any definitive records of the English language (e.g. an English dictionary, 
encyclopedia or thesaurus). In this case, we applied WordNet to broaden our word coverage from 
15,000 to 39,000. WordNet is a broad-coverage machine-readable lexical database, publicly 
available in parsed form (Fellbaum, 1998). WordNet 3.0 lists 212,557 sense entries for open-class 
words, including nouns, verbs, adjectives, and adverbs. In order to extend the sense coverage, we 
applied random walk Algorithm to match a significant and manageable portion of the WordNet 
sense inventory to the LLOCE thesaurus. 

WordNet can be considered a graph over synsets where the word senses are populated as 
vertices and the semantic relations edges. WordNet is organized by the sets of synsets; a synset is 
best thought of as a concept represented by a small set of synonymous senses: the adjective 
{excellent, first-class, fantabulous, splendid}, the noun {enemy, foe, foeman, opposition}, and 
the verb {fight, contend, struggle} form a synset. 

4.2 Experimental Configurations 
We acquired all materials of the input data (1) and (2) to train and run the proposed model, 

using the procedure and a number of parameters as follows: 

4.2.1 Step 1: Integrating Semantic Knowledge 
To facilitate the development of integrated semantic knowledge, we organize synsets of 

entries in the first input data, LLOCE, into several thesaurus categories, based on semantic 
coherence and semantic relations created by lexicographers from WordNet. The integrated 
semantic knowledge can help interpret a word by providing information on its word sense and its 
corresponding semantic label, (i.e., “fine” tagged with “Materials”). 
 Recall that our model for integrating word senses and semantic labels is based on random 
walk algorithm on a weighted directed graph whose vertices (word senses) and edges (semantic 
relations) are extracted from LLOCE and WordNet 3.0. All edges are drawn as semantic 
relatedness among words and senses, derived using the semantic relation operators (Table 3). 
 
Table 3.The semantic relation operators used to link the lexical connection between word senses. 

Relation 
Operators Semantic Relations for Word Meanings Relations 

Hold for

Syn operator 
synonym sets for every word that are interchangeable in some context 
without changing the truth value of the preposition in which they are 
embedded 

all words

hyp operator 
hypernym/hyponym (superordinate/subordinate) relations between 
synonym sets 

nouns 
verbs 

vgp operator verb synsets that are similar in meaning and should be grouped 
together when displayed in response to a grouped synset search. verbs 

Sim operator adjective synsets contained in adjective clusters adjectives
der operator words that have the same root form and are semantically related all words

 
In particular for all semantic relation operators, we construct a maximum allowable edge 

distance MaxED, informing a constraint over the edge path between words for which the word 
sense likelihood is sought. For our experiments, the MaxED is set to 4. 

4.2.2 Step 2: Extending Semantic Knowledge 
Once we have mapped the sense-label from the stationary distribution in the random walk 

graph, another step is taken to take advantage of the mapped semantic knowledge by adding 
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more novel words to the thesaurus categories. The word coverage in question is extended by 
more than twice as many LLOCE thesaurus entries. For the extension of our semantic knowledge, 
we need information on joint word sense and semantic label pairs, and semantic relation among 
words from the previous step. Various kinds of the above-mentioned semantic relation operators 
can be derived, depending on the type of semantic operators available for the word class at hand. 
In experiments, we focus on the synset operation provided in WordNet. 

4.3 Test Data 
We used a collection of 859 V-N and A-N collocation pairs for testing, obtained from the 

website, JustTheWord (http://193.133.140.102/JustTheWord/). JustTheWord clusters collocates 
into sets without understandable label. As a result, we will compare the performance of our 
model with JustTheWord in Section 5 
 We evaluated semantic classification of three types of collocation pairs, focusing on A-N, 
V-N and V-N. We selected five pivot words for each type of collocation pairs for their varying 
level of abstractness and extracted a subset of their respective collocates from the JustTheWord. 
Among 859 testing pairs, 307 collocates were extracted for A-N, 184 for V-N, and 368 for V-N. 

To make the most appropriate selection from testing data in JustTheWord, we have been 
guided here by research into language learners’ and dictionary users’ needs and skills for second 
language learning, taking account especially of the meanings of complex words with many 
collocates (Tono, 1992; Rundell, 2002). The pivot words we selected for testing are words that 
have many respective collocations and are shown in boxes around each entry in Macmillan 
English Dictionary for Advance Learners. 

5. Results and Discussions 

Two pertinent sides were addressed for the evaluation of our results. The first was whether 
such a model for a thesaurus-based semantic classification could generate collocation clusters 
based on human-like word meaning similarities to a significant extent. Second, supposing it did, 
would its success of semantic label assignment also strongly excel in language learner 
collocation production? We propose innovative evaluation metrics to examine our results 
respectively in these two respects and assess whether our classification model can reliably cluster 
collocates and assign a helpful label in terms of language learning. In the first subsection, first 
we explain why we propose a new evaluation metrics in order to explore how the method results 
in simple, robust designs yet influences each facet of the question for lexicographic and 
pedagogical purposes. In the following subsections, the evaluation metrics are presented 
individually in two regards, for assessing the performance of collocation clusters, and for the 
conformity of assigned semantic labels. 

5.1 Performance Evaluation for Semantic Cluster Similarity 
The collection of the traditional evaluation (Salton, 1989) of clustering works best for 

certain type of clustering method but might not be well suited to evaluate our classification 
model, where we aim to facilitate collocation referencing and help learners improve their 
collocation production. In that case, for assessing collocation clusters, we propose a robust 
evaluation method by setting up the items to be evaluated as a test for semantic similarity to 
judge the performance of clustering results. For semantic labeling results, we developed a 
grading rubric with performance descriptions for the conformity of labels as a reference guide. 
Two human judges were asked to give performance assessment by scoring each item. The 
evaluation methodology is aimed at fostering the development of innovative evaluation designs 
as well as encouraging discussion regarding language learning by means of the proposed method. 

Landauer and Dumais (1997) were first proposed using the synonym test items of the Test 
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of English as a Foreign Language (TOEFL) as an evaluation method for semantic similarity. 
Fewer fully automatic methods of a knowledge acquisition evaluation, one that does not depend 
on knowledge being entered by a human, have been capable of performing well on a full scale 
test used for measuring semantic similarity. An example provided by Landauer (1997) is shown 
below where “crossroads” is the real synonym for “intersection”. 

You will find the office at the main intersection. 

(a) place  (b) crossroads  (c) roundabout  (d) building 

For this experiment, we conducted the task of evaluating the semantic relatedness among 
collocation clusters according to the above-mentioned TOEFL benchmark to measure semantic 
similarity and set up target items out of our test data as sheet of clustering performance test. Our 
human judges performed a decision task similar to TOEFL test takers: They had to decide which 
one of the four alternatives was synonymous with the target word. A sample question is shown 
below where grouping “sandy” and “rocky” together with the target word “beach” because they 
belong to the same category of concept as the collocation is more appropriate than clustering 
“sandy” and any of others together. 

sandy beach        

(a) long  (b) rocky  (c)super  (4)narrow 

There are 150 multiple choice questions randomly constructed to test the cluster validation, 
50 questions for each 3 testing collocation types and therein 10 for each of A-N, V-N, and V-N 
testing collocation pairs. In order to judge how much degree our model ultimately has achieved 
in producing good clusters, two judges were asked to primarily choose the one most nearly 
correct answer. If the judges find one of the distracters to be also the plausible answer, giving 
collective answer options is allowed for our evaluation in order to test the cluster validation 
thoroughly from grey area among options given inadvertently. If the judges think no single 
correct answer is plausible enough, 0 point can be given for no satisfactory option considered. 
Table 4 shows the performance figures of collocation clusters generated by the two systems. As 
is evidence from the table, our model showed significant improvements on the precision and 
recall in comparison with JustTheWord. 

 
Table 4.Precision and recall of our classification model and those of JustTheWord 

Judge 1 Judge 2  

Precision Recall Precision Recall 

Inter-Judge 

Agreement 

Ours .79 .71 .73 .67 

JustTheWord .57 .58 .57 .59 
.82 

 
Without doubt, subjectivity of human judgments interferes with the performance evaluation 

of collocation clusters, for inter-judge agreement is just above 80 %. The closer our precision 
(79% and 73%) is to the discrimination ratio, the more effectively that an automatic method 
distinguishes subjects in accordance with human judgment. 

5.2 Conformity of Semantic Labels 
The second evaluation task here focuses on whether the semantic labels facilitate users to 

Results

System 
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scan the entry quickly and find the desired concept of the collocations. From the experiments, we 
show that the present online collocation learning tools may not be an appropriate place to seek 
guidance on fine discrimination between near synonyms. This problem could be alleviated if the 
alphabetical frequency ordering of the learning tool could be supplemented by thematic 
treatment in our thesaurus-based semantic classification model. Our evaluation result will 
indicate the extent to which semantic labels are useful, to what degree of reliability. Only to the 
extent that evaluation scores are reliable and the test items are solidly grounded in its practical 
viewpoint can they be useful and fair to the assessment. 
 Two human informants were asked to grade collocation with label, half of them randomly 
selected from our output results. The assessment was obtainable through different judges that 
participated in evaluating all of the collocation clusters as described above. One native American 
graduate and a non-native PhD researcher specializing in English collocation reference tools for 
language learners were requested to help with the evaluation. We set up a three-point rubric score 
to evaluate the conformity of semantic labels. When earning two points on a three-point rubric, a 
label has performed well in terms of guiding a user finding a desired collocation in a collocation 
reference tool. If the assigned label is somewhat helpful in collocation look-up, a score of one is 
shown that labels are achieving at an acceptable level. To assign judgments fairly and to 
calculate a fair reflection of the conformity of the labels, a zero score can be given if the labels 
can be considerably misleading to what is more indicative of the concepts. We set up an 
evaluation guide to present judges with the description for each rubric point, and allow the 
judges to grade each question as “0”, “0.5” or “1” for the item. 
 Table 5 shows that 77% of the semantic labels assigned as a reference guide has been 
judged as adequate in terms of guiding a user finding a desired collocation in a collocation 
learning tool, and that our classification model provably yields productive performance of 
semantic labeling of collocates to be used to assist language learners. The results justify the 
move towards semantic classification of collocations is of probative value. 

Table 5.Performance evaluation for assigning semantic labels as a reference guide 

 Judge 1 Judge 2 

Ours .79 .75 

JustTheWord Not available Not available 

6. Conclusion 
The research sought to create a thesaurus-based semantic classifier within a collocation 

reference tool limited to the collocates occurring without meaning access indexes. We describe a 
thesaurus-based semantic classification for a semantic grouping of collocates with a pivot word 
and the construction of a collocation thesaurus that is used by learners to enhance collocation 
production. The thesaurus-based semantic classification classifies objects into semantically 
related groups that can participate in the same semantic relation with a given word. Rather than 
relying on a distributional analysis, our model is resourced from an integrated semantic 
knowledge, which is then generalized to combat sparsity. The evaluation shows that this robustly 
designed classification model facilitates the existing computational collocation reference tools 
and provides users with the collocations they desire to make semantically valid choices. The 
thesaurus structure is successfully imposed to facilitate grasping concepts of collocations. 

Given that there is very little precedent review for us to follow, this research offers insights 
into how such a collocation thesaurus could be structured and useful. The semantic labeling 
described here improves collocation reference tools and has given us a tool for studies of 
collocation acquisition. The final results convincingly motivate the move towards semantic 
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classification of collocations.  
Many avenues exist for future research and improvement of our classification model. 

Another possibility would be to train more set of variables, each of which may take one among 
several different semantic relations for each collocation types. There is also a set of constraints 
which state compatibility or incompatibility of a combination of variable semantic relations.  
 To top it all off, existing methods for extracting the best collocation pairs from a corpus of 
text could be implemented. Domain knowledge, heuristics, and WSD techniques could be used 
to improve the identification of semantic label types. Semantic relations could be routed to 
classification model that performs best for more types of collocation pair (such as 
adverb-adjective pairs).  
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ኴ૞  

ऱנ༽ࢬᒵᑓীΔ௅ᖕᔤટᘵڴᓳ֗ᣉ৳ဲഗ᙮ڗ೴ഏ፿ຑᥛ፿ੌऱچൕ؀᨜֮ء

ψၸᐋڤᣉ৳؁ᆢHPGਮዌωΔطՀᐋࠩՂᐋΔലഗ᙮ڴᒵᑓী೶ᑇፖHPGᣉ৳ၸ
ᐋ࿨ٽፖ᧭ᢞΔ൶ಘΰ1.α؁ᓳٝګፖڗᓳګ։ኙᚨٺᣉ৳ၸᐋऱಥ᣸৫ ፖΰ2.α
ΰ1.αHPGق᧩Ζ࿨࣠֏᧢۶ڕጥᝤՀΔഗ᙮ᑓী೶ᑇۯၸᐋᣉ৳໢ٺڇ։ګᓳڗ
ਮዌխٺᣉ৳ᐋطՂۖՀጥᝤࠫપΔՀᐋᣉ৳໢ؘۯႊࢭՂᐋᣉ৳ಛஒၞ۩ߓอࢤ

ऱᓳᖞΖΰ2.αڗᓳ൷࠹ᣉ৳ဲऱՂᐋࠫપΔڗᓳᐋ֗ᣉ৳ဲᐋኙഗ᙮ᙁڶ݁נಥ
᣸Δᣉ৳ဲፖڗᓳऱഗ᙮ᣂএΔլ࿛ڗ࣍ᓳᒵۭࢤ൷֗ؓᄶΙ।რ፿ቼࢬທګऱࠫ

પΔթਢ፿ੌᣉ৳ऱ׌૞௽ᐛΖ 

ᣂ᝶ဲΚᣉ৳ဲΔഗ᙮ڴᒵᑓীΔၸᐋڤᣉ৳؁ᆢHPGਮዌΔ؁ᓳٝګΔڗᓳګ։Δ
।რᣉ৳ 

ԫΕʳ ፃᓵ  

ഏ፿ຑᥛ፿ੌᣉ৳ԫٻ๯ီ੡ךየ᧢ฆ׊ࢤᣄאቃྒྷΔڇڱ׌֮ءಘᓵᣉ৳፿ቼࠐ

۞ၸᐋڤጥᝤࠫપΔᣉ৳፿ቼٵழץਔᒵۭࢤ൷ؓᄶ֗Ղᐋ፿ᒧऱሀ࿍፿।რᇷ

ಛΔۭڼڂ൷ؓᄶլאߩᇞᤩ፿ੌխڗᓳऱ᧢֏Ζᔤટᘵط፿੄ፖ፿ᒧऱߡ৫֊ԵΔ

࿇෼।૿઎ۿᓤᠧऱຑᥛ፿ੌᣉ৳ΔࠃኔՂߓڶอࢤ๵ঞױ༛Δຍࠄ๵ঞ֗ၸᐋڤ

ऱᣂএΔፖۭ൷٥ዌ।რᣉ৳፿ቼΔڇࠀढ෻ॾᇆՂ।෼נ௽ࡳഗীΔڼڂ፿ृፖ

ᦫृࠉᖕڼഗীข፹ፖ൷ࠐگ۞፿ᒧऱՕᒤ໮।რᣉ৳ಛஒΔ࿨ٽ೴ᙃဲᆠऱڗ

ᓳΕ೴ᙃ؁ऄಛஒऱ؁ᓳٵ٥ሒࠩᄮຏऱؾऱΖᔤટᘵ[1][2][3]נ༽2004࣍ၸᐋڤ፿
ੌᣉ৳ਮHPGΰHierarchical Prosodic Phrase GroupingαਐנΔൕᜢᖂ፿ଃಛஒۖߢΔ
Ց፿ຑᥛ፿ੌᣉ৳ऱڍ࿍፿ၸᐋਮዌਢאტव੡ഗ៕[2][3]Δტवऱ່Օګ։ਢᦫृ
ቃཚΔᇠਮዌ׌૞壄壀࣍ڇലഏ፿Ց፿፿ੌऱᣉ৳໢ۯΔࡳᆠ੡ڍ࿍፿ᣉ৳࿍፿ิ

PG (Multi-phrase Prosodic Groupαۖॺ໢ԫ࿍፿ΰphraseαΔ।ሒՂᐋ፿რಛஒऱຑ
຃ࢤΔዌګᣉ৳࿍፿ิऱઌᔣ֗ሀ࿍፿ऱ፿੄ᣉ৳፿ቼΔൕՕᒤ໮ᣉ৳໢ۯ।ق௽

੡፿ृܛሀ࿍፿፿੄ऱᣉ৳፿ቼऱഗীΔڼڼڂΖޔᥛፖ࿨࢏Δࡨ፿რ੄ᆵऱၲࡳ

ᄮຏழ፿ܛߢழข፹ፖ൷گ๠෻ऱᑓठΔᅝ࿍፿؁ګݮ੄ழΔٺ࿍፿ؘႊ࠹Ղᐋ፿

ᒧ፿რᇷಛጥᝤࠫપۖᓳᖞΔܧ෼।რᣉ৳፿ቼΔթ౨ګ੡፿რݙᖞऱ፿੄Ζڼڂ

ႚอ፿ଃॾᇆ։ۭ࣫ࢨ൷ؓᄶઃྤऄᇞᤩऱ؁ᓳ᧢ฆΔ୚شHPGਮዌ৵Δࠡኔױൕ
ᣉ৳፿ቼ࿨ዌऱߡ৫൓ࠩᇞᤩΖݺଚ٣ছՈբ༼נഗ᙮ڴᒵΕଃᆏழ९Ε౨ၦ։܉

 ೖቅழ९ኙᚨHPGਮዌऱᢞᖕ[1][2][3]Ζࡉ
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ቹԫ ψၸᐋڍڤ࿍፿ᣉ৳؁ᆢHPGωᣉ৳໢ۯਮዌቹΖطՀۖՂ։ܑ੡ଃᆏΰSYLαΕ
ᣉ৳ ΰဲPWαΕᣉ৳࿍፿ΰPPhαΕܮࡅ ΰิBGαΕᣉ৳؁ ΰิPGα֗ ፿ᒧΰDiscourseα 

(Tseng 2006)Ζ 
 
ႚอᣉ৳։࣫ڇΔٵႚอᣉ৳։່࣫Օऱլࡉٻ࠷HPGᣉ৳ਮዌ։࣫፿ੌᣉ৳ऱא
ຏൄ׽։࣫໢ڗڗᓳࡉ࿍፿؁ᓳΔথ࢙ฃԱຑᥛ፿ੌᇙΔೈԱဲ࠹ᆠࠫપ๵ᒤऱڗ

ᓳ؁࠹ࡉऄ࿨ዌࠫપ๵ᒤऱ؁ᓳא؆ΔᝫܶڶՂᐋ፿ᒧ፿რທګऱ؁ᓳຑ຃ಛஒΔ

।ሒ፿੄ಛஒΖٍܛᣉ৳፿ቼዌ؁ګᓳאՂ፿ੌࢤ٤૿ऱຑ൷ࢤፖຑ຃ࢤΔאીᣉ

৳࿍؁ၴขسᣉ৳ᣂຑࢤΔٺՀ్ᣉ৳໢ؘۯႊࠉᅃޓ፿ᒧᣉ৳ऱՂᐋಛஒၞ۩ߓ

อࢤऱᓳᖞΔ༼ࠎ፿੄ൕ۶๠ၲࡨΕፂ਍ࠩ࿨ޔऱᣉ৳፿ቼಛஒΙ।რᣉ৳፿ቼլ

ႛਢઌᔣᣉ৳໢ۯऱᣂএΔٺ፿੄Հᝤհٺᐋ్ڻᣉ৳໢ۯΔ݁Ꮑڼࠉ๵ᒤ೚ߓอ

ऱᣉ৳࿍፿PPhڰऱᣉ৳ᣂএΖᔤટᘵ࿛࿑ۯሀ໢֗ۯழ।෼ઌᔣ໢ٵऱᓳᖞΔࢤ
ഗ᙮։࣫ઔߒΔբ༼נઌᔣPPh֗ሀPPhᓳᖞऱᢞᖕ[4]ΖڇHPGਮዌխΔڗᓳאՂΕ
ᣉ৳࿍፿אՀऱᣉ৳ဲPWՈਢԫଡֺဲნဲฃՕऱᣉ৳໢ۯΔဲ ნဲપ۾ᣉ৳ဲऱ

80и, ዌګᣉ৳ဲრᒤ໮փऱଃᆏΔٵᑌڶထᣂᜤࢤፖຑ࿨ࢤΔՈؘႊࠉᖕڍଃᆏ
ᣉ৳ဲऱဲრᒤ໮ኙଃᆏڗᓳၞ۩ઌᔣଃᆏ֗ሀଃᆏऱᓳᖞΔࠌᦫृլ࠹ଃᆏଡᑇ

ૻࠫΔ᎘࣐ऱലᣉ৳ဲإᒔऱូᣊΔࠀᖕܒڼឰਢܡ੡׼ԫଡᄅᣉ৳ဲऱၲࡨΖڂ

࿍؁ऱጟጟ᧢ฆمࡰᓳ֗ڗ੡ီࢬΔႚอ፿ੌᣉ৳։࣫נ༽HPGਮዌऱ࣍طΔڼ
ቃྒྷΖאױ׊ᇞᤩΔۖࠀ᠖堚אףਮዌᣉ৳࿍؁ՂᐋऱᇷಛڤၸᐋطױΔࠡኔઃࢤ

ᣉۯऱઌᔣ֗ሀ໢ګທࢬᐋऱᣉ৳யᚨٺ൓वΔ፿ଃॾᇆؘႊଫ᥽HPGਮዌխڼط
৳ᣂএΔۖլႛ׽ਢ೚ڗᓳፖ؁ᓳऱᒵۭࢤ൷֗ؓᄶΔթ౨ലݙᖞچᑓᚵנຑᥛ፿

ੌऱ௽ࢤΖڼᒧᓵ֮ലא໢֗ڗᣉ৳ဲഗ᙮ڴᒵ੡ढ෻௽ᐛ೶ᑇΔطՀ۟Ղ༼נኙ

ᚨHPGਮዌऱᢞᖕΖ  

௅ᖕ᎓ցٚس٣ऱᎅऄ[5]Δ࿍፿؁ᓳፖڗᓳհၴऱᣂএΔ༉ंֺړ௡ፖຑዳհၴᐋ
ᐋᦤףᣂএΔזאױᑇ᜔ࡉ।قΔઌۯઌ࿛ழյઌګףΔઌۯઌ֘ழյઌࣂ௣Ζۖ

༽ڣ1984࣍ᖂृFujisaki[6]ءऱΔ੡ֲ࢚ᄗףᒵᑓীխ່౨।ሒຍጟᦤڴഗ᙮ڶࢬڇ
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IU (intonation unit)ऱۯᑓীऱ壄壀ਢॺᜢᓳ፿ऱԫଡ؁ᓳ໢ڼऱFujisaki ModelΖנ
ഗ᙮ڴᒵΔؘ౨ࣈᇞ٤૿؁ګᓳګ։ፖݝຝൎᓳԲଡګ։Δ໢ۯՕ՛լٵΔۖ୚ش

᎓ᚨԱࡅ׊ࣔဳܛڼ։[6, 7, 8]Δګᓳऱڗ༴૪ګຝൎᓳঞ๯᠏ངݝழΔߢᜢᓳ፿࣍
ցٚࢬਐՕं௡ፖ՛ዮዳऱᣂএΖڼڂΔጵٽ᎓ցٚس٣ፖFujisakiඒ඄ऱ઎ऄΔഏ
፿࿍፿؁ᓳऱഗ᙮ڴᒵΔࠡኔਢڗᓳګ։ፖ؁ᓳګ։ᦤګۖףΔٍܛೈઌᔣڗᓳऱ

ຑ൷؆Δᝫࠐڶ۞Ղᐋऱ؁ᓳऱ៿።Δڼڂլႛਢڗᓳऱۭ൷Ζૉ௅ᖕHPGਮዌΔ
ຑᥛ፿ੌᇙᝫޓլႛڗڶ׽ᓳፖ؁ᓳࠟጟᣉ৳ᐋ్ፖ໢ۯΖݺଚ٣ছࠉᖕᦫტᑑု

൓נऱHPGਮዌၞ۩։࣫Δբ؁נބᓳၴڼ࢖ऱᣂຑࢤፖຑ຃ࢤΔܛ੡ࢬᘯՂᐋಛ
ஒΔ֗ኙᚨHPGਮዌխऱᣉ৳؁ᆢᣂএ[1][2][3]ʳ Δڇࠀ࿑ڰऱઔߒխΔ௽ܑ൶ಘڕ
ݦଚՈݺᑌऱΔٵ፿੄խऱ᧯෼[9] Ζڇ։ګ࿍፿؁ᓳऱ࠷༽Fujisaki Modelشࠌ۶
ඨڇኙᚨHPGਮዌխऱᣉ৳ဲᐋΔՈڗࠩބᓳၴᣂএΔࠀᒔᎁᣉ৳ဲڇຑᥛ፿ੌխ
ٵᆠլڗ੡ڂऱଃᆏΔᄎٵ։ઌګଚवሐΔଃ੄ݺऱᣉ৳რᆠΖۯᣉ৳໢ء੡ഗ܂

౨ጠ׽Δࠐᣤ௑ᎅڼڂΔࡳᆠެဲط֏᧢ᒵऱڴ։ഗ᙮ګऱᜢᓳΔ၌ଃ੄ٵլڶۖ

੡ဲᆠᣉ৳(lexical prosody)Δۖ ॺ፿ੌᣉ৳ऱ௽ᐛګࢨ։Ζءڼڂᓵ֮ೈԱᢞࣔHPG
ਮዌ؆ΔՈലאᣉ৳ဲऱഗ᙮ڴᒵ᧢֏੡׌૞։࣫೶ᑇΔലൎᓳڗᓳאՂᣉ৳ဲऱ

Ι࿍፿ۯᣉ৳໢ءਢຑᥛ፿ੌխऱഗ׊ΔڇژᒵՂऱઌኙᣂএፖ௽ᐛऱᒔڴഗ᙮ڇ

Ոਢຑᥛ፿ੌऱഗءᣉ৳໢ۖۯॺึᄕᣉ৳໢ۯΖ 

 

ԲΕഏ፿ഗ᙮ڴᒵ௽ᐛ೶ᑇ۞೯ឯߓ࠷อ 
(ԫ) Fujisaki model១տ 

Fujisaki࿛ 1984נ༽[6]ڣᦤڤף command-responseഗ᙮ڴᒵᑓীΔ១ጠ੡ Fujisaki 
modelΔڼᑓীऱ௽រࣈ࣍ڇᇞ઎ۿլ๵ঞऱഗ᙮ڴᒵ੡Կଡլٵऱցٙࠤᑇ
ΰcomponentαऱᦤٽ᜔ףΔࠀ։ܑࠩބױઌኙᚨ࿇ᜢᕴࡴऱढ෻௽ࠐࢤᇞᤩຍࠄց
ۯᑇ։ܑ੡(1.)࿍፿ցٙ (Phrase Component Ap)Δ֘ᚨለՕ໢ࠤԿցٙڼᑇΔࠤٙ
ഗ᙮ڴᒵऱ൳ࠫፖ࿇ᜢૻࠫΙ(2.)ൎᓳցٙ(Accent Component Aa)Δ֘ᚨለ՛໢ۯഗ
᙮ڴᒵऱ൳ࠫ࿇ᜢૻࠫΙፖ(3.)ഗࢍ᙮෷(base frequency Fb) ז।ഗءଃ೏Ζ଺
Fujisaki modelխऱ Accent component AaऑਐൎᓳΕףૹ፿௛ኙݝຝഗ᙮ڴᒵທګ
ऱᐙ᥼Δڼᑓীᚨࠩشॺᜢᓳ፿ߢፖ૎፿Εᐚ፿ழΔՕ໢ۯਐऱਢׂ፿ऱ፿ᓳࢨ࿍

፿ऱ؁ᓳΔܛຫ૪؁ऱط೏܅ߨऱՀႜ᝟ႨΔ՛໢ۯঞࠐش।ݝقຝऱףૹףࢨൎ

ΰemphasisαΙᚨࠩشᜢᓳ፿ߢᑓᚵഏ፿ழΔՕ໢ۯ।قऱګ։ፖॺᜢᓳ፿ઌٵΔܛ
ׂ፿ऱ፿ᓳࢨ࿍፿ऱ؁ᓳΔۖ՛໢ۯ๯ࠐش।ق໢ଃᆏऱݝຝ᧢֏ΔٍڗܛᓳΖء

ઔߒႛ։࣫ഏ፿ຑᥛ፿ੌΔאࢬ Aaઃ।ڗقᓳګ։ΔڼڂՀ֮݁ጠ೚ڗᓳցٙΖ  
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ቹԲΕ࿍፿ցٙΕൎᓳցٙፖഗࢍ᙮෷ᦤף৵ऱഗ᙮ڴᒵΰFujisaki, 1984α 

 

(Բ) Fujisaki௽ᐛ೶ᑇऱ۞೯ឯ࠷ 

 

ഗ࣍ Fujisaki Model ऱഏ፿ഗ᙮ڴᒵΔຫ૪؁ऱ؁ᓳီױ੡ၲ೏৵٤૿܅ߨՀႜΕ
ԱMixdorff 2000Ε2003شଚঞආݺΔګࢬף᙮෷Կցٙᦤءᓳದٗ᧢֏ፖഗڗຝݝ
ԫิኲַ᙮෷੡אᒵΚڴऱഗ᙮ڶᇞ࣫଺ࠐऱֱऄנ༽[8][7]ڣ 0.5Hzऱ೏ຏៀंᕴ
(high-pass filter)ࠐ։ᠦഗ᙮ڴᒵΔ۞೯༼נ࠷ഗ᙮ڴᒵխ᧢֏Ꮳ௺ऱຝٝܛ੡፿ੌ
ऱഗء໢ۯΔױኙᚨ Fujisaki modelխऱڗᓳցٙΙۖ᧢֏ࡉᒷऱຝٝΔঞ੡፿ੌխ
፿ᓳ٤૿Հႜऱ᝟ႨΔױኙᚨ Fujisaki modelխऱ࿍፿ցٙΖ൷ထ։ܑኙԿଡցٙၞ
۩ሓ२ޡᨏΚ(1) ೏ຏៀंᕴऱᙁࡳנᆠ੡೏ຏڴᒵ(HFC)Δ੡ڗᓳցٙሓ२ऱؾᑑ
ᒵऱڴຏ܅ڼנބᒵ(LFC)Δڴຏ܅ᆠ੡ࡳᒵঞڴൾ೏ຏຝٝໍ塒ؓᄶڬ ᒵΔ(2)ڴ
ᒵီڴऴᒵ৵ऱࢍൾഗڬ ऴᒵ(Fb)Δ(3)ࢍរऱऴᒵ੡ഗ܅່ڼᆠ੡ຏመࡳࠀរ܅່
੡࿍፿ցٙऱؾᑑڴᒵΔؘ ႊش࿍፿ցٙࠤᑇאףࠐሓ२ΖႚอԳՠሓ२ޡᨏ(1)[10]
խΔሖࠩรԿᜢΰڗᓳԿαᇿร؄ᜢΰڗᓳ؄αऱଃᆏΔຏൄᄎਐ੔ԫՕԫ՛ऱڗ

ᓳցٙאሓ२ԫଃᆏփለᓤᠧऱഗ᙮ڴᒵΔڕቹԲقࢬΔྥۖ੡Ա۞೯ឯ࠷Օၦ፿

றऱ೶ᑇΔڇ۞೯ឯ࠷ Fujisaki ௽ᐛ೶ᑇ࿓ڤխΔݺଚ࢙ฃԱለ՛ऱڗᓳցٙΔང
؁ᇩᎅΔլᓵڗᓳΔݺଚઃ׽ආشԫڗᓳցٙࠐሓ२ԫଃᆏփ೏᙮ऱഗ᙮ڴᒵΖ 

 

ԿΕഗ࣍HPGਮዌհၸᐋڍࢤցಱូ։࣫ 

ൕ۞೯ឯ࠷˙̈˽˼̆˴˾˼௽ᐛ೶ᑇߓอխΔݺଚױല଺ࡨऱഗ᙮ڴᒵࣈᇞګ࿍፿ցٙፖڗ

ᓳցٙΔ։ܑኙᚨ˛ˣ˚ਮዌխڗᓳፖ؁ᓳऱګ։Ζྥۖ଺ࡨऱ˙̈˽˼̆˴˾˼ʳ ˠ̂˷˸˿ྤࠀኙ

ᚨᣉ৳ဲᐋΕ؁ܮࡅᆢᐋፖᣉ৳࿍፿ᐋऱցٙࠤᑇΔݺڼڂଚشܓၸᐋࢤᒵࢤಱូ

ଡᙁޢˮ˄˄˰ˮ˄˅˰Δسಱូऱ૜ࢤᑓীਢ១໢ᒵࢤᒵࢤᐋऱಥ᣸৫ፖ௽ᐛΖၸᐋٺנބ

ԵຟॵڍڶᐋڻऱೖቅᑑုΔޢԣᑑု։ܑז।ထޢڇԣᣉ৳ᐋऱ೶ᑇፖ௽ࢤΔݺ

ଚޢشܓԫᐋऱᑑုᇷಛΔױ൓ࠩٺᐋᣉ৳໢ۯऱᑓীΖ൷ထࠉᖕڼᑓীၞ۩إ๵

֏Ζޓڶ࣍طՂᐋऱᑑုΔإ๵֏৵ᑇଖऱ᧢ฆࠀլ๯ီ੡ኔ᧭ᎄ஁ΔۖਢޓאՂ
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ᐋऱᑑုၞ۩ᒵࢤಱូ։࣫Δ։࣫֗ቃྒྷՀԣᣉ৳ᐋऱᙁԵΔױڼڂ൓ࠩޓՂᐋऱ

ቃྒྷᑓীፖಥ᣸৫Ζʳດᐋ։࣫Εቃྒྷ৵ૠጩٺנᣉ৳ᐋऱಥ᣸৫ΖቹԿאቹڤ।
ດᐋ։࣫Ζʳូڃࢤᒵڤၸᐋق

 
ቹԿΕאၸᐋڤᒵࢤಱូດᐋ։࣫قრቹ ΰTseng et al, 2004α 

 

Ap(1)א᧭ኔء ੡։࣫ᣉ৳࿍፿؁ᓳאՂ፿੄ࢨፖᒧ፿რհ௽ᐛ (2)Aa ੡։࣫ڗᓳ
ਮڤၸᐋطᨏޡ։࣫ऱڼڂՂᣉ৳ဲრհ௽ᐛΖApਢኙᚨᣉ৳࿍፿ऱഗ᙮௽ᐛΔא
ዌխᣉ৳࿍፿ᐋ(PPh)ၲࡨΕհ৵ດᐋٻՂΔኙՂԫᐋऱ؁ܮࡅᆢᐋ(BG)֗ޓՂԫᐋ
ᣉ৳࿍፿؁ᆢ(PG)ၞ۩ऱᒵࢤಱូΔ։࣫೶ᑇڕՀ: (1)PPh ᐋ: ؾאছ PPh ९৫
(Current PPh Length)ΕছԫPPh९৫(Preceding PPh Length)ፖ৵ԫPPh९৫(Following 
PPh Length)ऱิٽ೚੡։࣫೶ᑇΔၞ ۩։ Δ࣫ᆖመᒵࢤಱូ৵ऱྲྀ஁ࡳᆠ੡ Delta1Δ
ᙁԵࠀ BGᐋၞ۩։࣫Δ(2)BGᐋ: ؾאছ PPhڇ BGխऱۯᆜ(BG Sequence)೚੡
։࣫೶ᑇΔૉ BG Sequence=1Δ।ؾقছ PPh੡ڼ BGհದࡨ PPhΔڼאᣊංΔၞ
۩ᒵࢤಱូΔ(3)PGᐋ: ፖ BGᐋᙁԵ೶ᑇઌٵΔࠡᑇᖂࠤᑇ।ڕقՀΚ 

 
ࠡխ f।قᒵࢤಱូࠤᑇΔಱូএᑇፖ଺ࡨଖ Apၴऱ஁ଖီ੡Ղᐋಥ᣸ DeltaΔࠀ
ՂᐋऱᙁԵ೶ᑇኙא Delta٦ച۩ԫڻᒵࢤಱូΔڼழ൓ࠩऱಱូإᒔ෷ီ੡Ղᐋ
ऱಥ᣸৫ΔڼאᣊංΖ 

Aaਢኙᚨڗᓳऱ௽ᐛΔڼڂ։࣫ऱޡᨏطၸᐋڤਮዌଃᆏᐋ(Syllable)ၲࡨΔቃྒྷ೶
ᑇץਔؾছऱڗᓳ(Current Tone)ፖছ৵ڗᓳऱิٽ(Preceding Tone + Following  
Tone= Tone Context)Δհ৵ኙՂᐋऱᣉ৳ဲᐋ(PW)೚։࣫Δቃྒྷ೶ᑇץਔᣉ৳ဲᢰ
੺(PW Boundary Info)ፖڼଃᆏڇᣉ৳ဲփऱۯᆜႉݧ(PW Position Sequence)Δ࣍ط
ଚՈലᢰ੺யᚨݺڼڂΔسᢰ੺யᚨ࿇ڶለ೏ᐋ్ऱᣉ৳ᢰ੺ൄڇխ࿇෼Δ[12]ڇ
ਔץᐞΔەԵף 1.ᣉ৳࿍፿ᢰ੺ಛஒ(PPh Boundary Info)Ε2. ᣉ৳؁ᆢᐋᢰ੺ಛஒ
(PG Boundary Info)ΔലՕᒤ໮ᣉ৳໢ۯଈݠࡉଃᆏऱᣊܑᑑಖࠐנΔၞ۩ᗑمऱ
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Aaᣊܑ։࣫Δࠡᑇᖂࠤᑇ।ڕقՀΚ  

 
 

؄Εኔ᧭፿ற  
 

᧯֮ࠢײ(1) شຝٝΔආء֮ CLፖ (2)९ᒧඖࠃ੄ᆵ֮ء CNAΔ٥ૠ(1)26ᒧࠢײ
֮᧯፿ᒧ੄ᆵΰܶץΚ4ᒧࠢײཋ֮Δ1ଈᓿΔѾଈاዚΔ6ଈײᇣΔ6ଈାזᑗࢌ
ᇣࡉ 8ଈဲݚαΔ26 (2)֗אঞػᇩඖࠃ੄ᆵΖ 

፿றຝ։ΔطԫߊԫՖ࿇ଃ୉ΰM056ϟF054αிᦰء֮᧯֮ࠢײΔؓ݁፿ຒ։ܑ੡
202m/sylࡉ 265ms/sylΙ׼؆ऱԫߊԫՖ࿇ଃ୉ঞΰM051ϟF051αΔ૤ຂிᦰػᇩඖ
੄ᆵΔؓ݁፿ຒ։ܑ੡ࠃ 189m/sylࡉ 199ms/sylΔᙕ፹መ࿓شࠌ Sony ECM-77Bಮ
֗אଅΕ܌ຽ܃ Cool Edit 2000ڇሶଃ৛ၞ۩ᙕଃΖ।ԫอૠࠟጟᣉ৳௑᜔ףڤ৵
ऱ HPGਮዌՀᣉ৳ᢰ੺֗אઌኙᚨᣉ৳໢ۯऱଡᑇΖ 

 

।ԫΕ֮ࠢײ᧯ CLፖ९ᒧඖࠃ੄ᆵ֮ء CNAᣉ৳ᢰ੺֗אઌኙᚨᣉ৳໢ۯଡᑇ 

፿ற ፿ृ SYL/B1 PW/B2 PPh/B3 BG/B4 PG/B5 
F054 1444 599 290 135 58 CL 

 M056 1551 619 318 142 47 
F051 6583 3468 1092 297 151 CNA 

 M051 6661 3332 1207 270 129 

 

նΕኔ᧭࿨࣠ፖ։࣫ 

(ԫ)؁ᓳٝګፖڗᓳګ։ኙᚨٺᣉ৳ၸᐋऱಥ᣸৫ 

ԫᐋޢಱូΔࢤՀᐋࠩՂᐋၞ۩ᒵطଚݺցಱូ։ֱ࣫ऄΔڍࢤᖕรԿᆏऱၸᐋࠉ

ऱಱូإᒔ෷ီ੡ޢԫᣉ৳ᐋऱ։ᐋಥ᣸৫Δ່ۖطՀᐋ(ଃᆏᐋ)ีᗨࠩᅝᐋऱಱ
ᣉڶࢬ৵່قᒔ෷Ѿѽѽи।إ๯ီ੡ีᗨࠩᅝᐋऱีᗨಥ᣸৫Δีᗨܛᒔ෷إូ
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৳ᐋऱಱូএᑇऱ᜔ࡉ࿛࣍଺ࡨFujisaki௽ᐛ೶ᑇଖΔFujisaki௽ᐛ೶ᑇଖطױ٤ݙၸ
ᐋڍࢤցಱូ։࣫إᒔቃྒྷΖ 

 ᓳցٙAa։ᐋಥ᣸৫ڗ .1

ൕၸᐋڍࢤցಱូ։࣫ڗנޣױᓳցٙAaڇଃᆏᐋፖᣉ৳ဲᐋऱಥ᣸৫ΔףࠀԵᣉ
৳࿍፿ᐋאՂᢰ੺யᚨऱەᐞˮ13˰Δץਔڼଃᆏছ৵ਢڶܡᣉ৳࿍፿ᢰ੺֗ᣉ৳؁
ᆢᐋᢰ੺Ζ່৵࿨࣠᧩قAaऱإᒔ෷ױሒ73.80%ࠩ56.25%լ࿛ΔࠡխՕຝٝಥ᣸৫
 Ζ%7~5࣍ଃᆏᐋፖᣉ৳ဲᐋΔᢰ੺யᚨऱಥ᣸৫ঞտ۞ࠐ

।ԲΕڗᓳցٙڇଃᆏᐋፖᣉ৳ဲᐋऱีᗨإᒔ෷ 

Syl ᐋಥ᣸৫ PWᐋಥ᣸৫  
፿ற ፿ृ 

Tone Tone Context PW Boundary 
Info 

PW Position 
Sequence 

F054 46.21% 54.74% 60.54% 66.61% CL M056 39.12% 47.86% 57.68% 61.45% 
F051 38.40% 45.00% 48.43% 51.27% CNA M051 41.61% 47.96% 51.33% 54.53% 

ʳ

।ԿΕףՂᢰ੺யᚨ৵ڗᓳցٙऱีᗨإᒔ෷ 

 

2. ࿍፿ցٙAp։ᐋಥ᣸৫ 

ൕၸᐋڍࢤցಱូ։࣫נޣױ࿍፿ցٙApڇᣉ৳࿍፿ᐋΕ؁ܮࡅᆢᐋፖᣉ৳؁ᆢᐋ
ऱีᗨಥ᣸৫Δݺଚ࿇෼֮ײ፿றCLڶ๺ڍಥ᣸৫࣍۞ࠐᣉ৳࿍፿ᐋאՂऱՂᐋᇷ
ಛΔ֘հΔػᇩ९ᒧඖࠃ፿றCNAإᒔ෷ঞؾ۞ࠐڍছPPhፖছ৵PPhऱ९৫ᇷಛΖ 

।؄Ε࿍፿ցٙApڇᣉ৳࿍፿ᐋΕ؁ܮࡅᆢᐋፖᣉ৳ဲᐋऱีᗨإᒔ෷ 

፿ற ፿ृ PPh BG PG 
f054 58.79% 63.58% 76.66% 

CL 
m056 37.89% 48.99% 73.66% 
F051 80.17% 81.46% 87.71% 

CNA 
m051 81.53% 82.72% 88.20% 

PPhᐋאՂऱᢰ੺யᚨ  
፿ற ፿ृ 

PPh Boundary Info PG Bounary Info
ᢰ੺யᚨऱಥ᣸৫

F054 72.98% 73.80% 7.19% CL M056 64.13% 66.89% 5.43% 
F051 54.41% 56.25% 4.98% CNA M051 57.43% 59.32% 4.79% 
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ᒔ෷إଚലApፖAaऱቃྒྷ෷ݺڼڂΔګApፖAaዌط֏᧢ᒵऱڴΔഗ᙮༽ࢬছ֮ڕ
।ڕᒔ෷Ζ࿨࣠إᒵᑓীቃྒྷڴHPGਮዌ৵Fujisaki modelኙ᜔᧯ഗ᙮ش੡୚܂݁ؓ
նΖ 

।նΕ୚شHPGਮዌኙ᜔᫿ഗ᙮ڴᒵᑓীቃྒྷإᒔ෷ 

፿ற ፿ृ Aa Ap Total 
f054 76.66% 73.80% 75.23% 

CL 
m056 73.66% 66.89% 70.28% 
F051 87.71% 56.25% 71.98% 

CNA 
m051 88.20% 59.32% 73.76% 

 

(Բ) Aaኙᚨଃᆏᐋፖᣉ৳ဲᐋᑓী 

 ᓳ(ଃᆏᐋ)ᑓীڗ .1

Fujisaki Modelऱ࿨ߒ࿨࣠ፖ٣ছઔڼᓳኙAaऱಥ᣸৫੡່ՕΔڗߠଚ൓ݺՂ।խڇ
࣠ԫીΖઌኙޢ࣍ଡڗᓳऱAaᑓী࣍٨ՀቹΔݺଚױ઎ߠAaऱ౨ၦᑓীڇլٵ፿ற
ၴઌᅝԫીΖ 

 

 

 

 

 

ቹ؄Ε۞೯ឯנ࠷ऱڗᓳցٙኙᚨٺଡڗᓳհᑓী 

2. ᣉ৳ဲᑓী 

2.1 ᣉ৳ဲ࠹ᣉ৳؁ᆢPGጥᝤհ௽ᐛ 

ല௣ೈڗᓳயᚨ৵ऱᣉ৳ဲഗ᙮ᑓীࠉᅃPGۯᆜ։ᣊ৵Δݺଚ࿇෼ڇPG-Medialऱ
ᣉ৳ဲᑓীΔ؄ڇ࿝፿றၴܧ෼ԫીࢤऱ௽ᐛΔۖ׊ᣉ৳ဲڇഗ᙮ڴᒵՂऱᢰ੺։

ሶΔ׌૞࿇ڇسᣉ৳ဲऱဲݠΔངߢհΔঁܛᣉ৳ဲၴڶ޲ࠀೖቅΔ׊ᣉ৳ဲၴ࠹

๵֏๠෻৵Δإᓳயᚨऱڗᆖመ௣ೈ܀ᨠኘࠩഗ᙮ૹ๻Δ࣐լࠀᓳၴؓᄶᐙ᥼Δڗ

ऱഗ᙮౨ၦಐ྇ݠൕຍဲױଚݺڼڂPWଃᆏΔהࠡڕऱAaൎ৫լأ࿇෼PWױ
(decay)ࠐᙃܑᣉ৳ဲ໢ۯᢰ੺ΖڇPG-InitialۯᆜΔݺଚՈ࿇෼ᣉ৳ဲڇPWڇژأઌ

ˀ˃ˁˈ

˃

˃ˁˈ

˧̂́˸˄ ˧̂́˸˅ ˧̂́˸ˆ ˧̂́˸ˇ ˧̂́˸ˈ

˖˟ʳ˙˃ˈˇ ˖˟ʳˠ˃ˈˉ ˖ˡ˔ʳ˙˃ˈ˄ ˖ˡ˔ʳˠ˃ˈ˄
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 PG-MedialऱኙֺՈለՕΖ࣍ଙᑇรԲଃᆏၴઌኙࡉأPW׊௽ᐛΔٵ

ኙᅃ2007אAp੡ኔ᧭Δᛧլٵ፿᧯ऱၸᐋಥ᣸৫լٵհ࿨ᓵ[9]Δᆖءطኔ᧭࿨࣠ױ
ၞԫޡ࿇෼Δ࣍طሀ፿᧯ၴऱᣉ৳ဲ௽ᐛΔڇPG-Medial່੡᡹່׊ࡳլࣔ᧩Δڼڂ
Օຝ։ፖ፿᧯᧢֏ઌᣂऱऱಥ᣸৫஁ฆΔᚨࠐ۞ PG-Initialፖ PG-Finalۖॺ
PG-MedialΖ 
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ቹնΕڬೈڗᓳٝګ৵Δᣉ৳ဲᑓীڇլٵ PGۯᆜऱ௽ᐛΔޢයڴᒵ।ق௽ࡳ९
৫ऱᣉ৳ဲᑓীΔᖩၗ।ڼڇقᣉ৳ဲփଃᆏႉݧΔ᜕ၗ।ڬقೈڗᓳٝګ৵ऱྲྀ

஁Ζʳ

2.2 ᣉ৳ဲPW࠹ᣉ৳࿍؁PPhጥᝤհ௽ᐛ 

ᣉٺᆜ։ᣊ৵Δ൓ࠩۯ˻ᅃᣉ৳࿍؁ˣˣࠉऱᣉ৳ဲˣ˪ᑓীٝګᓳڗೈڬଚലݺ෻ٵ

৳ဲऱ௽ᐛΔ࿇෼ᣉ৳ဲဲݠऱ௽ᐛፖဲଈΕဲխ່੡լٵΔ֠ࠡԾאˣˣ˻ˀˠ˸˷˼˴˿

່੡ࣔ᧩Δˣˣ˻–˜́˼̇˼˴˿Εˣˣ˻ˀˠ˸˷˼˴˿່ૹ૞ऱ௽ᐛՈՕી࿇ݠဲڇس˔˴Ζڇˣˣ˻ˀˠ˸˷˼˴˿
ऱۯᆜऱᣉ৳ဲऱԫીࢤ।قΔˣˣ˻ˀˠ˸˷˼˴˿੡່լ࠹፿᧯ᐙ᥼ऱઌኙۯᆜΔڕቹքࢬ

ಐ྇ऱ௽ᐛΔឈྥPWڇژଃᆏأˣˣ˻ˀ˙˼́˴˿ΔAaൎ৫ᣉ৳ဲऱ່ڇ࿇෼ױଚՈݺΖق
ᑓীլڕˣˣ˻ˀˠ˸˷˼˴˿๵ঞΔأ່܀ଃᆏऱAaಐ྇࿓৫ለˣˣ˻ˀˠ˸˷˼˴˿ࣔ᧩Δ᧩قˣˣ˻ڇ
ഗ᙮೴ᒵՂऱᢰ੺யᚨΔ׌૞࿇ڇسᢰ੺ছऱᣉ৳ဲΖຍଡ௽ࢤΔፖଃᆏழ९ڇˣˣ˻

˅˄ˮ˅˰ʳˮٽܭ९யᚨ࢏ݠ؁ Δ˰᧩ڇقढ෻ॾᇆՂΔ׌૞ऱˣˣ˻ᢰ੺யᚨΔ׌૞।෼ڇˣˣ˻

ᢰ੺ছΔˣˣ˻أ؁ऱढ෻ॾᇆՂΖʳ

ʳ

ʳ ʳ
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ʳ

ቹքΕڬೈڗᓳٝګ৵Δᣉ৳ဲᑓীڇլٵ PPhۯᆜऱ௽ᐛΔޢයڴᒵ।ق௽ࡳ९
৫ऱᣉ৳ဲᑓীΔᖩၗ।ڼڇقᣉ৳ဲփଃᆏႉݧΔ᜕ၗ।ڬೈڗᓳٝګ৵ऱྲྀ஁Ζ 

 

քΕ࿨ᓵፖ୶ඨ 

ط Aa ኔ᧭࿨࣠ױवΔڗᓳս੡ᐙ᥼ଃᆏփഗ᙮ڴᒵऱ׌૞ైڂΔՕપڗ۾ᓳցٙ
Aa ቃྒྷإᒔ෷ऱ 40~45%Ιᣉ৳ဲ PW ऱၸᐋࢤಥ᣸۾ 15~20ʸΖא܀Ղᑇᖕٍ᧩
խΔנऱ፿ੌᣉ৳ᙁึ່قΔ।תᒔ෷լ֗ԫإᓳऱڗΔߢ৫ۖߡᓳᙃᢝऱڗΚൕق

ဲ৳ऱᣉٝګᓳڗೈڬطᙃΖױڗڗॺࠀ։ګᓳऱڗ PWᑓীױ࿇෼ΔHPGਮዌխ
ऱ PWᐋڇژԣࡳ௽ᐛΔՈڶԫࡳऱಥ᣸৫ΔᇞᤩԱڇഗ᙮ڴᒵխΔࠀॺڗא׽ᓳ
੡ഗء໢ၞۯ۩ۭ൷ΙPW ኙഗ᙮ڴᒵՈڶԫࡳ࿓৫ऱᐙ᥼Δึ່ڇࠀऱ፿ੌᣉ৳

ᙁנխΔڶ۾ԫࡳऱֺࠏΖאՂ࿨࣠ࡉ࿑ڰ Apኔ᧭ऱ PPh।෼ऱ࿨࣠ઌฤΔܛ PPh
ऱ Ap ؘႊەᐞ؁ܮࡅᆢ BG ᐋ֗אᣉ৳؁ᆢ PG ᐋऱՂᐋயᚨ[9]Δءઔߒ࿨࣠᧩
ق BG ᐋፖ PG ᐋኙ؁ᓳցٙ Ap ऱಥ᣸৫પ۾ 7~35%Δ፿ੌ່ึऱᣉ৳ᙁנΔٺ
ᣉ৳ᐋຟڶಥ᣸Ζլٵ፿᧯ऱிᦰ፿றΔڂ፿᧯ۖขسऱᣉ৳ᙁנ஁ฆΔ׽ਢၸᐋ

طױ٤ݙٝګ৳஁ฆۖբΔࠡᣉ܉ಥ᣸৫ऱ։ڤ HPG ਮዌᇞᤩΔٵԫഗী׽Ꮑᓳ
ᖞၸᐋڤऱᣉ৳ಥ᣸৫Δঁױขسլٵऱᣉ৳ᙁ[9]נΖ࿨אٽՂኔ᧭࿨࣠Δݺଚڂ
ۖ൓वΔլᓵڗᓳ؁ࢨᓳΔઃ੡ HPGऱ్ڻᣉ৳໢ۯΔࠩ࠹۞ٺ HPGਮዌऱᐋᐋ
ጥᝤΔߓอࢤऱᓳᖞڗᓳ؁֗אᓳΔੌګݮאዃऱຑᥛ፿ੌխऱ।რᣉ৳፿ቼΔ।

ሒ؁ᓳၴऱຑᥛፖሀ؁ᓳऱࡅᚨΖݺଚઌॾຍࠄᣉ৳፿ቼऱᑓী੡෻ᇞፖข፹፿ଃ

ऱૹ૞໢ۯΔՑ፿ข፹ழΔԳଚشࠌຍࠄᣉ৳ഗীΔࠉڼڂᖕຍࠄഗীΔݶ࣐᎘ױ

ຒऱലᓤᠧऱຑᥛ፿ੌऱ፿ቼូᣊ່ګᔞٽऱ፿੄Ε፿ᒧΔၞא۩Ղᐋ፿რऱิ៣

ፖ։࣫Ζ 

อԫଡᄅऱ৸ፂˍʳߓګٽ፿ଃࠎ༽ᢞᖕ֗௽ᐛ౨ࠄଚཚඨຍݺ ፿ੌᣉ৳ਢڶਮዌ

ऱΔߓڶڂอڶۖࢤᇾױ༛Δאࢬຑᥛ፿ੌࠀॺךየ᧢ฆۖᣄאቃྒྷΖ፿ੌऱੌዃ

࿍፿፿੄ၴऱڍܶץழٵભؓᄶΔՈؘႊݙ൷ऱۭࢤᓳፖ؁ᓳऱᒵڗ࣍۞ࠐॺႛࠀ

ሀ࿍፿।რᣉ৳፿ቼ,Ζݺଚנ༽ࢬऱڍ࿍፿ၸᐋࢤ HPG ਮዌΔݙᖞऱᇞᤩ፿ੌᣉ
৳๵ᒤऱࠐᄭ֗۶ڕյ೯Ζګٽऱ፿ଃᙁנᦫದࠐլੌዃΕլ۞ྥऱტᤚΔঞՕຝ
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։ܶآ࣍طՂᐋᇷಛΔאીᣉ৳፿ቼլآࢨߩ౨᧯෼ᣉ৳፿ቼΖٵ෻Δڇᦫृܛழ

๠෻፿ੌழΔޢঁܛԫଡ໢ଃᆏऱڗᓳಛஒլ٤ݙΔ׽૞ڶઌᅝګ։ऱᣉ৳፿ቼΔ

ঁ౨ᚦᇖࠎ༽ࠀᦫृ֊։ᣉ৳໢ٻ֗ۯছቃ۷ऱಛஒΖ׽լመΔࢬᘯऱઌᅝګ։Δ

ؘႊٵழܶڶઌᔣՀᐋᣉ৳໢ۯऱຑ൷֗Ղᐋᣉ৳໢ۯऱࡅᚨΖ֘հΔڕԫ੄ຑᥛ

፿ੌփऱ໢ྤۯऄٵழ᧯෼ၸᐋࢤ HPG ਮዌิ៣ࢬ๵ᒤհ٤૿।რ֗ݝຝຑ൷ऱ
ᣉ৳፿ቼழΔലᄎሔહᦫृቃཚΔທګᦫृ֊։໢ۯऱᙑᎄΔᏁԫ٦ଥإΔۖ࢏ᎄ

ਔലץٻֱߒઔࠐآᓳᢝܑΖڗٵլ࿛ࠀΔ፿ଃᢝܑߠױٍڼطழ๠෻Δܛ HPG
ਮዌ୚۟ش඄ᓰ࿛۞࿇ࢤ፿றᄮຏრቹࣔ᧩Εፖᒧ֗፿੄ಛஒ։ࣔऱ፿றၞ۩։

࣫Δԫֱ૿ݦඨڼנބ๵ቤऱഗীՈڇڇژ઎ۿլ๵ঞऱ۞࿇ࢤ፿றխΔԫֱ૿ޓ

٤૿ऱᇞᤩ፿ੌխڗᓳऱ᧢ฆΔᇞዌڗᓳܛᣉ৳ऱಮ৸Ζ 
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ANN
AnANN based Spectrum-progression Model and Its Application to

Mandarin Speech Synthesis
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(DTW) (
) ( ) ( )

(ANN)

ANN

: , , ANN, DTW,
Keywords: spectrum progression, fluency, ANN, DTW, speech synthesis

(prosody)
(modeling) [1,2,3]

(pitch-contour) (duration) (amplitude)
(pause) model based

(naturalness)
(fluency) ( )

(formant trace)
[4]
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[5,6,7] HMM(hidden Markov Model)

( , spectrum envelope, )
(state staying)

(
)

(articulation)

( )
(spectrum progression) ( )

(mapping) 1

/lin/

/lin/

1

(modeling)

HMM HMM
(observation) (dependency) t

Ot Ot+1 ( Ot-1) Ot
modeling
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( context dependent) HMM
state duration

ANN (artificial neural network)
: (a)

DTW(dynamic time warping)
(b) 0 1

32
0~1 32 (c)

32 ( ) ANN
( ) ANN

ANN

ANN
2 2

model based corpus based
2 [8,9]

corpus based corpus ( )
( corpus) corpus

2
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2.1

409
375 2,926 22,050 (Hz)

Wavesurfer (labeling)

2.2

(DTW) [10]
DTW

DTW

DTW

X=X1 X2 Xn ( )

Y=Y1 Y2 Ym ( )

13
MFCC 13 [10, 11] DTW X Y

(local constrain)
3 [10]

DTW

( )

3 DTW
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3 DTW Da(X,Y)
(1)

1 2

1 1

2 1

, 3 ,

, min , 2 ,

, 3 ,

a i j i j

a i j a i j i j

a i j i j

D X Y D X Y

D X Y D X Y D X Y

D X Y D X Y

(1)

D(Xi,Yj) Xi Yj 3 2

DTW
(unvoiced) ( /s,h,p/) (

)

[12] 100%

DTW 4 (
) /siang/ ( ) /siang/

DTW
A B

B

A

4 DTW
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(shift) 20ms
5ms

0.5 ~ 2
1.5

(2)
2
3

a
a a

b

NF S
N

(2)

(2) Na Nb
Sa Fa

2.3 ANN

5 8
32 32

ANN

8 con tex tual param eters

32 d im . spectrum -p rog . param eters

5 ANN

ANN

8 27 bits
1
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1 ANN

bits
3 4 3 5 6 3 3

5 3bits
22 39 5bits 6bits

ANN
6 9 2 3

6 9 1 4
3bits

2

1 4

2 5

3 6

3

1 6

2 7

3 8

4 9

5

14, 16, 18, 20 ANN
4 RMS 2,926

STD MAX
4

16
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4 ANN

RMS STD MAX

14 0.05063 0.02443 0.18564
16 0.04906 0.02330 0.18038
18 0.04891 0.02343 0.18227
20 0.04946 0.02405 0.20055

2

ANN
ANN

3.1 3.2

( /s/)
(piece-wise linear) 4

3.1

5 ANN

ANN
2.1 375 2,926

2 3

http://guhy.csie.ntust.edu.tw/spmdtw/

2.1
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ANN [8]
[13]

?

3.2

HNM (harmonic-plus-noise model)
[14] PSOLA

(pitch) (duration)
(reverberant)

HNM [15] [9]

2.1 HNM
HNM cepstrum

HNM (unit selection)
HNM ( )

(control point)
HNM

HNM

(mapping)
32

HNM

HNM
HNM HNM

(timbre) (pitch)
[9]
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4.1

2

6(a) /cing2 ba3 zhe4 lan2/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31

cing-2 ba-3 zhe-4 lan-2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31

cing-2 ba-3 zhe-4 lan-2

(a) (b)
6

6(b)
6(a) 6(b)

6(a) /cing2/
( ) /ba3/
6(b) 6(a)

6(b) 6(a)
6(b)

ANN

4.2

2
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Va ANN
Vb

http://
guhy.csie.ntust.edu.tw/spmdtw/

Va Vb 9
( Va

Vb)
( )

-2 2 1
2 2 1
-1 -2 -2 -1

0
1.33 Vb Va

DTW ANN DTW

DTW
frame shift

HMM
( HNM )

HMM
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56789:;<=>? SVM@ Eigen-MLLRABCDEFGHIJKLMNOPQ

ubiquitous RSDHTUV.WXHIY%ZDUV.W[\Q]WDUV.W^_`

aDUVbcNdHIJKefghijklmX567OP SVM @ Eigen-MLLRD

nopAJKqrDBCNsQt<uvHID<wuvHxyz{=|}%n~��

����XmHTUV�N�P SVM�9��HIl�D{wN��9{w[sOD

MLLRn~����N��i��HIY%��>?&HIY%��X����PUV

>c��5D MLLR matrix @ Eigenspace ������N����>c`��5D

MLLR matrixX[\Q�HIY%DUV.W�= ¡: 5~8%DUV¢X 

Abstract 

This work presents a novel architecture using SVM and Eigen-MLLR for rapid on-line 
multi-speaker adaptation in ubiquitous speech recognition. The recognition performance in 
speaker independent system is better than in conventional speaker dependence system, and 
the key point is speaker adaptation techniques. The adaptation approach is on the basis of 
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combine SVM and Eigen-MLLR, generating a classification model and building parameters 
vector-space for all speakers’ individual training data. While in recognition, to find test 
speaker classification by SVM and look for MLLR parameters matrix correspond to speaker 
classification, then the MLLR parameters matrix and original acoustic model will integrate 
into speaker dependent model. Last, we estimate the adapted MLLR transformation matrix 
set by weighting function with recognition result, the present MLLR matrix, and Eigenspace. 
The estimate result will be used to update the MLLR matrices in adaptation phase. The 
experimental results show that the proposed method can improve 5% to 8% speech 
recognition accuracy with speaker adaptation. 

jk£¤ubiquitousNHIJKNSVMNMLLR 

Keywords: ubiquitous, speaker adaptation, SVM, MLLR,  
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vHx&training corpus'ÝCWDDeZ}%d&XA:EFõ)��m�P�RS×

G¾uv�DRS×G78dÂ&ghbì(HIJN*KLMÏNl=gN�OPÃ
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%DHI7n:��&speaker independent model, SI model'NsQt<HIDÏW�>
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fDD�µh�=�HT����h?HIy��TDJüNÊ�µgh�s¬­DH

x[ÔD(N¹�7ì=>HTUV.WmstJKFD¼­�ØÿN�hm��Hx

q�D���ZJK&unsupervised adaptation 'D��-N�d9»(���ü<�

�D�TdXÇß©���DHIJKefh�P�([�dEo�c&Maximum 

Likelihood Linear Regression, MLLR'NÃGD³´��>cè4��:Øef�=ms

tJK=|���ZJKF^;aD�ëX�dm MLLR ¶N¬¼��(�D��N
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Front-End Speech 

Processing 
Speech Signal  
Input 

 
Search Algorithm 

Feature Vectors 

Speech 

Corpora 

Acoustic model 
training 

Acoustic 

Models 

Language 

Models 

Sentence 
Output 

Training Phase Recognition Phase 

80



C­®D SVM©�ëHIUV�¬wXm567¶g= SVMA©yBCDHIz{N
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kAJK¶·&Adaptation phase'Xú½��N#ç>?�P: SVM=| Eigen-MLLR
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&unsupervised adaptation'X 
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(.)$DE0F-(Support Vector Machine, SVM) 

$%��+&SVM'hyzÝ&�P©yAz{&classification'á§c&regression'
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z=&78D{wX0
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ti�=A÷%D69ÅN 1 0L

i i itγ= = N�à 0iγ > X��Ø Xi AÜC�?Ìö÷
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(1)$GHIJK7LMNOPQ(Eigen-Maximum Likelihood Linear 
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7*�9¬¼©ÃDHxg�=s����yJKXm�([�dEo�c¶N�HI
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ˆ A b    i i iµ µ= + ∀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1B30

iµ �=m GMM¶óC¦JK2D8AÅNd ˆ
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ˆ ˆA b     classi i iµ µ µ= + ∀ ∈                          (6) 

m5;@G<{wD��-D:;eZh12EF�(D[�d©Û:DXCQm¹<

JKef¶h�P"Hx^3D6GNÔ^;��mC^0+DJKHx��-è�=

ÜH8;{w¶^HxD��©­9 A, b ÅNl=mtãJK�N9¼E"KÔD{
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ª^78DÔÕÿNøID��m[÷ÔÕF`h`�78X×Øm¹��-Nl^[

]D��mçzyjaÌDö÷8bþ¯cÿD¬¼XEigen-MLLR [\Q]WDe
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HTÏWDn~��¶�P 13 QDopqrs.�(MFCC)|;¶@»¶D§cµ� 

 (delta)N×:*�¼¤ 

�¼+567¶l�PD��t�×: 

�.r¢ 8 kHz 

*$uvð 1-0.97z-1 

zîÓw Hamming Window 

Ówxd 20ms 

Tï8_ 10ms 

opuvð<� 23 

n~���� 
13 MFCC +  +  

& log energy +  +  
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Markov models, CDHMM)N�PC}ò~(left-to-right)D�ñNè8hðñ:_F9�

Ã¹�;ðñ�ò�ÇD-;ðñáh��m�5DðñFXdm��5?DE�NB

�PT½~[j�TG��Nt<TG��?@ 5 <ðñN3 <TG+1 <�T+1 <

op�Xü<õ)��h�P��()l8ÙD HTK [6] ,\©}%X 

,5."'()*+ 

ü<ï�fDLM�zA¼<¶·Nuv¶·&Training Phase'NUV¶·&Recognition 

Phase'@JK¶·&Adaptation Phase'XÔ.W;=§*×�N»¸�PuvHx©}

%A§D��NÔ}%¿�Ng»mtãpUVD����s<wHIDHT��yJ

KXü<|-DïL>M*-<¤ 
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muv¶·N+¸fg/l^D��HI4û;:�DHâ©ÔyJKuvHxN

�PDeZh��ZJK)/XÖ×^^ S<uvHINst;<HIfg�Pu
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��&MLLR full regression matrices'Nèst;?HIPi�dDHxy;ã�(
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<n~��Xm¹<¶·¶N]W�([�dEo�c���c��DD�@=n

~��ABC�c����hz=§�ëDXÕ;e²N¹¶·8��JKuvH

x�P$%��+&SVM'©yHxz{N^^ S <{wN�àm}%Hxz{

D8�è}%,¾�c��¿�D[joN�¯t;z{4^i[sODn~�
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�n:HID�([�dEo§c§c��Nd7¬¼12HIDHx­¯�c�
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?NXèCQ¹<n~��h�P>íDHx©��¯"D MLLR §c��Nl
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<ÅAUV¶·D|-<XmUV¶·¶N¹8ÙuvHxDHI¶XE;<y�

�NÔHI�bÝCHTn~t��Ng»]�ò SVM ¶yz{N�4ë�² n

<{w�[ÇNg¹�([�dEo§c§c��P?¶X9[sO² n<�c�

�N��Ø�c��¾�5D�HIn:��>?&HIn:��N�=¹<��
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Training SVM 
for SI 

MLLR full regression 
matrix estimation 

MLLR regression 
matrix model 

SI Model 

Eigen-matrix 
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SVM model 
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Eigenspace 

SVM classification 
(Recognition Phase) 

Maximum likelihood 
coordinate estimation 
(Adaptation Phase) 

MLLR regression 
Matrix database 
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mÝ2UV¶·�¯UV>c�N»�UV>cÔ&AJKHx&adaptation data'N

sQt;<��HIl8ÙDJKHx»�P�([�d��&Maximum 

Likelihood estimate, ML'ef©�HI:?mn~��¶D§c��X�([�d
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à¯D>c�»@�P SVM l�9sOHID MLLR §c��N¼Iy;<

weightingD��N��à¯D>cs�5HID MLLR§c��p`�XQh#

çiÝ: [10] ¶D Equation (530 ¡:;<JKK®dD��X-ÒA;<`�

ÅD��X 
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( )

1 1

1 1

W W

Ŵ (1 ) W

cNM
EIGEN

c n c
presentm n

c conf conf cS N

n
m n

m

m

λ γ
ξ ξ

λ γ

= =

= =

 
⋅ + 

 = ⋅ + − ⋅
 + 
 




      (7) 

M �=An~�D�yNn �=Am Nc¶D;<>??@Nrn(m)�=m��A t

�D6�+¢NWc
presentNWc

EIGENNWc
estimate BzwA{w c yzD§c��NC

ML��9©Dn~����N=|CMLLR full regression��9©D§c��X

ŴcA`�2�D§c��X confξ AK®��NK®��Bh)�UV>cd¯

DX ¡K®����hEFÔ4®UV>c�®��d-4, è8hsDHTU

V&�D, á�DHTUV&sD, ©��ü<JK���©�\Xü<JK2-

*<ËX 

Test Data 
(One of S speakers) 

Recognition Phase 

SVM  
classification 

Finding speaker 
MLLR matrix set 

Speech 
recognition 

SI Model 

Adaptation Data 
(Adaptation Phase) 

To find speaker 
MLLR matrix set 

(Adaptation Phase) 

MLLR regression 
Matrix database 
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<Ë+JK¶·LM< 

6"/078 
#ç�ë��D>ch=fghT¶7Hx MAT-400 ABCDHT��XJKHxB

h=�&®¯PH(j 7~10<�Ndm���B=«�áh�&®¯PHA±XHT

n~D��×:B:Õm�¼X#ç�P MLLR JKlÂ9�Æt;<HâDB[

SVMn~NsQ<=>?��Dt;<\¾D{w4¼yJKX#çg�P HTK[6] ©

}%FÑD,p�à�®;��ZMLLR©}%:;ZX 

sQÜÝ8ÙuvHxDyëHINtâb4»P;< SVMn~��©Í�NdEF

SVM D{wB»12yëHIDn~��@�^D SVM n~��{w©p;��E

FX 

m#çD��¶N�P:.mHTUV.W&ubiquitous speech recognition system'©�

�N$^�P: 6$��o�{��m��DZ� NiOT¡¢�=£¤:ü<��

qdN*<¥XCQi¦ÒeZ��]WD�{��ÒeZN<f�P]WDMÏ§W

f©u"\aDbcNl=g� 6 $�{��PG¸ê>T&multi-channel mixer'D

eZ&5;67N��Pn��ZHT $ï�f [9]&Subspace Speech Enhancement, 

Using SNR and Auditory Masking Aware Technique'mHTÏWDzö÷©§WHTM

ÏN�=§�HTn~X 

Adaptation 
Data 

MLLR full regression 
matrix estimation 

Maximum likelihood 
coordinate estimation 

SI Model 

MLLR-RMS 

MLLR-RMS 
By ML 

Find speaker 
MLLR-MS 

 
 
 
weight 

Adaptation Phase 

SVM classification 
(Recognition Phase) 
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<¥+.m�{��Ò=Ô< 

��2-$^�P: 10 <«A8ÙuvHx=|JKDHINt<HIDuvHâ4

A 15âXl��DUV¢D�=jT¢A±N¨=©z��=ND�eZ*-¤ 

= 100%×
!"#$%&&'

!"#$(
)*%&&'

                  (8) 

�ÅAmª�^0+HIJKefD.mHTUV.W-l��D>cN�=4ëA§

õT��T�hs0+;<HI48Ù[8DUVSTbìN$8AST¢A 85.7%X 

�Å+�^0+HIJKf 150â®¯PH�� 

DEFGDEFGDEFGDEFG 1 2 3 4 5 6 7 8 9 10 HIJHIJHIJHIJ 

KLFMKLFMKLFMKLFM 130 124 126 133 129 126 127 131 134 125 1285 

NOFMNOFMNOFMNOFM 20 26 24 17 21 24 23 19 16 25 215 

@AKL@AKL@AKL@AKL
PPPP(%) 

86.6 82.6 84 88.7 86 84 84.7 87.3 89.3 83.3 85.7 

-_#ç=]WD MAP HIJKeZ©�PQ.WN�ËA�P MAP HIJK�D

>cX�=4ësQt<HIyJK¿�NUV.WsQt<«DST¢8A4^

2%~3%DST¢80N$8AST¢A 88.2%X 

�Ë+�PMAPHIJKf 150â®¯PH�� 

DEFGDEFGDEFGDEFG 1 2 3 4 5 6 7 8 9 10 HIJHIJHIJHIJ 

KLFMKLFMKLFMKLFM 135 126 131 136 134 129 132 135 137 128 1323 

NOFMNOFMNOFMNOFM 15 24 19 14 16 21 18 15 13 22 177 

@AKL@AKL@AKL@AKL
PPPP(%) 

90 84 87.3 90.7 89.3 86 88 90 91.3 85.3 88.2 

�¥B�P]WMLLRHIJKf�PQUV.WDUV>cN[\QMAPJKfN

^_`<DUV¢N»Â&¹.D>c�^�ìD�×h 15 âDJKHxs MAP ©
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ûh�&Dr�Nd�¯MAP«jD�µú5ó©7|4¬N[\QMLLRN�dì

mr�Hx�8þ=9[Ô9ôD�ëN��JKDjT¢G9 5%~8%N� MAP G

9 3%~5%DUVjT¢X 

�¥+�PMLLRHIJKf 150â®¯PH�� 

DEFGDEFGDEFGDEFG 1 2 3 4 5 6 7 8 9 10 HIJHIJHIJHIJ 

KLFMKLFMKLFMKLFM 139 136 137 142 142 135 142 141 142 138 1394 

NOFMNOFMNOFMNOFM 11 14 13 8 8 15 8 9 8 12 106 

@AKL@AKL@AKL@AKL
PPPP(%) 

92.6 90.6 91.3 94.6 94.6 90 94.6 94 94.6 92 92.9 

�­D��>cBA567l89OPn~ZMLLR� SVMDHIJKLMX�MAP

JKf©�\NCQÜ_ MLLR DnojµNóh�=Ü_r�Hxdu"®þDb

cNà�P SVM©°-EF[sODn~����Nr¯:��CHxD���D�

��Nè�]WDMLLR8A80: 1%}~UV¢N[\Q�JKDUV.W`80

: 8%8AUV¢N[\QMAP8A80: 4%~5%UV¢X 

�­+567l89DHIJKf 150â®¯PH�� 

DEFGDEFGDEFGDEFG 1 2 3 4 5 6 7 8 9 10 HIJHIJHIJHIJ 

KLFMKLFMKLFMKLFM 142 137 139 144 141 138 140 144 145 138 1408 

NOFMNOFMNOFMNOFM 8 13 11 6 9 12 10 6 5 12 92 

@AKL@AKL@AKL@AKL
PPPP(%) 

94.7 91.3 92.7 96 94 92 93.3 96 96.7 92 93.9 

 

9"7:  
mHTUV.W¶NHIJKD,phü¾UVbìD;<��¼DR½NdàsQm

G«�PDRS-NHIJKqrmstJK=|���ZJKD��-8`fg¡

$N¹øe²è»h°�HIJKqr4¦D�µX;<JKqr7¢¼ìíu&st

JKNàfgìím9^r�HxD��-�ë^�§Dõ)��Jüò`K?Ô-H

IDðñNnwhsQm;<��¶D±:&6`h^l¬¼N*$%&6Xm567

89DLM¶N�Pn~Z�([�dEo§c&Eigen-MLLR'l}%DGHIn~

����>?$%��+&SVM'Dz{©u&stGHIJKX��HIDHâÝ

2 SVMz{�²¿�Ng»mMLLR§c��Ø¶�9 SVM{w[sOD§c��

�à�A§��>?&HIn:��N�åºHTUVX���HTUVD>c�P

MLLR§c����&MLLR regression matrix estimate'=|�([�d��&Maximum 

Likelihood estimate'¼I©�P���Û��D�N�à�>c©:�`���HI[

sOD MLLR §c����Xm567¶è4ëN��=�¡$HT $ö÷Dï�

f��`GMÏ=|80ÏW$dNBsü<HIJK@UVbì�å;æ80Xm�

©DHTUVRS¶N&'ìí ¡`GD�{�N�Dìu"³�d`<D.mHT

�PRSNè�=(�¡7�DHI/.W�=ª#`�=|pJKNè&'¹´qr

ì>?iµDOP"`«.Dª²N/«ç®¯�=Ü_�?Ì`g�X 
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ኴ૞ 

    ۞೯፿ଃᙃᢝڇኔᎾߓอᚨشխΔ፿ଃॾᇆᆖൄࠩ࠹ᛩቼᠧಛऱᐙ᥼ۖ૾ࠡ܅ᙃᢝ
෷Ζ੡Ա༼֒ߓอऱய౨Δ๺ڍઔߒ፿ଃᙃᢝऱᖂृᖵࠐڣլឰچઔߒ፿ଃऱൎ೜ݾ

๬Δཚඨ౨ሒࠩ፿ଃᙃᢝߓอऱ່ࠋ֏।෼Ζءڇᓵ֮խΔݺଚ׌૞ਢ࠹ழၴ٨ݧ࿨ዌ

נ༽ଚݺ๬Ζݾ֏๵إயऱᓳ᧢᙮ᢜڶ壄ᒔޓנ࿇୶ࠀඔ࿇Δၞۖ൶ಘࢬ࢚๵֏ऄᨠإ

ԱԿጟᄅֱऄΔܶץԱ࿛ຑंழၴ٨ݧៀंᕴऄΕ່՛ֱؓ᙮ᢜᚵٽऄፖൎ৫᙮ᢜփ༺

ऄΖຍֱࠄऄല፿ଃ௽ᐛழၴ٨ݧऱפ෷᙮ᢜയ৫إ๵֏۟ԫ೶ەऱפ෷᙮ᢜയ৫Δא

൓ࠩᄅऱ፿ଃ௽ᐛ೶ᑇΔ៶܅૾ڼᠧಛኙ፿ଃհᐙ᥼Δၞۖ༼֒ᠧಛᛩቼՀऱ፿ଃᙃᢝ

壄ᒔ৫ΖٵழΔݺଚՈലຍࠄᄅֱऄ࿨הࠡٽ௽ᐛൎ೜֏ऱݾ๬Δ࿇෼ຍᑌऱ࿨ٽ౨൅

 ထհᙃᢝ෷ऱ༼֒Ζ᧩ޓࠐ

 

Abstract 
The performance of an automatic speech recognition system is often degraded due to the 

embedded noise in the processed speech signal. A variety of techniques have been proposed 
to deal with this problem, and one category of these techniques aims to normalize the 
temporal statistics of the speech features, which is the main direction of our proposed new 
approaches here. 

In this thesis, we propose a series of noise robustness approaches, all of which attempt to 
normalize the modulation spectrum of speech features. They include equi-ripple temporal 
filtering (ERTF), least-squares spectrum fitting (LSSF) and magnitude spectrum interpolation 
(MSI). With these approaches, the mismatch between the modulation spectra for clean and 
noise-corrupted speech features is reduced, and thus the resulting new features are expected 
to be more noise-robust. 

Recognition experiments implemented on Aurora-2 digit database show that the three 
new approaches effectively improve the recognition accuracy under a wide range of 
noise-corrupted environment. Moreover, it is also shown that they can be successfully 
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combined with some other noise robustness approaches, like CMVN and MVA, to achieve a 
more excellent recognition performance. 

ᣂ᝶ဲΚ፿ଃᙃᢝΕᓳ᧢᙮ᢜإ๵֏Εൎ೜ࢤ፿ଃ௽ᐛ೶ᑇ 

keyword: speech recognition, modulation spectrum, robust speech features 

ԫΕፃᓵ 
۞೯፿ଃᙃᢝߓอ(automatic speech recognition systems, ASR)Δ៶ֱٺࠐڣڍطᖂृऱ
ઔߒ࿇୶ΔດዬሒࠩኔᎾᚨشऱၸ੄Δۖ੡Գᣊس੒൅ঁֱڍޓࠐፖᚥܗΔឈྥᝫլ౨

ሒࠩԫଡݙભऱޡچΔ܀ਢຍֱ૿ऱݾ๬սԫऴլឰޡၞچᅝխΖ 
 ۞೯֏፿ଃᙃᎁսڶ๺ڍઌᅝࠠڶਗᖏࢤऱઔߒᓰᠲΔ࣍ط፿ଃऱ᧢ฆڍ֜ࢤΔࠏ

Ε፿ृᅝழᎅᇩऱൣࢤऱ௽ٵլڶߢ፿ٵፖՑ௛ຟլԫᑌΕլڤ፿ृᎅᇩऱֱۯޢڕ

ፃΕ፿ृࢬ๠ऱᛩቼਢהࠡڶܡᠧಛեឫ࿛Δຍࠄ᧢ฆኙ࣍፿ଃᙃᢝய࣠ຟڶᐙ᥼Ζڇ

టኔᚨشᛩቼՀΔ፿ଃᙃᢝߓอࢬሖࠩऱ׌૞ംᠲࠡխࠟଡΔ։ܑ੡Κ 
ΰԫα፿ृլ֐಻(speaker mismatch) 
    ፿ृլ֐಻ऱംᠲਢڂ੡ᎅᇩृ٣֚ය ΰٙڕՑ࿺ݮणαፖ৵֚฾ክΰڕᎅᇩ࿺ᓳα

ऱ஁ฆࢬขسऱ᧢ฆࢤΔڼڂᅝא௽ࡳ፿ृࢬಝᒭࠐנऱᜢᖂᑓীࠐᙃᢝլ᥆ڼ࣍௽ࡳ

፿ृऱ፿ଃழΔᙃᢝய࣠ൄᄎࣔ᧩Հ૾Δۖ૞ࣚ܌ຍԫᣊംᠲऱֱऄΔຏൄਢࢬشࠌᘯ

ऱ፿ृᓳᔞ(speaker adaptation)ݾ๬ΖՈ༉ਢല଺ءಝᒭࠐנऱᜢᖂᑓীᓳᔞګ൷२ᅝ
Հ፿ृհ፿ଃ௽ࢤऱᑓী[1]Δױঁڼڕ༼೏ᙃᢝ෷Ζ 
ΰԲαᛩቼլ֐಻(environment mismatch) 
    ᛩቼլ֐಻ऱംᠲਢڂ੡፿ଃᙃᢝߓอಝᒭᛩቼፖݺଚኔ᧭ࢨᚨشழऱᛩቼլٵ
ऱᠧಛΕትᠧဩࡌ؄ీ߫ڕᠧಛ(additive noise)ΔࢤګףԱܶץ૞׌՗ڂીΔࠡ᧢ฆࢬ
ሐऱԳᜢ߫ࢨᜢ࿛Δ֗ኹᗨࢤᠧಛ(convolutional noise)Δڕլٵऱڶᒵྤࢨᒵሽᇩᒵሁ
ΖՀ܅ᙃᢝ෷૾ࠌᠧಛऱᐙ᥼ࠄຍڂอൄᄎߓऱຏሐயᚨ࿛Δ፿ଃᙃᢝګທࢬଅ܌ຽࢨ

ቹԫ੡೓෣፿ଃ࠹ᠧಛեឫհقრቹΖ 

 
ቹԫΕ೓෣፿ଃ࠹ᠧಛեឫհقრቹ 

 
ԫנބᑑਢؾԫՕᣊऱֱऄࠡڶ๬խΔݾࢤ፿ଃ௽ᐛऱൎ೜ၞޏᠧಛᐙ᥼Ε܅૾ڍ壆ڇ

ൎ೜፿ଃ௽ᐛ।ڤق(robust speech feature representation)Δ૾܅፿ଃ௽ᐛኙᠧಛऱඕტ
৫Δࠌᠧಛขسऱ؈ట᧢՛ΖڼᣊထټऱֱऄץਔԱଙ᙮ᢜؓ݁௣װऄ(cepstral mean 
subtraction, CMS)[2]Εଙ᙮ᢜؓ݁ፖ᧢ฆᑇإ๵֏ऄ (cepstral mean and variance 
normalization, CMVN)[3]Εઌኙ᙮ᢜऄ(RelAtive SpecTrAl, RASTA)[4]Εଙ᙮ᢜؓ݁ፖ᧢
ฆᑇإ๵֏֏࿨ٽ۞೯ូڃ೯ኪؓ݁ៀंᕴऄ(cepstral mean and variance normalization 
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plus auto-regressive-moving-average filtering, MVA)[5]Εଙ᙮ᢜᏺ墿إ๵֏ऄ (cepstral 
gain normalization, CGN) [6]Εᇷறᖄٻழၴ٨ݧៀंᕴऄ(data-driven temporal filter 
design)[7]࿛ΖאՂຍֱࠄऄઃਢڇ፿ଃ௽ᐛऱழၴ٨ݧ഑(temporal domain)܂๠෻Δ௅
ᖕ፿ଃಛᇆፖᠧಛڇழၴ٨ݧ഑Ղլٵऱ௽ࢤΔൎᓳנ፿ଃऱګ։Δۖ  ᠧಛऱᐙ᥼Ζࠫލ
२ࠐΔᄅࡕףՕᖂհޕ௧੊໑ՓઔߒቸၷΔᄅංנԱԫ୚ழၴ٨ݧៀंᕴ๻ૠऱᄅֱ

ऄΔጠ੡όழၴ٨ݧ࿨ዌإ๵֏ऄύ(temporal structure normalization, TSN)[8]Δֱڼऄ
ऱؾऱΔ࣍ڇല፿ଃ௽ᐛ٨ݧհפ෷᙮ᢜയ৫(power spectral density)إ๵֏Δࠡࠌᔚኢ
ሓ२࣍ԫ೶פە෷᙮ᢜയ৫Δֱڼऄࢬ൓ऱழၴ٨ݧៀंᕴΔڂאױᚨլٵᠧಛᛩቼऱ

፿؁௽ᐛۖאףᓳᔞΔ֮ࠡڇ᣸[8]ױवΔᅝڼᄅֱऄࢬ൓ऱழၴ٨ݧៀंᕴ࣍ش܂
CMVNፖMVA๠෻৵ऱමዿଙ᙮ᢜ௽ᐛ೶ᑇழΔٺڇጟᠧಛᛩቼՀࢬ൓ࠩऱ፿ଃᙃᢝ
壄ᒔ෷ຟ౨ڶՕ༏ၞޏΖ 
ឈྥ TSN ऄኙ፿ଃ௽ᐛࠠڶᚌฆऱൎ೜֏ய࣠Δ׊ച۩ᓤᠧ৫ᄕ܅Δ܀௅ᖕݺଚऱᨠ
ኘΔڼऄսྥڶ༓រၞޏאױհ๠Δଈ٣ΔTSN ᙮෷᥼ەៀंᕴএᑇਢ೶ࡨ൓ऱॣࢬ
ᚨհ֘ແܓᆺ᠏ངޣ൓Δྥ৵ലຍࠄএᑇᄎଊՂԫଡዧኑ࿗(Hanning window)྇אᒷլ
ᅝ೏᙮ٝګऱขسΔ࠷ޣڼៀंᕴऱֱऄؘآਢ່ࠋ֏ऱΔࢬ൓հៀंᕴএᑇࠡ᙮෷᥼

ᚨױ౨ፖ೶ە᙮෷᥼ᚨհၴऱᎄ஁ለՕΖࠡڻΔڇ TSN ऄխΔៀंᕴএᑇࡉ๯إ๵֏
੡ 1Δז।ࠡऴੌᏺ墿੡ԫࡳଖΔޡڼᨏإࠌ๵֏৵ऱ௽ᐛ೶ᑇࠡפ෷᙮ᢜയ৫ࠀլᄎ
᝟२೶פە෷᙮ᢜയ৫Δڇ׽ᔚኢՂՕીઌٵΖ່৵ԫរΔঞਢ TSNऄઃਢ௅ᖕMVN 
ඨ౨൶ಘݦଚݺऱய౨Δړߜ๻ૠΔၞۖ൓ࠩࢬMVA๠෻৵ऱමዿଙ᙮ᢜ௽ᐛ ࢨ TSN 
ऄ໢ొآ࣍ش܂ᆖٚ۶๠෻ऱමዿଙ᙮ᢜ௽ᐛழΔࠡய࣠ਢܡՈԫᑌࣔ᧩Ζ 
௅ᖕאՂኙ TSN ऄऱ։࣫ፖᨠኘΔءڇᓵ֮խΔݺଚ༼נԱԿጟ፿ଃ௽ᐛழၴ٨ݧհ
ᓳ᧢᙮ᢜإ๵֏(modulation spectrum normalization)ऱᄅֱऄΔ։ܑ੡࿛ዮंழၴ٨ݧៀ
ंᕴऄ(equi-ripple temporal filtering, ERTF)Ε່՛ֱؓ᙮ᢜᚵٽऄ(least-squares spectrum 
fitting, LSSF)ፖൎ৫᙮ᢜփ༺ऄ(magnitude spectrum interpolation, MSI)ΔຍԿጟֱऄհؾ
ऱፖ TSN ᣊۿΔઃ੡Աإ๵֏፿ଃ௽ᐛழၴ٨ݧऱפ෷᙮ᢜയ৫Δݺ܀ଚᄎڇ৵૿ີ
ᆏऱኔ᧭࿨࣠࿇෼ΔຍԿጟֱऄհய౨ઃֺ TSNऄࠐ൓ړΔࠀ׊լᏁ૞ፖMVNࢨMVA
ऄ࿨ٽΔאױܛԼ։ڶயچ๠෻මዿଙ᙮ᢜ௽ᐛڂᠧಛեឫࢬທګऱ؈టΖྥۖΔᅝ،

ଚፖ MVNࢨ MVAઌ࿨ٽழΔՈאױ൓ࠩࠋޓऱᙃᢝ壄ᒔ෷Δזڼ।،ଚፖ MVNࢨ
MVAړߜڶऱࢤګףΖ 
ਔࠡചץ๵֏ऄΔإ٨࿨ዌݧଚലಘᓵழၴݺรԲີΔڇՀΚڕᓵ֮ࠡ塒ऱີᆏᄗ૞ء

۩࿓ޡॣ֗ݧய࣠ΔรԿີ੡ءᓵ֮ऱૹរΔݺଚലີڼڇխಾኙழၴ٨ݧ࿨ዌإ๵֏

ऄၞޏ܂Δۖ༼נԿጟᄅऱᓳ᧢᙮ᢜإ๵֏ऄΔࠀኙࠡॣޡய࣠אףտฯΖڇร؄ີΔ

ᠧಛڇய༼ࣙ፿ଃ௽ᐛڶאߩհᄅֱऄ༽ࢬᢞ᧭ࠐ٨ऱ፿ଃᙃᢝኔ᧭Δߓଚലച۩ԫݺ

ᛩቼՀऱൎ೜ࢤΔ່৵Δรնີঞ੡࿨ᓵ֗ࠐآ୶ඨΖ 
 
ԲΕழၴ٨ݧ࿨ዌإ๵֏ऄ(temporal structure normalization, TSN) 
ΰԫαTSN๠෻១տ 
๵֏ऄ(temporal structure normalization, TSN)[8]Δإ٨࿨ዌݧ૞տฯழၴ׌ᆏີء    
אଚലݺՀԫີխΔڇ TSNऄհᨠ࢚੡ഗ៕Δ༼נԫ٨ߓऱᓳ᧢᙮ᢜإ๵֏ऱዝጩऄΖ
TSNਢ᥆࣍ԫጟழၴ٨ݧៀंᕴ(temporal filter)๻ૠհൎ೜ࢤ፿ଃݾ๬Δ଺ࡨऱMFCC
፿ଃ௽ᐛ೶ᑇ٨ݧᆖመCMVNऄ[3]ࢨMVAऄ[5]๠෻৵Δפࠡ࠷ޣ٣෷᙮ᢜയ৫(power 
spectral density)Δ൷ထ៶פڼط෷യ৫ፖړࡳ٣ࠃऱ೶פە෷യ৫ࡳެࠐԫៀंᕴऱൎ
৫᥼ᚨ(magnitude response)Δڼൎ৫᥼ᚨᆖ֘ᠦཋແمᆺ᠏ང(inverse discrete Fourier 
transform, IDFT)Εዧኑ࿗֏(Hanning window)๠෻ፖऴੌᏺ墿إ๵֏๠෻৵Δขسԫิ
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ៀंᕴএᑇΔܛڼ੡ TSN ऄޣࢬ൓ऱழၴ٨ݧៀंᕴΔല፿ଃ௽ᐛ٨ݧຏመڼៀंᕴ
৵Δঞቃཚױሒࠩᓳ᧢᙮ᢜإ๵֏ऱய࣠Δۖᏺף፿ଃ௽ᐛհࠡൎ೜ࢤΖቹԲ੡ TSN
ऄऱ๠෻࿓قݧრቹΚ 

 
ቹԲΕTSNऄ๠෻࿓قݧრቹ 

 
ڇ     TSN ऄխΔޢԫ؁ಝᒭ፿றհਬԫፂ௽ᐛ٨ݧ s n ፖྒྷᇢ፿றٵԫፂ௽ᐛݧ

٨ x n Δפࠡ࠷ޣ٣෷᙮ᢜയ৫Δ։ܑא
SS k
P ፖ

XX k
P ।قΖ൷ထലಝᒭ፿

ற؁ڶࢬ՗ٵԫፂऱפ෷᙮ᢜയ৫݁ؓ܂Δࢬ൓ܛ੡೶פە෷᙮ᢜയ৫ΔڕՀقࢬΚ 
,

SS k SS k
P E P ڤ)                        2.1) 

ڇ TSNऄխشࠌࢬऱៀंᕴΔࠡॣࡨऱൎ৫᙮ᢜ๻ڕࡳՀقࢬڤΚ 
 ,

k SS k XX k
H P P ڤ)                       2.2) 

ࠡՂࣔڤ᧩઎נΔᅝٚԫྒྷᇢ፿ற x n ຏመՂڤհៀंᕴழΔࠡ଺פࡨ෷᙮ᢜയ৫

XX k
P ᄎ๯إ๵֏੡

SS k
P Ζ 

    ੡Աၞԫ࠷ޣޡៀंᕴऱ౧ᓢ᥼ᚨ(impulse response)ΔՂ(2.2)ڤխऱ
k

H j ٣ᆖ

መ֘ᠦཋແمᆺ᠏ང(inverse discrete Fourier transform, IDFT)Δհ৵٦ଊՂԫଡዧኑ࿗
(Hanning window)Δࠀലៀंᕴএᑇ᜔إࡉ๵֏੡ 1Δאሒࠩऴੌᏺ墿إ๵֏ऱؾऱΖ
ࠡᑇᖂ।אڕڤقՀᑇقࢬڤΚ 
 
1Ε֘ᠦཋແمᆺ᠏ངΚ 

1

0

1
,     0 1k

M

j m

k

k

h m H j e m M
M

ڤ)           . 2.3) 

2Εዧኑ࿗֏๠෻Κ 
�ˆh m h m w m ڤ)                               , 2.4) 

ࠡխ 

     0.5 1 cos 2 ,       0 1
1

m
w m m M

M
. 

3Εऴੌᏺ墿إ๵֏Κ 

1

0

�ˆ

M

m

h m
h m

h m

ڤ)                              . 2.5) 

 ೶ەհפ෷᙮ᢜയ৫

x n

SS
P

H IDFT h n

Hanning 

Window 

DC Gain 

Normalization 

h n  y n

๠෻ছऱ௽ᐛ٨ݧʳ ๠෻৵ऱ௽ᐛ٨ݧ
ழၴ٨ݧៀंᕴ

XX
P

೓෣፿؁௽ᐛ

೶ᑇ٨ݧʳ

෷ʳפ

᙮ᢜയ৫ʳ
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ࠡխM ੡ៀंᕴ९৫Ζ(2.5)ڤհh m ੡ܛ TSNޣࢬ൓հழၴ٨ݧៀंᕴऱ౧ᓢ᥼ᚨΖ 
 
ΰԲαTSNऄய࣠ઌᣂಘᓵ 
ڇ     TSNհ֮᣸[8]խΔشࢬऱ଺ࡨ௽ᐛ೶ᑇઃ੡ᆖመ CMVNऄࢨMVAऄࢬ๠෻৵
հමዿଙ᙮ᢜ௽ᐛ೶ᑇ(MFCC)Ζຍᇙݺଚ௽ܑല TSNऄሎآڇشᆖ๠෻հමዿଙ᙮ᢜ
௽ᐛ೶ᑇՂΔᨠኘࠡၞޏய࣠Ζࠡխݺଚނ଺ࡨ TSN ऄټࡎ੡ TSN-1ΔۖނઊฃԱऴ
ੌᏺ墿إ๵֏ޡᨏऱ TSN ऄΔټࡎ੡ TSN-2ΖቹԿ੡଺ࡨรԫፂමዿଙ᙮ᢜএᑇ(c1)
ࡨᒵቹΔቹ؄੡଺ڴ෷᙮ᢜയ৫פ٨ऱݧ c1٨ݧᆖ TSN-1 ऄ๠෻৵ऱפ෷᙮ᢜയ৫ڴ
ᒵቹΔቹն੡଺ࡨ c1٨ݧᆖ TSN-2 ऄ๠෻৵ऱפ෷᙮ᢜയ৫ڴᒵቹΖຍࠄቹຟشࠌԱ
AURORA 2ᇷற஄[9]ᇙऱMAH_4625A፿ଃᚾΔףԵլٵಛᠧֺऱچՀᥳᠧಛΖࠡխ
೶פە෷᙮ᢜയ৫੡ಝᒭ፿ற஄հڶࢬ c1٨ݧհפ෷᙮ᢜയ৫ؓ݁ۖ൓Ζ 

 

 
ቹԿΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧհפ෷᙮ᢜയ৫ڴᒵቹ 

 

 
ቹ؄ΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧᆖ TSN-1๠෻৵հפ෷᙮ᢜയ৫ڴᒵቹ 

   

 
ቹնΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧᆖ TSN-2๠෻৵հפ෷᙮ᢜയ৫ڴᒵቹ 

Hz 

Hz 

Hz 
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    ଈ٣ΔൕቹԿࣔאױ᧩઎נΔᠧಛᄎທګ c1 ௽ᐛפڇ٨ݧ෷᙮ᢜയ৫Ղऱ؈టΔ

ࡨଚൕቹ؄ᨠኘࠩ଺ݺհԫΖ൷ထΔڂᠧಛᛩቼՀΔ፿ଃᙃᢝ壄ᒔ෷Հ૾ऱ଺ګਢທڼ

TSNऄΰTSN-1α࣍ش܂଺ࡨ c1٨ݧழΔ଺ڇءቹԿࢬ઎ࠩհפ෷᙮ᢜയ৫ऱ؈టآࠀ

๯ڶயޏچ࿳Δٍإࠡܛ๵֏ய࣠ࠀլ෻უΔࠩ࠹ᠧಛᐙ᥼ऱ c1٨ݧΔᅝಛᠧֺ(SNR)
။܅ழΔೣฝ೶פە෷᙮ᢜയ৫ऱၦ။ࣔ᧩Ζ່৵Δൕቹնאױ઎נΔᆖመઊথऴੌᏺ

墿إ๵֏ޡᨏऱ TSN-2 ऄ๠෻৵ΔլٵಛᠧֺՀऱ c1௽ᐛפ٨ࠡݧ෷᙮ᢜയ৫ڼ࢖Լ

։൷२Δٍܛ TSN-2 ऄڶאױயإ๵֏࠹ᠧಛեឫհ଺ࡨ c1٨ݧऱפ෷᙮ᢜയ৫Δࠡ

టऱய౨᎛ֺ؈܅૾ TSN-1ࠐऱړΖݺڼطଚංᓵΔ଺ࡨ TSNऄխऴੌᏺ墿إ๵֏ऱ
ᠧಛኙ፿ଃᓳ᧢᙮ࢤګףய๠෻ڶᨏྤऄޡڼਢΔڂ౨଺ױլਢԼ։৾ᅝΔۖࠡࠀᨏޡ

ᢜࢬທګऱऴੌᏺ墿؈టऱயᚨΖڇՀԫີխΔݺଚല༼נԫ٨ߓऱֱऄΔઌለ࣍ TSN
ऄۖߢΔຍֱࠄऄ౨ޓ壄ᒔإچ๵֏፿ଃ௽ᐛऱפ෷᙮ᢜയ৫Ζ 
 
ԿΕᓳ᧢᙮ᢜإ๵֏ऱᄅֱऄ 
๵֏ऄإ٨࿨ዌݧଚ൶ಘࠩழၴݺรԫີፖรԲີխΔڇ     (temporal structure 
normalization, TSN)ױ౨ၞޏאױࠄڶऱֱچΔٵழ៶ط TSNऄհᨠ࢚ඔ࿇Δءڇڼڂ
ີᆏխΔݺଚ༼נԫ٨ߓऱᓳ᧢᙮ᢜإ๵֏ऱᄅֱऄΖຍࠄᄅֱऄ։ܑ੡࿛ዮंழၴݧ

٨ៀंᕴऄ(equi-ripple temporal filtering, ERTF)Ε່՛ֱؓ᙮ᢜᚵٽऄ(least-squares 
spectrum fitting, LSSF)ፖൎ৫᙮ᢜփ༺ऄ(magnitude spectrum interpolation, MSI)Δຍֱࠄ
ऄ։ܑີءڇऱছԿᆏխ܂տฯΔۖ ່৵ร؄՛ᆏঞ੡ຍֱࠄऄ១૞ऱய౨ေ۷ፖ௽ࢤ

ಘᓵΖ 
 
ΰԫα࿛ዮंழၴ٨ݧៀंᕴऄ(equi-ripple temporal filtering, ERTF) 
 ࿛ዮंៀंᕴ๻ૠऄ (equi-rippleشࠌଚݺ٨ៀंᕴऄ(ERTF)խΔݧ࿛ዮंழၴڇ    
filter design)[10]ࠐ๻ૠៀंᕴऱ౧ᓢ᥼ᚨΔז࠷א଺ࡨ TSN ऄխΔ֘ແمᆺ᠏ངፖ࿗
֏๠෻ऱޡᨏΔٵழΔݺଚՈபװ଺ࡨ TSN ऄխإ๵֏ៀंᕴऴੌᏺ墿ऱޡᨏΖቹք
੡࿛ዮंழၴ٨ݧៀंᕴऄ๠෻࿓ݧቹΔڇ ERTFऄխΔݺଚנ༽ࢬऱࠟޓᄅޡᨏհؾ
ऱإਢޓ࠷ޣ壄ᒔऱៀंᕴএᑇΔא᝟२إ๵֏௽ᐛ٨ݧհᓳ᧢᙮ᢜൎ৫ٝګऱؾᑑΖ 

 
ቹքΕ࿛ຑंழၴ٨ݧៀंᕴऄ๠෻࿓ݧቹ 

 
    ERTF ऄխشࠌࢬऱ

XX k
P Ε

SS k
P ࡉ

k
H ࡨ૪հ଺ࢬছԫີࡉຟڤֱ࠷ޣ

๠෻৵ऱ௽ᐛ٨ݧʳ

 
೓෣፿؁௽ᐛ೶ᑇ

٨ʳݧ SS
P

HXX
P

x n y n

ழၴ٨ݧៀंᕴʳ
๠෻ছऱ௽ᐛ٨ݧʳ

h n

࿛ዮं 
ៀंᕴ๻ૠ 

h n

೶ەհפ෷᙮ᢜയ৫

෷ʳפ

᙮ᢜയ৫ʳ
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TSNऄઌٵΔ܀ਢៀंᕴএᑇ h n ਢא࿛ዮंៀंᕴ๻ૠऄ[10]ޣ൓Δֱڼऄਢشܓ
ڤՀڕऱៀंᕴ᙮෷᥼ᚨΔࠋԫ່࠷ޣࠐᘯऱ່՛֏່Օᎄ஁ᄷঞ(minimax criterion)ࢬ
 Κقࢬ

arg min max
k

k k k k
H

H W H D ڤ)                ,  3.1) 

ࠡխ
k

W ੡ᦞૹଖΔ
k

H ੡່ࠋ֏ៀंᕴհ᙮෷᥼ᚨΔ
k

D ੡೶ەऱ᙮෷᥼ᚨΔ

k
D  ΚڤՀڕق।ױ

                    SS k

k

XX k

P
D

P
ڤ)                                3.2) 

ऄ൓ࠩऱៀंᕴএᑇڼط h n Δᄎ۞೯ฤٽছ৵ኙጠ(symmetric)ऱࢤᔆΔࠡڼڂઌۯ
᥼ᚨਢᒵࢤऱ(linear phase)[10]Δࠀլᄎࠌ଺ࡨ௽ᐛ٨ݧऱᓳ᧢᙮ᢜขسઌ؈ۯటऱൣ
ଚቃཚ،ᄎֺݺאࢬᄷঞ๻ૠΔ֏ࠋਢ௅ᖕ່ߪء੡ៀंᕴڂழΔٵΔݮ TSN ऄࢬ൓
հៀंᕴய࣠ࠐऱړΖ 
ΰԲα່՛ֱؓ᙮ᢜᚵٽऄ(least-squares spectrum fitting, LSSF) 
๵֏ऱNإԫଡৱޢଚಾኙݺຍֱऄᇙΔڇ     រ௽ᐛழၴ٨ݧ 0 1x n n N

 ᑑΚؾ๵֏ऱإ٨ऱᓳ᧢᙮ᢜݧ௽ᐛڼ੡܂ᓳ᧢᙮ᢜΔەᆠԫ2Pរऱ೶ࡳ٣
exp ,    0 2 1,

k k X k
Y Y j k P ڤ)                3.3) 

ࠡխऱൎ৫ٝګ
k

Y  Κق।ڤՀא

k k SS k XX k
Y X P P ڤ)                          3.4) 

    ࠡխΔ
SS k
P ፖڕছີऱ(2.1)ڤխࡳࢬᆠΔܛ

SS k
P ੡ڶࢬಝᒭ፿ற௽ᐛፖ

x n ෷᙮ᢜയ৫ؓ݁ۖ൓Δפ٨ऱݧԫፂٵ
XX k
P ੡଺ࡨ௽ᐛ٨ݧ x n ऱפ෷᙮

ᢜയ৫Ζۖൎ৫ٝګ
k

X ٝګߡઌࡉ
X k

੡ x n ᆖመ2Pរհᠦཋແمᆺ᠏ང

(discrete Fourier transform, DFT)ࢬ൓ࠩΖଖ൓ࣹრऱਢΔ௽ᐛ९৫N ᄎᙟထլٵऱ፿؁
ۖլٵΔ܀ਢຍᇙऱ DFT࠷ᑌរᑇ2Pঞ๻੡ԫࡳࡐଖΔՈ༉ਢ೶ەᓳ᧢᙮ᢜऱ९৫ኙ

 ऱΖٵԫଡ፿؁ຟਢઌޢ࣍
ګ٨Δࠡᓳ᧢᙮ᢜऱൎ৫ݧᄅ৵ऱ௽ᐛޓԫଡޢඨݦଚݺवΔױ(3.4)ڤፖ(3.3)ڤط    
ٝ౨᝟࣍ԫીΔۖઌٝګۯঞط଺ࡨऱ௽ᐛ٨ݧ x n ՛່ؓشܓଚݺΔࠐΖ൷Հࠐۖ

ֱ֏(least-squares)[10]ऱ່ࠋ֏ᄷঞ࠷ޣԫᄅऱ௽ᐛ೶ᑇ٨ݧΔࠌᄅऱ௽ᐛ٨ݧ y n

ऱᓳ᧢᙮ᢜሓ२(3.3)ڤڕऱ೶ەᓳ᧢᙮ᢜΔڕՀقࢬڤΚ 

    
2

22 1 1

2

0 1
0 0

min ,       2

nkP N
j
P

k
y n n N

k n

y n y n e Y P N ڤ)            3.5) 

ࠡխ2P੡ DFT࠷ᑌរᑇΔN ੡ڼ௽ᐛ٨ݧऱរᑇΖ 
 Κڤᐊ੡Հޏ(3.5)ڤലױଚݺऄΔقၦ।ٻఢೄፖط៶

                   
2

minW
y

y y Y ڤ)                                  3.6) 

ࠡխWਢ2P N ऱఢೄΔࠡร( , )m n ႈڕՀقࢬΚ 
2

exp ,
2

mn

mn
W j

P
 

ۖyΕyፖYঞࡳᆠ੡Κ 

0 1 1 ,
T

y y y ny  
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0 1 1 ,
T

y y y Ny  

0 1 2 1
,

T

P
Y Y YY  

 ᐊ੡Κޏױ(3.6)ڤၦΔਚٻy੡ኔᑇ࣍ط

                 

2

2 2

min

min

R R I I

R R I I

W j W

W W

y

y

y y Y y Y

y Y y Y
ڤ)                    3.7) 

ࠡխఢೄ
R
W ፖ

I
W ։ܑ੡ఢೄWऱኔຝፖဠຝΔۖ ၦٻ

R
Y ፖ

I
Y ঞ։ܑ੡ٻၦYऱኔຝ

ፖဠຝΖ 
ᇞംᠲΔਚࠡ壄ᒔޣ੡ԫࠢীऱ່՛ֱؓ֏(least-squares)ऱڼΔנ઎᧩ࣔ(3.7)ڤط   
ऱ৞ຨᇞ(closed-form solution)طױՀڤ।قΚ 

1
T T T T

R R I I R R I I
W W W W W Wy Y Y  (3.8ڤ)                       

੡ܛխऱy(3.8)ڤΔאࢬ LSSF ऄޣࢬ൓հᄅ௽ᐛ೶ᑇ٨ݧ y n Δࠡ2Pរհ DFT ࡉ
 ᔆΖࢤړߜ՛ֱؓᎄ஁ऱ່ڶᓳ᧢᙮ᢜհၴࠠەऱ೶(3.3)ڤ
ΰԿαൎ৫᙮ᢜփ༺ऄ(magnitude spectrum interpolation, MSI) 
๵֏ऱNإԫଡৱޢଚ੡ݺऄխΔֱڼڇ     រ௽ᐛ٨ݧ 0 1x n n N Δࡳᆠ

ԱԫଡN រऱ೶ەᓳ᧢᙮ᢜΔ܂੡ڼ௽ᐛ٨ݧհᓳ᧢᙮ᢜإ๵֏ऱؾᑑΔڕՀقࢬڤΚ 
exp ,     0 1

Xk k k
Y Y j k N ڤ)                    3.9) 

ࠡխઌٝګۯ
X k

੡x n N࠷ រऱ DFTࢬ൓ΖMSIऄᇿছᆏհ LSSFऄऱ່Օլٵ
հ๠Δڼ࣍ڇழݺଚਢشࠌԫଡᇿ଺ࡨ௽ᐛ٨ݧ९৫ઌٵऱ೶ەᓳ᧢᙮ᢜΔۖ࣍طլٵ

፿؁ऱ௽ᐛ٨ݧΔࠡរᑇN ՈᙟհլٵΔݺଚլ౨ڕছ૿ऱ LSSF ऄխΔऴ൷ஞ2Pរ

ऱ೶פە෷᙮ᢜയ৫ 0 2 1
SS k
P k P խऱN(3.9)ڤ࠷ޣࠐ(قࢬ(2.1)ڤڕ) រ᙮

ᢜൎ৫
k

Y ΖྥۖΔ࣍ط଺2ࡨPរऱ೶ە᙮ᢜࠡො።᙮෷ᒤ໮ፖ඿ޣऱ
k

Y ᙮

෷ᒤ໮ઌٵΔڇຍᇙΔݺଚشࠌᒵࢤփ༺(linear interpolation)[10]ऱֱऄΔ៶(3.4)ڤط
խ ࢬ ق ऱ հ 2P រ ऱ 0 2 1

k
Y k P ࠐ ޣ ࠷ ڤ (3.9) խ N រ ऱ

0 1
k

Y k N հ२ۿଖΖ܀ਢ(3.9)ڤऱ
k

Y ੡ԫኔᑇ٨ݧհᠦཋແمᆺ

᠏ངΔࠡൎ৫ٝګ
k

Y ؘႊฤ׳ؐٽኙጠऱࢤᔆΔܛ
k N k

Y Y Δݺڼڂ

ଚ ٣ ܓ ش
k

Y ऱ ؐ ת ຝ ച ۩ փ ༺ ऄ Δ ޣ ࠷
k

Y ऱ ؐ ת ຝ

0
2

k

N
Y k Δ ٦ ܓ ش ؐ ׳ ኙ ጠ ऱ ࢤ ᔆ Δ ޣ ࠷

k
Y ׳ ת ຝ

1 1
2

k

N
Y N k N Ζڇ൓ࠩ 0 1

k
Y k N ৵Δݺଚ༉אױऴ

൷ኙ(3.9)ڤऱ
k

Y ೚N រऱ֘ᠦཋແمᆺ᠏ང(inverse discrete Fourier transform, 

IDFT)Δޣא൓ᄅऱ௽ᐛ٨ݧ y n ΔڕՀقࢬڤΚ 
21

0

1
,    0 1

nkN
j
N

k

k

y n Y e n N
N

 (3.10)ڤ                        .

 ጠ੡ൎ৫᙮ᢜփ༺ऄ(magnitude spectrum interpolation, MSI)ΖܛՂऱֱऄΔא
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ΰ؄αᓳ᧢᙮ᢜإ๵֏հᄅֱऄऱய࣠ಘᓵ 
ຍ՛ᆏല១໢୶ີءقᆏנ༽ࢬऱԿጟᄅֱऄኙ଺ࡨ MFCC ௽ᐛ٨ݧհᓳ᧢᙮ᢜ

٨։ܑᆖݧรԫፂමዿଙ᙮ᢜএᑇ(c1)ࡨ๵֏ऱய࣠ΔቹԮΕቹԶፖቹ԰։ܑ੡଺إ
ERTFऄΕLSSFऄፖ MSIऄ๠෻৵ऱפ෷᙮ᢜയ৫ڴᒵቹΖፖছԫີऱቹԿΕቹࡉ؄
ቹնઌٵΔຍᇙݺଚشࠌࢬऱਢ AURORA 2ᇷற஄[9]ᇙऱMAH_4625A፿ଃᚾΔྥ৵
 Հᥳ(subway)ᠧಛΖچಛᠧֺ(SNR)ऱٵԵլף

 
ቹԮΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧᆖ ERTFऄ๠෻৵հפ෷᙮ᢜയ৫ڴᒵቹ 

 
ቹԶΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧᆖ LSSFऄ๠෻৵հפ෷᙮ᢜയ৫ڴᒵቹ 

 
ቹ԰ΕլٵಛᠧֺհՀΔ଺ࡨ c1٨ݧᆖMSIऄ๠෻৵հפ෷᙮ᢜയ৫ڴᒵቹ 
 

ലቹԮΕቹԶΕፖቹ԰಻ٽছԫີհቹԿΕቹ؄ፖቹնઌֺለΔݺଚאڶՀࠟរಘᓵΚ 
Ϥ1 ࣍ط  ERTF ऄࡉ TSN ऄٵᑌਢ๻ૠԫழၴ٨ݧៀंᕴΔ࣍ش܂௽ᐛ೶ᑇ٨ݧ

ՂΔݺଚ٣ֺለຍࠟጟֱऄऱய౨ΖൕቹԮխױ઎נ ERTFऄ౨ٵழࠌ൓೓෣፿ଃፖ࠹
ᠧಛեឫऱ፿ଃऱפ෷᙮ᢜയ৫ڴᒵΔሓ२೶ەऱפ෷᙮ᢜയ৫ڴᒵΔڶய૾܅ቹԿࢬ

ࡨհ଺ق᧩ࢬቹ؄࣍టΔઌለ؈෷᙮ᢜയ৫ऱפ٨հݧಛᠧֺՀ௽ᐛٵհլق᧩ TSN
ऄऱய࣠ޏ᧩ࣔڶ࿳Δ׊ፖቹնհ TSN-2 ऄऱய࣠Լ։൷२Δזڼ।ݺଚشࠌ࿛ዮं
ៀंᕴ๻ૠऄ (equi-ripple filter design)ࠐ๻ૠழၴ٨ݧៀंᕴΔڶאױயإچ๵֏լٵ

Hz 

Hz 

Hz 
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ᠧಛֺՀऱ፿ଃ௽ᐛհᓳ᧢᙮ᢜΖ 
Ϥ2  LSSFऄࡉMSIऄຟਢऴ൷ڇ௽ᐛऱᓳ᧢᙮ᢜ഑(modulation spectral domain)Ղ

ຍࠟጟֱऄፖנ઎ױቹ԰ࡉΔൕቹԶٝګ๵֏ࠡൎ৫إ ERTFऄᣊۿΔ౨ല࠹ᠧಛեឫ
ऱ፿ଃհפ෷᙮ᢜയ৫ڴᒵΔሓ२೶ەऱפ෷᙮ᢜയ৫ڴᒵΔࠌຍڴࠄᒵհၴऱ஁ฆࣔ

᧩ለ܅Δז।Աຍࠟଡᓳ᧢᙮ᢜൎ৫إ๵֏ऄՈ౨ڶயچൎ೜፿ଃ௽ᐛΖࠡխΔMSI
ऄਢԿଡֱऄխૠጩᓤᠧ৫່܅ऱݾ๬ΔޓڶڼڂՕऱᚨشᏝଖΖ 
ൕՂ૪ԿଡቹխΔױ઎ݺנଚࢬ༼ऱԿଡᄅֱऄຟ౨ڶய܅૾چᠧಛࢬທګհ፿ଃ௽ᐛ

టऱ෼؈ᓳ᧢᙮ᢜՂڇ ΔွݺଚڇՀଡີᆏΔലᄎאᙃᢝኔ᧭ᑇᖕᢞኔຍֱࠄऄऱய౨Ζ 
 

؄Εᓳ᧢᙮ᢜإ๵֏ऄፖٺጟ௽ᐛழၴإ٨ݧ๵֏ݾ๬ऄհᙃᢝኔ᧭࿨࣠

ፖಘᓵ 
٨ៀंᕴݧ๵֏ऄΚ࿛ዮंழၴإऱԿጟᓳ᧢᙮ᢜנ༽ଚݺ૞ਢല׌ᆏີء    
(equi-ripple temporal filtering, ERTF)Ε່՛ֱؓ᙮ᢜᚵٽऄ(least-squares spectrum fitting, 
LSSF)ࡉൎ৫᙮ᢜփ༺ऄ(magnitude spectrum interpolation, MSI)ሎ࣍شᠧಛᛩቼՀऱ፿
ଃᙃᢝΔ៶ڼᨠኘ։࣫ࠡ࿨࣠ΔٵழݺଚՈᄎല،ଚፖࠡה௽ᐛழၴإ٨ݧ๵֏ऄऱய

ܡਢٽᨠኘຍᑌऱ࿨ࠐΔٽऄյઌ࿨ֱהᄅֱऄፖࠡࠄଚቫᇢലຍݺለΖ່৵Δֺ܂࣠

౨ၞޓࠐԫޡऱய౨༼֒Ζ 
ΰԫαኔ᧭ᛩቼፖኔ᧭ਮዌ๻ࡳ 
 ᄎ(European Telecommunication࠰ऱ፿ଃᇷற஄੡ᑛ੊ሽॾᑑᄷشආࢬᓵ֮խء    
Standard Institute, ETSI)ࢬ࿇۩հ፿ற஄ΚAURORA 2.0[9]Δփ୲ਢאભഏߊڣګՖࢬᙕ
፹ऱԫ٨ߓຑᥛऱ૎֮ᑇۭڗڗΔ፿ଃףࠀߪءՂٺጟࢤګףᠧಛፖຏሐயᚨऱեឫΖ

ࡉΔ୶ᥦᄎ塢Ε塊ᨚΕဩሐΕଆᖲ໱߫޳ՀᥳΕԳᜢΕچԶጟΔ։ܑ੡ڶᠧಛ٥ࢤګף

ጟΔ։ܑ੡ࠟڶᠧಛ࿛Δຏሐயᚨঞీ߫־ G712ፖMIRS[11]ΖᠧಛܶၦऱՕ՛ܶץԱ
೓෣ྤᠧಛऱणኪΔ֗אքጟլٵಛᠧֺ(signal-to-noise ratio, SNR)णኪΔ։ܑਢ 20dBΕ
15dBΕ10dBΕ5dBΕ0dBፖ-5dBΔݺڼڂଚאױᨠኘլٵऱᠧಛᛩቼኙ࣍፿ଃᙃᢝऱᐙ
᥼Ζڂᠧಛ௽ࢤऱլٵΔྒྷᇢᛩቼױ։੡ Set AΕSet Bፖ Set CԿิ[9]Ζ 
    ᜢᖂᑓীਢച۩ឆ៲֛ױ್ڤᑓীՠࠠ(hidden Markov model tool kit, HTK)[12]ಝ
ᒭࢬ൓Δܶץ 11ଡᑇڗᑓী(zero, one, two, �…, nine֗ oh)֗אᙩଃ(silence)ᑓীΔޢଡ
ᑇڗᑓীܶץ 16ଡणኪΔٺणኪܶץ 20ଡ೏ཎയ৫෗ٽΖ 
 
ΰԲαᓳ᧢᙮ᢜإ๵֏ऄ࣍ش܂මዿଙ᙮ᢜ௽ᐛ೶ᑇհኔ᧭࿨࣠ 
ऱ፿ଃ௽ᐛ੡මዿଙ᙮ᢜএᑇشࠌࢬ᧭ኔڶࢬᆏີء    (mel-frequency cepstral 
coefficients, MFCC)ΔݺଚආشऱMFCC௽ᐛ೶ᑇ੡13ፂ(c0~c12)ΔףՂࠡԫၸ஁ၦ(delta)
ࡨ଺אኔ᧭(baseline experiment)ਢءԲၸ஁ၦ(delta-delta)Δ᜔٥੡39ፂ௽ᐛ೶ᑇΖഗࡉ
MFCC௽ᐛ೶ᑇ܂੡ಝᒭፖྒྷᇢΔTSN-1ऄ੡รԲີխࢬտฯհ଺ࡨ TSNऄΔۖ TSN-2
ऄঞਢല଺ࡨ TSNऄխऴੌᏺ墿إ๵֏ޡᨏઊฃࢬ൓ऱଥإऄΔTSN-1ፖ TSN-2ࢬ൓հ
ழၴ٨ݧៀंᕴ९৫ઃ๻੡21Δڼଖਢऴ൷೶ە TSN ऄऱ֮᣸[8]ۖࠐΖERTF ऄࢬ൓
ऱழၴ٨ݧៀंᕴ९৫੡21Δۖ LSSFፖMSIऄشࢬऱ DFTរᑇ2P ঞ(قࢬ(3.3)ڤڕ)
Աٽଚጵݺ੡1024ΖՀ।ԫխΔࡳࡐ TSN-1ΕTSN-2ΕERTFΕLSSFΕMSIΔ֗ထټऱ
௽ᐛإ๵֏ݾ๬ CMVN[3]ࡉ MVA[5]Δࠡ࣍ش܂ܑٺ଺ࡨ MFCC ௽ᐛ೶ᑇࢬ൓ऱؓ݁
ᙃᢝ෷ΰ20dBΕ15dBΕ10dBΕ5dB ፖ0dB նጟಛᠧֺՀऱᙃᢝ෷ؓ݁αΔࠡխ AR ፖ
RR։ܑ੡ઌለ࣍ഗءኔ᧭࿨࣠հ࿪ኙᙑᎄ૾܅෷(absolute error rate reduction)ࡉઌኙᙑ
ᎄ૾܅෷(relative error rate reduction)Ζ 
 Հ༓រ෼ွΚאנ઎ױଚݺ।ԫऱᑇᖕΔط    
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।ԫΕٺጟ௽ᐛ٨ݧ๠෻ݾ๬հᙃᢝ෷(%) 
Method Set A Set B Set C average AR RR 
Baseline 72.46 68.31 78.82 73.20 - - 
TSN-1 73.61 70.44 77.19 73.75 0.55 2.05 
TSN-2 80.29 82.36 75.82 79.49 6.29 23.47 
ERTF 85.45 86.92 85.34 85.90 12.70 47.39 
LSSF 84.37 86.21 84.72 85.10 11.90 44.40 
MSI 83.61 85.36 84.28 84.42 11.22 41.87 

CMVN 85.03 85.56 85.60 85.40 12.20 45.52 
CMVN+ARMA(MVA) 88.12 88.81 88.50 88.48 15.28 57.01 
 
Ϥ1଺ࡨ TSNऄ(TSN-1)ኙMFCC௽ᐛڇᠧಛᛩቼՀऱᙃᢝ෷ऱࠀၞޏլਢৰࣔ᧩Δၞ׽
Δྥۖ%0.55ޡ TSN-2ऄ൅ࠐԼ։ࣔ᧩ऱᙃᢝ෷༼֒(Set Cೈ؆)Δڇ Set Aࡉ Set Bᛩቼ
ՀΔؓ݁ᙃᢝ෷ઌኙ࣍ TSN-1ۖߢ։ܑၞޏԱ8%ፖ14%ؐ׳Ζڼڕ઎נΔ៶طઊ 

ฃऴੌᏺ墿إ๵֏ऱޡᨏΔTSN-2 ֺ TSN-1 ๵֏ऱயإऱ௽ᐛᓳ᧢᙮ᢜࠋޓڶࠠ
࣠ΔຍՈࡅᚨԱڇรԲີऱቹԿΔ଺ࡨ TSN ऄྤऄڶய૾ٺ܅ᠧಛᛩቼՀΔ଺ࡨ፿ଃ
MFCC௽ᐛழၴ٨ݧհפ෷᙮ᢜയ৫ڴᒵऱլ֐಻෼ွΖ 
Ϥ2 ERTFΕLSSF ፖ MSI ऄԿጟᄅֱऄٺڇጟլٵऱᠧಛᛩቼՀઃ౨ࣔ᧩༼֒ᙃᢝ෷Δ
ኙ Set AᛩቼۖߢΔ،ଚ։ܑࠌᙃᢝ෷༼֒Ա 12.99%Ε11.91%ፖ 11.15%Δኙ Set Bᛩቼ
Δᙃᢝ෷։ܑ༼֒Աߢۖ 18.61%Ε17.90%ፖ 17.05%Δڇ Set CᛩቼՀΔᙃᢝ෷։ܑ༼
֒Ա 6.52%Ε5.90%ፖ 5.46%ΖຍԿጟֱऄխΔԾא ERTFऄऱ।෼່ړΔࣔ᧩ᚌ࣍ LSSF
ऄፖMSIऄΔ܀،ଚࢬ౨ሒࠩऱઌኙᙑᎄ૾܅෷ຟ೏ሒ ࣍ՂΔࣔ᧩ᚌא40% TSN-1ऄ
ፖ TSN-2ऄΖ׼؆Δଖ൓ԫ༼ऱਢΔTSN-2ऄڇ Set Cխऱயֺ࣠ TSN-1ፖഗ៕ኔ᧭
஁Δ܀ ERTFΕLSSFፖMSIऄথڶآຍᑌऱլߜ࿨࣠Ζ 
Ʉ3  ࠟጟؾছᐖ੡Գشऱ௽ᐛإ๵֏ݾ๬ΚCMVNऄፖ MVAऄΔኙᙃᢝ෷ऱ༼֒ຟԼ
։ࣔ᧩ΔCMVNऱய౨ፖݺଚࢬ༼ऱԿጟᄅֱऄՕીઌٵΔ܀࿨ٽԱ CMVNፖ ARMA
ៀं๠෻ऱ MVA ऄࠡய౨Ծֺ CMVN ऄࠐऱړΔഗ࣍ຍᑌऱᨠኘΔڇՀࠟ՛ᆏխΔ
๵֏ऄፖإጟᓳ᧢᙮ᢜٺނଚലᇢထݺ CMVN ऄࢨ MVA ऄאףᖞٽΔ൶ಘਢܡ౨൅
 Ζޡထऱၞ᧩ޓᙃᢝ෷Ղࠐ
    ᅝݺଚشࠌ LSSFऄፖMSIऄழΔݺଚᄎല଺ࡨ੡N រऱ௽ᐛ٨ݧ᠏ང2ګPរհ

ຏൄ2P࣍طᠦཋ᙮ᢜΔྥۖࢨ෷᙮ᢜയ৫פ NΔݺଚᄎאᇖሿऱֱ٣ڤല଺ࡨऱN

រऱ௽ᐛ٨ݧ᧢९੡2PរΔრڍܛᇖԱ2P NଡሿរΔຍᑌऱ܂ऄ୲࣐ขسॺሿଖऱ

រፖሿଖऱរհၴಛᇆଖլຑᥛऱൣݮΔ֧ۖၞԱլؘ૞ऱ೏᙮ٝګΔຍயᚨᣊ࣍ۿऴ

൷࣍ԫಛᇆףՂఢݮ࿗ࢬທګ᙮ᢜᙊዥ(leakage)[10]ऱ౒រΔڼڂΔݺଚຍᇙڇ LSSF
ፖ MSI ऄհᇖሿऱ࿓ݧছΔ٣ല଺ࡨऱN រऱ௽ᐛ٨ݧଊՂԫዧኑ࿗ (Hanning 
window)[10]Δ܅૾ࠐՂ૪ױ౨ऱլߜயᚨΔᨠኘຍᑌऱᖙ܂ਢၞױܡԫޡ༼֒ LSSFऄ
ፖMSIऄऱய࣠Δݺଚጠຍᑌଥޏ࿨࣠։ܑ੡ଥڤإ LSSFऄ(modified LSSF)ፖଥڤإ
MSIऄ(modified MSI)Ζ 

ቹԼ੡଺ࡨፖଥڤإ LSSFፖ MSI࣍ش܂଺ࡨ MFCC௽ᐛհؓ݁ᙃᢝ෷९යቹΖ
ڤإଥנ઎אױቹխڼط LSSFऄઌለ࣍଺ࡨ LSSFऄۖߢΔؓ݁ᙃᢝ෷ڶ 0.67%ऱ༼
֒Δۖଥڤإ MSIઌለ࣍଺ࡨ MSIۖߢΔ݁ؓڇᙃᢝ෷Ղڶ 0.92%ऱ༼֒Ζݺڼطଚ
᧭ᢞԱΔڇଥإऄխ܂ࢬऱ࿗֏๠෻ᒔኔ౨ڶயၞޏ LSSFऄፖMSIऄऱய౨Ζ 
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-44' ẫ㨠ⷌ-44' ẫ㨠ⷌ.4*.4*  
ቹԼΕ଺ࡉࡨଥڤإ LSSFፖMSI࣍ش܂଺ࡨMFCC௽ᐛհؓ݁ᙃᢝ෷ 

 
ΰԿαᓳ᧢᙮ᢜإ๵֏ऄ࿨ٽଙ᙮ᢜؓ݁ፖ᧢ฆᑇإ๵֏ऄհኔ᧭࿨࣠ 
    ছ૿༼ࠩΔଙ᙮ᢜؓ݁ፖ᧢ฆᑇإ๵֏ऄ(cepstral mean and variance normalization, 
CMVN)[3]ኙᠧಛᛩቼՀऱ፿ଃᙃᢝ෷ࣔڶ᧩ऱၞޏΔڼڂຍᇙݺଚቫᇢലٺጟᓳ᧢᙮
ᢜإ๵֏ऄፖ CMVN ऄ܂࿨ٽΔრܛ଺ࡨ MFCC ௽ᐛ٣ᆖመ CMVN ऄ๠෻৵Δא٦
ڇऱய࣠Ζࢤګףڶܡਢٽଚྒྷᇢຍᑌऱ࿨ݺՀא๠෻Ζ܂๵֏ऄ։ܑإጟᓳ᧢᙮ᢜٺ

।ԲխΔݺଚᖞ෻Ա CMVNऄ։ܑ࿨ٽ TSN-1ΕTSN-2ΕERTFΕLSSFΕMSI֗ ARMA
ៀंऄ(MVA)[5]ֱٺऄࢬ൓ऱؓ݁ᙃᢝ෷Δࠡխ AR ፖ RR ։ܑ੡ઌለ࣍໢ԫ CMVN
࿨࣠հ࿪ኙᙑᎄ૾܅෷(absolute error rate reduction)ࡉઌኙᙑᎄ૾܅෷(relative error rate 
reduction)Ζ 
 
।ԲΕٺᓳ᧢᙮ᢜ๠෻ऄ࣍ش܂ CMVN๠෻৵հMFCC௽ᐛࢬ൓հᙃᢝ෷(%) 

Method Set A Set B Set C average AR RR 
CMVN 85.03 85.56 85.60 85.40 ѧ ѧ 

CMVN+TSN-1 89.42 90.03 89.03 89.49 4.10 28.05 
CMVN+TSN-2 89.59 90.36 89.34 89.76 4.36 29.90 
CMVN+ERTF 89.61 90.67 89.28 89.85 4.45 30.52 
CMVN+LSSF 89.12 90.17 89.16 89.48 4.09 27.98 
CMVN+MSI 89.59 90.56 89.60 89.92 4.52 30.95 

CMVN+ARMA(MVA) 88.12 88.81 88.50 88.48 3.08 21.09 
     
 Հ༓រ෼ွΚאנ઎ױଚݺ।ԲऱᑇᖕΔط
Ϥ1  TSN-1 ऄ࣍ش܂ CMVN ๠෻መऱ MFCC ௽ᐛΔࠡၞޏᙃᢝ෷ऱய౨Լ։᧩ထΔઌ
ለ࣍໢ԫ CMVNऄۖߢΔڇ Set AΕSet Bፖ Set CᛩቼՀ։ܑࠠڶ 4.39%Ε4.47%ፖ 3.43%
ऱᙃᢝ෷ޏ࿳Δڼ࿨࣠Լ։ڇٽܭ TSNऄऱ଺֮ࡨ᣸[8]ᇙհ࿨࣠Δઌለ࣍।ԫܧࢬ෼
հ TSN-1ޏ᧩ࣔآࠀ࿳࠹ᠧಛᐙ᥼հ଺ࡨ MFCC௽ᐛऱ෼ွΔڇຍᇙΔTSN-1ऄ౨ڶ
ࡨ଺܅૾چயڶ٣ࠃΔCMVNऄբ࣍ڇ౨ױڂհய౨ऱ଺ၞޏ᧩ࣔ MFCC௽ᐛ࠹ᠧಛ
ᐙ᥼ࢬທګհᓳ᧢᙮ᢜՂՀೣฝऱ؈టΔڼڂ TSN-1 ౨໢ొ๠෻ᓳ᧢᙮ᢜإ๵֏ऱຝ
ٝΔۖ൅ࠐᙃᢝ෷ऱޏ࿳Ζ׼؆ΔݺଚՈ࿇෼ࠩΔTSN-1 ࡉ TSN-2 ൓࿨࣠հၴऱ஁ࢬ
၏᧢൓ለ՛Δ܀ TSN-2ऱᖞ᧯ᙃᢝ෷ᝫਢֺ TSN-1ࠐऱړΔ٦ԫڻ᧭ᢞ଺ TSNऄխऴ
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ੌᏺ墿إ๵֏ऱޡᨏᚨᇠਢլؘ૞ऱΖ 
Ϥ2 ᅝݺଚנ༽ࢬऱᄅֱऄ ERTFΕLSSFፖ MSI ऄ࣍ش܂ CMVN๠෻৵հ MFCC௽ᐛ
ழΔઌለ࣍໢ԫ CMVNࢬ൓ऱᙃᢝ෷ۖߢΔઃ൅ࠐԼ։᧩ထऱޏ࿳Δڇڕࠏ Set Aᛩ
ቼՀΔຍԿጟֱऄ։ܑࠠڶ 4.58%Ε4.09%ፖ 4.56%ऱᙃᢝ෷༼ࣙΔق᧩ڼԱຍԿጟᄅ
ֱऄፖ CMVNړߜڶऱࢤګףΖۖԿଡᄅֱऄխΔERTFࡉ MSIऄ।෼ऱຟֺ TSN-1
ࢨ TSN-2ऄړޓΔឈྥ LSSFऄ।෼࿑լڕቃཚΔ܀ਢױ౨଺࣍ڇڂছԫᆏࢬಘᓵࠩऱΔ
଺ࡨ LSSF ऄࡉ MSI ऄױ౨ᄎขس᙮ᢜᙊዥ(leakage)෼ွհᣊऱլߜயᚨΔڇڼڂ৵
૿Δݺଚലאଥڤإ LSSFऄፖMSIऄ࿨ٽ CMVNऄࠐ൶ಘࠡױ౨ऱၞޏய࣠Ζ 
Ϥ̂ڇհছऱ।ԫᑇᖕ᧩قΔᅝ࣍ش܂଺ࡨ MFCC ௽ᐛழΔERTF ।෼ֺ LSSF ࡉ MSI
ऄړޓΖ܀ਢڇຍᇙݺଚ࿇෼ᅝຍֱࠄऄࡉ CMVN ऄ࿨ٽழΔࠡய࣠᧢൓Լ։൷२Δ
ຍՈრ࠺ထ CMVNऄᒔኔբኙ଺ࡨMFCC௽ᐛ܂ԱԼ։ڶயऱൎ೜ࢤ๠෻Δۖࠌ৵ᥛ
ऱݾၞޏ๬Δࠡၞޡऱ़ၴઌኙ᧢՛Ζ 
ࡨऱΔ଺ࠩ༽ࢬհছڕ     LSSFऄࡉMSIऄױ౨ڶ᙮ᢜᙊዥ(leakage)ऱ౒រΔݺڼڂ
ଚຍᇙشࠌհছࢬ૪ऱଥڤإ LSSFፖMSIऄΔ࣍ش܂ CMVN๠෻৵ऱMFCC௽ᐛΔ
Nࡨছ٣ല଺ݧऄᇖሿऱ࿓ֱࠟڼڇܛ រऱCMVNऄ๠෻৵հMFCC௽ᐛ٨ݧଊՂԫ
ዧኑ࿗(Hanning window)Δᨠኘຍᑌऱᖙ܂ਢၞױܡԫޡ༼֒଺ࡨ LSSFऄፖMSIऄ࿨
ٽ CMVNऄऱய࣠Ζ 
ቹԼԫ੡଺ࡨፖଥڤإ LSSFፖMSI࣍ش܂ CMVNऄ๠෻৵MFCC௽ᐛհؓ݁ᙃᢝ෷
९යቹΖڼطቹאױ઎נΔڇ࿨ٽ CMVNऄ৵Δଥڤإ LSSFऄઌለ࣍଺ࡨ LSSFऄۖ
ڶΔߢ 0.85%հؓ݁ᙃᢝ෷ऱ༼֒ΔٵᑌچΔଥڤإ MSIऄઌኙ࣍଺ࡨ MSIऄۖߢΔ
ڶ 0.47%հؓ݁ᙃᢝ෷ऱ༼֒ΔԲृؓ݁ᙃᢝ෷ઃ၌መ 90%Ζڼ؆Δᅝፖ।Բऱᑇᖕֺ
ለΔݺଚ઎ࠩຍࠟጟଥֱڤإऄ࿨ٽ CMVN ऄ৵᜔݁ؓڇᙃᢝ෷Ղઃࣔ᧩ᚌ࣍ፖ
CMVN ऄ࿨ٽऱ TSN-1 ऄ(89.49%)ፖ TSN-2 ऄ(89.76%)ΔאՂ࿨࣠ຟ᧩قԱຍᑌऱଥ
 ଺ֱऄऱ౒រΔۖ༼֒ࠡய౨Ζၞޏயڶᒔኔ౨إ
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ቹԼԫΕ଺ࡉࡨଥڤإ LSSFፖMSI࣍ش܂ CMVNऄ๠෻৵MFCC௽ᐛհؓ݁ᙃᢝ෷ 
 
ΰ؄αᓳ᧢᙮ᢜإ๵֏ऄ࿨ٽଙ᙮ᢜؓ݁ፖ᧢ฆᑇإ๵֏࿨ٽ۞೯ូڃ೯

ኪؓ݁ៀंᕴऄհኔ᧭࿨࣠ 
    ছ૿༼ࠩΔଙ᙮ᢜؓ݁ፖ᧢ฆᑇإ๵֏࿨ٽ۞೯ូڃ೯ኪؓ݁ៀंᕴऄ(MVA)[5]

105



౨ജኙᠧಛᛩቼՀऱ፿ଃ௽ᐛࣔڶ᧩ऱൎ೜֏ய࣠Δۖ൅ࠐԼ։᧩ထऱᙃᢝ෷༼֒Δ׊

ࠡய౨ᚌ࣍ CMVNΔڇڼڂຍᇙΔݺଚലٺጟᓳ᧢᙮ᢜإ๵֏ऄፖMVAऄ܂࿨ٽΔՈ
༉ਢނຍإࠄ๵֏ऄ࣍ش܂ᆖMVAऄ๠෻৵հMFCC௽ᐛՂΔאᛀီຍإࠄ๵֏ऄፖ
MVAऄਢࢤګףڶܡΖኔ᧭խݺଚ๻ࡳMVAऄխऱ ARMAៀंᕴၸᑇ੡ 2(೶ᅃ[5])Ζ
ٽԱMVAऄ։ܑ࿨נଚ٨ݺՀ।ԿխΔڇ TSN-1ΕTSN-2ΕERTFΕLSSFፖMSIֱٺ
ऄࢬ൓ऱؓ݁ᙃᢝ෷Δࠡխ ARፖ RR։ܑ੡ઌለ࣍໢ԫ MVAऄհ࿨࣠ऱ࿪ኙᙑᎄ૾
 ෷(relative error rate reduction)Ζ܅ઌኙᙑᎄ૾ࡉ෷(absolute error rate reduction)܅
 

।ԿΕٺᓳ᧢᙮ᢜ๠෻ऄ࣍ش܂MVA๠෻৵հMFCC௽ᐛࢬ൓հᙃᢝ෷(%) 
Method Set A Set B Set C average AR RR 

MVA 88.12 88.81 88.50 88.48 ѧ ѧ 

MVA+TSN-1 89.58 90.19 89.74 89.84 1.36 11.80 
MVA+TSN-2 89.81 90.34 89.84 99.00 1.52 13.19 
MVA+ERTF 89.75 90.81 89.64 90.07 1.59 13.80 
MVA+LSSF 89.63 90.87 89.94 90.14 1.67 14.49 
MVA+MSI 89.71 90.91 89.94 90.19 1.71 14.84 

 

ऱ༼ࣙΔۖ᧩ࣔڶMVA৵Δࠡய౨ٽ࿨ڇΔTSN-1נ઎ױ।Կط     TSN-1ࡉ TSN-2
հၴऱ஁ฆឈྥլࣔ᧩Δ܀ਢઊฃऴੌᏺ墿إ๵֏ޡᨏऱ TSN-2 ऄսྥ।෼ֺለړΔ
ઌኙ࣍໢ԫ MVA ऄऱ࿨࣠ۖߢΔ࿨ٽԱ MVA ऄհ TSN-1 ֒༽ᙃᢝ෷Ղ᜔݁ؓڇ
1.36%Δۖ TSN-2 ༼֒Ա 1.52%Ζڼ؆Δ࿨ٽ MVA ऄհ৵Δݺଚ༼נऱ ERTFΕLSSF
ፖMSIԿଡֱऄսᚌ࣍ TSN-1ፖ TSN-2Δۖ ࠡխאMSIऄ່ړΔڇᙃᢝ෷Ղ༼֒ 1.71%Δ
੡ڻࠡ LSSFऄΔ༼֒Ա 1.67%Δ ERTFऄঞ༼֒Ա 1.59%ΖᕣጥڼڕΔݺଚࣔױ᧩઎
 ຟբԼ։൷२Ζߢऱᙃᢝ෷༼֒࿓৫ઌኙۖࠐ൅ࢬMVAऄ৵Δٽ࿨ڇऄֱࠄΔຍנ
ࡨ༴૪հ଺ࢬছᆏٵڕ     LSSFऄፖMSIऄऱױ౨౒រΔڇຍᇙΔݺଚٵᑌྒྷچᇢଥ
ڤإ LSSFऄፖMSIऄ࿨ٽMVAऄऱய࣠Δڇܛ଺ࡨ LSSFऄࢨMSIऄհᇖሿऱ࿓ݧ
ছ٣ല଺ࡨN រհMVAऄ๠෻৵հMFCC௽ᐛ٨ݧଊՂԫዧኑ࿗(Hanning window)Δ
ᨠኘຍᑌऱᖙ܂౨ܡ൅ޡၞࠐΖ 
ቹԼԲ੡଺ࡨፖଥڤإ LSSFፖMSI࣍ش܂MVAऄ๠෻৵MFCC௽ᐛհؓ݁ᙃᢝ෷९
යቹΖڼطቹאױ઎נΔڇ࿨ٽ MVA ऄऱছ༼ՀΔଥڤإ LSSF ऄઌለ࣍଺ࡨ LSSF
ऄۖߢΔڶ 0.65%ؓ݁ᙃᢝ෷ऱ༼ Δ֒ۖ ଥڤإMSIऄઌኙ࣍଺ࡨMSIऄۖߢΔڶ 0.48%
ؓ݁ᙃᢝ෷ऱ༼ Δ֒ڼڂΔݺଚ᧭ᢞԱࠟጟଥֱڤإऄຟ౨ࠌ଺ֱࡨऄၞԫޡ༼֒ய౨Ζ 
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նΕ࿨ᓵ 
ࡨଚ࿇෼Δ଺ݺMFCC௽ᐛழΔࡨ଺࣍ش܂ڇ TSNऄ(TSN-1)ऱऴੌᏺ墿إ๵֏ޡᨏਢ
ທࠡګய࣠լኦऱ଺ڂհԫΔபޡڼװᨏࢬ൓հ TSN-2 ऄڶױܛԼ։᧩ထऱ।෼Δۖ
࣍ऱԿጟᄅֱऄΔઌለנ༽ଚݺ TSN-1ፖ TSN-2Δຟ౨ࠋޓڶऱய Δ࣠ۖ ࠡխԾא ERTF
ऄհ।෼່ړΔ࣍ط ERTFፖ TSN-2ڇڶ׽๻ૠழၴ٨ݧៀंᕴऱ࿓ݧՂڶ஁ܑΔຍ।
ଚݺق ERTF๻ૠࠐנऱៀंᕴΔֺ ದ TSN-2ऄऱៀंᕴޓ壄ᒔچኙ௽ᐛհᓳ᧢᙮ᢜ܂
࣍ش܂ऄֱࠄଚലຍݺ๵֏Ζۖᅝإ CMVNऄࢨ MVAऄ๠෻৵ऱ MFCC௽ᐛழΔ࿇
෼،ଚઌለ࣍໢ԫ CMVN ऄࢨ MVA ऄۖߢΔ౨൅ࠋޓࠐऱᙃᢝ෷Δݺ׊ଚנ༽ࢬհ
Կጟᄅֱऄऱ।෼༓׏սྥᚌ࣍ TSN-1ऄፖ TSN-2ऄΖڼ؆Δݺଚ൶ಘ LSSFऄፖMSI
ऄױ౨ڇژհ᙮ᢜᙊዥ(leakage)ऱ౒រΔۖ༼נઌኙᚨऱଥֱإऄΔ࿇෼ຍࠄଥإऄ౨ 
ࡨ࿳଺ޏޡԫၞޓ LSSFऄፖMSIऄऱய౨Ζ 
ૉ༉Կጟᄅֱऄֺ܂ڼ࢖ለΔERTFऄፖ LSSFऄሎጩᓤᠧ৫ለՕΔMSIऄঞઌኙለ՛Δ
ឈྥ ERTFऄኙ଺ࡨ MFCC௽ᐛۖߢΔ।෼ֺ LSSFऄፖ MSI ऄࠐ൓ړΔ܀ᅝ،ଚ܂
࣍ش CMVNऄࢨ MVAऄ๠෻መ৵ऱ MFCC௽ᐛழΔࠡய౨ऱ஁ฆࢤբᆖৰ՛Δຍრ
࣍ထሎጩᓤᠧ৫ለ՛ऱMSIऄઌኙ࠺ ERTFऄፖ LSSFऄۖߢΔױ౨ࠋޓڶऱᚨࢤشΖ 
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ኴ૞ 

ሽ࣍ኙڗ෗෤࣐ࠄΔຍԫڗ෗෤࣐ऱۿઌ᧯ݮृࢨ੡࿇ଃઌ२ڂܶץڗխ֮ᇙ૿Δዧڇ

ᆰ᎖ܗඒᖂࡉ፿֨ߢ෻ᖂऱઌᣂઔڶࠠߒઌᅝრᆠΖݺଚሎشପᕂᒘऱ๻ૠ෻ࡉ࢚ሽ՗

ᇷಛΔ๻ૠԫଡլႊٛᘸᐙቝ๠ڗ൓ࠩऱ֮אױጻᎾጻሁٽऱ࿇ଃᇷಛΔ಻ࠎ༽ࢬࠢဲ

෻ݾ๬Δ༉ݮࠩބאױଃઌ२ዧڗऱֱऄΖᆖመኔ᧭ᢞࣔΔא༼ٌնଡ੷۟ԫଡ৬ᤜڗ

੡ૻΔݺଚऱֱऄࢬ৬ᤜऱݮଃઌ२ڗႃΔ౨ജܶץԫ౳ፖറᄐ࠹ᇢृࠎ༽ࢬऱൄߠᙑ

 ႃΖڗܑ

ᣂ᝶ဲΚዧڗઔߒΕዧڗჼ༈ΕዧڗዌڗᇷಛΕሽᆰ᎖ܗ፿ߢඒᖂΕ፿֮ᎁव 

1. ១տ 

ଡܑዧڗਢዌګխ֮ऱഗء໢ۯΔڶ۞աऱ࿇ଃΕ࿝྽ዌທፖࢬ᥋൅ऱრොΙຘመଡܑ

ዧګิࢬڗऱ໢ဲڗΕᠨဲڗ࿛ဲნΔࠉᖕዧ፿፿ऄิګխ֮؁՗ΖڼڂΔᖂ฾ዧڗឈ

ྥլਢᖂ฾ዧ፿ᄎᇩऱؘ૞ՠ܂Δ܀থਢၞၸխ֮ᖂ฾ृԫଡૹ૞ऱפᓰΖٵழΔ፿ߢ

ਢઔޓ፿რΔ࠷ឯࠐ(grapheme)᧯ݮऱڗ֮ࡉऱᜢଃ(pronunciation)ߢ۶ຘመ፿ڕृشࠌ
ڂ༈ބ๬ݾ᧯ຌشܓ۶ڕᓵ֮൶ಘءΔڼڂറࣹऱૹ૞ᤜᠲΖࢬᎁवᖵ࿓ऱᖂृߢ፿ߒ

੡࿇ଃݮࡉ᧯२ۖۿ୲࣐෗෤ऱዧڗΔࠎאሽᆰ᎖ܗඒᖂࡉᎁव፿ߢᖂऱઔߒհشΖ 
խ֮؁՗ψվ֚Ղ֑ݺଚࠐᇢ໱၇လωܶץԫଡࠢীऱᙑᎄΙᇢ໱ឈྥਢԫଡڇژ

ऱဲნΔז।ەᇢऱ໱ࢬΔ܀ਢೈॺൣቼ௽௘Δܡঞڇຍԫ؁ࠏᇙ૿ऱψᇢ໱ωᚨޏ੡

ψؑ໱ωΖψᆖ෻૞ݺዌ၇ԫຝૠጩᖲωຍଡ؁՗ՈڶԫଡᙑᎄΚψዌ၇ωᚨޏ੡ψ᝜၇ωΖ

ឈྥڇ១᧯ڗऱᛩቼխֺለڍऱԳᄎᐊψዌ၇ωΔ܀ਢڇ᜗᧯խ֮ऱشࠌᆢխΔՈڶԳ

 ψዌ၇ωΖګψ᝜၇ωᐊނ
ऱംᠲ[4]Ζᜰۿᣊڶऱ෼ွΔ૎֮Ոڶ௽ࢬլਢխ֮ࠀნဲشᎄۖۿଃ२ݮ੡ڂ

 ੡ޏΙ“roll” ᚨڗԫଡᙑᎄऱܶץ ”.ᎅΔ“John plays an important roll in this eventࠐࠏ
“role”Ζࠡ ڗࠄቝՀ٨ຍԫה Δิຟਢ࣐෗෤ڗऱᒤࠏΔprincipleࡉprincipalΕteenࡉteamΕ
thereࡉtheirΕleakࡉleekΕwaitࡉweightΕknowsࡉnose֗אknitࡉnit࿛࿛Ζ 

ԫ؁ނωᇢᠲ[6]Ζඒஃڗᙑޏ՛ᖂഏ፿ઝᇢᠲऱψاഏ࣍ش๯ൄڗऱዧۿଃ२ݮ
ऱխڗᙑڶຍԫ؁൅אΔڗԺऱᙑ֧ܮઌᅝڶԫଡࠠ׼ګޏڗᒔऱխ֮؁՗ࠡխԫଡإ

֮ᅝ܂ᇢᠲΔ૞ྒྷ࠹ޣᖂإޓ׊ࠀנބسຍԫᙑڗΖຍԫᣊऱᇢᠲՈݮ᧢אױ੡խ֮ऱ
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෼Δথਢഏփ؆૎֮נխ֮ᇢᠲխֺለ֟ڇዥဲᇢᠲឈྥ܌ዥဲᇢᠲ(cloze) [9, 13]Δ܌
ྒྷ᧭Δڮڕ壂ΕGREࡉՕᖂਐە࿛Δ༓׏ਢؘྥආشऱᠲীΖ 

ຝߒPeng [15] ઔࡉΖTaftΕZhuشڶՂՈઌᅝߒ෻ᖂऱઔ֨ߢ፿ڇڗऱዧۿଃ२ݮ
ଈۯᆜኙ࠹࣍ᇢृऱဲნެ࿜(lexical decisions)ፖ֘ټࡎᚨ(naming responses)ΖTsai࿛ᖂ
ृ[16]ঞઔߒઌ२ዧڗऱڗᑇऱڍኒ(neighborhood size)ኙဲ࣍ნެ࿜ፖᔹᦰऱᐙ᥼Ζ
Yeh ࡉ Li [17] ઔߒ२ڗݮኙ࣍ԫଡᑵᒭऱխ֮ᔹᦰृࢬച۩ऱဲნެ࿜ऱᐙ᥼Ζ 

࿇ଃઌ२ऱױڗ౨ط៶אױሽ՗ဲࠢࢬಖሉऱᇷಛܒࠐឰΙઌኙچΔݮ᧯ઌ२ऱڗ

ঞڶآࡸ១࣐ऱֱऄބࠐ༈Ζᐙቝ๠෻ݾ๬ឈྥױ౨شڶΔ܀ਢኙ࣍੡ᑇฒڍΕ׊२ۿ

๻ૠऱࢬ༚߶ڹشൕᚨ֮ءΖࠋլࢢ๬ऱழயஎݾᐙቝ๠෻شᎅΔᚨࠐڗ᜗ᓤऱዧڤֱ

ପᕂᒘנ࿇[2]Δޏ᧢ପᕂᒘऱ଺ࡨ๻ૠΔ೶ە଺ء੡Աᇖߩዧݮڗڗ౒໌ࢬڗທऱዧ
 ऱֱऄΖڗऱዧۿ२᧯ݮ༈ބڗ੡ٚ۶ዧאױᇷಛ[1]Δ൓ࠩԫ୚ݮዌڗ

࿨ࠩބࢬٽଃݮઌ२ऱዧڗڗႃհ৵Δݺଚߣشܓዚ(Google)ऱჼ༈տ૿ࠎ༽ࢬऱ
ᇷಛࠐඈࠩބࢬݧऱڗႃऱଢᙇڗΔ៶ڼඈݺࠫૻאױݧଚࠎ༽ࢬऱ२ڗۿऱڗᑇΖኔ

᧭࿨࣠᧩قΔլጥאటԳ࠹ᇢृृࢨറ୮რ܂ߠ੡ေֺऱᑑᄷ࿠ூΔݺଚऱߓอࠎ༽ࢬ

ऱڗႃຟ౨ڶயܗ࠰ඒஃᒳᙀ೏঴ᔆऱψޏᙑڗωᇢᠲΖ 
รڇଚݺ 2ᆏಘᓵشܓ۶ڕପᕂፖዌݮᇷಛࠐ৬ዌԫଡބ༈२ڗݮऱ՗ߓอΖڇร

3ᆏಘᓵބ༈ዧٵڗଃΕ२ଃڗऱݾ๬ംᠲΖڇร 4ᆏಘᓵߣشܓ۶ڕዚჼ༈ࢬ൓ऱᇷ
ಛΔࠐေֺݮଃઌ२ऱڗᅝխୌԫڗࠄਢֺለ֧ࠠܮڶԺऱᙑܑڗΖݺଚڇร 5ᆏ༼໴
։࣫ઌᣂऱྒྷᇢऱ࿨࣠Ζรࡉ 6ᆏঞਢ១໢ऱ࿨፿Ζ 

2. ჼ༈ݮ᧯२ۿऱዧڗ 

รڇଚݺ 1՛ᆏտฯԫࠄ२ڗݮΔڇร 2՛ᆏ១૪ପᕂᙁԵऄ۶ڕലխ֮ڗᒳᒘΔڇร
3՛ᆏᎅࣔݺଚၞޏ۶ڕ෼ڶପᕂᒘऱᒳᒘֱڤΔ່৵ร 4՛ᆏᎅࣔݺଚشܓᣂ࣍ଡܑ
ዧڗऱᇷಛބࠐ༈२ڗݮऱֱऄΖ 

2.1 २ڗݮኔࠏ 

ቹԫΕቹԲࡉቹԿܶץԿՕᣊ୲࣐ჶ෗ऱխ֮ڗΔݺଚػ़شലઌۿऱխ֮ڗ೚։ᆢΖ

ቹԫᅝխऱ२ڗݮΔ஁ܑ࣍ڇ׽࿝ቤऱᐋ

ԫଡٵࠆ։ڗݮᆢऱ२ٺ۩ΖቹԲรԫڻ

ຝٙ(component)ۖॺຝଈΖቹԲรԲ۩ٺ
ᆢ२ڗݮঞਢ։ٵࠆԫଡຝٙٵழՈਢຝ

ଈΖቹԲิٺऱ२ڗݮຟڶլٵऱ࿇ଃΖ

ቹԿ੡քิ։ٵࠆԫຝٙऱٵଃฆᆠڗΖ

࿇ଃፖփຝ࿨ዌઌ२ऱ२່ڗݮ౨ທګ፿

֮ᖂ฾ृᖂ฾ՂऱܺឫΖ 

γβπυί!ԉԊԋ!ҖҗҘҙ
҆Й!Ϯц!ΓΕ!҂ ߍ҃! !ٙпс

ቹԫΕ׌૞஁ฆڇ࿝྽ᐋڻऱዧڗ 

૞ڶய෷ݮࠩބچ᧯ઌ२ऱዧࠀڗլߠ

൓ਢԫٙ១໢ऱࠃΖ៶طቹቝֺኙֱऄנބ

Ӊ׎ !ࠠᒞᅿဍ!ᖼᄬར इ૶ी
༜༝঩!⅂೵৩ยࠂ

ቹԿΕݮ᧯ፖ࿇ଃઃઌ२ऱዧڗ 

ᓍࠂ!ར !ྎഉ७!ะ౜!ᇘස!བᑎ
ӈӉ!ࣧ੽ޒ !ࣩӢ֚ѥ!໔໕ଢ໒

ቹԲΕݮ᧯ઌ२ऱዧڗ 
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ψዌωፖψ᝜ω੡אઌᅝऱܺᣄΖڶਢথ܀౨ऱֱऄΔױΔឈྥਢԫଡڗऱዧۿઌ᧯ݮ

ऱຝٙࠆ٥ࢬೡ׳ऱڗଚᄎᤚ൓ຍࠟଡݺऱᐙቝऱழଢΔڗณֺለຍࠟଡۚאΔឈྥࠏ

ψἍωᄎૹᦤΖኔᎾՂΔᆖመݺଚྒྷᇢΔຍᑌऱऴᤚਢԫଡᎄܒΖݮڗᚾऱ৬ዌΔࠀլ

অᢞࠆ٥ऱຝٙऱڶࢬᐙቝរ(pixels)ຟؘႊ౨ജૹᦤΔࠆ٥ঁܛऱຝٙᒔኔڶઌᅝऱᐙ
ቝរᚨᇠאױૹᦤڇԫದΖ 

ೈԱאՂࢬ༴૪ऱψॺݙભૹᦤຝٙωऱംᠲհ؆Δዧڗհၴऱઌۿᣂএᝫܑڶऱ

ᣊܑΖאψ୉ωࡉψႽω੡ࠏΔլጥݺଚނຍࠟଡڗऱᐙቝ۶ؓڕฝΔࢬ൓ऱ່Օٌႃ

ऱᐙቝរऱᑇၦױ౨ຟլ୲࣐ᨃݺଚᎁࡳຍࠟଡዧڗऱઌࢤۿΖࢬᘯψઌۿωΔࠡኔڶ

ᑇऱڍਢՕ܀ΔۿψႽωઌࡉԫଡԳຟᄎᎁ੡ψ୉ωޢࡳΔឈྥլԫڇژైڂᨠऱ׌ࠡ

Գᚨᇠຟᄎ൷࠹ຍᑌऱ઎ऄΖڇਬԫױࠄ౨ਢڶԫࠄᄕጤऱᚨشհխΔݺଚࢨ๺ᝫᄎݦ

ඨݺଚऱ࿓ࠩބאױڤψߦωࡉψႽωऱઌۿ๠Δຍழψߦω੷۟׽ਢψႽωऱփຝዌ

ٙऱԫ՛ຝ։ΖԾᓮ઎ቹԿխรԲ۩֫׳ᢰऱڗᆢΔהଚٵ٥։ࠆऱຝٙנ෼ڇլٵऱ

౨༉լ՛Δೈױႊၞ۩ऱૠጩၦࢬਢ܀Δچհࣳش๬ឈॺශྤݾᆜΖຍழଢᐙቝ๠෻ۯ

Աؓฝᝫႊ૞ەᐞ࣋Օΰृࢨᜍ՛αऱംᠲΖլጥਢؓฝृࢨਢ࣋ՕΔຟႊ૞ެؓࡳฝ

ၦΕؓฝֱ࣋ࡉٻՕऱֺࠏΔຍԫެࠄ࿜ຟᄎࠌ൓ૠጩ᧢൓ઌᅝچᓤᠧΖ֧ۖঁܛԵࠡ

ຒݶழܛࠎ༽ሁ։࣫(texture analysis)Δૠጩຒ৫ՈਢৰᣄెڕࠏᓤᠧऱዝጩऄΔףޓה
ऱࣚ೭Ζ 

Ղ૪ऱಘᓵΔᝫওૻࠟڇଡዧڗऱऴ൷ֺኙՂΖە࣠ڕᐞࠩዧڗऱᑇၦᡓՕΔૠጩ

ऱ֛פ༉ױ౨ףޓ౛ழ၄ԺΖխ֮ᖑڶ၌መ 22000ଡዧ[11]ڗΔאࢬऴ൷شᐙቝֺኙڗ
ऱઌۿ৫ႊ૞ৰՕऱૠጩၦΙֶ࣠ڕ౒ԫڶࠄயᇷಛ֭གΔऴ൷ֺለٚრࠟଡዧڗऱ

ᇩΔ༉ؘႊ๠෻၌መ 4.8 ᏙጟิٽΖەڶ׽࣠ڕᐞݺഏඒߛຝנ༽ࢬऱ 5401 ଡխ֮ൄ
 Ζٽ2900ᆄጟิ ڶΔঞՕપᄎ[3]ڗش

ဲࠢᒳᤊृشܓխ֮ڗऱຝଈ(radicals)Δലխ֮ࠢڗڇڗխิڶ៣ၞچ۩։੄Δڂ
ऱ٥ڶᆢխᖑڗࠄ՗ΖຍࠏࠄଚᜰԱԫݺቹԲխऱรԲ۩Δڇ๠ऱΖشڶຝଈಛஒਢڼ

᥆ຍٵࠩބխऱਬԫ੄ᆵΔࠢڗխ֮ڇאױଚݺאࢬऱຝଈΔڗխ֮ࠄຝٙΔઃ੡ຍٵ

ԫଡڗᆢऱխ֮ڗΖྥۖ٠ᔾဲࠢᒳᤊृࡳᆠऱխ֮ຝଈᇷಛਢլജऱΖڇቹԲխรԫ

۩ऱխ֮ڗᆢΔڶထٵ٥ऱຝٙΖྥۖຍࠄຝٙࠀॺխ֮ڗऱຝଈΔᜰࠏᎅࣔΚψ᙭ω

֗ψঢωࠢڗڇխ։᥆ࠟ࣍ଡլٵऱຝଈΖ 

2.2 ପᕂ଺ࡨᒘ 

ପᕂᙁԵऄא 25ଡ܂ڗ੡ഗء໢ۯΔ໌ທנԫ୚։ᇞዧڗऱֱऄΙຘመຍ 25ଡڗऱิ
ਢ܀ભΔݙऱֱऄΔឈྥլਢॺൄڗᙁԵࠩሽᆰխΖପᕂᙁԵऄ։ᇞዧڗዧނΔ༉౨ٽ

ຍԫଡ։ᇞଡܑዧڗ੡ഗء໢ۯऱנ࿇រΔᇿݺଚ༈ބ२ڗݮऱᏁޣਢઌ൷२ऱΖ 
।ԫ։ګԿଡ׌૞ຝ։Δ׳ۖؐط։ܑנ٨ቹԫࠩቹԿຝ։ዧڗऱପᕂᒘΖڇԫຝ

ᙁԵψԫԫԫִ८ωऱᇩΔڕࠏΔڗପᕂᒘᙁԵխ֮شאױᇘପᕂᙁԵऄऱሽᆰՂΔڜڶ

༉אױ൓ࠩψ᙭ωΰုΚψԫԫԫִ८ωਢ૎֮᝶ᒌՂऱMMMBCαΖڇପᕂᙁԵऄխΔ
ٽ٨౨ิݧ࿇෼ࠡխऱ՗אױଚݺհΔߢऱցైΙ១ۖݧڶ੡ԫଡګຟ๯։ᇞڗଡዧޢ

ױΔਢԫଡؾऱପᕂᒘऱᑇࠆ։ࢬڗΔຘመૠጩଡܑዧچྥ᧩૞ຝٙΖৰ׌ऱڗԫଡګ
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ࠏΖᜰڤऱֱڗۿઌࡳެא

ࡉᎅψჶωאױଚݺᎅΔࠐ

ψᗮωਢઌۿऱΔڂ੡הଚ

ऱପᕂᒘᇙຟזڶ।ψ೏ω

ຍଡຝٙऱψԽՑִωΖݺଚ

Ո࣐᎘אױ࿇෼ΔψᘾωΕψጟω

Աψૹωຍԫࠆψᆭω։ࡉ

ଡຝٙΔڂ੡הଚऱପᕂᒘ

ຟܶץԱψێԼՒωຍԫଡ

՗٨ݧΖ 

।ԫΕ ԫࠄዧڗऱପᕂΰ଺ࡨαᒘ 
ዧڗ ପᕂᒘ ዧڗ ପᕂᒘʳ ዧڗʳ ପᕂᒘʳ
Փʳ Լԫʳ ᙭ʳ ԫԫԫִ८ ᘾʳ ՑԫێԼՒ
Ւʳ Ւʳ ঢʳ ԫԫՕ՝ʳ ጟʳ ԼՒێֵێ
ՠʳ ԫխԫ ࿐ʳ ԫՑִ՞՞ ᆭʳ ԼՒʳێִ
եʳ ԫԼʳ ෼ʳ ԫՒִ՞՞ ᝜ʳ ִ८ִ֥֥
֎ʳ ێێ֨ ჶʳ ֫ԽՑִʳ ዌʳ ִֵ֥֥ʳ
ʳצ ֨ضێ ᗮʳ ԽՑִʳێ Ⴝʳ Ցִ८ʳض
ʳآ Լֵʳ ٨ʳ ԫըխըʳ ୉ʳ Ցִ՞८ʳ
ʳأ ֵԼʳ ٩ʳ ԫ֥խըʳ ⋢ʳ ִԫՖԫʳ
ʳ ʳ ʳڂ Օʳض ຕʳ ԽԫՖԫʳ
ʳ ʳ ܺʳ ʳֵض உʳ ԳԫՖԫێ
ʳ ʳ ၴʳ ֲըֲʳ ࿂ʳ ՕԫՖԫʳ
ʳ ʳ ၵʳ ֲըִʳ ʳ ʳ

ྥۖΔਬݮࠄणڶპݎ᧢֏ऱዧڗΔପᕂᒘྤ׏ۿऄ༼נࠎ،ଚઌۿऱᢞᖕΙڕࠏ

ψՓՒՠեωڇ٨הࠡࡉ।ԫ່ؐᢰ᥏ۯփऱڗΖຍڗࠄਢࠉᖕ௽௘ऱ։ᇞ๵ঞᇞዌ

ऱΔຍጟ௽௘ऱ๵ঞࠌ൓ݺଚྤऄ᎘شܓ࣐ପᕂᒘऱઌۿ৫ބࠐ༈२ڗݮΖ 
੡Աፂ਍ᙁԵԫଡዧڗլႊ૞኿ᚰ၌መնଡ᝶ऱᙁԵய෷ΔପᕂᙁԵऄ፝რ១֏ਬ

ψஉωऱପᕂᒘᇙΔψԫՖࡉψ⋢ωڇΔڕࠏऱପᕂᒘΖڗለᓤᠧऱዧृࢨڍຝٙለࠄ

ԫωז।ԱψᭉωຍଡຝٙΔ܀ਢڇψ᙭ωࡉψঢωऱପᕂᒘᇙΔψᭉωຍଡຝٙথ๯

១֏ګψԫԫωΖۖψ୉ωऱψՑִ՞८ωڇψႽωऱᇙ૿ໍ׽ՀψՑִ८ωΖ 
੡๻ૠ૞܂ᙁԵய෷א ΔٙପᕂᙁԵऄ១֏זࠐش।ଡܑዧڗऱփᒘ٨ݧຍԫ܂ऄ

ਢאױ෻ᇞऱΖྥۖΔຍᑌऱ១֏࿓ݺࠌݧଚᣄࠉאᅃటኔऱପᕂᒘֺࠐኙڗऱઌۿ

৫ΖڼڂΔݺଚڶ޲ࠀऴ൷ආشପᕂᒘ೚੡ֺለዧڗઌۿ৫ऱഗ៕Ζ੡Ա۞աऱᏁޣΔ

ऱ່՛ዌٙ೚੡נପᕂᙁԵऄؚش᝶ᒌ౨ജא១֏ऱփᒘΔࢬଚ਀༚Ա๯ପᕂᙁԵऄݺ

਀༚଺ঞΖڕࠏլጥψᭉωຍଡຝٙ৻Ꮦᑌ๯១֏Δݺ࣠ڕଚشପᕂᙁԵऄؚψԫՖՖ

ԫω౨ജ൓ࠩψᭉωऱᇩΔ߷Ꮦ༉ലψᭉω๯១֏৵ऱପᕂᒘԫ৳਀༚੡ψԫՖՖԫωΖ

੡ԱڇጠࡅՂࢬڶ೴։Δݺଚጠࡅ଺ࡨऱପᕂᒘ੡ପᕂ଺ࡨᒘΔۖݺଚࢬ৬ዌऱପᕂᒘ

੡ପᕂᇡᒘΖ 

2.3 ପᕂᇡᒘፖዧڗዌݮᇷಛ 

ឈྥᆖመ១֏ࢬ൓ऱପᕂᒘאױ༼֒ᙁԵய෷ΔথՈທݺګଚֺڇኙઌۿ৫ऱܺᣄΖڂ

ଚऱᇷற஄ݺڇᎅΔࠐࠏᇷற஄Ζᜰڗଚऱዧݺ৬ዌࠐᖞऱପᕂᒘݙشࠌଚᙇᖗݺΔڼ

ᇙΔψᭉωΕψ⋢ωΕψஉωΕψ᙭ωࡉψঢωऱପᕂᒘ։ܑኙᚨࠩ ψԫՖՖԫωΕψִԫՖՖ
ԫωΕψێԳԫՖՖԫωΕψԫՖՖԫԫִ՞८ωࡉψԫՖՖԫՕ՝ωΖ 

ೈԱլڂᙁԵய෷ۖ១֏ପᕂᒘհ؆Δݺଚᝫشܓאױዧڗऱዌݮᇷಛࠐ༼೏ݺଚ

Δຍԫઔ[1]ߒऱઌᣂઔݮዌڗԱዧࡨছ༉ၲڣല२Լڇڰऱய࣠Ζխઔೃڗݮ༈२ބ
ऱዌທ௽௘Δԫ౳ຟᎁ੡ڗ๬[11]Ζዧݾऱݮڗڗጟዧٺ৬ዌאױԱԫ୚נ࿇୶ٻֱߒ
ਢֱჇڗΔڇຍ؄؄ֱֱऱ़ၴᇙ૿ΔݺଚԾނאױԫଡዧګ໊֊ڗ༓ଡ՛ຝ։Δޢԫ

ຝ։ຟਢԫଡ՗࿨ዌΙຍԫࠄ՗࿨ዌឈྥױ౨ړإਢဲࠢ٨ࢬऱຝଈΔࠄڶঞլྥΖؾ

ছݺଚආشLee֊໊ዧڗऱֱ[12]ڤΖຍԫֱڤਢאପᕂᒘऱψຑ᧯ڗωΕψڗଈωΕψڗ
٤ওݙڶ޲ࠀڤֱ໊֊ऱנ༽ࢬ࿇Ζᕣጥխઔೃנ࢚ωऱᨠߪڗڻψࡉଈωڗڻωΕψߪ
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ପᕂᒘऱ֊໊ᨠរڇૻ

[1]Δ܀ਢڂ੡ዧߪءڗ༓
൓ࠌ඿።ᚦኦऱዌທΔ׏

໊֊ऱشආࢬছؾଚݺ

ڍፖխઔೃऱ઎ऄڤֱ

 Ζۿᣊࢬ
ڗ٨ऱዧࢬቹԲא

੡ࠏΔאױڗࠄڶൕিऴ

אױڗࠄڶωΙؽՀ૿ऱψࡉՂ૿ऱψխωګ։ᇞױଡຝ։Δቝਢψઉωࠟګ։ᇞٻֱ

๯ֽؓ։ᇞΔቝਢψ෼ωਢطψ׆ωࡉψߠωຍࠟଡຝٙګิࢬऱΙۖڗࠄڶঞਢԫଡ

ࡳެڇΔڼڂΖࠐ໮ದץਢψԳωຝٙ๯ψᩍωຝٙڗᎅψ؅ωຍଡڕ໮ऱ࿨ዌΔᤝץ

ዧڗऱઌۿ৫ழΔݺଚٵאױழەᐞዌݮᇷಛࢬࡉ։ࠆऱઌٵຝٙຍࠟଡైڂΖ 
ឈྥዧࠡڶڗ઎ۿ۞ྥऱዌڤֱݮΔ܀ਢࠀॺޢԫଡᖂृئृࢨ፿ृشࠌຟᎁٵਬ

ԫ֊ֱ໊ڤΖቹ؄ਢLee֊໊ዧڗऱዌ[12]ڤֱݮΔޢଡዌڤֱݮՀֱڶԫଡዧ܂ڗ੡
ᒤࠏΖ੡ԱಖᙕዌڤֱݮΔݺଚᓿղዌڤֱݮᒳᇆ(אՀጠ੡ዌݮᒳᇆ)Δڇቹ؄ᇙ૿Δ
ൕݧࠉՂࠩՀطΕ׳ࠩؐط 1ᇆၲࡨᒳᇆΖዌݮխऱԫଡ՛ֱჇ।قԫଡ՗࿨ዌΔԫଡ
ዧڶאױڍ່ڗԿଡ՗࿨ዌΔۖݺ׊ଚشᑇڗཙຍࠄຝٙᒳᇆ(אՀጠ੡ዌٙᒳᇆ)Ζࠉ
ᅃପᕂ೴։՗࿨ዌऱֱڤΔቹ؄Ղ٨່ؐᢰऱڗਢຑ᧯ڗΔࠡהऱڗຟڶ՗࿨ዌΔאࢬ

ጠ੡։᧯ڗΖڇ։᧯ڗᇙ૿Δዌٙᒳᇆ 1ᇆऱ՗࿨ዌጠ੡ڗଈΙ࣠ڕԫଡ։᧯׽٥᜔ڗ
ଡ՗࿨ዌऱᇩΔዌٙᒳᇆࠟڶ 2ᇆऱ՗࿨ዌ༉ਢߪڗΖ࣠ڕԫଡ։᧯ڶڗԿଡ՗࿨ዌऱ
ᇩΔঞዌٙᒳᇆ 1Ε2ࡉ 3ᇆऱ՗࿨ዌ։ܑਢڗଈΕڗڻଈߪڗڻࡉΖପᕂᙁԵऄऱዧ
ᒳᇆݮΔዌڼڂՂֱऱ՗࿨ዌΔ່ࡉΔԼ։઎ૹ່ؐೡऱ՗࿨ዌڤֱ໊֊ڗ 2Ε3Ε4
ࡉ 10ᇆऱ
ଈڗऱڗ

ຟਢ່ؐ

ೡऱ՗࿨

ዌΙዌݮᒳ

ᇆ 5Ε6Ε7
ࡉ 11ᇆऱ
ଈຟਢڗ

Ղֱऱ՗

࿨ዌΖڶ؆

௃ऱዌݮ

ऱڗঞຟ

ਢא؆௃

՗࿨ዌᅝ

܂ ਢ ڗ

ଈΖ 

।ԲΕԫࠄዧڗऱପᕂᇡᒘ 

ዧʳ

ʳڗ

ዌݮ

ᒳᇆ
ዌٙ ˄ʳ

ዌٙ

˅ʳ
ዌٙ ˆ

ዧ

ڗ

ዌݮ

ᒳᇆ
ዌٙ ˄ʳ ዌٙ ˅ʳ ዌٙ ˆ

ʳࢭ ˄ʳ ըը֫Գʳ ʳ ʳ ᙭ ˅ʳ ԫՖՖԫʳ ԫִ՞८ʳ ʳ

૵ʳ ˅ʳ Օִʳ ըխʳ ʳ உ ˆʳ Գʳێ ԫՖՖԫʳ ʳ

ਟʳ ˆʳ ֲʳ ՝ێʳ Ցʳ ⋢ ˆʳ ִʳ ԫՖՖԫʳ ʳ

᝔ʳ ˇʳ ԽԫԫՑʳ ێᣄێ ֵ֩ʳ ࿂ ˊʳ Օʳ ԫՖՖԫʳ ʳ

ʳܩ ˈʳ ՝Օʳ Ցʳ ʳ ୉ ˈʳ Ցʳ ִ՞८ʳ ʳ

ཤʳ ˉʳ ֵʳ ֵʳ ֵʳ Ⴝ ˌʳ ʳض Ցʳ ִ՞८

ᆸʳ ˊʳ ֥ʳ ֵԫʳ ֫ʳ ઌ ˅ʳ ֵʳ ִ՞ʳ ʳ

ʳڂ ˋʳ ʳض Օʳ ʳ უ ˈʳ ִֵ՞ʳ ֨ʳ ʳ

ഏʳ ˌʳ ʳض ֩ʳ Ցԫʳ ᒣ ˉʳ ʳێ ֵʳ ִ՞ʳ

ଡʳ ˄˃ʳ Գʳ ʳض ԼՑʳ ʳ ʳ ʳ ʳ ʳ

ʳࡻ ˄˄ʳ ՝ʳ ՞ʳ Ւʳ ʳ ʳ ʳ ʳ ʳ

ସʳ ˄˅ʳ ՝ʳ խԫʳ ԽԽԽ ʳ ʳ ʳ ʳ ʳ

ঁ

ᖴ܍ॕࡿ

1

ঘ༝ڰ ۛ

ဘಷ։

1 2 1
2

3
1 2 3

2

1 1

2 3 3
2
1

1
2

1
2

3
22
3

1 3
11

3 3
22 3

 
ቹ؄Εאପᕂᒘ੡ഗᄷऱዧڗഗءዌݮ 
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ຍԫࠄዌݮᇷಛΔೈԱᐙ᥼ପᕂᒘ១֏ऱ๵ঞհ؆Δኙݺ࣍ଚऱߓอ༼ࠎԱܓڶऱ

ᇷಛΖނ࣠ڕዌݮᇷಛՈၞ࣋ଡܑዧڗऱᇷறᇙ૿ऱᇩΔݺଚ༉אױवሐࠟଡዧڗऱ؆

ীਢܡઌۿΖՈאױवሐࠟଡዧڶ࣠ڕڗઌٵऱ՗࿨ዌΔ߷ຍԫઌٵऱ՗࿨ዌ։ܑנ෼

 ऱ࿓৫Ζۿ༳༽ࠟଡઌچ壄ᒔףޓଚݺ࣍ܗڶऱ߷ԫଡ՗़ၴխΖຍᑌऱᇷಛڗჇֱڇ
ᅝڶࢬ១֏ऱପᕂᒘຟڃ༚ګପᕂᇡᒘհ৵ΔݺଚޢނאױଡڗຟףՂࢬ᥆ऱዌݮ

ᒳᇆΔ׊ࠀലࠡପᕂᒘࠉᅃዌݮխऱዌٙᒳᇆ։ᣊΖڼڂΔݺଚࢬ৬ዌऱڗऱધᙕܶץ

ዌݮᑑ᧘ࡉԫࠩԿิପᕂᒘ٨ݧΖ।Բ٨ࢬऱધᙕܶץቹ؄խऱڗऱପᕂᇡᒘΔףࠀՂ

ԫݺࠄଚհ৵ᄎಘᓵऱڗऱધᙕΖڇ଺ءପᕂᒘᇙ๯ઊฃऱցైֱא௃௃ದࠐ।قΙࠏ

 ԳԫՖՖԫωΖێழψஉωऱପᕂᇡᒘਢψٵԳԫՖԫωΔێᒘਢψࡨΔψஉωऱପᕂ଺ڕ
ല଺ءପᕂᒘխઊฃऱցైૹᄅװၞףΔނ֗אପᕂᒘऱ՗٨ݧ։ګԿຝ։ຟܗڶ

ࢬψԫִ՞८ωࡉψԫՖՖԫωطנऱ։ᙃ࣐᎘אױଚݺڇΖ෼ڗऱዧۿଚᙃܑઌݺ࣍

ଚऱݺΖڗऱዧۿऱψஉωਢࠟଡઌګิࢬψԫՖՖԫωࡉԳωێऱψ᙭ωΔፖψګิ

ᒘऱᇩΔຍࡨପᕂ଺شආ׽ଚݺ࣠ڕΖڗංྒྷ൓वψ୉ω֗ψႽωਢઌ२ऱאױอՈߓ

ലਢԫٙլ୲࣐ᙄࠩऱՠ܂Ζ 
ዌݮᇷಛঞ༼ףޓࠎ壄ᒔऱ२ۿ৫ऱಛஒΔψ᙭ωΕψஉωΕψ⋢ωࡉψ࿂ωऱପᕂᇡ

ᒘຟܶץԱψԫՖՖԫωຍଡ՗٨ݧΔ܀ਢڂ੡ψஉωࡉψ⋢ω᥆ٵ࣍ԫዌݮΔۖࢬ׊

ψ᙭ω֗ࡉψஉω࣍৫૞೏ۿψ⋢ωऱઌࡉψஉωאࢬԫ՗࿨ዌΔٵ࣍٨᥆ݧऱ՗ࠆ٥

ψஉωࡉψ࿂ωऱઌۿ৫ΖኔᎾՂΔݺଚᝫאױᖄԵԫଡ១໢ऱᖲࠫΔڇ༈ބਬԫ௽ࡳ

ዌݮᒳᇆऱڗऱழଢΔ௽ܑೣړਬԫ௽ࡳዌݮᒳᇆऱڗΖڕࠏΔᅝݺଚڇჼ༈ߪء᥆࣍

ዌݮᒳᇆ 2ऱڗऱ२ڗݮऱழଢΔֺለೣړዌݮᒳᇆਢ 2Ε3Ε4ࡉ 10ऱڗΔڂ੡ຍԫ
 ऱΖۿऱᔚኢᒵਢᣊڗऱݮዌࠄຍԫ࣍᥆ࠄ

2.4 ֺኙऱֱऄࡉૠጩऱய෷ 

ބհխΔڗڍऱପᕂᇡᒘऱᇷற஄[7]ΖൕຍնՏڗଡዧڍԱնՏمԳՠ৬אଚբᆖݺ
༈ԫิݮ᧯ઌ२ऱዧڗΔ׽ႊ૞່ش១໢ऱֺۭڗኙױܛΖ່ڇᜊᗶऱൣउՀΔֺኙࠟ

ଡຟᖑڶԿଡ՗࿨ዌऱڗऱழଢΔݺଚؘႊֺለהଚٺ۞ऱପᕂᒘ՗٨ݧ԰ڻΖኔਜڗ

ֺۭኙऱޡᨏਢৰ១໢ऱΔڼڂૠጩၦᄕ՛Ζ 
ऱପᕂᇡᒘऱ՗࿨ڗΖଈ٣ਢࠟଡዧైڂᐞ༓ଡەଚݺছؾ৫ऱழଢΔۿૠጩ२ڇ

ዌਢ٤ݙڶܡઌٵऱପᕂᒘΖڶ࣠ڕऱᇩΔݺଚᄎಖᙕຍԫࠆ٥ऱ՗࿨ዌऱପᕂᒘऱଡ

ᑇᅝ܂։ᑇΖࠆ٥࣠ڕऱ՗࿨ዌਢٵԫ़ၴۯᆜऱ՗࿨ዌऱᇩΔঞ։ᑇᝫᄎף଍Ζ։ܑ

ֺኙڍ່ݙ԰ଡ՗࿨ዌิٽհ৵Δᄎࢬނ൓ऱ։ᑇ᜔ףΔྥ৵൓ࠩԫଡॣޡऱ᜔։Ζݺ

ଚאຍԫଡ᜔։ނᇷற஄ᇙ૿ऱڗඈݧ(੡Աૠጩய෷Δݺଚৰڰ༉ނ൓ࠩሿ։ऱڗඍ
ඵ)Ιٵڶ࣠ڕ։ऱڗΔঞא٦ዌݮᒳᇆؾࡉছࢬ਷ᇬऱዧڗऱዌݮᒳᇆઌ܂ृٵ੡່
৵։ᑇለ೏ृΔྥ৵թਢዌݮઌۿऱڗΖ 

ழΔڗݮψஉωऱ२ބଚਢ૞༈ݺ࣠ڕΖࠏψ࿂ω੡ࡉ।Բऱψ᙭ωΕψஉωΕψ⋢ωא

ψ࿂ωࡉवሐψ᙭ωΕψ⋢ωאױଚݺאࢬψԫՖՖԫωຍԫଡዌٙΔࠆ٥ڗ੡ຍ؄ଡڂ

ᇿψஉωڶഗءऱઌࢤۿΙઌኙհՀΔࠡהऱڗΔڕψ୉ωΔᇿψஉωڶ޲ઌٵऱዌٙΔ

۶वሐڕଚݺψ࿂ωᇿψஉωઌ२հ؆ΔࡉΖೈԱवሐψ᙭ωΕψ⋢ωڗլਢઌ२ऱڼڂ
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ຍԿଡڗհխୌԫଡڗᇿψஉωֺለઌቝΛڇຍԫଡࠏ՗ᇙ૿Δݺଚ࿇෼ψ⋢ωࡉψஉω

ऱࠆ٥ዌٙຟਢנ෼ڇรԲଡዌٙΖઌኙچΔψ᙭ωऱψԫՖՖԫωਢڇรԫଡዌٙΔ

ۖψ࿂ωऱዌݮᒳᇆਢ 7Δࠀլਢዌݮᒳᇆ 2Ε3Ε4 ࡉ 10 ऱڗΔီڼڂᤚՂᇿψஉω
ऱઌۿ৫ᝫਢֺլՂψ⋢ωΖ 

شࠌԫຝڇ 2.24Gऱ RAMࡉWindows XPऱ Pentium 4 2.8GᖲᕴՂΔൕնՏڍଡ
อᅝߓຍԫނਢ૞࣠ڕႊ૞क़၄լࠩԫઞᤪऱழၴΖ׽Δڗۿऱઌڗჼ༈ᇷற஄փऱڗ

 ழயΖٽኔ೭ՂᚨᇠฤڇอऱᇩΔຍᑌऱຒ෷Δߓอऱഗ៕՗ߓᠲנܗ᎖ਢሽᆰ܂

3. ࿇ଃઌ२ऱዧڗ 

ဲ֏࿇ଃಛஒऱሽ՗ڗዧࠎ༽אױԫຝشܓאױଚݺ Δࠢٚנބრڗऱٵଃृࢨڗ२ଃ

ࡉψᇢ໱ωڕࠏΙൣࠃਢԫٙ១໢ऱڗଃٵ༈ބᔾऱဲࠢΔঞױ౨ജ༳༽ԫຝ࣠ڕΖڗ

ψؑ໱ωΖྥۖ૞ބ༈ࢬᘯऱ२ଃڗΔڕࠏψ٠ອωࡉψ٠ᐙωΔঞႊ૞ԫࠄ፿ଃᖂवᢝ

ऱ֭གΖ 
ឰଡܒڇאࢬ੒խዧ፿࿇ଃऱ᧢ᓳ(Sandhi)[10]෼ွΔسᐞኔᎾەڶ޲ଚᝫݺছؾ

ܑዧڗ࿇ଃऱ२ۿ৫ऱழଢΔᝫەڶ޲ᐞ፿ቼऱᐙ᥼Δࠀڼڂլਢ࿪ኙᄷᒔΖ᧢ᓳਢ๺

ऱ෼ڶຟߢ፿ڍ Δွ່ ൄᦫࠩऱዧ፿᧢ᓳ๵ঞਢࠟଡຑᥛऱԿᜢڗऱรԫଡԿᜢڗ૞א

Բᜢࠐ࿇ଃΙڕࠏΔڇ۞ྥ࿇ଃऱൣቼՀΔψᙇᜰωࡉψዝᝑωऱψᙇωࡉψዝωຟ๯

ᅝ܂Բᜢࠐڗ࿇ଃΖڍڶ࣠ڕଡԿᜢڗຑᥛנ෼Δঞᝫףޓڶᓤᠧऱ࿇ଃክࠏΖڼ؆Δ

฾ክՂݺଚᄎނψააωऱรԲଡψაωא᎘ᜢࠐ࿇ଃΔຍՈਢԫጟ࠹፿ቼᐙ᥼ۖޏ᧢

࿇ଃऱࠏ՗Ζؾছݺଚᝫګݙڶ޲๠෻ຍԫᣊ࿇ଃ᧢֏ऱ࿓ڤΖ 
ೈڼհ؆Δݺଚאױ፦ႃԫسࠄ੒խԫߠൄࠄऱ࿇ଃംᠲृࢨຘመം࠴ᓳ਷Δאᛧ

՛ᖂऱඒᖂᆖاԫ౳ഏڇᎅΔࠐࠏ෗෤ऱଃωऱᇷறΖᜰ࣐ᘯψ୲ࢬ࣍ኙृشࠌ፿ئ࠷

᧭ᇙ૿ΔԏΕԐࡉԑຍԿଡଃ։ܑ୲࣐ᇿԓΕԔࡉԕ෗෤Ζᣊۿऱᆖ᧭ڕΔԟᇿԡຍࠟ

ଡᣉئઌᅝ൷२Δאࢬψ८ᠪωࡉψࠇᒂωᦫದࠐৰઌቝΙۖψԋԤԞω ຍԫଡ࿇ଃ
ᇿψԄԞωᦫದࠐઌᅝ൷२ΔڶൄڶࢬԳނψকᙠ൛ᣄωᐊګψকᙠحᣄωΙڶृࢨԳ

٨ڤ࿓ط࣐ᄭΔৰ୲ࠐऱᇷಛړڶ࣠ڕωڗψᦟ஼ωΖຍԫᣊऱψ२ଃګψ៬஼ωആނ

ᇷற[5]Δࠄऱԫࠎ༽ࢬ୉ߒᗩઔࠋޕࢬߢԱխઔೃ፿شଚආݺছؾઌᣂᇷறΖڶࢬנ
 ᖕΖࠉऱڗ२ଃڗዧބ੡༈܂

4. ඈֺ࣐෗෤ऱዧڗ 

รشאױଚݺ 2ᆏࡉร 3ᆏࢬ᤭૪ऱݾ๬Δބࠐ༈໢ԫዧڗऱ२ڗݮΕ२ଃٵࡉڗଃڗΖ
Δ፝ڕࠏ෗෤ऱᙑᎄᐊऄΔ࣐נބΔ੡ਬԫଡဲნڗઌ२ऱࠄຍԫشܓאױଚݺ რނψক

ᙠ൛ᣄωᐊګψকᙠحᣄωΖຍᣊऱᙑᎄဲნኙᒳᐊഏ፿ઝऱψޏᙑڗωᇢᠲࡉઔߒᔹ

ᦰᎁवᖵ࿓ຟڶ௽ࡳऱش๠Ζ 
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ኙ२ߢۖڗݮΔլጥਢאխઔೃऱዧڗዌݮᇷಛ[1]೚੡ዌݮᒳᇆऱࠉᖕՈړΔࢨ
ਢאLee֊໊ዧڗऱዌ[12]ڤֱݮ೚੡ࠉᖕՈᒽΔءᓵ֮נ༽ࢬऱބ२ݾڗݮ๬׽ਢԫ
ጟመៀᖲࠫΔᇢቹנ࠷ψױ౨ωᄎ๯ᎄشऱ࣐෗෤ڗᆢۖբΙݺଚࠀլ৺ထڇ२ڗݮऱ

ຝ։༉ൄ່נ࠷๯ᎄشऱ࣐෗෤ڗΔڂ੡່ൄ๯ᎄشऱ࣐෗෤ڗՈױڶ౨ਢٵଃࢨڗਢ

२ଃڗΖ 
شᚨאױΔঞז࠷ࠐڗԫଡᙑܑطψঠωނऱਢؾ࣠ڕΔࠏψঠൎωຍԫଡဲ੡א

ބ๬ݾऱڗݮ༈२ބ ψࠩ܍ωࡉψࠜωΔބش٦༈२ଃڗऱݾ๬ބ ψࠩ೨ωΕψ୦ωࡉψᒱω

࿛ࠡٵהଃڗΖ࣍ਢݺଚ૿ᜯԱނ۶ڕຍԫࠄ२ڗݮΕٵଃࡉڗ२ଃڗඈݧΔړᨃݺଚ

෗෤ऱ࣐Δყ୲ۿΖᇿԫ౳ऱࣹଃᙁԵऄᣊޣऱᏁڗየრऱᙑܑࠩބݶጐृشࠌอऱߓ

ዧړ່ڗਢڇ࣋৬ᤜټ໢ऱছᙰΔृشࠌ֟྇אऱჼ༈ழ Ζၴຍ༉ਢءᆏࢬ૞ٌזऱψඈ

ֺωംᠲΖ 
ኔᎾᆖ᧭᧩قΔឈྥݺଚࠉאױᖕପᕂᇡᒘބ༈२ڗݮΔ܀ਢ٠ਢݮ᧯ઌ२ࠀլߠ

൓༉ਢৰشڶऱᙑܑڗΙڂ੡ࠟࠌܛଡዧڗటऱڶԫࠄઌۿऱֱچΔՈլԫࡳᄎᨃԳଚ

ტࠩ୲࣐෗෤Ζאᆖ᧭Ղऱऴᤚࠐ઎Δψޏᙑڗωᇢᠲֺለൄٵشଃृࢨڗ२ଃ࠷ࠐڗ

شለՕऱֺڶߒ፿֮ᔹᦰऱઔ࣍෻ᖂխᣂ֨ߢ፿࣍౨ኙױڗઌ२ऱዧ᧯ݮΖڗᒔऱإז

ຜΖᕣጥڼڕΔݺଚսലאᒳᐊψޏᙑڗωᇢᠲ੡ؾऱΔ൶ಘ۶ڕඈֺݺଚࢬ൓ࠩऱଢ

ᙇڗΰܶץ२ڗݮΕٵଃࡉڗ२ଃڗαΖ 
ψᒱωଡܑࡉωΕψࠜωΕψ೨ωΕψ୦ω܍۶ෲྒྷψڕଚݺ՗Δࠏᥛψঠൎωຍԫଡ࢏

ऱᔞٽ࿓৫Λԫנۯᠲ۔ஃᅝྥהڶऱ׌ᨠტᤚΔ܀ਢԫଡຌ᧯࿓۶ڕڤ౨ڶຍᑌऱ

ψ׌ᨠωრᢝࡋΛݺଚଗૹߣዚ(Google)ࠎ༽ࢬऱჼ༈ࣚ೭ࠐᑓᚵຍᑌऱऴᤚΖݺ࣠ڕ
ଚאψ܍ൎωףՂᠨ֧ᇆၞ۩਷ᇬΔࢬڇ൓ऱ਷ᇬ࿨࣠խΔᨠ઎ “Results of 1-10 of about 
220,000 …”ΰॵုΚ࣠ڕਢߣشࠌዚऱխ֮տ૿Δঞᄎ઎ࠩ “ᣂ܍࣍ൎՕપڶ 220,000 
଄Ξ”αΔאױवሐՕપ֥ڶԲᆄ࿝ጻ଄ᇷறࠩشψ܍ൎωຍԫଡဲΖڇ਷ᇬऱழଢףՂ
ᠨ֧ᇆΔشრܫ࣍ڇवߣዚނ਷ᇬऱဲნᅝ܂ԫଡຑᥛۭڗΕլאױ։ၲ਷ᇬΔڼڂᄎ

ඈೈܶץ׽ᣊۿψ܍Δൎωհᣊऱጻ଄ᇷறΔࢬ൓ऱ࿨࣠ᄎֺለฤݺٽଚऱᏁޣΖݺଚ

ႚᇷறΔڃ൓ऱࢬዚΔྥ৵٦ൕߣ૞਷ᇬऱයٙႚಬ࿯ࢬނΔڤᐷᐊԫ੄១໢ऱ࿓אױ

ຘመ១໢ऱᇷಛឯ࠷ᖲࠫ൓ࠩࢬ૞ऱᑇڗΖຍԫ࿓ࢬݧ൓ऱᑇڗՕฃ֘چᚨԱጻሁषᆢ

խشࠌຍԫଡᙑᎄဲნऱ᙮෷Δאױᇭᤩ੡س੒խԳଚٵحᑌᙑᎄऱઌኙᖲᄎΔ࣠ڕᑇ

ၦყՕঞ।قԳଚආش߷ԫଡᙑᎄऱဲნऱᖲᄎՈઌኙچ೏Ζ 
Ղᠨ֧ᇆףψᒱൎωຍնଡဲΔ։ܑࡉൎωΕψࠜൎωΕψ೨ൎωΕψ୦ൎω܍ψאଚݺ

ዚऱ਷ᇬᣂ᝶ဲΔᄎ൓ࠩߣ੡࿯܂ 222,000Ε4720Ε506Ε78ࡉ 1510ΰॵုΚຍԫޅᑇ
࣍۞൓ڗ ڣ2008 7ִ 7ֲऱᇢ᧭αΖڼڂΔݺ࣠ڕଚ૞ൕψ܍ωΕψࠜωΕψ೨ωΕψ୦ωࡉ
ψᒱωհխΔ༼ٌԿଡଢᙇڗ࿯ृشࠌழΔݺଚנ༽ݧࠉψ܍ωΕψࠜωࡉψᒱωΙ࣠ڕ

ਢ૞༼ٌնଡଢᙇڗऱᇩΔঞڇݧࠉ৵૿ףՂψ೨ωࡉψ୦ω࿯ृشࠌΖ 
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5. ኔ᧭࿨࣠ፖ։࣫ 

੒س෼ኔנބ౨ܡอਢߓଚऱݺ᧭ऱΔᛀؾωᇢᠲ੡ڗᙑޏᒳᐊψאଚലݺຍᆏᇙΔڇ

խ࣐෗෤ऱዧڗΖءᆏല։؄ګଡຝ։ࠐտฯݺଚشࠌࢬऱኔ᧭๻ૠΕ։ܑشࠌԫ౳࠹

ᇢृፖറ୮რၞࢬߠ۩ऱኔ᧭࿨࣠Ε່৵ಘᓵشࠌପᕂᇡᒘܑܒ२ڗݮऱ౒រΖ 

5.1 ኔ᧭๻ૠ 

ଈݺ٣ଚൕᄅᒳᙑܑڗ॰်[8]ຍԫء஼Δנބ 20ଡڶܶץ୲࣐෗෤ऱڗऱဲნΖ।Կ
Ζ੡Ա۩֮១ڗ᧯ऱษقᒵᑑࢍאԫଡܶץԫଡဲნຟޢऱဲΔࡳᙇࢬଚݺ٨ऱਢࢬ

ᑥΔאՀݺଚ࣐א෗෤ࠐڗጠࡅ।Կᇙ૿ຍԫࢍאࠄᒵᑑقऱษ᧯ڗΖຍଡ࣐෗෤ڗല

ᄎ௽რچ๯ԫࠄᙑܑז࠷ࠐڗΖ 
ᇢृᐊ࠹ଚᓮటԳݺऱ঴ᔆΖڗऱ৬ᤜᙑܑנ༽ࢬอߓଚݺ᧭ᛀࠐጟᇷறࠟאଚݺ

ݺေֺࠐᇷறΔࠄ፦ႃऱຍԫࢬאΖྥ৵ڗऱᙑܑڗ෗෤࣐ࠄຍԫז࠷ٽଚᎁ੡ᔞהנ

ଚߓอࢬ৬ᤜऱᙑܑڗऱயࡉشေၦ࠹ᇢृհၴऱԫીࢤΖٵழΔݺଚՈᄎشܓᄅᒳᙑ

ᐊऱᙑܑࢬᇢृ࠹ࡉڗอऱ৬ᤜߓଚݺေֺࠐΔڗᙑߠಘᓵऱൄࢬ஼ء॰်ຍԫڗܑ

ء஼شऱᙇᖗΔۖڗᙑܑࠄຍԫ࣍ᚨԫ౳Գኙ֘ࠐऱᇷறࠎ༽ࢬᇢृ࠹టԳאଚݺΖڗ

 Ζߠ।റ୮ऱრזࠐڗऱᙑܑࠎ༽ࢬ
ଈ٣Δݺشܓଚऱߓอലຍ 20 ଡ࣐෗෤נބڗψ२ݮωΕψٵଃωΕψ२ଃωԿଡଢ

ᙇڗ।Ι٦ലຍԿଡଢᙇڗ।ิګٽψٵଃΕ२ଃωΕψ२ݮΕٵଃΕ२ଃωࠟଡ৬ᤜڗ

।Δאࠀ৬ᤜڗ।ᇙऱڗດԫ࠷ཙ।Կ٨ဲࢬნऱ࣐෗෤ڗΖאຍᑌ࿓ࢬݧขسऱဲ

ნΔشܓ٦ร 4ᆏࢬ༴૪ऱ࿓ݧΔ࠷൓ଡܑဲნ๯ጻ଄ᇷறආشऱ᙮෷Δ៶אല৬ᤜڗ
।փऱڗඈݧΔࠌ൓່ছ૿ऱڗ੡๯ආش᙮෷່೏ऱڗΖ࣠ڕছԫ࿓ࢬݧ൓ࠩऱჼ༈࿨

࣠ᑇၦ੡ 0Δߣشܓ٦ዚჼ༈ψ٤ܶץຝऱဲڗωפ౨(ܛլףՂᠨ֧ᇆऴ൷ၞ۩਷ᇬ)
 հ৵Ζݧऱඈݧছԫଡ࿓࣍Օࠩ՛ඈطႚऱჼ༈࿨࣠ᑇၦΔڃࢬ

ऱᙑܑڗ෗෤࣐ז࠷ࠐش੒խ๯س෼ኔנބ౨ܡอਢߓଚऱݺඨ൶ಘݦ᧭ኔء

ᓮԱڼڂΔڗ 21 ၞࠐᇢृ࠹լࣔ٨αᖜٚ׊ᒚհਚΔᑉދټೳڂټΰீسᖂڇՕᖂۯ
۩ኔ᧭Ζݺଚᓮຍ ᇢृಾኙছ૪࠹ۯ21 20ଡဲᇙऱ࣐෗෤ڗᐊՀ۟ڍնଡᙑܑڗΖࢬ
ႃࠩऱ٥گ 420 (=21×20)ଡᠲڻऱڃ៿խΔԫܶץ٥ 599ଡڗΰܶץૹᓤऱڗαΔࠡխ
ڶ 24ଡࠡኔլਢዧڗऱᙑڗΖຍ 24ଡᙑڗ࿠ூ։ڇ܉ 7ଡటԳ࠹ᇢृऱ࿠ூᇙ૿Ζڕ
࣠լጥڗऱኙᙑΔؓ݁ޢԫᠲڻΔటԳ࠹ᇢृޢԫᠲؓ݁ჄᐊԱ 1.426ଡ৬ᤜڗΙ࣠ڕ
ڗೈᙑᎄऱڬ

ऱᇩΔ༉ໍ׽

Հ 1.369 ଡ৬
ᤜڗΖ 

।ԿΕྒྷᇢဲნऱ٨। 

ဲნ ဲნ ဲნ ᒳᇆ ဲნ ᒳᇆ ᒳᇆ ᒳᇆ

شଚආݺ

ᇷಛᛀ౉ઌᣂ

ઔߒխ່ൄࠌ

1 ԫঘ߷ 2 ԫḾଉ 3 ณक़ᐻ႖ 4 ઌัߠݮ

ᘣױᤐࡉ ԫཌ 8ߠױ 7 ش۞ᔌ 6 ଶ༫܂ 5

9 ൏ਣ 10 ࡡᣇլ஡ 11 ៙᧜ٽ৫ 12 ৱᏝۖࣿ

13 ᑻࠦ 14 რᘋឃੱ 15 ᜞ێᣄ஼ 16 ჽଈݫৎ

17 ௅෡ਾ18 ࡐ ⛵ᆶࠀ૊ 19 ᅀᤥ 20 ᒁ᛫ 
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Ι壄ڤอऱֱߓଚݺ෷(recall) [14]೚੡ေ۷ڃ״壄ᒔ෷(precision)ፖܛऱေ۷ᑑᄷΔش
ᒔ෷ਢߓอࢬ৬ᤜऱڗᅝխਢᑑᄷ࿠ூऱֺࠏΔڃ״෷ঞਢᑑᄷ࿠ூխ๯ᦖਔࠩߓอࢬ

৬ᤜऱڗऱֺࠏΖڇૠጩ壄ᒔ෷ڃ״ࡉ෷ऱழଢΔݺଚނᙑᎄऱ࿠ூՈᅝ܂࿠ூΔኔᎾ

Ղݺଚऱߓอਢլ౨৬ᤜຍԫࠄ௅ءլڇژऱዧڗऱΖڼڂΔݺଚؾছࠀլᄎڂ੡టԳ

ݺᇢृऱᙑᎄ੷۟ᝫᨃ࠹టԳࠄΖຍԫشଚऱயݺΔۖ೏۷Աࠋ៿ऱ঴ᔆլڃᇢृऱ࠹

ଚ۷܅Աݺଚߓอऱ։ᑇΖ 
شආڶ޲ଚݺխΔߒছऱઔؾڇ F։ᑇ(F measure)ΖF։ᑇਢڃ״شܓ෷ࡉ壄ᒔ෷

ૠጩࢬ൓ऱ໢ԫ։ᑇΔឈྥࠎ༽אױഗ៕ऱֺለΖ܀ਢݺڇଚऱኔ᧭ᇿዧڗᙁԵऄऱေ

۷ઌᅝᣊۿΔࢬृشࠌ౨൷࠹ऱ৬ᤜᙑܑڗऱᑇၦױ౨ᄕ֟Δڼڂ։ܑᛀီ壄ᒔ෷ፖ״

ࠎ༽ڶ׽෷Δֺದڃ F։ᑇޓ౨ᨃઔृߒ઎堚ംᠲऱءᔆΖ 

5.2 ԫ౳࠹ᇢृऱေ۷ 

אଚݺ ᇢृ੡।Կऱ࠹ۯ21 20ଡ࣐෗෤ࢬڗᐊՀऱ 20ิᙑܑڗ೚੡ᑑᄷ࿠ூၞࠐ۩
ေ۷Ζ।؄੡ψٵଃΕ२ଃωፖψ२ݮΕٵଃΕ२ଃωࠟଡ৬ᤜڗ।࠷ٺছնଡڗፖছ

Լଡڗऱኔ᧭࿨࣠Δݺଚشܓ৬ᤜڗ।ࠎ༽ࢬऱᙑܑڗፖ׼؆ ᐊՀऱࢬᇢृ࠹ۯ21 20
ิᙑܑڗԫิԫิၞچ۩ေ۷ֺኙΔ։ܑ൓ࠩ 20 ෷Δڃ״ऱ壄ᒔ෷ፖڗ෗෤࣐ଡٺิ
൷ထނຍԲԼิ壄ᒔ෷ፖڃ״෷೚ؓ݁ऱૠጩΔڼڂ൓ࠩאຍ 21 ੡ڗᇢृऱᙑܑ࠹ۯ
ᑑᄷ࿠ூழ৬ᤜڗ।ऱ壄ᒔ෷ፖڃ״෷Ζྥ৵٦ૠጩຍ 21 ิᑇᖕऱؓ݁Δࢬ൓ࠩऱૠ
ጩ࿨࣠༉ਢ।؄խऱؓ݁壄ᒔ෷ፖؓ݁ڃ״෷Ζ 

।٨ࢬ؄ऱᑇᖕ᧩قΔݺଚנ༽ࢬऱֱऄઌᅝڶயچ஢஦ࠩ࠹ᇢृऱೣړΖאψ२

༽ڇឈྥլ೏ΔࠐᎅΔؓ݁壄ᒔ෷઎ದࠐ᧭৬ዌऱ৬ᤜ।ऱኔࢬଃΕ२ଃωᇷறٵΕݮ

ٌնଡ৬ᤜࡉڗԼଡ৬ᤜڗऱழଢΔؓ݁ऱ壄ᒔ෷։ܑฃ࣍܅ 0.2 ࡉ 0.1Ζլመຍრ࠺
ထլጥਢ༼ٌնଡृࢨڗԼଡڗΔݺଚऱߓอຟ౨ജՕપ༼࠹נࠎᇢृࢬᐊऱᙑܑڗΖ

נᐊڶ׽ᇢृ࠹ΔڻԫᠲޢΔಾኙߢᖕছԫ՛ᆏऱ։࣫Δؓ݁ۖࠉ 1.369ଡኔᎾՂڇژ
ऱዧ܂ڗ੡ᙑܑڗΖڼڂΔݺଚऱߓอ౨ജ஢஦ࠩຍԫࠄ௽ࡳऱࠀڗլਢԫٙ࿪ኙ១໢

ऱٚ೭Ζൕຍԫଡᨠរ઎ݺଚऱߓอΔঁ౨઎נ،ऱࢤشױΖג࣠ڕาֺለԫՀΔ༼ٌ

նଡ৬ᤜڗऱழ

ଢΔؓ݁ڶ 0.88ଡ
Ι༼ٌԼଡڗشױ

৬ᤜऱᇩΔؓ݁༉

ڶ 0.95ଡڗشױΔࡎխ෷լױᘯլ೏Ζ 

।؄Εࠟิߓอ৬ᤜڗ।ࢬሒګऱؓ݁壄ᒔ෷ፖؓ݁ڃ״෷ 
ψٵଃΕ२ଃω ψ२ݮΕٵଃΕ२ଃω ߓอ৬ᤜڗ।

ຍԫิኔ᧭ΔٵழՈᨃݺଚ઎ࠩ२ڗݮኙޏ࣍ᙑڗᇢᠲऱᒳᙀՠ܂ऱಥ᣸৫׏ۿլ

ՕΖֺለ।؄ऱؐתೡת׳ࡉೡऱኔ᧭ᑇᖕΔݺଚ࿇෼ףԵ२ڗݮհ৵ࢬ৬ዌऱ৬ᤜ।

ឈྥய࣠ຟࢬڶ༼֒Δ܀ਢ༼֒ऱ༏৫ࠀլ᧩ထΖຍԫኔ᧭࿨࣠ᄆقထխ֮ᙑܑڗᇿ࿇

ଃΰٵଃृࢨڗ२ଃڗαऱᣂএΔױ౨ֺᇿڗऱݮ᧯ऱᣂএ૞യ֊Ζຍᑌऱᨠኘᅝྥױ

౨ਢᇿ।Կᇙ૿ݺଚࢬᙇᖗऱဲნڶᣂΖڇ।Կᇙ૿Δൄߠऱᙑܑڶ׽ڗร؄ᠲਢᇿڗ

ለઌᣂΙรֺݮ 15 ᠲঠൎՈጩᇿݮڗઌᣂΖࠡהऱᇢᠲঞຟਢࣔ᧩ऱᇿڗऱ࿇ଃֺڶ
ለ೏ऱᣂຑΖא٦ψլဠڼ۩ω੡ࠏΔೈॺਢٵאଃ܂ڗ੡ჼ༈ऱ૞ٙΔܡঞৰᣄࠩބ

ய࣠ေ۷ ࠷ছնଡ࠷ ڗছնଡڗ ڗছԼଡ࠷ ڗছԼଡ࠷
ؓ݁壄ᒔ෷ 0.166 0.094 0.176 0.095 
 ෷ 0.618 0.672 0.649 0.680ڃ״݁ؓ
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ψ լ Ꮑ ڼ

۩ωຍԫଡ

ᎄ ش ऱ ݮ

 Ζڤ
խ֮ᙑ

ᇿ࿇ଃڗܑ

ऱᣂএਢլ

ਢటऱֺᇿ

ऱᣂএݮڗ

૞ࠐ൓യ֊

٨ऱࢬ।Կנਗᙇݧଚਢຘመԫଡᙟᖲऱ࿓ݺΛឈྥࡋ 20 ሐᠲΔڼڂՈᎁ੡ݺଚऱኔ
᧭ᑇᖕᚨᇠਢᄆقԱຍԫ෼ Δွ܀ਢႊ૞ԫଡޓՕ๵ᑓᛀ᧭թ౨ၞޓԫچޡ᧭ᢞຍԫऴ

ᤚΖ 

।նΕ࠹ᇢृհၴऱؓ݁壄ᒔ෷ፖؓ݁ڃ״෷ 
ᇆ ؓ݁壄ᒔ෷זᇢृ࠹ ෷ڃ״݁ؓ ᇆזᇢृ࠹ ؓ݁壄ᒔ෷ ؓ݁ڃ״෷

A 0.569 0.473 L 0.458 0.368 
B 0.553 0.508 M 0.365 0.455 
C 0.408 0.635 N 0.520 0.491 
D 0.495 0.468 O 0.448 0.546 
E 0.497 0.520 P 0.558 0.481 
F 0.489 0.479 Q 0.370 0.513 
G 0.580 0.462 R 0.379 0.559 
H 0.408 0.304 S 0.441 0.444 
I 0.628 0.509 T 0.435 0.543 
J 0.539 0.431 U 0.451 0.491 
K 0.531 0.443    

੡Ա౨ജޓড়ᨠچေ۷ߓอऱய࣠ΔݺଚԾ೚Ա׼ԫิኔ᧭Ζൕຍ 21 ᇢृᅝ࠹ۯ
խᔚੌנ࠷ԫԳࢬᐊՀऱ 20ิᙑܑڗᅝ೚ߓอ৬ᤜڗ।ࠎ༽ࢬऱᙑܑڗΔהࠡאࠀ 20
ݺᇢृ࿠ூऱ঴ᔆΖ࠹ऱࠐנေ۷ຍԫଡᑉழ๯ਗࠐᑑᄷ࿠ூΔ܂ᅝڗᇢृऱᙑܑ࠹ۯ

ଚش૎֮ئڗ Aࠩ Uזࠐ।ຍ ᇢ࠹ۯ21 Δृ।նנ٨ຍԫ࠹ࠄᇢृᔚੌ๯ᅝ܂๯ေ۷

ኙွழࢬ൓ऱ։ᑇΖ 
ᐊՀऱࢬᇢृ࠹ۯޢנ࠷ଚݺຍԫิᄅऱኔ᧭խΔڇ 20 ิᙑܑ܂ڗ੡೗უऱ৬ᤜ

؆׼ፖڗऱᙑܑࠎ༽ࢬ।ڗ೗უհ৬ᤜא।Δ٦ڗ ᇢृଡܑᐊՀऱ࠹ۯ20 20ิᙑܑڗ
ԫิԫิၞچ۩ေ۷Ζေ۷ऱመ࿓խݺଚᄎૠጩ 20 ෷Δڃ״ऱ壄ᒔ෷ፖڗଡᙑܑٺิ
൷ထૠጩຍ 20 ิ壄ᒔ෷ፖڃ״෷ऱؓ݁Δ൓ࠩאଡܑ࠹ᇢृࠎ༽ࢬऱᙑܑڗ੡ᑑᄷ࿠
ூழऱ壄ᒔ෷ፖڃ״෷Ζ൷ထ٦ૠጩຍ 20 ิᑇᖕऱؓ݁Δ່৵ࢬ൓ࠩऱૠጩ࿨࣠༉ਢ
।նխऱؓ݁壄ᒔ෷ፖؓ݁ڃ״෷Ζ 

Δྥ৵᜔ףऱ壄ᒔ෷ڶࢬނᇢृऱؓ݁।෼Δ։ܑ࠹ڶࢬေ۷ࠐᖞଡ।նऱᑇᖕא

ೈאԳᑇΔؓ݁ऱ壄ᒔ෷ڃ״݁ؓࡉ෷։ܑਢ 0.48200 ࡉ 0.48205Δࠟृ༓׏ઌ࿛Ζ࠹
ᇢृհၴऱ٥ᢝ৫ឈྥ।૿Ղ઎ದࠐլ೏Δ܀ਢຍԫ࠹ࠄᇢृڇ൷ݺ࠹ଚྒྷᇢհছآࠀ

෷ᚨᇠጩਢڃ״ࡉຍԫଡؓ݁ऱ壄ᒔ෷אࢬΔ࠴࿠ംڃمழਢᗑٵΔߠ٣ઌյٌངრࠃ

ઌᅝ೏Ζ࣠ڕஞຍԫଡ᜔ؓ݁ᑇᇿ।؄ऱؓ݁ᑇઌֺऱᇩΔݺଚ࿇෼ݺଚߓอऱ壄ᒔ෷

ឈྥֺլՂԳᣊ࠹ᇢृΔ܀ਢڃ״෷থ౨೏࣍Գᣊ࠹ᇢृၴऱڃ״෷Ζຍԫႈֺለ᧩ق

ݮऱൣڗԼଡ৬ᤜृࢨڗնଡ৬ᤜࠎ༽อߓ୲๺ڇऱࣚ೭Δشڶࠎ༽אױอߓଚऱݺ

ՀΔݺଚߓอֺԳᣊ࠹ᇢृޓ౨༼ࠎᒔኔشڶऱ৬ᤜڗΖ 
ຍ࣍ଚኙݺΔ؆׼ 21 ৰՕऱᘋڶ堚ᄑऱ٥ᢝՈڶܡਢڗ෗෤࣐ऱࡳᎁࢬسᖂۯ

ᔊΔ࣍ਢݺଚޢנ࠷ଡᖂࢬسᐊՀऱ ڼאࠀΔڗᅝխऱรԫଡڗ෗෤࣐20ิ 20ଡڗ੡
ᇠᖂسऱรԫڗွٱΔਚڶ٥ 21ิรԫڗွٱΔิޢ Δֺࠟࠟۯ੡໢ิאΖ൷ထڗ20
ለڇઌۯٵᆜՂऱڗΔૉਢԫᑌऱᇩΔঞ࿯ղԫ։ऱᦞૹΙڼڂૉਢԫᑓԫᑌऱࠟิࠐ

ֺለऱᇩΔঞאױᛧ൓የ։ 20 ։Ζݺଚലڼᎁव٥ᢝऱ։࣫࿨ֱ࣠אೄ।قΔאطࠀ
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٥ᢝ։ᑇ

࠹
ᇢ
ृ
ิ
ᑇ

ቹնΕ21 ࠹ۯᇢृऱ٥ᢝ։ᑇऱ։܉ 

Ղऱᓵ૪ංᖄױवΔֱڼೄؘਢኙߡᒵ੡ 20հኙጠֱೄΔڕ।քقࢬΰ।քխऱψظωΕ
ψԬωࡉψׇω੡ᑑᙰऱԿଡ᥏ࡉԿଡ٨ऱᇷறΔലڇՀԫ՛ᆏᎅࣔαΖ 

।քຍԫิ଺ࡨᑇᖕאױᨃݺଚ઎

ࠩଡܑ࠹ᇢृհၴ٥ᢝ࿓৫ऱ᧢֏Δ܀

ਢլ୲࣐઎ࠩԫ౳ऱ᝟ႨΖݺଚאױ։

ՂԿ׳ᒵ੡ᄷऱߡՀऱኙ׳Ղࠩؐא࣫

ભݙᒵՂऱߡᐞኙەլڇΔڗऱᑇݮߡ

։ᑇ 20։ऱൣݮՀΔૠጩ࠹ิ֟ڍڶᇢ
ृऱ٥ᢝਢ 19։Ε18։ΕΞΕ0։Δނ
൓ࠩຍԫࠄ։ᑇऱิᑇಖᙕՀࠐΔྥ৵

ᢄ፹ԫଡ࠹ᇢृ٥ᢝऱ᝟ႨቹΖቹնਢ

ຍԫ࿓ݧऱขढΔᖩၗਢ։ᑇΔ᜕ၗਢ

൓ࠩᖩၗ٨ࢬ։ᑇऱ࠹ᇢृิᑇΖൕቹאױݮ઎൓ࠐנΔ࠹ᇢृऱ٥ᢝ։ᑇቝਢൄኪ։

طΖᆖመ១໢ऱૠጩΔ܉ ऱګݮࢬᇢृ࠹ۯ21 210ଡ։ᑇऱؓ݁ᑇਢ 8.905Ζ࠹א࣠ڕ
ᇢհၴऱ٥ᢝ։ᑇᅝ܂։՗Δݙભऱ٥ᢝ։ᑇ 20 ᅝ܂։ئૠጩΔঞຍԫؓ݁։ᑇऱۍ
։։ᑇڶ׽ 44.5%Ζ 

5.3 റᄐრߠऱေ۷ 

ᄅᒳᙑܑڗ॰်ऱृ܂ೈԱ।࣐ڶܶץ٨෗෤ڗऱဲნհ؆ΔՈ༼ࠎԱ٨ဲࢬნ່ൄߠ

ऱᙑᎄᐊऄΖݺଚނאױຍԫࠄᙑܑڗᅝ܂ਢറᄐრߠΔאຍԫࠄറᄐრࠐߠေ۷ݺଚ

ऱ৬ᤜڗ।ऱயࡉشছ૿ԫ౳࠹ᇢृࢬᐊऱᙑܑڗऱ঴ᔆΖ।Ԯऱփ୲ਢނ।Կऱ࣐෗

෤ګޏڗറ୮ࠎ༽ࢬऱᙑܑڗΔร รࡉ7 13ᠲࠟڶଡױ౨ऱᙑܑڗΔรԲႉۯऱᙑܑ

।քΕ࠹ᇢृհၴऱ٥ᢝऱ։ᑇֱೄ 
 A B C D E F G H I J K L M N O P Q R S T U ظ Ԭ ׇ

A 20 13 10 13 9 9 9 8 12 10 12 9 8 13 8 12 7 7 9 10 8 9 9 11
B 13 20 9 10 9 9 8 8 11 9 12 8 8 9 8 12 6 7 9 9 8 7 7 13
C 10 9 20 7 11 8 7 5 8 8 10 6 7 7 8 11 7 8 9 9 9 4 4 7
D 13 10 7 20 9 10 11 6 11 10 10 8 8 14 8 9 6 7 8 9 9 11 11 12
E 9 9 11 9 20 10 9 6 10 10 11 8 7 9 6 9 8 10 11 9 8 7 7 10
F 9 9 8 10 10 20 14 9 11 10 9 9 9 10 7 12 7 9 8 10 10 8 8 12
G 9 8 7 11 9 14 20 8 12 10 10 10 10 14 8 11 8 9 8 10 13 10 10 14
H 8 8 5 6 6 9 8 20 8 8 7 5 7 5 5 10 6 6 6 9 4 4 5 7
I 12 11 8 11 10 11 12 8 20 12 12 11 8 13 7 10 8 10 10 11 12 7 8 13
J 10 9 8 10 10 10 10 8 12 20 12 10 9 10 6 11 8 8 10 10 9 8 9 12

K 12 12 10 10 11 9 10 7 12 12 20 9 9 10 6 10 8 8 10 9 11 7 7 11
L 9 8 6 8 8 9 10 5 11 10 9 20 7 11 5 7 6 7 7 9 9 8 8 11

M 8 8 7 8 7 9 10 7 8 9 9 7 20 8 6 11 6 9 6 9 8 5 5 8
N 13 9 7 14 9 10 14 5 13 10 10 11 8 20 8 8 6 8 8 10 11 11 11 14
O 8 8 8 8 6 7 8 5 7 6 6 5 6 8 20 9 7 8 6 7 7 7 7 9
P 12 12 11 9 9 12 11 10 10 11 10 7 11 8 9 20 9 8 10 11 11 6 7 10
Q 7 6 7 6 8 7 8 6 8 8 8 6 6 6 7 9 20 11 10 9 7 7 8 8
R 7 7 8 7 10 9 9 6 10 8 8 7 9 8 8 8 11 20 12 9 8 5 5 9
S 9 9 9 8 11 8 8 6 10 10 10 7 6 8 6 10 10 12 20 10 9 6 7 11
T 10 9 9 9 9 10 10 9 11 10 9 9 9 10 7 11 9 9 10 20 10 7 8 12
U 8 8 9 9 8 10 13 4 12 9 11 9 8 11 7 11 7 8 9 10 20 7 7 10
8 7 11 4 7 9 ظ 10 4 7 8 7 8 5 11 7 6 7 5 6 7 7 20 16 12
Ԭ 9 7 4 11 7 8 10 5 8 9 7 8 5 11 7 7 8 5 7 8 7 16 20 13
ׇ 11 13 7 12 10 12 14 7 13 12 11 11 8 14 9 10 8 9 11 12 10 12 13 20
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ਔڇ࣋ڗ

ᇆᇙ૿Ζ 
ݺ ଚ

ຍԫറא

୮რࠐߠ

ေ۷ݺଚ

ګอऱߓ

யΔૹᓤছ

ԫ՛ᆏ৬م।؄ऱٵ

ԫኔ᧭Δ൓ࠩ।Զऱ

ᑇᖕΖ࿨࣠᧩قΔᅝ

റ୮אଚݺ

რ܂ߠ੡ᑑ

ᄷ࿠ூऱழ

ଢΔݺଚߓ

อࢬ൓ऱؓ

݁壄ᒔ෷ࡉ

ؓ ݁ ״ ڃ

෷Δຟᝫֺ

ᇢ࠹ԫ౳ش

ृऱრߠ੡

ᑑᄷ࿠ூழ૞೏Ζࠡխԫຝٝऱ଺ڂΔᚨᇠਢᇿറ୮რߠᇙ૿լᄎڶլڇژऱዧڗΔࢬ

 ᣂΖڶ෷ࣔ᧩༼೏ڃ״א
।԰ਢאറ୮რߠऱᙑܑڗ੡ᑑᄷ࿠ூऱழଢΔ21 ڗऱᙑܑࠎ༽ࢬᇢृ࠹ԫ౳ۯ

ऱ঴ᔆΖૠጩ।԰ 21 ิᑇᖕऱؓ݁Δאױ൓ࠩԫ౳࠹ᇢृऱؓ݁壄ᒔ෷ڃ״݁ؓࡉ෷
։ܑਢ ࡉ0.51576 0.59881Ζֺದ।նऱؓ݁ଖ ࡉ0.48200 0.48205૞ࣔ᧩೏ৰڍΖຍԫ
ႈ࿨࣠ࠟڶאױጟᇭᤩֱڤΙऴᤚՂऱ઎ऄਢΚԫ౳࠹ᇢृऱრߠፖറ୮რֺڶߠለ೏

ऱԫીࢤΙۖ׼ԫଡᇭᤩঞਢΔ஼ءऱृ܂ᒔኔ༳༽ࠩԱԫ౳ᦰृ౨ജუࠩऱᙑܑڗΖ 
ૹᓤՂԫ՛ᆏխรԿଡኔ᧭ழΰ׽ւ๺ݺଚߓอ৬ᤜԫଡଢᙇڗαΔݺଚףאױԵ

ࠟଡ৬ᤜ।ࡉറ୮რߠΖ।քᇙ૿ऱظ᥏٨ظࡉਢψٵଃΕ२ଃωߓอ৬ᤜڗ।ΔԬ᥏

ڂ൓ऱ։ᑇΖࢬߠ٨ਢറ୮რׇࡉ।Δׇ᥏ڗอ৬ᤜߓଃΕ२ଃωٵΕݮԬ٨ਢψ२ࡉ

੡।քਢԫଡኙጠֱೄΔٵאࢬԫᑑᙰऱ᥏ፖ٨ऱᇷறຟᄎਢԫᑌऱΖ 
ՂۖՀൕطԬ᥏ᇙ૿Δࡉ᥏ظଚૠጩݺ A٨ࠩ U٨ऱԫીࢤ։ᑇऱؓ݁Δ։ܑ൓

ࠩ ࡉ7.19 7.52։ΖՈ༉ਢΔຍ ԮڇՕપᆵࢤଚࠟጟ৬ᤜ।ऱԫીݺᇢृᇿ࠹ԫ౳ۯ21
։ऱۯᆜΖ࣠ڕૠጩׇ᥏Δٵᑌຍ 21ଡᑇڗऱؓ݁ऱᇩΔݺଚ൓ࠩ 10.66Ζറ୮რߠᇿ
ԫ౳࠹ᇢृრߠऱԫીࢤ၌መԫתऱྒྷᇢᠲؾΔറ୮ऱრߠᝫਢֺݺଚߓอऱ৬ᤜޓ౨

஢஦ࠩԫ౳࠹ᇢृऱუऄΖ 

।԰Εאറ୮რߠ੡ᑑᄷ࿠ூΔ21࠹ۯᇢृऱ࿠ூऱ঴ᔆ 
ᇆ ؓ݁壄ᒔ෷זᇢृ࠹ ෷ڃ״݁ؓ ᇆזᇢृ࠹ ؓ݁壄ᒔ෷ ؓ݁ڃ״෷

A 0.550 0.550 L 0.550 0.525 
B 0.650 0.725 M 0.317 0.500 
C 0.371 0.675 N 0.667 0.725 
D 0.575 0.625 O 0.533 0.700 
E 0.504 0.625 P 0.550 0.550 
F 0.600 0.650 Q 0.329 0.550 
G 0.750 0.700 R 0.327 0.600 
H 0.400 0.375 S 0.458 0.525 
I 0.675 0.650 T 0.467 0.675 
J 0.575 0.575 U 0.458 0.575 
K 0.525 0.500    

।ԮΕറᄐრߠጥሐ٨ࢬऱᙑܑ[8]ڗ 

ᒳᇆ ဲნ ဲნ ဲნ ᒳᇆ ဲნ ᒳᇆ ᒳᇆ

1 ԫᙢ߷ 2 ԫਪଉ 3 ณक़ᛵ႖ 4 ઌࢿߠݮ 

ش۞ᔀ 6 ଶ༚܂ 5 (ఄ)ԫ౳ߠױ 7  ᘣױᨌࡉ 8

9 ᐝਣ 10 ယᣇլ஡ 11 ᖺ᧜ٽ৫ 12 ৱᏝۖ۷ 

13 ᑻ࠴(㧥) 14 რᘋឃၑ 15 ᗥێᣄ஼ 16 ᤵଈݫৎ 

17 ௅෡18 ࡐࢍ ᑏᆶࠀ૊ 19 ᅀᛟ 20 ᒁᛞ 

।ԶΕࠉᖕറ୮რߠ੡ᑑᄷࢬૠጩऱؓ݁壄ᒔ෷ፖؓ݁ڃ״෷ 
ψٵଃΕ२ଃω ψ२ݮΕٵଃΕ२ଃω ߓอ৬ᤜڗ।

ய࣠ေ۷ ࠷ছնଡ࠷ ڗছնଡڗ ڗছԼଡ࠷ ڗছԼଡ࠷
0.170 0.085 0.190 0.095 ؓ݁壄ᒔ෷
෷ڃ״݁ؓ 0.875 0.875 0.775 0.775
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ׇ᥏ऱࡉ٨ظԬ٨ऱ։ᑇΔז।റ୮რߠፖݺଚࠟଡ৬ᤜ।ऱԫીࢤΔ։ܑਢ 12
ࡉ 13։Δؓ݁੡ 12.50։Ζ࣠ڕஞ ࡉ12.50 10.66ऴ൷ֺለऱᇩΔറ୮რߠ࿯ݺଚߓอ
ऱ։ᑇᝫ૞೏࣍࿯ղ  ᇢृऱؓ݁։ᑇΖ࠹ԫ౳ۯ21

 ପᕂᒘऱ౒រشࠌ 5.4

 ऱംᠲΖڇᑨࠄԫڇژ৫ᄎۿऱઌڗለֺࠐ੡ഗ៕܂ପᕂᒘشࠌ
ପᕂᒘڇԫࠄዧڗऱ։ᣊՂΔ֠ࠡਢֺለ១໢ऱڗΔᄎආشԫࠄᑓᒫऱ๵ঞΔຍᨃ

Δݮቹ؄ᇙ૿ऱรնጟዌشᎅΔψ։ωਢආࠐࠏᣄΖᜰܺس৫ழ࿇ۿऱઌڗኙֺڇଚݺ

๯ᦸ࣐ຟৰլ୲ڗऱנ٨ᜰࢬۯΔ।ԫ່ؐᢰ᥏؆ڼΖݮรԫጟዌشωথਢආ܋ਢψ܀

ᇷறمԳՠ৬א౨ਢױڤΔ๠෻ऱֱڍ੡ᑇլڗΖຍԫᣊ࿝྽ॺൄ១໢ऱڗݮ੡२ࡳ

஄Δֺದڃᙰሎشᐙቝ๠෻ݾ๬ބࠐ२ڗݮᆖᛎ൓ڍΖ 
ԫଡڗऱପᕂᒘऱؐתᢰृࢨՂתᢰऱڗଈ່׽ڍ౨ڶԫଡ՗࿨ዌΖא।Բऱ

ψઌωΕψუωࡉψᒣω੡ࠏΔψઌωຍଡڗ໢ᗑڇژழਢشࠌዌݮᒳᇆ 2ᇆΙۖڇψᒣω
ᇙ૿Δψઌωຍଡ՗࿨ዌঞਢ๯։ᇞࠟ׳ؐګଡຝٝΖ܀ਢΔڇψუωຍଡڗᇙΔψઌω

থ๯ᅝ܂ਢԫଡ໢ᗑऱ՗࿨ዌΔڂ੡،ऱۯᆜ๠࣍ᖞଡڗऱՂתᢰΔ๯ᅝ܂ԫଡڗଈΖ

ᣊۿຍᑌऱംᠲൄൄ࿇سΔڕࠏψཤωࡉψྡω֗ψ஑ωࡉψ ܺωΖ׼؆ᝫڶԫֺࠄለ
௽௘ऱࠏ՗Δቝਢψ঴ωຍଡشࠌڗรքጟዌݮΔ܀ψចωথਢشࠌรնጟΖ 

ຍԫጟംᠲऱ๠෻ΔᄆقԱݺଚႊ૞ૹᄅᛀီପᕂᒘᨠរऱዌݮ଺ঞΖݺଚࢨ๺ᚨ

ᇠ৬م۞աऱዌڤֱݮΔຍᑌאױᨃݺଚߓอנބࢬऱ२ڗݮऱ壄ᒔ৫ףޓ༼೏Ζ 

6. ࿨፿ 

ᔞᅝऱٽΖ಻ڗݮऱ२ڗჼ༈ዧࠐ࢚ऱᨠڗᇞዧࣈପᕂᒘشܓ۶ڕଚݺԱܫᒧᓵ֮໴ء

ሽ՗ဲࠢᇷறΔݺଚऱߓอ౨ജൕ࿇ଃݮࡉ᧯ࠟଡլߡٵ৫Δࢬנބ඿਷ᇬऱዧڗऱଢ

ᙇᙑܑڗΖݺଚၞԫߣشܓޡዚऱ਷ᇬפ౨ཙࢬ਷ࠩऱଢᙇᙑܑڗඈݧΔኔ᧭᧩قඈݧ

հ৵ࢬ൓ऱ৬ᤜڗ।ᒔኔ౨ജ༳༽ԫ౳࠹ᇢृࡉറᄐრࠎ༽ࢬߠऱᙑܑڗΖݺଚߓอࢬ

ขנऱݮଃઌ२ऱڗ।ΔೈԱאױᚨ࣍شሽᆰ᎖ܗᇢᠲᒳᙀߓอխऱψޏᙑڗωᇢᠲհ

؆ΔՈ֨࣍شאױ෻፿ߢᖂኔ᧭խᛀ᧭խ֮ृشࠌऱᔹᦰ۩੡Ζ 
ᕣጥ෼ڶڇઌᅝլᙑऱګ Δ࣠܀ਢݺଚՈ࿇෼Աאପᕂᒘ܂੡ߓอ๻ૠऱு֧֨ࢬ

ದऱംᠲΔݺଚՈګݙآࡸኙ࣍ዧ፿᧢ᓳ๵ঞऱ๠෻࿓ڤΔຍԫࠄຟਢၞڇإ۩ऱၞޏ

ႈؾΖ 

ી᝔ 

ૠ྽ߒഏઝᄎઔ፞ࢭߒઔء NSC-95-2221-E-004-013-MY2 ऱຝ։ᇖڼ᠃ܗી᝔Ζݺଚ
ტ᝔ೳټေᐉኙॣ֮ء࣍ᒚऱٺႈਐإፖਐᖄΔឈྥݺଚբᆖڇൕࠃઌᣂऱຝ։ઔߒᤜ

ᠲΔլመૻ࣍ᒧ༏ڼڂլ౨֮ءڇխז٤૿ٌઌᣂาᆏΖ 
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Abstract 

A realistic Chinese word segmentation tool must adapt to textual variations with minimal 

training input and yet robust enough to yield reliable segmentation result for all variants. 

Various lexicon-driven approaches to Chinese segmentation, e.g. [1,16], achieve high f-scores 

yet require massive training for any variation. Text-driven approach, e.g. [12], can be easily 

adapted for domain and genre changes yet has difficulty matching the high f-scores of the 

lexicon-driven approaches. In this paper, we refine and implement an innovative text-driven 

word boundary decision (WBD) segmentation model proposed in [15]. The WBD model 

treats word segmentation simply and efficiently as a binary decision on whether to realize the 

natural textual break between two adjacent characters as a word boundary. The WBD model 

allows simple and quick training data preparation converting characters as contextual vectors 

for learning the word boundary decision. Machine learning experiments with four different 

classifiers show that training with 1,000 vectors and 1 million vectors achieve comparable 

and reliable results. In addition, when applied to SigHAN Bakeoff 3 competition data, the 

WBD model produces OOV recall rates that are higher than all published results. Unlike all 
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previous work, our OOV recall rate is comparable to our own F-score. Both experiments 

support the claim that the WBD model is a realistic model for Chinese word segmentation as 

it can be easily adapted for new variants with robust result. In conclusion, we will discuss 

linguistic ramifications as well as future implications for the WBD approach. 

Keywords: segmentation. 

1. Background and Motivation 

The paper deals with the fundamental issue why Chinese word segmentation remains a 

research topic and not a language technology application after more than twenty years of 

intensive study. Chinese text is typically presented as a continuous string of characters 

without conventionalized demarcation of word boundaries. Hence tokenization of words, 

commonly called word segmentation in literature, is a pre-requisite first step for Chinese 

language processing. Recent advances in Chinese word segmentation (CWS) include popular 

standardized competitions run by ACL SigHAN and typically high F-scores around 0.95 from 

leading teams [8]. However, these results are achieved at the cost of high computational 

demands, including massive resources and long machine learning time. In fact, all leading 

systems are expected to under-perform substantially without prior substantial training. It is 

also important to note that SigHAN competitions are conducted under the assumption that a 

segmentation program must be tuned separately for different source texts and will perform 

differently. This is a bow to the fact that different communities may conventionalize the 

concept of word differently; but also an implicit concession that it is hard for existing 

segmentation programs to deal with textual variations robustly. 

[15] proposed an innovative model for Chinese word segmentation which formulates it as 

simple two class classification task without having to refer to massive lexical knowledge base. 

We refine and implement this Word Boundary Decision (WBD) model and show that it is 

indeed realistic and robust. With drastically smaller demand on computational resources, we 

achieved comparable F-score with leading Bakeoff3 teams and outperform all on OOV recall, 

the most reliable criterion to show that our system deals with new events effectively. 

In what follows, we will discuss modeling issues and survey previous work in the first 

section. The WBD model will be introduced in the second section. This is followed by a 

description of the machine learning model is trained in Section 4. Results of applying this 

implementation to SigHAN Bakeoff3 data is presented in Section 5. We conclude with 
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discussion of theoretical ramifications and implications in Section 6. 

2. How to model Chinese word segmentation 

The performance of CWS systems is directly influenced by their design criteria and how 

Chinese word segmentation task is modeled. These modeling issues did not receive in-depth 

discussion in previous literature: 

Modeling Segmentation. The input to Chinese word segmentation is a string of characters. 

However, the task of segmentation can be modeled differently. All previous work share the 

assumption that the task of segmentation is to find our all segments of the string that are 

words. This can be done intuitively by dictionary lookup, or be looking at strength of 

collocation within a string, e.g. [12]. Recent studies, e.g. [14, 16, 5, 17], reduce the 

complexity of this model and avoided the thorny issue of the elusive concept of word at the 

same time by modeling segmentation as learning the likelihood of characters being the edges 

of these word strings. These studies showed that, with sufficient features, machine learning 

algorithms can learn from training corpus and use their inherent model to tokenize Chinese 

text satisfactorily. The antagonistic null hypothesis of treating segmentation as simply 

identifying inherent textual breaks between two adjacent characters was never pursued. 

Out-of-Vocabulary Words. Identification of Out-of Vocabulary words (OOV, sometimes 

conveniently referred to as new words) has been a challenge to all systems due to data 

sparseness problem, as well as for dealing with true neologisms which cannot be learned 

from training data per se. This requirement means that CWS system design must incorporate 

explicit or implicit morphology knowledge to assure appropriate sensitivity to context in 

which potential words occur as previously unseen character sequences. 

Language Variations. Especially among different Chinese speaking communities. Note that 

different Chinese speaking communities in PRC, Taiwan, Hong Kong Singapore etc. 

developed different textual conventions as well as lexical items. This is compounded by the 

usual text type, domain, and genre contrasts. A robust CWS system must be able to adapt to 

these variations without requiring massive retraining. A production environment with it's time 

restrictions possesses great demands on the segmentation system to be able to quickly 

accommodate even to mixture of text types, since such a mixture would introduce confusing 

contexts and confuse system that would rely too heavily on text type, i.e. particular lexicon 

choice and specific morphology, and too large a context. 
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Space and time demands. Current CWS systems cannot avoid long training times and large 

memory demands. This is a consequence of the segmentation model employed. This is 

acceptable when CWS systems are used for offline tasks such as corpora preprocessing, 

where time and space can be easily provided and when needed. However, for any typically 

web-based practical language engineering applications, such high demand on computing time 

is not acceptable. 

2.1 Previous works: a critical review 

Two contrasting approaches to Chinese word segmentation summarize the dilemma of 

segmentation system design. A priori, one can argue that segmentation is the essential tool for 

building a (mental) lexicon hence segmentation cannot presuppose lexical knowledge. On the 

other hand, as a practical language technology issue, one can also argue that segmentation is 

simply matching all possible words from a (hypothetical) universal lexicon and can be 

simplified as mapping to a large yet incomplete lexicon. Hence we can largely divide 

previous approaches to Chinese word segmentation as lexicon-driven or text-driven. 

Text-Driven. Text-driven approach to segmentation relies on contextual information to 

identify words and do not assume any prior lexical knowledge. Researches in this approach 

typically emphasize the need for an empirical approach to define the concept of a word in a 

language. [12] work based on mutual information (MI) is the best-known and most 

comprehensive in this approach. The advantage of this approach it can be applied to all 

different variations of language and yet be highly adaptive. However, the basic 

implementation of MI applies bi-syllabic words only. In addition, it cannot differentiate 

between highly collocative bigrams (such as 就不 jiubu 

it typically has lower recall and precision rate than current methods. Even though text-driven 

approaches are no longer popular, they are still widely used to deal with OOV with a 

lexicon-driven approach. 

Tokenization. The classical lexicon-driven segmentation model, described in [1] and is still 

adopted in many recent works. Segmentation is typically divided into two stages: dictionary 

look up and OOV word identification. This approach requires comparing and matching tens 

of thousands of dictionary entries in addition to guessing a good number of OOV words. In 

other words, it has a 104 x 104 scale mapping problem with unavoidable data sparseness. This 

model also has the unavoidable problem of overlapping ambiguity where e.g. a string [Ci-1, Ci, 

Ci+1] contains multiple sub-strings, such as [Ci-1, Ci] and [Ci, Ci+1], which are entries in the 
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dictionary. The degree of such ambiguities is estimated to fall between 5% to 20% [2, 6]. 

Character classification. Character classification or tagging, first proposed in [14], became a 

very popular approach recently since it is proved to be very effective in addressing problems 

of scalability and data sparseness [14, 4, 16, 17]. Since it tries to model the possible position 

of a character in a word as character-strings, it is still lexicon-driven. This approach has been 

also successfully applied by to name entity resolution, e.g. [17]. This approach is closely 

related to the adoption of the machine learning algorithm of conditional random field (CRF), 

[7]. CRF has been shown [11] to be optimal algorithm for sequence classification. The major 

disadvantages are big memory and computational time requirement. 

3. Model 

Our approach is based on a simplified idea of Chinese text, which we have introduced earlier 
in [15]. Chinese text can be formalized as a sequence of characters and intervals as illustrated 
in Figure 1. 

 

There is no indication of word boundaries in Chinese text, only string of characters ci. 

Characters in this string can be conceived as being separated by interval Ii. To obtain a 

segmented text, i.e. a text where individual words are delimited by some graphical mark such 

as space, we need to identify which of these intervals are to be replaced by such word 

delimiter. 

We can introduce a utility notion of imaginary intervals between characters, which we 

formally classify into two types: 

Type 0: a character boundary (CB) is an imaginary boundary between two characters 

Type 1: a word boundary (WB), an interval separating two words.  

With such a formulation, segmentation task can be easily defined as a classification task and 

machine learning algorithms can be employed to solve it.  For conventional machine 

learning algorithms, classifications are made based on a set of features, which identify certain 

properties of the target to be classified.  

In a segmented text, all the intervals between characters are labeled as a word boundary or as 

c1, I 1, c2, I 2, ... , cn 1, I n 1, cn

F igure 1: Chinese text 
formalization 
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a character boundary, however, characters are not considered as being part of any particular 

word. Their sole function is to act as a contextual aid for identification of the most probable 

interval label. Since the intervals between characters (be it a word boundary or a character 

boundary) don't carry any information at all, we need to rely on the information provided by 

group of characters surrounding them. 

Now we can collect n-grams that will provide data for construction of features that will 

provide learning basis for machine learning algorithm. A sequence, such the one illustrated in 

Figure 1, can be obtained from segmented corpus, and hence the probability of word 

boundary with specified relation to each n-gram may be derived. The resulting table which 

consists of each distinct n-gram entry observed in the corpus and the probability of a word 

boundary defines our n-gram collection. 

Figure 2 shows the format of the feature vectors, or interval vectors, used in this study.  We 

build the n-gram model up to n = 2. 

bi-grams

preceeding containing following

CCB    CB     CBC     BC     BCC

unigrams

F igure 2: The feature vectors used in this study. 
While C denotes a character in the sequence, B 
indicates the imaginary boundary. Thus CBC  
denotes a bi-gram containing the interval. 
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To allow for a more fine-grained statistical information we have decomposed an interval 

surrounding context into two unigrams and three bi-grams. For convenience, we can define 

each interval by the two characters that surround it. Then, for each interval <b,c> in a 

4-character window abcd we collect two unigrams b and c and three bi-grams ab, bc, cd and 

compute probability of that interval being a word boundary. These five n-grams are stored in 

a vector, which is labeled as Type 0 (character boundary) or Type 1 (word boundary): <ab, b, 

bc, c, cb, 0> or <ab, b, bc, c, cb, 1>. An example of an encoding of a sample from the 

beginning of Bakeoff 3 AS training corpus: "時間：三月十日" (shijian:sanyueshiri), which 

would be correctly segmented as "時間 ： 三月十日" (shijian : sanyue shiri) can be seen in 

Table 1. 

Set of such interval vectors provides a training corpus on which we apply machine learning 

algorithm, in our case logarithmic regression. Unsegmented text is prepared in the same 

fashion and the interval vectors are subsequently labeled by a classifier. 

4. Training the Machine Learning Model 

It is our goal to develop a segmentation system that would be able handle different types of 

Table 1: Example of encoding and labeling of interval vectors in a 
4-character window ABCD 

Basic corpus Other corpus

N-gram collection

Training data

Testing data

CCB, CB, CBC, BC, BCC

Classifier

Segmented text
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text. A large uniform training corpus is desirable for high precision of segmentation, but that 

would cause a specialization of the classifier to types of texts contained in the corpus and 

system's generality would be compromised. 

Furthermore, using a training data set converted from an independent corpus may give 

supplementary information and provide certain adaptation mechanism for the classifier 

during training, but leave the basic n-gram collection untouched. However, a smaller set of 

training data may give similar performance but with much lower cost. 

If the features in the n-gram collection are properly defined, the final results from different 

machine learning algorithms may not differ too much. On the contrary, if the available 

n-gram collection does not provide efficient information, classifiers with ability to adjust the 

feature space may be necessary. 

In our preliminary tests, during which we wanted to decide which machine learning algorithm 

would be most appropriate, the Academia Sinica Balance Corpus (ASBC) is used for the 

derivation of the n-gram collection and training data. The CityU corpus from the SigHAN 

Bakeoff2 collection is used for testing. 

In order to verify the effect of the size of the training data, the full ASBC (~17 million 

intervals) and a subset of it (1 million randomly selected intervals) are used for training 

separately.  

Table 2: Performance during training 

Table 3: Performance during testing 130



 

Furthermore, four different classifiers, i.e., logistic regression (LogReg) [9], linear 

discriminative analysis (LDA)[13], multi-layer perceptron (NNET)[13], and support vector 

machine (SVM)[3], were tested.  

The segmentation results are compared with the "gold standard" provided by the SigHAN 

Bakeoff2. 

Tables 2 and 3 show the training and testing accuracies of various classifiers trained with the 

ASBC. All classifiers tested perform as expected, with their training errors increase with the 

size of the training data, and the testing errors decrease with it. Table 2 clearly shows that the 

training data size has little effect on the testing error while it is above 1000. This proves that 

once a sufficient n-gram collection is provided for preparation of the interval vectors, 

classifier can be trained with little input. 

It is also shown in Table 2 that four classifiers give similar performance when the training 

data size is above 1000. However, while the training sample size drops to 100, the SVM and 

LDA algorithms show their strength by giving similar performance to the experiments trained 

with larger training data sets. 

Table 4: Performance during training: new corpus 

Table 5: Performance during testing: new corpus 
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To further explore the effectiveness of our approach, we have modified the experiment to 

show the performance in model adaptation. In the modified experiments the training and 

testing data sets are both taken from a foreign corpus (CityU), while our n-gram collection is 

still from ASBC. The relation between the derived features and the true segmentation may be 

different from the ASBC, and hence is learned by the classifiers. The results of the modified 

experiments are shown in Tables 4 and 5. 

5. Results 

In our test to compare our performance objectively with other approaches, we adopt 

logarithmic regression as our learning algorithm as it yielded best results during our test. We 

apply the segmentation system to two traditional Chinese corpora, CKIP and CityU, provided 

for SigHAN Bakeoff 3. In the first set of tests, we used training corpora provided by SigHAN 

Bakeoff3 for n-gram collection, training and testing. Results of these tests are presented in 

Table 6. 

In addition, to underline the adaptability of this approach, we also tried combining both 

corpora and then ran training on random sample of vectors. This set of tests is designed to 

exclude the possibility of over-fitting and to underline the robustness of the WBD model. 

Note that such tests are not performed in SigHAN Bakeoffs as many of the best performances 

are likely over-fitted. Results of this test are shown in Table 7.  

Table 6 and 7 show that our OOV recall is comparable with our overall F-score, especially 

when our system is trained on selected vectors from combined corpus. This is in direct 

contrast with all existing systems, which typically has a much lower OOV recall than IV 

recall. In other words, our approach applies robustly to all textual variations with reliably 

good results. Table 8 shows that indeed our OOV recall rate shows over 16% improvement 

Table 6: Combined results (Bakeoff 3 
dataset): traditional Chinese 

Table 7: Results (Bakeoff 3 dataset): 
traditional Chinese 
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over the best Bakeoff3 result for CityU, and over 27% improvement over best result for CKIP 

data. 

 

6. Discussion 

We refined and implemented the WBD model for Chinese word segmentation and show that 

it is a robust and realistic model for Chinese language technology. Most crucially, we show 

that the WBD model is able to reconcile the two competitive goals of the lexicon-driven and 

text-driven approaches. The WBD model maintains comparable F-score level with the most 

recent CRF character-classification based results, yet improves substantially on the OOV 

recall.  

We showed that our system is robust and not over-fitted to a particular corpus, as it yields 

comparable and reliable results for both OOV and IV words. In addition, we show that same 

level of consistently high results can be achieved across different text sources. Our results 

show that Chinese word segmentation system can be quite efficient even when using very 

simple model and simple set of features.  

Our current system, which has not been optimized for speed, is able to segment text in less 

then 50 seconds. Time measurement includes preparation of testing data, but also training 

phase. We believe that with optimized and linked computing power, it will be easy to 

implement a real time application system based on our model. In the training stage, we have 

shown that sampling of around 1,000 vectors is enough to yield one of the best results. Again, 

this is a promise fact for the WBD model of segmentation to be robust. It is notable, that in 

case of training on combined corpora (CKIP and CityU) the results are even better than test in 

respective data sets, i.e. CKIP training corpus for segmenting CKIP testing text, or CityU 

respectively. This is undoubtedly the result of our strategy of granulation of the context 

around each interval. Since four characters that we use for representation of the interval 

context are broken up into two unigrams and three bi-grams, we let the system to get more 

Table 8: Our OOV recall results compared to 
best performing systems in (Levow, 2006) 
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refined insight into the segmented area.  

Consequently, the system is learning morphology of Chinese with greater generality and this 

results in higher OOV scores. It can be argued that in our combined corpora test, the OOV 

recall is even higher, because the input contains two different variants of Chinese language, 

Taiwanese variant contained in CKIP corpus and Hong Kong variant contained in CityU 

corpus.  

Text preparation and post-processing also add to overall processing time. In our current 

results, apart from context vector preparation there was no other preprocessing employed and 

neither any post-processing. This fact also shows that our system is able to handle any type of 

input without the need to define special rules to pre- or post-process the text. Early results 

applying our model to simplified Chinese corpora are also promising.  

In sum, our WBD model for Chinese word segmentation yields one of the truly robust and 

realistic segmentation program for language technology applications. If these experiments are 

treated as simulation, our results also support the linguistic hypothesis that word can be 

reliably discovered without a built-in/innate lexicon. We will look into developing a more 

complete model to allow for more explanatory account for domain specific shifts as well as 

for effective bootstrapping with some lexical seeds. 
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89.590%

88.854%

ABSTRACT

There are very few input systems supporting Taiwanese and Hakka on the market at

present. Our purpose is to provide an input system supporting Mandarin and Taiwanese

which is toneless and complies with multiple types of phonetic symbols, we hope that such an

approach can resolve the problems resulting from tone and phonetic symbols. In this paper,
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we use an algorithm based on three continuous longest word first whose precision is 89.59%

in one type of phonetic symbols, and 88.54% in the combination of many types of phonetic

symbols.

Keywords: toneless input system, phoneme to character, three continuous longest word first.
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Abstract 

Propositional terms in a research abstract (RA) generally convey the most important 
information for readers to quickly glean the contribution of a research article. This paper 
considers propositional term extraction from RAs as a sequence labeling task using the IOB 
(Inside, Outside, Beginning) encoding scheme. In this study, conditional random fields 
(CRFs) are used to initially detect the propositional terms, and the combined association 
measure (CAM) is applied to further adjust the term boundaries. This method can extract 
beyond simply NP-based propositional terms by combining multi-level features and inner 
lexical cohesion. Experimental results show that CRFs can significantly increase the recall 
rate of imperfect boundary term extraction and the CAM can further effectively improve the 
term boundaries.  

ኴ૞ 

ᖄᦰृ֮ີ౧࿮հ࿇୶Ζຍᒧᓵ֧׊࢚ᠲ๬፿(Propositional Term)।ሒ֮ີխૹ૞ᄗࡎ
 යٙᙟᖲ഑(ConditionalٽխᖞߒΔઔ࠷ᠲ๬፿ឯࡎ۩ᖂ๬ᓵ֮ኴ૞੡ኔ᧭ኙွၞא֮
Random Fields, CRFs) ֗א࿨ٽᜤᢀྒྷၦ(Combined Association Measure, CAM) ࠟጟֱ
ऄΔەၦဲნփຝᕩፋԺ֮ࡉ౧ࠟՕᣊಛஒΔኲנ࠷ऱࡎᠲ๬፿լ٦ওૻׂဲټ࣍፿ী

ኪΔطױ׊໢ဲࢬဲڍࢨዌګΖࡎڇᠲ๬፿ឯ࠷ऱመ࿓խΔലࠡီ੡ԫጟ٨ݧᇷறᑑ᧘

ऱٚ೭Δشܓࠀ IOB ᒳᒘֱڤᢝܑࡎᠲ૪፿ऱᢰ੺ΔCRFەၦڍᐋڻዌࡎګᠲ૪፿ऱ
௽ᐛΔ૤ຂॣࡎޡᠲ๬፿ೠྒྷΔشܓ٦ CAMૠጩဲნᕩፋԺΔ៶ףאൎᒔᎁࡎᠲ๬፿
ဲნऱᢰ੺Ζኔ᧭࿨࣠᧩ق Δءઔנ༽ࢬߒऱֱऄֺ࢓א૪፿ೠྒྷֱऄڇய౨Ղࣔڶ
᧩ᏺ Δၞࠡ խΔCRFࣔ᧩ᏺၞॺݙભ๬፿ဲნᢰ੺ᙃᢝ(Imperfect hits)ऱڃ״෷Δۖ  CAM
ঞڶயଥإ๬፿ဲნᢰ੺Ζ 

Keywords: Propositional Term Extraction, Conditional Random Fields, Combined 
Association Measure, Multi-Level Feature 
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1. Introduction 

Researchers generally review Research Abstracts (RAs) to quickly track recent research 
trends. However, many non-native speakers experience difficulties in writing and reading 
RAs [1]. The author-defined keywords and categories of the research articles currently 
utilized to provide researchers with access to content guiding information are cursory and 
general. Therefore, developing a propositional term extraction system is an attempt to exploit 
the linguistic evidence and other characteristics of RAs to achieve efficient paper 
comprehension. Other applications of the proposed method contain sentence extension, text 
generation, and content summarization. 

A term is a linguistic representation of a concept with a specific meaning in a particular 
field. It may be composed of a single word (called a simple term), or several words (a 
multiword term) [2]. A propositional term is a term that refers to the basic meaning of a 
sentence (the proposition) and helps to extend or control the development of ideas in a text. 
The main difference between a term and a propositional term is that a propositional term, 
which can guide the reader through the flow of the content, is determined by not only syntax 
or morphology but semantic information. Take RAs to illustrate the difference between a term 
and a propositional term. Cheng [3] indicted that a science RA is composed of background, 
manner, attribute, comparison and evaluation concepts. In Figure 1, the terms underlined are 
the propositional terms which convey the important information of the RA. In the clause 
Ϙwe present one of the first robust LVCSR systems that use a syllable-level acoustic unit for 
LVCSR,ϙ  the terms Ϙ LVCSR systemsϙ , Ϙ syllable-level acoustic unitϙ  and 
ϘLVCSRϙ respectively represent the background, manner and background concepts of the 
research topic, and can thus be regarded as propositional terms in this RA. The background 
concepts can be identified by clues from the linguistic context, such as the phrases 
Ϙmost…LVCSR systemsϙ and Ϙin the past decadeϙ, which indicate the aspects of 
previous research on LVCSR. For the manner concept, contextual indicators such as the 
phrases Ϙpresent one of…ϙ, Ϙthat useϙ and Ϙfor LVCSRϙ express the aspects of the 
methodology used in the research. Propositional terms may be composed of a variety of word 
forms and syntactic structures and thus may not only be NP-based, and therefore cannot be 
extracted by previous NP-based term extraction approaches. 

Most large vocabulary continuous speech recognition (LVCSR) systems in the past decade have used a 
context-dependent (CD) phone as the fundamental acoustic unit. In this paper, we present one of the 
first robust LVCSR systems that use a syllable-level acoustic unit for LVCSR on telephone-bandwidth 
speech. This effort is motivated by the inherent limitations in phone-based approaches-namely the lack 
of an easy and efficient way for modeling long-term temporal dependencies. A syllable unit spans a 
longer time frame, typically three phones, thereby offering a more parsimonious framework for 
modeling pronunciation variation in spontaneous speech. We present encouraging results which show 
that a syllable-based system exceeds the performance of a comparable triphone system both in terms of 
word error rate (WER) and complexity. The WER of the best syllable system reported here is 49.1% on 
a standard SWITCHBOARD evaluation, a small improvement over the triphone system. We also report 
results on a much smaller recognition task, OGI Alphadigits, which was used to validate some of the 
benefits syllables offer over triphones. The syllable-based system exceeds the performance of the 
triphone system by nearly 20%, an impressive accomplishment since the alphadigits application 
consists mostly of phone-level minimal pair distinctions. 

Figure1. A Manually-Tagged Example of Propositional Terms in an RA 

In the past, there were three main approaches to term extraction: linguistic [4], statistical 
[5, 6], and C/NC-value based [7,8] hybrid approaches. Most previous approaches can only 
achieve a good performance on a test article composed of a relatively large amount of words. 
Without the use of large amount of words, this study proposes a method for extracting and 
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weighting single- and multi-word propositional terms of varying syntactic structures. 

2. System Design and Development 

This research extracts the propositional terms beyond simply the NP-based propositional 
terms from the abstract of technical papers and then regards propositional term extraction as a 
sequence labeling task. To this end, this approach employs an IOB (Inside, Outside, 
Beginning) encoding scheme [9] to specify the propositional term boundaries, and 
conditional random fields (CRFs) [10] to combine arbitrary observation features to find the 
globally optimal term boundaries. The combined association measure (CAM) [11] is further 
adopted to modify the propositional term boundaries. In other words, this research not only 
considers the multi-level contextual information of an RA (such as word statistics, tense, 
morphology, syntax, semantics, sentence structure, and cue words) but also computes the 
lexical cohesion of word sequences to determine whether or not a propositional term is 
formed, since contextual information and lexical cohesion are two major factors for 
propositional term generation. 

 
Figure 2. The System Framework of Propositional Term Extraction 

The system framework essentially consists of a training phase and a test phase. In the 
training phase, the multi-level features were extracted from specific domain papers which 
were gathered from the SCI (Science Citation Index)-indexed and SCIE (Science Citation 
Index Expanded)-indexed databases. The specific domain papers are annotated by experts 
and then parsed. The feature extraction module collects statistical, syntactic, semantic and 
morphological level global and local features, and the parameter estimation module calculates 
conditional probabilities and optimal weights. The propositional term detection CRF model 
was built with feature extraction module and the parameter estimation module. During the 
test phase users can input an RA and obtain system feedback, i.e. the propositional terms of 
the RA. When the CRF model produces the preliminary candidate propositional terms, the 
propositional term generation module utilizes the combined association measure (CAM) to 
adjust the propositional term boundaries. The system framework proposed in this paper for 
RA propositional term extraction is shown in Figure 2. A more detailed discussion is 
presented in the following subsections. 
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2.1. Assisted Resource 

In order to produce different levels of information and further assist feature extraction in the 
training and test phases, several resources were employed. This study chooses the ACM 
Computing Classification System (ACM CSS) [12] to serve as the domain terminology list 
for propositional term extraction from computer science RAs. The ACM CSS provides 
important subject descriptors for computer science, and was developed by the Association for 
Computing Machinery. The ACM CSS also provides a list of Implicit Subject Descriptors, 
which includes names of languages, people, and products in the field of computing. A 
mapping database, derived from WordNet (http://wordnet.princeton.edu/) and SUMO 
(Suggested Upper Merged Ontology) (http://ontology.teknowledge.com/) [13], supplies the 
semantic concept information of each word and the hierarchical concept information from the 
ontology. The AWL (Academic Words List) (http://www.vuw.ac.nz/lals/research/awl/) [14] is 
an academic word list containing 570 word families whose words are selected from different 
subjects. The syntactic level information of the RAs was obtained using Charniak�’s parser 
[15], which is a �“maximum-entropy inspired�” probabilistic generative model parser for 
English.  

2.2. Conditional Random Fields (CRFs) 

For this research goal, given a word sequence 1 2{ , ,..., }nW w w w , the most likely propositional 
term label sequence 1 2{ , ,..., }nS s s s  in the CRF framework with the set of weights  can be 
obtained from the following equation.    

�ˆ arg max |SS P S W                                               ΰ1α 

A CRF is a conditional probability sequence as well as an undirected graphical model 
which defines a conditional distribution over the entire label sequence given the observation 
sequence. Unlike Maximum Entropy Markov Models (MEMMs), CRFs use an exponential 
model for the joint probability of the whole label sequence given the observation to solve the 
label bias problem. CRFs also have a conditional nature and model the real-world data 
depending on non-independent and interacting features of the observation sequence. A CRF 
allows the combination of overlapping, arbitrary and agglomerative observation features from 
both the past and future. The propositional terms extracted by CRFs are not restricted by 
syntactic variations or multiword forms and the global optimum is generated from different 
global and local contributor types. 

The CRF consists of the observed input word sequence 1 2{ , ,..., }nW w w w  and label state 

sequence 1 2{ , ,..., }nS s s s  such that the expansion joint probability of a state label sequence 
given an observation word sequence can be written as 

1
0

1| exp , , ,k k t t k k t
t k t k

P S W f s s W g s W
Z                        (2) 

where 1, ,k t tf s s W  are the transition features of the global observation sequence and the states 
at positions t and t-1 in the corresponding state sequence, and ,k tg s W  is a state feature 

function of the label at position t and the observation sequence. Let k  be the weight of each 

kf , k  be the weight of kg  and 0

1
Z  be a normalization factor over all state sequences, 
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where 0 1exp , , ,k k t t k k t
S t k t k

Z f s s W g s W . 

The set of weights in a CRF model, ,k k , is usually estimated by maximizing the 
conditional log-likelihood of the labeled sequences in the training data ( ) ( )

1
,

ni i
i

D S W . 

(Equation (3)) For fast training, parameter estimation was based on L-BFGS (the 
limited-memory BFGS) algorithm, a quasi-Newton algorithm for large scale numerical 
optimization problems [16]. The L-BFGS had proved [17] that converges significantly faster 
than Improved Iterative Scaling (IIS) and General Iterative Scaling (GIS).  

( ) ( )

1...
log |i i

i N
L P S W                                                (3) 

After the CRF model is trained to maximize the conditional log-likelihood of a given 
training set P(S|W), the test phase finds the most likely sequence using the combination of 
forward Viterbi and backward A* search [18]. The forward Viterbi search makes the labeling 
task more efficient and the backward A* search finds the n-best probable labels.  

2.3. Multi-Level Features 

According to the properties of propositional term generation and the characteristics of 
the CRF feature function, this paper adopted local and global features which consider 
statistical, syntactic, semantic, morphological, and structural level information. In the CRF 
model, the features used were binary and were formed by instantiating templates, and the 
maximum entropy principle was provided for choosing the potential functions. Equation (4) 
shows an example of a feature function, which was set to 1 when the word was found in the 
rare words list (RW).  

t

1 2

t
, , ,..., 1

1,  if s W
,

0,  otherwise                  n

n
s w w w t

s isRW
g s w                                 (4) 

 

2.3.1. Local Feature 

(1). Morphological Level: 

Scientific terminology often ends with similar words, e.g. �“algorithm�” or �“model�”, or is 
represented by connected words (CW) expressed with hyphenation, quotation marks or 
brackets. ACMCSS represents entries in the ACM Computing Classification System (ACM 
CSS). The last word of every entry in the ACM CSS (ACMCSSAff) satisfies the condition 
that it is a commonly occurring last word in scientific terminology. The existing propositional 
terms of the training data were the seeds of multiword terms (MTSeed).  

Words identified as acronyms were stored as useful features, consisting of IsNenadic, 
IsISD, and IsUC. IsNenadic was defined using the methodology of Nenadi , Spasi  and 
Ananiadou [19] to acquire possible acronyms of a word sequence that was extracted by the 
C/NC value method. IsISD refers to the list of Implicit Subject Descriptors in the ACM CCS 
and IsUC signifies that all characters of the word were uppercase 

(2). Semantic Level:  

MeasureConcept infers that the word was found under SUMO�’s 
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�“UNITS-OF-MEASURE�” concept subclass and SeedConcept denotes that the concept of the 
word corresponded to the concept of a propositional term in the training data. 

(3). Frequency Level:  

A high frequency word list (HF) was generated from the top 5 percent of words in the 
training data. A special words list (SW) consists of the out-of-vocabulary and rare words. 
Out-of-vocabulary words are those words that do not exist in WordNet. Rare words are words 
not appearing in the AWL or which appear in less than 5 different abstracts. 

(4). Syntactic Level:  

This feature was set to 1 if the syntactic pattern of the word sequence matched the 
regular expression �“(NP)*(preposition)?(NP)*�” (SynPattern), or matched the terms in the 
training data (SeedSynPattern). SyntaxCon means that concordances of ACMCSSAff or 
ACMCSSAffSyn (ACMCSSAff synonyms) used the keyword in context to find the syntactic 
frame in the training data. If the part-of-speech (POS) of the word was a cardinal number, 
then this feature CDPOS was set to 1. 

(5). Statistical and Syntactic Level:  

This research used the CRF model to filter terms extracted by the C/NC value approach 
with no frequency threshold  

2.3.2. Global Feature 

(1). Cue word:  

KeyWord infers that the word sequence matched one of the user�’s keywords or one word 
of the user�’s title. IsTransW and IsCV represent that a word was found in an NP after TransW 
or CV respectively. TransW indicates summative and enumerative transitional words, such as 
�“in summary�”, �“to conclude�”, �“then�”, �“moreover�”, and �“therefore�”, and CV refers to words 
under SUMO�’s �“communication�” concepts, such as �“propose�”, �“argue�”, �“attempt�” and so on.  

(2). Tense:  

If the first sentence of the RA is in the past tense and contains an NP, then the word 
sequence of that NP was used as a useful feature PastNP. This is because the first sentence 
often impresses upon the reader the shortest possible relevant characterization of the paper, 
and the use of past tense emphasizes the importance of the statement. 

(3). Sentence structure:  

Phrases in a parallel structure sentence refers to the phrases appearing in a sentence 
structure such as Phrase, Phrase, or (and) Phrase, and implies that the same pattern of words 
represents the same concept. ParallelStruct indicates that the word was part of a phrase in a 
parallel structure.  

2.4. Word Cohesiveness Measure 

By calculating the cohesiveness of words, the combined association measure (CAM) can 
assist in further enhancing and editing the CRF-based propositional term boundaries for 
achieving a perfect boundary of propositional terms. CAM extracts the most relevant word 
sequence by combining endogenous linguistic statistical information, including word form 
sequence and its POS sequence. CAM is a variant of normalized expectation (NE) and 
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mutual expectation (ME) methods.  

To characterize the degree of cohesiveness of a sequence of textual units, NE evaluates 
the average cost of loss for a component in a potential word sequence. NE is defined in 
Equation (5) where the function c(·) means the count of any potential word sequence. An 
example of NE is shown in Equation (6). 

1
1

1 1
2

... ...
... ...

1 �ˆ... ... ... ...

i n
i n n

i n i n
i

C w w w
NE w w w

C w w w C w w w
n

                       (5) 

large vocabulary continuous speech recognition

large vocabulary continuous speech recognition

large vocabulary continuous speech recognition

large continuous speech recognition
1 large vocabulary
5

NE

C

C

C

C  speech recognition

large vocabulary continuous recognition

large vocabulary continuous speech

C

C

                                (6) 

Based on NE and relative frequency, the ME of any potential word sequence is defined 
as Equation (7), where function P(·) represents the relative frequency.  

1 1 1... ... ... ... ... ...i n i n i nME w w w P w w w NE w w w                      (7) 

CAM considers that the global degree of cohesiveness of any word sequence is 
evaluated by integrating the strength in a word sequence and the interdependence of its POS. 
Thus CAM evaluates the cohesiveness of a word sequence by the combination of its own ME 
and the ME of its associated POS sequence. In Equation (8), CAM integrates the ME of word 
form sequence 1... ...i nw w w  and its POS 1... ...i np p p . Let  be a weight between 0 and 1, 
which determines the degree of the effect of POS or word sequence in the word cohesiveness 
measure. 

1
1 1 1... ... ... ... ... ...i n i n i nCAM w w w ME w w w ME p p p               (8) 

This paper uses a sliding window moving in a frame and compares the CAM value of 
neighboring word sequences to determine the optimal propositional term boundary. Most 
lexical relations associate words distributed by the five neighboring words [20]. Therefore 
this paper only calculates the CAM value of the three words to the right and the three words 
to the left of the CRF-based terms. Figure 3 represents an illustration for the CAM 
computation that was fixed in the [(2*3) + length(CRF-Based term)] frame size with a sliding 
window. When the window starts a forward or backward move in the frame, the three 
marginal words of a term are the natural components of the window. As the word number of 
the CRF term is less than three words, the initial sliding windows size is equal to the word 
number of the term.  
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Figure 3. An Illustration for the CAM Computation Steps 

To find the optimal propositional term boundary, this study calculates the local 
maximum CAM value by using the Modified CamLocalMax Algorithm. The principle of the 
original algorithm [21] is to infer the word sequence as a multiword unit if the CAM value is 
higher than or equal to the CAM value of all its sub-group of (n-1) words and if the CAM 
value is higher than the CAM value of all its super-group of (n+1) words. In the Modified 
CamLocalMax Algorithm, when the CAM value of the combination of CRF-based single 
word propositional terms and its immediate neighbor word is higher than the average of the 
CAM value of bi-gram propositional terms in the training data, the components of the 
CRF-based single word propositional terms are turned into a bi-gram propositional term. The 
complete Modified CamLocalMax Algorithm is shown in the following, where cam means 
the combined association measure, size(·) returns the number of words of a possible 
propositional term, M represents a possible propositional term, n+1 denotes the set of all the 
possible (n+1)grams containing M, n-1 denotes the set of all the possible (n-1)grams 
contained in M, and bi-term typifies bi-gram propositional terms in the training data. 

 
Input: M, a possible propositional term, 1ny , the set of all the possible (n+1)grams 
containing M, 1nx , the set of all the possible (n-1)grams contained in M 
Output: CT={ct1,ct2,…ctn}, a CRF+CAM-based propositional term set 
If   (size(M)=2 and  cam(M) > cam(y))   

or ( size(M)>2 and  cam(M) Њ cam(x)  and cam(M) >cam(y) )  
or ( size(M)=1 and cam(bi-gram) Љ cam(M) ) 

End if 
Return ct 

 

2.5. Propositional Term Generation Algorithm 

The Propositional Term Generation algorithm utilizes the CRF model to generate a 
CRF-based propositional term set T={t1,t2,�…tn} and calculates the CAM value to produce a 
CRF+CAM-based propositional term set CT={ct1,ct2,�…ctn}. The detailed processes of the 
Propositional Term Generation algorithm are as follows 

k
nt : the word form sequence from the first word 1 to last word k of CRF-based propositional term tn 
Input: Word sequence 1

nW   
Output: T={t1,t2,…tn}, a CRF-based propositional term set and, CT={ct1,ct2,…ctn}, a CRF+CAM-based 

propositional term set 
Input 1

nW to generate T={t1,t2,…tn} by CRF 
For all tj T  
 For a=0 to a =2 Step 1 

158



 

 ctj=Modified_CamLocalMax( j
k at , 1

j
k at , 1

j
k at ) 

 CT  CTЖct 
 End for 
 If tj  CT Then 
  For a=0 to a =-2 Step -1 
   ctj=Modified_CamLocalMax( 1

j
at , 1 1

j
at , 1 1

j
at ) 

   CT  CTЖctj 
  End for 
 End if 
End for 
Return T, CT 

2.6. Encoding Schema 

The IOB encoding scheme was adopted to label the words, where I represents words Inside 
the propositional term, O marks words Outside the propositional term, and B denotes the 
Beginning of a propositional term. It should be noted that here the B tag differs slightly from 
Ramshaw and Marcus�’s definition, which marks the left-most component of a baseNP for 
discriminating recursive NPs. Figure 4 shows an example of the IOB encoding scheme that 
specifies the B, I, and O labels for the sentence fragment �“The syllable-based system exceeds 
the performance of the triphone system by…�”. An advantage of this encoding scheme is that it 
can avoid the problem of ambiguous propositional term boundaries, since IOB tags can 
identify the boundaries of immediate neighbor propositional terms, whereas binary-based 
encoding schemes cannot. In Figure 4, �“syllable-based system�”, and �“exceeds�” are individual 
and immediate neighbor propositional terms distinguished by B tags. 

 
Figure 4. An Example of the IOB Encoding Scheme 

3. Evaluation 

3.1. Experimental Setup 

To facilitate the development and evaluation of the propositional term extraction method, 
experts manually annotated 260 research abstracts, including speech, language, and 
multimedia information processing journal papers from SCI and SCIE-indexed databases. In 
all, there were 109, 72, and 79 annotated research abstracts in the fields of speech, language, 
and multimedia information processing, respectively. At run time, 90% of the RAs were 
allocated as the training data and the remaining 10% were reserved as the test data for all 
evaluation. 

In system implementation, the CRF++: Yet Another CRF toolkit 0.44 [22] was adopted. 
The training parameters were chosen using ten-fold cross-validation on each experiment. 

The proposed system was compared with three baseline systems. The first was the 
C/NC-value algorithm with no frequency threshold, because the C/NC-value algorithm is a 
hybrid methodology and its historical result is better than the linguistic and statistical 
approaches. The second baseline system proposed by Nenadi  et al. [8] is a variant of the 
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C/NC-value algorithm enriched by morphological and structural variants. The final baseline 
system is a linguistic approach proposed by Ananiadou [4]. That study, however, made no 
comparisons with statistical approaches which are suitable for a document containing a large 
amount of words. 

To evaluate the performance in this study, two hit types for propositional term extraction: 
perfect and imperfect [23] are employed. A perfect hit means that the boundaries of a term�’s 
maximal term form conform to the boundaries assigned by the automatic propositional term 
extraction. An imperfect hit means that the boundaries assigned by the automatic 
propositional term extraction do not conform to the boundaries of a term�’s maximal term 
form but include at least one word belonging to a term�’s maximal term form. Taking the word 
sequence �“large vocabulary continuous speech recognition�” as an example, when the system 
detects that �“vocabulary continuous speech recognition�” is a propositional term, it then 
becomes an imperfect hit. There is only one perfect hit condition where �“large vocabulary 
continuous speech recognition�” is recognized. The metrics of recall and precision were also 
used to measure the perfect and imperfect hits. The definition of recall and precision of 
perfect hits and imperfect hits are shown in Equation (9) and Equation (10). Thus, our system 
is evaluated with respect to the accuracies of propositional term detection and propositional 
term boundary detection. That is, our motivation for propositional term extraction was to 
provide CRF and CRF+CAM for accurate detection of propositional terms and the 
improvement of the detected propositional term boundaries. 

Hits Perfect (or Imperfect)Recall= Target Termforms                               (9) 

Hits Perfect (or Imperfect)Precision= Extracted Termforms                          (10) 

3.2. Experimental Results 

This study evaluated empirically two aspects of our research for different purposes. First, the 
performance of propositional term extraction for CRF-based and CRF+CAM-based 
propositional term sets on different data was measured. Second, the impact of different level 
features for propositional term extraction using CRF was evaluated. 

Evaluation of Different Methods 
Table 1. The Performance of Imperfect Hits on Different Data 

Method R P F R P F 
 All Data Language Data 

CRF Inside Testing 93.2 94.5 93.9 96.7 98.1  97.4  
CRF +CAM Inside Testing 96.6 96.0 96.3 98.4 99.6  99.0  
CRF Outside Testing 77.1 74.1 75.6 78.6 76.3  77.4  
CRF +CAM Outside Testing 82.6 82.5 82.6 85.8 88.8  87.2  
C/NC Value 53.4 65.3 58.8 48.1 53.3  50.6  
Ananiadou 51.3 70.0 59.2 52.4 68.4  59.3  
Nenadi  et al. 58.0 72.3 64.4 60.1 69.0  64.3  

 Speech Data Multimedia Data 
CRF Inside Testing 96.6 99.0 98.2 98.0 99.2 98.6 
CRF +CAM Inside Testing 97.5 99.0 99.4 98.6 99.3 99.0 
CRF Outside Testing 74.9 76.1 74.3 61.2 65.0 63.1 
CRF +CAM Outside Testing 82.6 83.9 84.2 65.4 71.2 68.2 
C/NC Value 53.5 79.0 62.7 67.7 53.2 59.6 
Ananiadou 53.1 68.4 59.8 65.4 60.0 62.6 
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Nenadi  et al. 59.6 72.2 65.3 68.9 55.2 61.3 

Table 1 lists the recall rate, the precision rate and F-score of propositional term 
extraction for imperfect hits of different domain data. In each case, the recall and precision of 
imperfect hits using CRF inside testing was greater than 93%. The CRF outside test achieved 
approximately 73% average recall and 73% average precision for imperfect hits, and the 
CAM approach improved the original performance of recall and precision for imperfect hits. 
The C/NC-value approach achieved approximately 56% average recall and 63% average 
precision for imperfect hits. The performance of Ananiadou�’s approach was about 56% 
average recall and 67% average precision for imperfect hits. Another baseline, the approach 
of Nenadi , Ananiadou and McNaught, obtained approximately 62% average recall and 67% 
average precision for imperfect hits. 

Table 2. The Performance of Perfect Hits on Different Data 
Method R P F R P F 

 All Data Language Data 
CRF Inside Testing 66.5 66.2 66.3 66.4 67.5 67.0 
CRF +CAM Inside Testing 69.0 68.6 68.8 69.4 69.9 69.6 
CRF Outside Testing 39.8 42.2 41.9 43.2 37.3 40.0 
CRF +CAM Outside Testing 43.5 49.2 46.2 45.3 45.4 45.3 
C/NC Value 27.6 37.8 31.9 28.9 29.1 29.0 
Ananiadou 26.3 37.9 31.1 31.3 37.7 34.2 
Nenadi  et al. 30.2 41.0 34.8 31.2 40.9 35.4 

 Speech Data Multimedia Data 
CRF Inside Testing 62.3  61.0  61.7  70.9 70.3 70.6 
CRF +CAM Inside Testing 69.6  67.9  68.7  73.1 70.3 71.6 
CRF Outside Testing 36.9  41.6  39.1  42.1 42.5 42.3 
CRF +CAM Outside Testing 42.8  48.9  45.6  45.6 45.0 44.3 
C/NC Value 29.0  40.0  33.6  34.6 29.9 32.1 
Ananiadou 27.4  37.7  31.7  29.3 38.0 33.1 
Nenadi  et al. 30.0  38.6  33.7  35.3 37.6 35.3 

Table 2 summarizes the recall rates, precision rates and F-score of propositional term 
extraction for perfect hits of data from different domains. The CRF inside test achieved 
approximately 67% average recall and 66% average precision on perfect hits, but the CRF 
outside test did not perform as well. However, the CAM approach still achieved an increase 
of 1%-7% for perfect hits. The C/NC-value approach obtained approximately 30% average 
recall and 34% average precision for perfect hits. Ananiadou�’s approach achieved 
approximately 29% average recall and 38% average precision for perfect hits. The 
performance of Nenadi , Ananiadou and McNaught�’s approach was about 32% average recall 
and 40% average precision for perfect hits. 

The results show that the C/NC-value does not demonstrate a significant change over 
different fields, except for the multimedia field, which had slightly better recall rate. The 
main reasons for errors produced by C/NC-value were propositional terms that were single 
words or acronyms, propositional terms that were not NP-based, or propositional terms that 
consisted of more than four words.  

Ananiadou�’s approach was based on a morphological analyzer and combination rules for 
the different levels of word forms. Experimental results showed that this approach is still 
unable to deal with single words or acronyms, and propositional terms that are not NP-based.  

Nenadi  et al.�’s approach considered local morphological and syntactical variants using 
C value to determine the propositional terms. This approach had slightly better performance 
than the C/NC value methodology. Acronyms were included in the propositional term 
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candidates but were filtered by frequency, as they often appear only a few times. This 
approach also ignored single words, and propositional terms that were not NP-based. 
Furthermore, none of these three baseline systems are suitable for handling special symbols.  

For CRF inside testing, both the precision and recall rates were significantly better for 
imperfect hits, but the precision and recall rates were reduced by about 30% for perfect hits in 
most RAs. Due to insufficient training data, CRF no longer achieved outstanding results. In 
particular, the large variability and abstract description of the multimedia field RAs led to 
huge differences between measures. For example, in the sentence �“For surfaces with varying 
material properties, a full segmentation into different material types is also computed�”, �“full 
segmentation into different material types�” is a propositional term that it isn�’t concretely 
specified as a method. CRF achieved a better result in recall rate, but failed on propositional 
term boundary detection, unlike the C/NC-value approach.  

The CAM approach effectively enhanced propositional term boundary detection by 
calculating word cohesiveness, except in the case of multimedia data. The CAM approach 
couldn�’t achieve similar performance for the multimedia data as a result of the longer word 
count of terms that differ from the data of other fields. However, the CAM approach 
performed best with  equal to 0.4, which demonstrates that the POS provided a little more 
contribution for multiword term construction. The CAM approach not only considered the 
POS sequence but also the word sequence, therefore the results are a little better for speech 
data, which is the biggest part of the training data (SCI and SCIE-indexed databases). 

The above results show that the CRF approach exhibited impressive improvements in 
propositional term detection. The major reason for false positives was that the amount of the 
data was not enough to construct the optimal model. Experimental results revealed that the 
CAM is sufficiently efficient for propositional term boundary enhancement but the longer 
word count of propositional terms were excluded. 

Evaluation of Different Level Features 
In order to assess the impact of different level features on the extraction method, this 

paper also carried out an evaluation on the performance when different level features were 
omitted. Table 3 presents the performance of CRF when omitting different level features for 
imperfect hits and the symbol �“-�” denoted the test without a level feature. For all data, the 
recall rate was reduced by approximately 1%- 5% and the precision rate was reduced by 
approximately 2%- 6% in inside testing result. In all data outside testing, the recall rate was 
reduced by 2%-10% and the precision rate was reduced by 1%-5%. The recall and precision 
for speech data retained similar results from semantic level features, but showed little impact 
from other local features. For language data, without morphological, syntactic, frequency, and 
syntactic & statistical level features the performance was slightly worse than the original 
result and without semantic level features the original performance was preserved. The 
performance for multimedia data was affected greatly by semantic level features. A slight 
improvement without morphological, and syntactic & statistical level features and similar 
results were obtained when frequency and syntactic level features were omitted.  

Table 3. The Performance of CRF Excepting Different Level Features for Imperfect Hits 
All Speech Language MultimediaData Type

Testing Type R P R P R P R P 
Inside -Frequency Features 92 92 94 97 95 97 98 98 
Inside -Morphological Features 88 90 92 96 93 96 97 97 
Inside -Syntactic Features 90 89 94 96 95 97 97 98 
Inside -Semantic Features 92 92 96 98 97 98 95 97 
Inside -Syntactic & Statistical Features 90 93 93 95 95 96 96 98 
Inside Testing 93 95 97 99 97 98 98 99 
Outside -Frequency Features 74 73 71 73 76 74 60 65 
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Outside -Morphological Features 71 71 59 69 70 68 58 65 
Outside -Syntactic Features 67 69 60 71 71 71 59 64 
Outside -Semantic Features 75 75 75 76 78 76 41 60 
Outside -Syntactic &Statistical Features 71 73 67 71 70 70 55 65 
Outside Testing 77 74 75 76 79 76 61 65 

In Table 4, it can be noticed that the omission of any single level features results in a 
deterioration in the performance of perfect hits. Removing the syntactic level features had the 
most pronounced effect on performance for all, speech and language data, while removing the 
semantic level features had the least effect on performance for all, speech and language data. 
According to the experimental results, the use of the frequency features did not result in any 
significant performance improvement for the multimedia data, and the use of the syntactic 
and syntactic & statistical level features did not result in any performance improvement for 
the multimedia data. Removing the semantic level features had the greatest effect on the 
performance for the multimedia data. 

Table 4. The Performance of CRF without Different Level Features for Perfect Hits 
All Speech Language MultimediaData Type

Testing Type R P R P R P R P 
Inside -Frequency Features 63 60 56 55 61 64 60 60 
Inside -Morphological Features 61 61 57 54 61 64 70 68 
Inside -Syntactic Features 60 60 55 57 63 65 68 67 
Inside -Semantic Features 65 62 59 60 66 69 62 62 
Inside -Syntactic &Statistical Features 62 61 57 52 62 64 71 68 
Inside Testing 67 66 62 61 66 68 71 70 
Outside -Frequency Features 36 38 34 35 37 34 40 40 
Outside -Morphological Features 33 35 32 36 35 34 40 39 
Outside -Syntactic Features 35 36 32 38 37 32 39 40 
Outside -Semantic Features 38 40 36 40 41 36 29 31 
Outside -Syntactic &Statistical Features 38 39 32 37 35 33 40 40 
Outside Testing 40 42 37 42 42 37 42 42 

Overall the five different level features were all somewhat effective for propositional 
term extraction. This suggests that propositional terms are determined by different level 
feature information which can be effectively used for propositional term extraction. The 
frequency level features contributed little for propositional term extraction in all and speech 
data. This may be due to the fact that speech data comprised the main portion of the training 
data. In the multimedia case, the semantic level features were useful. Although semantic level 
features may include some useful information, it was still a problem to correctly utilize such 
information in the different domain data for propositional term extraction. Syntactic and 
morphological level features obtained the best performance for all, speech and language data. 
This may be due to the amount of training data in each domain and the various word forms of 
propositional terms in the multimedia data. The syntactic and statistical level features 
improved or retained the same performance, which indicates the combined effectiveness of 
syntactic and statistical information. 

3.3. Error Analysis 
Table 5 shows the distribution of error types on propositional term extraction for each 

domain data using outside testing. This study adopts the measure used in [24] to evaluate the 
error type, where M indicates the condition when the boundary of the system and that of the 
standard match, O denotes the condition when the boundary of the system is outside that of 
the standard and I denotes the condition when the boundary of the system is inside that of the 
standard. Therefore, the MI, IM, II, MO, OM, IO, OI and OO error types were used to 
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evaluate error distribution. The relative error rate (RER) and the absolute error rate (AER) 
were computed in error analysis, the relative error rate was compared with all error types, and 
the absolute error rate was compared with the standard. In the overall error distribution, the 
main error type was �“IM�” and �“MI�” and the CRF+CAM can significantly reduce those two 
error types.  

Table 5. Distribution of Error Types on Propositional Term Extraction 
CRF CRF+CAM CRF CRF+CAM Error Type 

RER AER RER AER RER AER RER AER
 All Data Speech Dataʳ

MI 24.62 6.11 18.00 2.90 24.90 6.41 20.30 3.03 
IM 36.48 8.72 28.50 4.88 38.22 8.06 32.50 4.08 
II 18.67 4.96 23.40 3.88 12.37 2.88 14.80 2.05 
MO, OM, IO, OI 7.49 3.08 12.50 1.07 10.50 2.46 12.85 1.85 
OO 12.74 2.91 17.60 2.08 14.01 4.55 19.55 2.53 

ʳ Language Dataʳ Multimedia Dataʳ
MI 23.11 4.03 18.50 2.67 19.18 6.58 17.25 4.64 
IM 31.25 9.08 28.50 3.56 25.72 9.00 19.10 4.05 
II 26.48 7.50 31.00 4.07 36.34 10.63 34.34 8.30 
MO,OM,IO,OI 8.12 1.03 12.45 1.89 6.42 5.00 10.09 1.53 
OO 11.04 2.06 9.55 1.20 12.34 4.85 19.22 3.85 

4. Conclusion 

This study has presented a conditional random field model and a combined association 
measure approach to propositional term extraction from research abstracts. Unlike previous 
approaches using POS patterns and statistics to extract NP-based multiword terms, this 
research considers lexical cohesion and context information, integrating CRFs and CAM to 
extract single or multiword propositional terms. Experiments demonstrated that in each 
corpus, both CRF inside and outside tests showed an improved performance for imperfect 
hits. The proposed approach further effectively enhanced the propositional term boundaries 
by the combined association measure approach which calculates the cohesiveness of words. 
The conditional random field model initially detects propositional terms based on their local 
and global features, which includes statistical, syntactic, semantic, morphological, and 
structural level information. Experimental results also showed that different multi-level 
features played a key role in CRF propositional term detection model for different domain 
data.  
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ᑑࢤ೚؀፿֮ဲࠐՏᆄဲऱխ֮ಝᒭᇷற֗אයऱ؀ဎ᢯ࠢဲڍքᆄڶشܓנ༽֮ء

ಖऱֱऄΖ؀፿֮፿ற੡ץਔ֗ڗ٤ᢅ್ዧᢅࠟشٽጟ஼ᐊ֮ءऱ֮ᖂᇷறΔ֮ᣊො።

ཋ֮Ε՛ᎅΕᏣء࿛Δဲᣊႃආشխ؇ઔߒೃဲ஄՛ิࢬૡࡳऱխ֮ဲᣊႃΖ 

ଡ፿ဲޢऱ፿றດဲኙᏘΔຘመ؀ဎ᢯ࠢ਷ᇬءΔലࠟጟ֮ڤଚၲ࿇፿ဲኙᏘᛀ਷࿓ݺ

ઌኙᚨऱխ֮ଢᙇဲΔ൷ထشܓխ֮ಝᒭᇷறΔא HMMᖲ෷ᑓীਗᙇ່נᔞᅝऱխ֮

ኙ᤟ဲΔא٦MEMM։ᣊᕴᑑಖဲࢤΖ 

ኔ᧭࿨࣠᧩قΔֱڼאऄ೚؀፿֮ဲࢤᑑಖΔݺଚ൓ࠩ 91.49%ऱإᒔ෷Δࠀಾኙᑑಖ

ᙑᎄ։࣫ࠡ଺ڂΖڼאഗ៕ΔݺଚՈ൓ࠩԱॣޡऱ؀፿֮ಝᒭ፿றΖ 

Abstract 

In this paper, we propose a POS tagging method using more than 60 thousand entries of 

Taiwanese-Mandarin translation dictionary and 10 million words of Mandarin training data to 

tag Taiwanese. The literary written Taiwanese corpora have both Romanization script and 

Han-Romanization mixed script, the genre includes prose, fiction and drama. We follow 

tagset drawn up by CKIP. 

We develop word alignment checker to help the two scripts word alignment work, and then 

lookup Taiwanese-Mandarin translation dictionary to find the corresponding Mandarin 
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candidate words, select the most suitable Mandarin word using HMM probabilistic model 

from the Mandarin training data, and finally tag the word using MEMM classifier. 

We achieve an accuracy rate of 91.49% on Taiwanese POS tagging work, and analysis the 

errors. We also get the preliminary Taiwanese training data. 

ᣂ᝶ဲΚဲࢤᑑಖΔ؀፿֮Δխ֮ 

Keywords: POS tagging, written Taiwanese, Mandarin 

 

ԫΕছߢ 

ឈྥԫऴߩࠩ࠹ڶ޲ജऱૹီΔᎸত፿׈٤ڇ੺፿ߢԳՑᑇ؄ڶՏքڍۍᆄΔਢඈټร

21 ٱဒΕխഏΕ௠ഏΕဗ৳ᎏ֗޹Εࠅ۫ࠐΕ್ࡕף؀᨜Εᄅڇ܉૞։׌Δߢऱ፿ۯ

۾؀᨜પڇԳՑΔشࠌߢΖ؀᨜Ꮈত፿ऱ፿[1]چ࿛؍ Ւء૞ऱ؀᨜׌ՂΔਢ່א70%

፿[2]ߢΖۖຍଡ፿ߢऱټጠΔ۟վՈᝫਢৰ։ࣴΔ۟֟ڶ 17ጟጠࡅΔץਔ؀፿Ε壂৬

ᇩΕᎸতᇩΕ壂ࠍᇩΕΞ࿛࿛[3]Ζ֮ءലشࠌԫ౳ՕฒኙࠡऱጠࡅΚψ؀፿ωΔլؚጩ

௫ԵټጠऱಘᓵΖ 

؀፿ڶዧڗ್ᢅ֗ڗ஼ᐊࠟጟ֮ڗႚอΔዧڗ஼ᐊױಳᄩ۞ 16 ࢨਔতጥᚭ֮ץધΔ׈

ਢ֚׌ඒ஼ᤄ࿛[4]Ιᢅ್ڗ஼ᐊঞױಳᄩ۞ ঴Ε໴౐Ε܂ඒࡲਔ᢯ࠢΕץದΔڣ1832

ඔ፞ᦰढΕඒઝ஼ΕΞ࿛[5]Ζࠟጟ֮ࠡڶٺڗᚌ౒រΔዧڗ஼ᐊऱΔለᣄᒔᎁࠡኔᎾ

࿇ଃΔԾڶಝᦰڗΕڗءΕଗଃڗΕءՒڗ࿛լٵᣊܑऱڗΔറ୮ەᢞऱڗءԾڶٺլ

஼ᐊऱ؀፿֮ཏሙֺለլᄎڗऱཏ֗ΔՕ୮઎ࠩዧߛ੡խ֮ඒڂ؀᨜Δڇਢ܀Ζ[6]ٵ

ඈ؞Ζᢅ್ڗᑑࣹנኔᎾऱ࿇ଃΔ፿ဲၴ़א௑ሶၲΔ፿ဲփאຑڗฤΰhyphenαሶၲ

 ԱΖڍشړ౨ױ઎Δࠐ৫ߡᇷಛ๠෻ऱאଡଃᆏΔޢ

੡Ա৬؀م፿ૠጩ፿ߢᖂऱഗ៕Δመװ༓ڣΔݺଚຬᥛ৬مԱ؀፿ဎ፿ኙ᤟᢯ࠢ[7]Ε

؀፿֮ףآՠ፿ற஄࿛ᇷᄭΔףآאՠ፿ற஄੡ഗ៕৬؀م፿֮፿ဲᛀ౉ߓอ[8]Εא

๵ঞֱऄ๠෻؀፿ऱ᧢ᓳ๠෻ംᠲ[9]࿛Ζݺଚݦඨၞԫޡല፿ற஄೚ݙޓᖞऱᑑࣹΖ

ኙ࣍፿ற஄ऱᑑࣹΔ່ഗ׊ءૹ૞ऱΔᚨᅝਢဲࢤᑑಖΖ 

ᑑࣹΔଈ٣್Ղ૿ᜯԫଡᣄᠲΚ؀፿ऱဲᣊႃ੡۶Λ۟ࢤଚ૞೚؀፿֮፿றऱဲݺছؾ

վڶ޲ࠀԫ୚ᑑᄷΖݮൣڼڇՀΔݺଚᑉழආشխ؇ઔߒೃဲ஄՛ิࢬૡࡳऱխ֮ဲᣊ
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ႃ[10]ΖຍᑌսྥᄎڶംᠲΔڂ੡ݺଚڶ޲ࠀᑑಖխ֮ဲᣊႃऱ؀፿᢯ࠢΔ෼ڶऱ؀፿

᢯ࠢΔڶ׽ഗဲءᣊဲټڕΕ೯ဲΕݮ୲ဲ࿛ऱಛஒΖ 

 ᑑಖΖࢤ؀፿֮፿றऱဲ۩ၞࠐऱԳԺߩךڶ޲ࠀଚݺΔ׎ԫଡംᠲਢԳԺऱ౒؆׼

ࠐՂอૠֱऄף؀፿ဎ፿ኙ᤟᢯ࠢΔ֗אऱխ֮ᇷᄭΔڶ෼شܓנ༽֮ءՀΔݮൣڼڇ

ၞ۩؀፿ဲࢤ۞೯ᑑಖՠ܂Ζ 

 

ԲΕኔ᧭ֱऄ 

ቹԫ᧩ߓقอਮዌቹΖ 

 

 
ቹԫΕ؀፿ဲࢤᑑಖߓอਮዌቹ 

 

ΰԫα፿றࠐᄭ 

ګᇷற஄ΰรԲၸ੄αωऱૠ྽៲ࠢۯऱ፿ற੡ഏ୮؀᨜֮ᖂ塢ψ؀፿֮ᑇشࠌࢬଚݺ

࣠Δڶ 258ᆄڍଃᆏڗ٤ᢅ್ΰ٤ᢅα֗ ዧشٽڗ್ᢅڗΰዧᢅα੄ᆵኙᏘऱࠟጟ֮ءΔ

 Εᄅᇣ࿛֮ᣊ[11]Ζءਔ՛ᎅΕཋ֮ΕᏣץ

 

ດ੄ኙᏘ

؀፿֮ء 
ດဲኙᏘ

؀፿֮ء 

፿ဲኙᏘ

࿓ܗ᎖ڤ 

Եխ֮ף

ଢᙇဲ 
ᙇ່נᔞ

ᅝխ֮ဲ 
 ᑑಖࢤဲ

؀ဎ᢯ࠢ

խ֮ಝ 
ᒭᇷற 

HMM
MEMM

਷ᇬ࿓ڤ 
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ΰԲαດ፿ဲኙᏘ 

ଈ٣Δݺଚၲ࿇፿ဲኙᏘ࿓ܗ᎖ڤԳՠΔດޡല੄ᆵኙᏘऱࠟጟ֮ءດ፿ဲኙᏘΖຍ֭

࿓ڤೈԱுኙࠟጟ֮ءऱଃᆏᑇհ؆Δᝫലᢅ್ڗΕዧᢅشٽऱ፿ဲፖ؀ဎ᢯ࠢխऱփ

୲೚ֺኙΔ࣠ڕຍࠟଡ፿ဲנڶ޲෼ٵڇԫဲයփΔ࿓ڤലᄎᑑࣔאࠐנ༼ᙌृشࠌΔ

 Ζڂᙑᎄ࿛଺ڗ፿ဲؚڼਢࢨլԫીΔڗشڗ౨ਢዧױवဲΔՈآ౨ਢױڶ

؀ဎ᢯ࠢऱ଺ࡨᇷறطᔤߜ೛༼ࠎΔᄘւڇߢ 2000 อΔဲයփ୲ᆖߓᒵՂ਷ᇬࠎ༽ڣ

መڻڍᏺᇖΔؾছڶքᆄဲڍයΔץਔ؀፿ᢅ್ڗΕ؀፿ዧᢅΕဎ፿ኙ᤟ဲΕ૎֮࿛᥏

ڶ֚ޢ౨Δؓ݁פॵՂ࿇ଃࠀΔ؀፿ຝ։ۯ αΖࠡխ૎݁ؓڣԫװऱ਷ᇬΰመڻڍ2400

֮᥏࣍ۯ  ᖞ[12]ΖݙլࡸᄅᏺΔᇷறڣ2007

 

ΰԿα༈ބኙᚨխ֮ଢᙇဲ 

൷ထΔݺଚᤉᥛ؀شܓဎ᢯ࠢΔല٤ᢅ/ዧᢅ಻ኙऱ፿ဲΔࠡנބኙᚨऱխ֮ଢᙇဲΖ

ຍਢԫኙڍऱኙᚨΔٍܛԫଡ؀፿٤ᢅ/ዧᢅ಻ኙऱ፿ဲΔױ౨ڶԫଡאՂऱဎ፿ኙ᤟

ဲΖೈڼ؆Δࠄڶ፿ဲڂ੡؀ဎ᢯ࠢگڶ޲ᙕۖ਷լࠩΔࠄڶ፿ဲঞڂዧᢅऱᐊऄլٵ

ۖ਷լࠩΰء֮ڕࠏխנ෼ψለᤢ[khah-iâ ]ωΔۖ᢯ࠢᇙ੡ψkhahᤢ[khah-iâ ]ωαΖኙ࣍

٤شዧᢅஞൾΔނዧᢅ಻ኙ፿ဲ਷լࠩΔᑉழ/٤ᢅ࣠ڕଚऱᇞެֱऄਢΚݺംᠲΔڼ

ΔՈലዧᢅီ੡խ֮ଢᙇဲհԫΰ೗ڗኙᚨऱխ֮ଢᙇဲΔૉዧᢅऱᐊऄਢ٤ዧנބᢅ

๻ࠡ੡؀ဎ٥ຏဲαΙຍᏖ೚ױڶ౨ᨃխ֮ଢᙇဲऱဲᑇᏺףΔ֠ࠡਢ໢ଃᆏဲΰڕࠏ

෼ψ᠏[chנխء֮ an]ωΔ᢯ࠢބլࠩဲڼයΔ܀ਢᢅ್ڗ੡ψch anωऱࠟڶଡဲයΔ

ࠡխ֮ኙ᤟ဲ։ܑ੡ψށωࡉψՂωΔף٦Ղψ᠏ωΔဲᆠઃլٵαΖ 

ݮڶ෼ψנխء֮ڕࠏዧᢅ፿ဲऴ൷ᅝ೚խ֮ଢᙇဲΰނᝫਢ਷լࠩΔঞ࣠ڕ

[iú-hêng]ωΔ᢯ࠢխڶ޲ຍଡဲයΔڗ್ᢅشψiú-hêngω਷ΔՈ਷լࠩΔ༉ऴ൷ނψڶ

 ωီ੡խ֮ଢᙇဲα[13]Ζݮ

 

ΰ؄αਗᙇ່ᔞᅝऱኙᚨխ֮ဲ 

ೃဲ஄՛ิՏᆄဲؓᘝ፿ற஄ऱߒխ؇ઔشܓMarkov bigram modelΔشଚආݺ bigram
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፿ဲಝᒭᇷறΔൕխ֮ଢᙇဲխਗᙇ່ᔞᅝऱխ֮ဲΖ 

೗๻ਬԫ؁՗ڶ mଡ፿ဲΔรԫଡ፿ဲ w1ਢൕ w11, w12, …,
11nw ଢᙇဲխਗࠐנऱխ֮

ဲΔรԲଡ፿ဲ w2ਢൕ w21, w22, …, 
22nw ଢᙇဲխਗࠐנऱխ֮ဲΔร mଡ፿ဲ wmൕ

wm1, wm2, …, 
mmnw ଢᙇဲխਗࠐנऱխ֮ဲΖݺଚ૞ൕխਗᙇױװנ౨ऱۭ٨ 

mwwwS 21
�ˆ Δࠌ൓

m

i
ii wwP

1
1)|( ੡່ՕΔٍࠌܛ

m

i
ii wwP

1
1)|(log ੡່ՕΖ૞ᎅࣔऱ

ਢΔຍଡۭ٨ S�ˆΔױ౨լਢٽऄऱխ֮؁՗[14]Ζ 

iji wwjori 11  

)|(logmaxarg

)(logmaxarg

1e

e

iij

ij

i
wwP

wP
w  

otherwise 

 ೏᙮ऱ໢ԫ፿ဲΰunigramαΖ່࠷ΔঞڇژಝᒭᇷறխΔૉᠨຑဲլڇ

 

ΰնα௅ᖕխ֮ဲਗᙇ່ᔞᅝऱဲࢤ 

 ΖࢤਗᙇဲࠐMaximal Entropy Markov Model (MEMM)شଚආݺ

MEMM ٽऱᖵ࿓ႃࢤဲࡉ፿ဲܶץਔԫิץ HΔࢤဲࡉႃٽ TΔ 

k

j

thf
j

jthp
1

),(),( ΔࠡխΔ Tth ,+ Δ ਢൄᑇΔ k,...,, 1 ਢՕ࣍ 0 ऱ೶ᑇΔ

kff ,...,1 ਢ௽ᐛ featuresΔ 1,0),( thf j Δ೶ᑇ jኙᚨ௽ᐛ jf Ζ 

ኙؾ࣍ᑑ፿ဲ iw ऱဲࢤ it Δݺଚᙇ࠷ 10ଡ௽ᐛΔץਔΚ 

1. ፿ဲΚڶ 211121 ,,,, iiiiiii wwwwwww նଡ௽ᐛΙ 

ڶΚࢤဲ .2 121, iii ttt ࠟଡ௽ᐛΙ 

3. ዌဲΚ nmmm ,, 21 Կଡ௽ᐛ 

nmmm ,, 21 ਢಾኙآवဲΔ࣠ڕ iw ਢآवဲΔݺଚ༉ኙ iw ආኙՕ֐಻ࠐឰဲΔ

ni mmmw 21 ΔڇਬൣࠄउՀΔ nmmm 32 Ζ࣠ڕ iw լਢآवဲΔঞዌဲऱԿଡ

௽ᐛଖ੡๻੡ nullΖڼ؆Δૉ iw ੡؁ଈݠ؁ࢨΔਬࠄ௽ᐛଖՈਢ nullΔڕࠏ i=1 ழΔ

121121 ,,, iiiiii tttwww ࿛௽ᐛଖઃ੡ nullΖ 
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ಝᒭᇷற੡ဲ஄՛ิԫՏᆄဲؓᘝ፿றΔאࠀ Viterbiዝጩऄኔ[18-14]܂Ζ 

 

ԿΕኔ᧭࿨࣠ 

ᒔإᛀ਷אױᑑᄷ࿠ூڶ޲੡ڂΔլመ܂ᑑಖऱՠࢤ؀፿֮ဲ۩Ղ૪ֱऄചشܓଚݺ

෷Δݺଚ࠷ࢼړ׽ຝ։ᇷறΔאԳՠᛀ਷࿨࣠ΔԳՠᛀ਷ழΔ׌૞೶ەխ؇ઔߒೃဲ஄

՛ิऱխ֮ឰဲߓอΖݺଚᙇ࠷Ԯᒧ֮ີΔழၴො።堚ഏΕֲए֗ึᖏ৵Կଡլٵऱழ

ᒧ֮ີਗᙇรԫ੄Δૉรޢΰԫᒧα֗՛ᎅΰԿᒧαΔءਔཋ֮ΰԿᒧαΕᏣץΔ֮ᣊז

ԫ੄֮֟֜ڗΔঞਗᙇรԲ੄Ζ।ԫ੡ྒྷᇢᇷறΔ੡ਗᙇࠐנ೚ԳՠᛀီऱΔޢנ٨ࠀ

ଡ੄ᆵऱଃᆏᑇΕ፿ဲᑇΕਗᙑ፿ဲᑇΕဲࢤᑑಖᙑᎄᑇΔࢤဲ֗אᑑಖإᒔ෷Ζ 

 

।ԫΕྒྷᇢᇷற֗ࠡဲࢤᑑಖإᒔ෷ 

id ڣ ֮ᣊ ृ܂ ᠲؾ ଃᆏ

ᑇ 
፿ဲ

ᑇ 
፿ဲ

ᙑᎄ 
ᑑಖ

ᙑᎄ إᒔ෷

1 1885 ཋ֮ ᆺडஃ Peh- e-j  ê l -ek(ػᇩڗऱܓ墿) 162 109 9 6 94.50%
2 1919 ཋ֮ H S K Phín-h ng ê ûi-thôan(঴۩ऱᙊႚ) 180 119 6 8 93.28%
3 1990 ཋ֮ ຫᆠո L u-lâng ê kè-tat(۔ԳऱᏝଖ) 75 49 7ʳ 7ʳ 85.71%

4 1950 Ꮳء ຫ堚࢘᤟ Venice ê Seng-lí-lâng(৖؍ཎऱس
რԳ) 92 58 3 4 93.10%

5 1890 ՛ᎅ ټ܊ An-lok-ke(ڜᑗဩ) 101 77 7ʳ 9ʳ 88.31%
6 1924 ՛ᎅ ᘸոᜢ Án-niá ê Bak-sái(ئᘣऱณෝ) 133 93 7ʳ 9ʳ 90.32%
7 1990 ՛ᎅ ᄘւߢ᤟ Hái-ph  Sin-niû(᰼ߡՂऱᄅ୞) 94 59 7ʳ 5ʳ 91.53%
     837 564ʳ 46ʳ 48ʳ 91.49%

ᎅࣔΚid 4଺ထृ੡๎ՓֺࠅΔid 7 ଺ထृ੡ݚᖻဒ 

 
ᑑಖᙑᎄᑇ 

- ᒔ෷ = ( 1إ ፿ဲᑇ ) ͪ 100% 

 

ڶऱᇷறΔ᜔٥࠷ᙇࢬ 564ଡ፿ဲΰ837ଡଃᆏαΔᆖመԳՠᛀ਷Δڶ 46ଡ፿ဲਗᙇᙑ

ᎄΕ48ଡ፿ဲऱဲࢤᑑಖᙑᎄΔဲࢤᑑಖऱؓ݁إᒔ෷੡ 91.49%Ζ૞ᎅࣔऱਢΔڶழ

ԫֱ૿Δ׼ᒔऱΔإ౨սྥਢױᑑಖ࿨࣠ࢤਢဲ܀ऱխ֮ဲឈྥਢᙑᎄऱΔࠐנਗᙇࢬ

խ֮ဲᙇኙΔࢤဲؘآᑑಖऱ࿨࣠ਢإᒔऱΖ 

؀፿ऱψᕻືωኙᚨխ֮ऱψᛥᕻ ՂωΙڕழԫଡ؀፿ဲΔኙᚨࠩࠟଡխ֮ဲΔڶΔ؆ڼ
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Ոࠟڶଡ؀፿ဲኙᚨԫଡխ֮ဲऱΔ؀ڕ፿ऱψխഏ ڗωኙᚨࠩխ֮ऱψխഏڗωΖছ

ृᄎᅝآګवဲࠐ๠෻Δۖ ৵ Δृڂ੡ၲࣈऱࠟຝ։Ոຟਢ Δဲאࢬ༉ᅝࠟګଡဲ๠෻Ζ

ຍଡຝ։Δࢤဲ࣠ڕᑑಖਢإᒔऱΔݺଚսല࿨࣠ီ੡إᒔΖ࣠ڕຍຝ։ီ੡ᙑᎄΔঞ

ؓ݁ऱإᒔ෷ᄎՀ૾  Ζ׳2%ؐ

੡ڼΔࠏᑑಖ࿨࣠ᜰࢤՀ੡ኔᎾऱဲא id 7ऱԫຝ Ζٝࠡ խΔรԫଡ᥏ۯਢዧᢅ؀፿֮Δ

รԲ᥏੡؀፿ᢅ್ڗΰאխਔࠪ࢑ದࠐαΔรԿ᥏੡խ֮ଢᙇဲΰאՕਔࠪ࢑ದࠐΔছ

אԫဲයխΔऴ൷ٵ᢯ࠢऱڇ෼נآࠀรԲ᥏ऱ؀፿֮ࡉรԫ᥏قฤᇆृΔ।’�@‘�ף૿

ዧᢅ؀፿֮ᅝګխ֮ଢᙇဲαΔร؄᥏੡ਗᙇנऱխ֮ဲΰߡאਔࠪ࢑ದࠐαΔ່৵ԫ᥏

੡ࢬਗᙇऱဲࢤΖݺଚലਗᙇऱխ֮ဲᙑᎄࢨਢਗᙇऱဲࢤᑑಖᙑᎄृףՂࢍᒵΔհছ

 αΖࠐದࠪ࢑՛ਔאᑑಖΰษ᧯ΔࢤᒔऱဲإՂףհ৵ΔࢤՂ�‘**�’Δᙑᎄऱဲףࠀ

 
 (Nh)<ݺ>{ݺ}[góa]ݺ
ല[chiong]{ല}<ല>(D) 
౻༐ג[chháu-b -á]{@౻༐ג}<౻༐ג>(Na) 
඀[kòa]{൅;඀;ᚮ}<൅>(VC) 
t  [t  (P)<ڇ>{ڇ}[
ᕻື[piah-teng2]{ᛥᕻՂ}<ᛥᕻՂ>(Nc) 
Δ[,]<,>(COMMACATEGORY) 
 (Na)<ޕ۩>{ޕ۩}[hêng-lí]ޕ۩
khêng[khêng]{گਕ;ᒌរ}<گਕ>(VC) 
khêng[khêng]{گਕ;ᒌរ}<گਕ>(VC) 
leh[leh]{়}<়>(T) 
Δ[,]<,>(COMMACATEGORY) 
݄[ch ]{݄}<݄>(VA) 
tòa[tòa]{۰}<۰>(VCL) (P) 
՛ࢋ[sió-tiàm]{@՛ࢋ}<՛ࢋ>(Na) 
ê[ê]{ऱ}<ऱ>(DE) 
tha-thá-mì[tha-tha-mì]{ჅჅۏ}<ჅჅۏ>(Na) 
ື kôan[téng-kôan]{Ղ૿}<Ղ૿>(Ncd) 
Δ[,]<,>(COMMACATEGORY) 
઎[khòa ]{઎}<઎>(VC) 
࿗؆[thang-g a]{@࿗؆}<࿗؆>(Nc) 
ê[ê]{ऱ}<ऱ>(DE) 
٠ན[kong-kéng]{ଅ٠;௛ွ;٠ན;ଅན;ན௛}<**ན௛>(Na) 
Δ[,]<,>(COMMACATEGORY) 
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઎[khòa ]{઎}<઎>(VC) 
ದದ[khí-khí]{@ದದ}<ದದ>(**Nb)(VA) 
ᆵᆵ[loh-loh]{@ᆵᆵ}<ᆵᆵ>(VA) 
ê[ê]{ऱ}<ऱ>(DE) 
௧ྂ[hái-éng]{௧௡;௧ᑪ}<௧௡>(Na) 
Δ[,]<,>(COMMACATEGORY) 
-੡[inڂ i]{ڂ;࣍ط੡}<ڂ੡>(Cbb) 
࿛ৱ[tán-th i]{ఎৱ;࿛ৱ}<࿛ৱ>(VK) 
֖ࣛ[pêng-iú]{֖Գ;֖ࣛ}<֖ࣛ>(Na) 
Δ[,]<,>(COMMACATEGORY) 
֨ᔞ[sim-sek]{ړन;ړनࠝ;ڶᔊ;ଅᔊ;༭ݶ;࿕࡛;ᕕထन}<ڶᔊ>(VH) 
֨ᔞ[sim-sek]{ړन;ړनࠝ;ڶᔊ;ଅᔊ;༭ݶ;࿕࡛;ᕕထन}<ڶᔊ>(VH) 
Δ[,]<,>(COMMACATEGORY) 
 ऱ>(**Nb)(D)᎘᎘>{ऱ᎘᎘}[khin-khin-á]ג᎘᎘
 (D)<ࠐ>{ࠐ}[lâi]ࠐ
រ[tiám]{ᗏរ;ᛀរ;រ;រ՗}<រ>(VC) 
ԫ֭[chit-ki]{@ԫ֭}<ԫ֭>(Na) 
ළළ[liâng-liâng]{ܐܐ;ළ࿭࿭}<**ܐܐ>(VH) 
ê[ê]{ऱ}<ऱ>(DE) 
ᮺᘔ[kin-chio]{ଉᘔ}<ଉᘔ>(Na) 
៷[hun]{ଉဈ;ଉᄿ;៷}<ଉᄿ>(Na) 
Ζ[.]<.>(PERIODCATEGORY) 

 

؄Ε։࣫ 

ڶᇡาऱᛀီΔ࿇෼ࠡխޓᑑಖᙑᎄհ๠Δ೚ࢤဲࢨଚಾኙᙇᙑխ֮ဲݺ 13๠ਢڂ੡

ᙇᙑխ֮ဲᖄીဲࢤᑑಖᙑᎄΖ।Բנ٨ᙇᙑऱխ֮ဲ֗ࠡᑑಖऱဲࢤΖ 

।ԲΕߓอᙇᙑऱխ֮ဲ 
؀፿ဲ ࢬᙇऱխ֮ဲ֗ဲࢤ ለᔞᅝऱխ֮ኙ᤟֗ဲࢤ ᎅࣔ

  (VC)ࢽ ah ൎࠫ(D)/ࢽ
ྤ/bô լ(D) ڶ޲(VJ) 2ڻ
ຍᇆ/chit-h  ຍᑌ(VH) ຍጟ(N?) 2ڻ
᠏/ch an Ղ(Ncd) ᠏(Vac) 2ڻ
֝ኂ/iáu-si  ॺൄ(Dfa) ֝ڰ(VH)  
Ꮭଖ/kè-t t ଖ൓(VH) Ꮭଖ(Na)  
੒/ ah س੒(Na) ੒(VH)  
ధઌ/phòa-siù  ధ(VHC) ྲྀᐒ(Na)  
ઌଗം/sio-chioh-m g ࡅࢵ(VC) ؚࡅࢵ(VB)  
ထ/ti h ༉(P) ൓(D)  
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ᑑಖᙑᎄΖຍࢤᒔխ֮ဲऱᙇႈΔՈᖄીဲإڶ޲੡؀ဎ᢯ࠢխڂ๠ᙇᙑխ֮ဲਢࠟڶ

।؀قဎ᢯ࠢᝫᏁ૞ᤉᥛᏺᇖΖ।Կנ٨ຍࠟଡ፿ဲΖ 

 
।ԿΕ؀ဎ᢯ࠢ౒խ֮ኙ᤟ᖄીᙇᙑऱဲ 

؀፿ဲ ߓอࢬᙇऱխ֮ဲ ለإᒔऱխ֮ဲ 
ti -ti  / ti -ti  ൄൄ(D) ۖբ(T) 
᠏ / t g ᓳᇞ(VC) ᠏(VAC) 

 

वဲՕຝ։ਢࠟଡխ֮ဲΖآࠄᑑಖᙑᎄΖຍࢤवဲऱဲآ࣍طԶ๠ᙑᎄਢڶΔᝫ؆׼

।ڼנ؄٨ԶଡآवဲΖ 

 
।؄Εխ֮آवဲ 

؀፿ဲ խ֮ ߓอࢬᙇऱဲإ ࢤᒔऱဲࢤ 
b ᄎ/b -  լᄎ Nb D 
ଇ۔/chiah-l u *ଇ۔ Na V? 
᠏Ա/ch an-liáu *᠏Ա VH V? 
ऄ৳Ղ/hoat-lut-si ng ऄ৳Ղ VC N? 
ॺ੡/hui-ûi ॺ੡ A N? 
ᒡݳ/kiông-chì ᒡݳ Na V? 
 ?khin-khin-á ᎘᎘ऱ Nb D/ג᎘᎘
՗/seس -kiá  ?՗ Na Vس 

 

ᝫ؄ڶଡဲࢤᑑಖᙑᎄऱֱچΔױ౨ਢڂ੡հছԫଡဲࢤᑑಖᙑᎄۖࠩ࠹ᐙ᥼ऱΔ᥆࣍

ႚᐾᙑᎄ(propagation error)ΔץਔԫଡآवဲΖ 

Գټऱຝ։Δψ֚ᔅ ah/Thian-sù ahωऱψ֚ᔅωΰլਢآवဲα๯ᑑಖ੡ψAωΔ৵ጺऱ

ψahω๯ᑑಖ੡ψTωࢨψDiωΰנ٥෼ࠟڻΔԫڻᙇψ೿ω׼؆ԫڻᙇψԱωαΖ 

ᇢྒྷڇՕຝ։፿ቼՀΔࠡխ֮ኙ᤟੡ψൕωΖຍଡ፿ဲڇԫଡ؀፿ဲψኙ/tùiωΔڶ؆׼

ᇷறխנ٥෼԰ڻΔլመߓอڶԮڻਗᙇנऱխ֮ဲਢψኙωΔڻࠟڶ׽ਗᙇψൕωΖ܀

ਢڂ੡ဲࢤᑑಖຟਢψPωΔኙဲࢤᑑಖإᒔ෷ڶ޲ᐙ᥼Ζ 

ࠡ،ऱᙑᎄڶ٥ 18๠Δᑉழڶ޲ᙄऄࣔᒔ։࣫ࢤဲࠡנᑑಖᙑᎄऱ଺ڂΖ 

᜔࿨ݺଚࢬ։࣫ऱဲࢤᑑಖᙑᎄऱ଺ࠏֺࠡ֗ڂΔ࣍٨।նΖ 
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।նΕဲࢤᑑಖᙑᎄ։࣫ʳ

ᙑᎄ଺ڂʳ ᑇʳڻ ʳࠏֺ ᎅࣔʳ

ᙇᙑխ֮ဲʳ 13 27.08%  
ᙇʳױᒔऱխ֮ဲإڶ޲ 2 4.17%  
वဲʳآ 8 16.67%  
Գټʳ 4 8.33%  
ႚᐾᙑᎄʳ 4 8.33%  वဲآਔԫץ
᜔ૠʳ 30 62.50%  ೈૹᓤጩऱڬ

 

່෻უऱൣݮΔ࣠ڕՂ૪ᙑᎄຟ൓ࠩᇞެΔֱڼאऄ೚؀፿ဲࢤᑑಖΔലאױሒࠩ

96.81%ऱإᒔ෷Δ܀ਢ᧩ྥڶᄕՕऱܺᣄΖ 

؀፿ऱဲݧፖխ֮ऱဲݧฅຶڶ஁ฆΔᙇᙑխ֮ဲᖄીဲࢤᑑಖᙑᎄਢֺ່ࠏ೏ऱΖۖ

ᒔ෷إਢ܀ຘመᏺᇖ؀ဎኙ᤟᢯ࠢऱဲයᛧ൓ᇞެΔאױᙇऱംᠲΔױᒔխ֮ဲإڶ޲

ႛ༼֒լࠩ 5%Ζ 

वآऱإլਢటࠄ৫઎Δຍߡխ֮ऱאΔࠏรԲ೏ऱֺ۾ᑑಖᙑᎄΔࢤवဲᖄીऱဲآ

ဲΔՕຟਢڂ੡ࠟଡլٵ፿ߢऱ፿ဲኙ᤟ؘآਢԫኙԫऱᒴਚΙ׼؆ԫଡૹ૞ऱ଺ڂ

ਢΔ؀፿ᢅ್ڇڗຑڗฤ(hyphen)ऱشࠌՂՈآࡸᑑᄷ֏Δዧ፿ٺߓ፿ߢΔױ౨ਢشࠌ

ዧڗऱᣂএΔ፿ဲऱ੺ᒵઌኙլࣔᒔΔ؀፿ڗ್ᢅشࠌ஼ᐊΔشܓຑڗฤΔԫֱ૿ឰၲ

ԫ፿ဲऱٺଃᆏΔᨃԫଡଃᆏսױຑ࿨ԫଡዧڗΔ׼ԫֱ૿ΔঞԾ૤ᖜऱ։ဲऱפ౨Δ

ऱࠐਢ։ဲऱຝ։Δ଺܀։ሶၲΙػ़ڶԫ፿ဲΔ፿ဲၴٵ।זฤຑ൷ऱଃᆏΔڗຑڶ

ዧڗ஼ᐊྤױፖհኙᚨΖ 

ԫଡଃᆏ٦אױา։੡ᜢئΕᣉئΕᜢᓳԿຝ։ΔطຍԿຝ։ګิࢬऱଃᆏΔ؀፿પڶ

3,000ଡଃᆏΔဎ፿ڶ 1,200ଡؐ׳Δڼڇছ༼ՀΔ؀፿ڶለڍऱ໢ଃᆏဲΖ܀ਢΔԫ

ଡ໢ଃᆏױ౨ኙᚨࠩړ༓ଡլٵऱዧڗΔᠨଃᆏאࢨՂऱ፿ဲঞᇞެՕຝ։ऱംᠲΖࠏ

ฤαΔ઎ڗຑڶ޲ψchit êωΰګ؀፿ऱψຍଡωΔૉᐊڕ ψࠩchitωΔױኙᚨऱዧץڗਔψຍΕ

៭ΕᔆΕ៣Ε...ω࿛Δ઎ࠩψêωΔױኙᚨऱዧץڗਔψऱΕଡΕᕀΕ...ω࿛Δ࣠ڕᐊګ

ψchit-êωΰڶຑڗฤαழΔຏൄᔹᦰृױऴ൷ኙᚨࠩψຍଡωΔ؀ڇڼڂ፿ऱᢅ್ڗ஼

ᐊΔ஼ᐊृױ౨ᄎႜނٻ໢ଃᆏဲ׼ࡉԫଡ໢ଃᆏဲشຑڗฤຑದࠐΔ࣠ڕຍࠟଡ໢ଃ

ᆏဲ౨ګݮᓤิဲࢨဲٽΖ෼ኔऱൣݮਢΔڇ፿றխΔψຍଡωףڶຑڗฤΔڶऱڶ޲

 ထլԫીऱ෼ွΖڇژΔף
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Δᅝխ֮ኙ᤟ဲਢء֮ޏլଥ࣠ڕฤᖄીԫଡ؀፿ဲኙᚨࠟଡխ֮ဲऱംᠲΔڗ੡ຑڂ

वဲᖄآ੡ڂ܅૾אױฤᇢᇢ઎Ζຍᑌ೚ΔՈ๺ڗൾຑࣈᙰڃᐞ٦ەױवဲழΔՈ๺آ

ીဲࢤᑑಖᙑᎄऱᖲᄎΖ 

஁ฆΛ௅ᖕ।ԫऱᇷࢬڶᒔ෷إᑑಖऱࢤဲڇܡΔਢءᣊऱ֮֮ٵլ֗זழٵլ࣍۟

றΔ।քנ٨Կጟլ֮ٵᣊ֮ءऱဲࢤᑑಖإᒔ෷Δ।Ԯנ٨Կଡլٵழء֮זऱဲࢤ

ᑑಖإᒔ෷Ζط।ք઎ࠐΔ՛ᎅᣊ֮ءऱဲࢤᑑಖإᒔ෷ለ܅Δ।Ԯঞ᧩قΔլٵழז

։࣫࿨࣠ᝫᏁၞڼ੡ᇷறၦ֟Δڂထऱ஁ฆΖլመΔ᧩ڶ޲ࠀᒔ෷Δإᑑಖࢤऱဲء֮

ԫޡ᧭ᢞΖʳ

 

।քΕլ֮ٵᣊ֮ࢤဲءᑑಖإᒔ෷ֺለ

֮ᣊ ፿ဲᑇ ᑑಖᙑᎄ إᒔ෷ 
ཋ֮ 277 21 92.42%
Ꮳ58 ء 4 93.10%
՛ᎅ 229 23 89.96%

 

।ԮΕլٵழࢤဲء֮זᑑಖإᒔ෷ֺለ

፿ဲᑇ זڣ ᑑಖᙑᎄ إᒔ෷ 
堚ഏ 186 15 91.94%
ֲए 212 17 91.98%
ᖏ৵ 166 16 90.36%

 

նΕٻֱࠐآ 

խ֮ऱಝᒭᇷ֗א؀፿ဎ፿ኙ᤟شܓଚ៥ԱԫഎΔݺՀΔݮ؀፿֮ಝᒭᇷறऱൣ׎౒ڇ

றΔᨃ؀፿֮ဲࢤᑑಖሒࠩ 91.49%ऱإᒔ෷Ζຍࠟڍۍᆄଃᆏऱ؀፿֮፿றऱဲࢤᑑ

ಖ࿨࣠ឈྥإ٤ݙڶ޲ᒔΔ܀ਢᚨᇠࠎ༽אߩ೚੡؀፿֮፿ဲ֗ဲࢤऱಝᒭᇷறΔࠎױ

ၞԫޡઔشࠌߒΖ 

؀፿֮ऱᠨຑ፿ࡉඨ౨ຘመֺለխ֮ݦଚݺࠐآऱΔشױຍٝ؀፿֮ऱಝᒭᇷறਢ࣠ڕ

 ๠Ζٵ؀፿֮ऱฆࡉ։࣫խ֮ޡΔၞԫࢤᠨຑဲࢨဲ

ழᄷໂ؀ٵΔլመԫ౳Գ૞شࠌՕฒࠎอ[19]ߓอߓقᑑࢤ࿇؀፿֮ឰဲΕဲၲࠀଚݺ

፿֮֗ڗ٤ᢅ್ዧᢅࠟشٽጟ֮ڶءរܺᣄΔݺڼڂଚᝫ༼؀ش׽ࠎ፿ᢅ್ش׽ࢨڗዧ

਷ᔹ؀ဎڇਢ׽ΔٵᑑಖΔ೚ऄՂፖՂ૪ऱઌࢤαऱ؀፿ဲڗዧشࠌ٤ݙਔץΰشٽᢅ
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᢯ࠢழ֟ுኙԫଡ᥏ۯΔຍᄎທګխ֮ଢᙇဲᏺףΔױڶ౨ທࢤဲګᑑಖᙑᎄऱᖲᄎΖ

ࠡ࿨࣠۶ڕΔڶৱၞԫޡ։࣫Ζ 

ᑑࢤΔᏁ٣ᆖመឰဲթ౨ၞ۩৵ᥛऱဲء൓ऱ֮࠷࣐؀፿֮ਢֺለ୲شٽΔዧᢅ؆׼

ಖΔݺڼڂଚՈലឰဲߓอᖞڼڇٽᒵՂߓอխΖ 

 

ી᝔ 

൓ࠩഏઝᄎૠ྽ψ؀፿֮፿ऄ࿨ዌᖫ৬ᆜ(1/3)ωNSC 95-2221-E-122 -006ᆖ၄ᇖߒઔء

ࡌ੡ޓא൓֮ءΔᨃߠრࢤऱ৬๻ࠎ༽ࢬᐉ਷ृټೳۯΔՈტ᝔Կ؆ڼી᝔ΖڼΔ௽ܗ

 Ζ࢏
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ኴ૞ 

ᙟထઝݾऱ࿇୶Δ۞೯፿ଃᙃᢝݾ๬ՈດዬګᑵΔۖሒኔᎾᚨشऱၸ੄Ι܀ᅝԫ۞

೯፿ଃᙃᢝߓอ࣍شࠌ෼ኔᛩቼխழΔ࢓࢓ᄎࠩ࠹ᠧಛऱեឫΔۖທګᙃᢝ෷Օ༏ऱՀ

૾ΙڼڂΔᛩቼઌᣂऱ፿ଃൎ೜ݾ๬༉᧩൓௑؆ૹ૞Ζءᓵ֮ਢಾኙࢤګףڇᠧಛࢬທ

፿ଃ௽ᐛհڍ૞൶ಘऱᓰᠲΔೈԱᄗ૪๺׌੡܂಻֐อհಝᒭፖᙃᢝᛩቼլߓऱᙃᢝګ

ൎ೜ࢤ๠෻ݾ๬؆Δ׌૞ૹរ࣍ڇտฯݺଚࢬᄅ࿇୶ऱ౨ၦઌᣂ௽ᐛൎ೜֏ዝጩऄΫᙩ

ଃ௽ᐛإ๵֏ऄΖڼڇΔݺଚאለᣤ᠃ऱᑇᖂ։࣫Δ൶ಘࢤګףᠧಛኙ౨ၦઌᣂ௽ᐛທ

֏๵إᙩଃ௽ᐛܛ๬Δݾଚ࿇୶ઌኙᚨऱԫ୚ᄅݺ෼ွΔࠄట෼ွΙ൷ထ௅ᖕຍ؈ऱګ

ऄΔ܅૾ࠐຍ؈ࠄటΖຘመຍԫ٨ߓऱᙃᢝኔ᧭Δᢞኔݺଚנ༽ࢬऱᄅݾ๬౨ജڶய༼

 Ζࢤګףऱړߜڶ๬ݾࢤൎ೜ڍፖࠡ،๺ࠀᠧಛᛩቼՀऱ፿ଃᙃᢝ෷Δࢤګףጟٺ֒

Abstract 
The rapid development of speech processing techniques has made themselves 

successfully applied in more and more applications, such as automatic dialing, voice-based 
information retrieval, and identity authentication. However, some unexpected variations in 
speech signals deteriorate the performance of a speech processing system, and thus relatively 
limit its application range. Among these variations, the environmental mismatch caused by 
the embedded noise in the speech signal is the major concern of this paper. In this paper, we 
provide a more rigorous mathematical analysis for the effects of the additive noise on two 
energy-related speech features, i.e. the logarithmic energy (logE) and the zeroth cepstral 
coefficient (c0). Then based on these effects, we propose a new feature compensation scheme, 
named silence feature normalization (SFN), in order to improve the noise robustness of the 
above two features for speech recognition. It is shown that, regardless of its simplicity in 
implementation, SFN brings about very significant improvement in noisy speech recognition, 
and it behaves better than many well-known feature normalization approaches. Furthermore, 
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SFN can be easily integrated with other noise robustness techniques to achieve an even better 
recognition accuracy. 

ᣂ᝶ဲΚ۞೯፿ଃᙃᢝΕኙᑇ౨ၦ௽ᐛΕรሿፂଙ᙮ᢜ௽ᐛএᑇΕൎ೜ࢤ፿ଃ௽ᐛ 
Keywords: speech recognition, logarithmic energy feature, the zeroth cepstral coefficient, 
robust speech features 
 

ԫΕፃᓵ 
२ࠐڣઝݾ࿇୶߰ຒΔ܀ਢ۞೯፿ଃᙃᢝսྥਢԫ॰ઌᅝࠠڶਗᖏࢤऱᓰᠲΖຏൄ

ԫ۞೯፿ଃᙃᢝߓอڇլڇ؆࠹ᠧಛեឫऱઔߒ৛ᛩቼՀΔຟאױᛧ൓ᄕ೏ऱᙃᢝய

౨Δ܀ૉਢᚨࠩشኔᎾऱᛩቼխΔߓอᙃᢝய౨ঞຏൄᄎՕ༏૾܅Δຍ׌૞ਢ๯෼ኔᛩ

ቼխ๺ڍऱ᧢ฆࢤ(variation)ࢬᐙ᥼Ζۖ፿ଃᙃᢝऱ᧢ฆࢤጟᣊ᜗ڍΔڕࠏಝᒭᛩቼፖ
ྒྷᇢᛩቼၴڇژऱᛩቼլ֐಻(environmental mismatch)Ε፿ृ᧢ฆ(speaker variation)֗א
࿇ଃऱ᧢ฆ(pronunciation variation)࿛Ζኙ࣍ᛩቼլ֐಻ۖߢΔࠡઌᣂऱ᧢ᑇױᄗฃ։੡
Հ٨༓ႈᣊীΚࢤګףᠧಛ(additive noise)Εኹᗨࢤᠧಛ(convolutional noise)֗א᙮ᐈऱ
ૻࠫ(bandwidth limitation)࿛Ζቹԫ੡೓෣፿ଃಛᇆࠩ࠹ᠧಛեឫհقრቹΖʳ

ᖲ໱ ဩሐ

೓෣፿ଃಛᇆ

ᠧಛࢤګף ኹᗨࢤᠧಛ

ᠧಛ፿ଃಛᇆ

ʳ
ቹԫΕ೓෣፿ଃ࠹ᠧಛեឫհقრቹʳ

ʳ

ᠲΔ׌૞൶ಘऱ׌੡܂Δైڂᠧಛࢤګף಻խऱ֐ऱᛩቼլ֗༽ࢬՂ૪אᓵ֮ਢء

ଚᆖൄૠጩ፿ଃݺᨏழΔޡ࠷ࢼ௽ᐛ೶ᑇڇΖ܅ᠧಛኙ፿ଃᙃᢝऱᐙ᥼૾ࢤګףཚലא

ऱ౨ၦଖ܂੡௽ᐛհԫΙ௅ᖕመװऱ֮᣸ਐ[2][1]נΔ፿ଃಛᇆऱ౨ၦ௽ᐛ(energy feature)
௅ᖕՂ૪౨ၦאࢬΖ܅౨ၦ௽ᐛऱૠጩᓤᠧ৫ৰ׊௽ᐛΔ،ࠡ࣍ऱᙃᢝᇷಛՕመܶץࢬ

௽ᐛऱᚌႨΔءڇᓵ֮խΔݺଚ௽ܑኙࠡൎ೜ݾࢤ๬אף։࣫Εಘᓵፖ࿇୶Ζʳ

२ࠐڣΔڶ๺פګڍऱൎ೜ࢤኙᑇ౨ၦ௽ᐛ(logarithmic energy, logE)ऱݾ๬ઌᤉ๯༼
๵֏ऄإΔኙᑇ౨ၦ೯ኪᒤ໮ڕࠏΔנ (log-energy dynamic range normalization, 
LEDRN)[3]ࠡؾᑑਢࠌಝᒭፖྒྷᇢऱ፿ଃᇷறࠡኙᑇ౨ၦଖհ೯ኪᒤ໮ԫી֏Ιኙᑇ౨
ၦ֡৫ૹࠥऄ(log-energy rescaling normalization, LERN)[4]ঞਢലኙᑇ౨ၦ௽ᐛଊՂԫ
ଡտ࣍ 0ፖ 1ၴऱᦞૹଖΔᇢቹૹ৬נ೓෣፿ଃऱኙᑇ౨ၦ௽ᐛΙۖءኔ᧭৛٣ছࢬ༼
੡ॺܑܒ๵֏ऄ(silence energy normalization, SLEN)[5]Δਢലإऱᙩଃଃ௃ኙᑇ౨ၦנ
፿ଃଃ௃(non-speech frame)ऱኙᑇ౨ၦ௽ᐛ๻ࡳ੡ԫᄕ՛ଖऱൄᑇΖՂ૪ऱԿጟֱऄΔ
ઃႜ࣍ٻലॺ፿ଃຝ։ऱኙᑇ౨ၦᑇଖᓳ܅Δࠀല፿ଃຝ։ऱኙᑇ౨ၦଖঅ਍լ᧢Ιࠡ

ᠧࠩ࠹࣐୲ޓऱຝ։ຏൄᄎֺ౨ၦለ೏ऱຝ։܅ਢԫ੄፿ଃ௽ᐛխΔ౨ၦለڂ૞ऱ଺׌

ಛऱᐙ᥼Ζءᓵ֮ࠉᖕছԳࢬ࿇।ऱ֮᣸ၞޏאףΔ׊ಾኙ፿ଃಛᇆ౨ၦઌᣂऱ௽ᐛڕ

๬Δጠ੡ψᙩݾԫ୚ᄅऱൎ೜נ༽ࠀ։࣫Δאףለᣤ᠃ऱᑇᖂ෻ᓵאᠧಛᐙ᥼Δࠩ࠹۶

ଃ௽ᐛإ๵֏ऄω (silence feature normalization, SFN)Δֱڼऄڶאױயࢤګף܅૾چᠧ
ಛኙ፿ଃ౨ၦઌᣂ௽ᐛऱեឫΔၞۖ༼೏ߓอऱᙃᢝய౨Ζ 
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ᠧಛᐙ᥼ऱய࠹૞ലኙ౨ၦઌᣂ௽ᐛ׌ଚ٣ݺรԲີխΔڇՀΚڕᓵ֮ࠡ،ີᆏᄗ૞ء

ᚨΔ೚ၞԫޡऱ։࣫ፖ൶ಘΔ൷ထտฯءᓵ֮ࢬᄅ༼נऱհᙩଃ௽ᐛإ๵֏ऄ(SFN)Ι 
รԿີܶץԱٺጟಾኙ౨ၦઌᣂ௽ᐛհ๠෻ݾ๬ऱ፿ଃᙃᢝኔ᧭ᑇᖕ֗ઌᣂಘᓵΔࠡ խ

ೈԱտฯ፿ଃᙃᢝኔ᧭ᛩቼ؆Δ׌૞ਢေ۷ᙩଃ௽ᐛإ๵֏ऄऱய౨Δࠀፖֱࠡהऄ܂

ֺለΔ៶ڼ᧭ᢞݺଚנ༽ࢬᄅֱऄ౨ڶய༼֒౨ၦઌᣂ௽ᐛڇᠧಛᛩቼՀऱൎ೜ࢤΖڇ

ร؄ີխΔݺଚቫᇢലࢬ༼ऱᄅֱऄ࿨ࠡٽ،ऱൎ೜ࢤ௽ᐛݾ๬Δኙڼᣊऱ࿨܂ٽᙃᢝ

ኔ᧭ࢬ൓ࠩऱᙃᢝ෷אף൶ಘፖ։ Δ࣫א᧭ᢞݺଚנ༽ࢬऱᙩଃ௽ᐛإ๵֏ऄਢܡፖࠡ

 ୶ඨΖࠐآᓵ֮࿨ᓵፖءΖรնີঞ੡ࢤګףऱړߜڶ๬ݾ،
 
ԲΕᙩଃ௽ᐛإ๵֏ऄ 

ଈ٣ΔݺଚڇรԫᆏխΔಾኙ፿ଃ౨ၦઌᣂ௽ᐛΚኙᑇ౨ၦ(logarithmic energy, logE)
ፖรሿፂଙ᙮ᢜএᑇ(c0)ࠩ࠹ᛩቼᠧಛեឫऱ᧢ฆ෼ွ೚ለ෡Եऱᨠኘ։࣫ፖ൶ಘΔ൷
ထڇรԲᆏխΔݺଚ௅ᖕຍࠄ࿨࣠Δ༼נᙩଃ௽ᐛإ๵֏ऄऱᄅൎ೜ݾࢤ๬Ζʳ

ΰԫαኙᑇ౨ၦ௽ᐛ֗รሿፂଙ᙮ᢜ௽ᐛএᑇࢤګף࠹ᠧಛեឫհ෼ွऱ൶ಘ 

౨ၦઌᣂ௽ᐛ(logE࣍ᠧಛኙࢤګף ፖ c0)ທګऱயᚨطױቹԲ઎נጤଧΖቹԲ(a)Ε(b)
ፖ(c)։ܑ।قԫ೓෣፿ଃಛᇆʻAurora-2.0ᇷற஄խऱ"MAH_1390A"ᚾʼऱंݮቹΕኙᑇ
౨ၦ(logE)ڴᒵቹፖรሿፂଙ᙮ᢜ௽ᐛএᑇ(c0)ڴᒵቹΙۖ(b)ፖ(c)խદۥኔᒵΕጸۥဠ
ᒵፖ៴ۥរᒵঞ։ܑ੡೓෣፿ଃΕಛᠧֺ 15dBऱ፿ଃ֗ಛᠧֺ 5dBऱ፿ଃࢬኙᚨऱڴ
ᒵΖطຍԿ്ቹխΔאױৰࣔ᧩چ઎נΔڶڇ፿ଃڇژऱ೴഑ΔlogEፖ c0௽ᐛଖለՕΔ
ለլ୲ࠩ࠹࣐ᠧಛऱᐙ᥼ۖ؈టΔۖ׊ᙟழၴՂՀ஡ᛯऱൣउለ੡ࣔ᧩Ι֘հΔྤڇ፿

ଃڇژऱ೴੄Δࠡ௽ᐛଖছ৵᧢֏ለؓᒷΔࠩ࠹׊ᠧಛऱեឫ৵Δࠡଖᄎৰࣔ᧩چ๯ޏ

᧢๺ڍΖ൷ՀࠐΔݺଚ༉אለᣤ᠃ऱᑇᖂ෻ᓵΔኙאՂࠟጟ؈ట෼ွאף։࣫ፖ൶ಘΖ

ଈ٣Δݺଚ൶ಘࢤګףᠧಛኙ࣍ logE ௽ᐛऱᐙ᥼Ζ೗๻ԫ੄ࢤګף࠹ᠧಛեឫऱ፿ଃ
(noisy speech)խΔรnଡଃ௃ऱಛᇆ [ ]

n
x m  ੡Κق।ױ

[ ] [ ] [ ]
n n n
x m s m d m Δ               (1-2)ڤ 

ࠡխ [ ]
n
s m ፖ

n
d m ։ܑ।قรnଡଃ௃հ೓෣፿ଃಛᇆ(clean speech)֗אᠧಛ(noise)Δ

ঞڼଃ௃հ logE௽ᐛଖشױՀڤ।قΚ 
2 2 2

log [ ] log [ ] [ ]
x

m n m n m n
E n x m s m d m

       log exp exp
ds

E n E n Δ                         (2-2)ڤ 

ࠡխ x
E n Ε s

E n ፖ d
E n ։ܑ੡

n
x m Ε

n
s m ֗א

n
d m ኙᚨհࢬ logE ௽ᐛଖΖ

ᖄીᠧಛ፿ଃፖ೓෣፿ଃಛᇆࠟृၴࢬᠧಛեឫࠩ࠹Δڼڂ logE ௽ᐛऱ஁ฆ E n ױ

 Κق।ڤՀش
log 1 exp

dx s s
E n E n E n E n E n Ζ           (3-2)ڤ  

)ऱᠧಛ౨ၦٵઌڇΔૉנᨠኘױ(3-2)ڤط d
E n )ՀΔڼ஁ฆଖ E n ፖ೓෣፿ଃಛᇆ

հ s
E n ෼૤ઌᣂऱᣂএΔᅝܧृࠟ s

E n ყՕழΔ E n ყ՛Δ֘հঞყՕΖ௅ᖕՂ

૪ऱංᖄΔאױ઎נԫᠧಛ፿ଃಛᇆխΔܶڶ፿ଃٝګऱଃ௃( s
E n ለՕ)ઌለొ࣍ᠧ

ಛଃ௃( [ ]
s

E n ለ՛)ۖߢΔࠡ logE௽ᐛ๯ᠧಛᐙ᥼ऱൣउለ՛(؈ܛటၦ E n ለ՛)Ζ 
൷ՀࠐΔݺଚ൶ಘࢤګףᠧಛኙ࣍፿ଃಛᇆऱ logE௽ᐛ࣍٨ݧᓳ᧢᙮ᢜ(modulation 

spectrum)Ղऱᐙ᥼Ζଈ٣Δݺଚലא(2-2)ڤ௠೬్ᑇ(Taylor series)୶ၲΔࠡ୶ၲऱխ֨
រ๻ࡳ੡ , 0, 0

ds
E n E n Δ୶ၲၸᐋ੡ 2ၸΔقࢬ(4-2)ڤڕΚ 
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ʳ
ቹԲΕڇլٵ SNRՀΔԫ፿ଃಛᇆհंݮቹ֗౨ၦઌᣂ௽ᐛழၴ٨ݧቹΔࠡխ(a)੡೓

෣፿ଃंݮΕ(b)੡ logE௽ᐛڴᒵΕ(c)੡ c0௽ᐛڴᒵʳ
 

log exp exp
dx s

E n E n E n  
221 1

log 2
2 8

d d ds s s
E n E n E n E n E n E n  (4-2)ڤ     .

٨ݧᠧಛ፿ଃऱኙᑇ౨ၦڼᆺ᠏ངΔঞمແ࠷(4-2)ڤΔૉലՂڼڂ x
E n ऱᓳ᧢

᙮ᢜشױՀڤ।قΚ 
1

2 log 2
2

X j S j D j  

1
           

16
S j S j D j D j S j D j Δ      (5-2)ڤ 

խXڤ j ΕS j D֗א j ։ܑ੡ᠧಛ፿ଃհlogE٨ݧ x
E n Ε೓෣፿ଃհlogE

٨ݧ s
E n ፖᠧಛհlogE٨ݧ d

E n ऱᓳ᧢᙮ᢜΖ೗๻ s
E n ፖ d

E n ٨ݧࠟ

ઃ੡܅ຏ (low-pass)ಛᇆΔ׊
s
B ፖ

d
B ੡ࠡઌኙᚨհ᙮ᐈ (bandwidth)Δঞڤ (2-5)խ

D j D j ፖS j D j ࠟႈऱ᙮ᐈ։ܑ੡2
d
B ፖ

s d
B B Ιຍრ࠺ထᠧಛ፿ଃ

հlogE٨ݧ x
E n ઌለ࣍ᠧಛऱlogE٨ݧ d

E n ലᖑޓڶՕऱ᙮ᐈΖངߢհΔኙlogE
ԫᠧಛڇᇞᤩ੡۶אױΙຍঁٝګ೏᙮ऱᓳ᧢᙮ᢜڍለڶΔᠧಛ፿ଃֺᠧಛᖑߢ٨ۖݧ

(a)

(a) 

(b) 

(c) 
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፿ଃಛᇆխܶڶ፿ଃऱ೴੄Δֺದొᠧಛऱ೴੄઎ದࠐ஡ᛯൣݮ(fluctuating)ޓ੡ࣔ᧩Ζ 
൷ထݺଚ൶ಘࢤګףᠧಛኙ࣍ c0௽ᐛऱᐙ᥼Ζ೗๻ᠧಛ፿ଃխรnଡଃ௃ऱ c0௽

ᐛଖא
0

x
c n ೚।قΔۖ

0

s
c n ፖ

0

d
c n ։ܑ।ڼقଃ௃հܶࢬ೓෣፿ଃಛᇆ֗ొᠧಛ

ऱ c0௽ᐛଖΔঞ،ଚױ๯ංᖄڕՀԿڤΚ 

0
log , log [ , ] [ , ]

dx x s

k k
c n M k n M k n M k n Δ       (6-2)ڤ 

0
[ ] log [ , ]
s s

k
c n M k n Δ              (7-2)ڤ 

0
[ ] log [ , ]
d d

k
c n M k n Δ                (8-2)ڤ 

ࠡխΔ [ , ]
x

M k n Ε [ , ]
s

M k n ፖ [ , ]
d

M k n ։ܑ੡(1-2)ڤխᠧಛ፿ଃಛᇆ
n
x m Ε೓෣፿ଃ

ಛᇆ
n
s m ᠧಛ֗א

n
d m ڂଖΖנමዿଙ᙮ᢜ௽ᐛழΔรkଡමዿៀंᕴऱᙁګ᠏ང࣍

ᖄીᠧಛ፿ଃፖ೓෣፿ଃಛᇆࠟृհࢬᠧಛեឫࢤګף࣍طΔנංᖄױଚݺڼ c0 ௽ᐛ
ଖऱ஁ฆ

0
c n  ΚقࢬڤՀڕ

0 0 0

[ , ]
log 1

[ , ]

d

x s

k s

M k n
c n c n c n

M k n
 

1
        log 1

[ , ]
k

SNR k n
Δ                        (9-2)ڤ 

խڤ [ , ]SNR k n  ܛᆠ੡รnଡଃ௃խรkፂමዿ᙮൅ऱಛᠧֺΔࡳ

[ , ]
[ , ]

[ , ]

s

d

M k n
SNR k n

M k n

 (10-2)ڤ               .

ᑇමዿ᙮൅ऱಛᠧֺڍΔૉנ઎ױ(9-2)ڤط  [ , ]SNR k n ຟֺለՕழΔ஁ฆଖ
0
[ ]c n Ո

ઌኙ᧢՛Δڼڂຍױપฃᇞᤩܶ፿ଃհଃ௃(SNR ለՕ)ઌኙొ࣍ᠧಛଃ௃(SNR ለ՛)ۖ
 ᐙ᥼ऱ෼ွΖࠩ࠹࣐Δc0௽ᐛଖለլߢ

࣍ᠧಛኙࢤګףଚല൶ಘݺՀא c0௽ᐛ٨ݧհᓳ᧢᙮ᢜ(modulation spectrum)Ղऱ
ᐙ᥼Ζଈ٣੡ԱංᖄದߠΔݺଚല(6-2)ڤΕ(7-2)ڤፖޏ(8-2)ڤᐊګՀ٨ԿڤΚ 

0
[ ] [ , ] log exp [ , ] exp [ , ]
x x s d

k k
c n M k n M k n M k n  (11-2)ڤ     ,

0
[ ] [ , ]
s s

k
c n M k n  (12-2)ڤ                ,

0
[ ] [ , ]
d d

k
c n M k n  (13-2)ڤ                   ,

ࠡխ [ , ] log [ , ]
x x

M k n M k n Ε [ , ] log [ , ]
s s

M k n M k n Ε [ , ] log [ , ]
d d

M k n M k n Ζᣊۿ

ല(11-2)ڤፖֺ܂(2-2)ڤለΔױ઎נᠧಛ፿ଃΕ೓෣፿ଃፖొᠧಛԿृऱᣂএڇ logEፖ
c0ࠟ௽ᐛխԼ։ᣊۿΔط៶ڼڂছ૿հ(4-2)ڤፖ(5-2)ڤኙ࣍ logE௽ᐛ٨ݧհᓳ᧢᙮ᢜ
ऱංᖄΔݺଚאױ࿇෼ኙޢଡමዿៀंᕴᙁנऱኙᑇଖ٨ݧ ,

x
M k n Δࠡ᙮ᐈսߢۖ

ਢՕ࣍ ,
d

M k n ΔՈ༉ਢᎅ
0

x
c n ֺದ

0

d
c n ലᖑޓڶՕऱ᙮ᐈΔڼڂΔᣊۿ logE

௽ᐛऱ࿨࣠Δݺଚٵᑌូ౏נᠧಛ፿ଃհ c0௽ᐛ٨ֺొݧᠧಛհ c0௽ᐛ٨ݧᖑڶለڍ
೏᙮ऱᓳ᧢᙮ᢜٝګΔٍܛছृֺ৵ृࣔޓڶ᧩ऱՂՀ஡ᛯ෼ွΖ 

ቹԿ(a)ፖቹԿ(b)։ܑ੡ԫ؁፿ଃಛᇆհ logE௽ᐛ֗ c0௽ᐛऱפ෷᙮ᢜയ৫(power 
spectral density, PSD)ڴᒵቹΔࠡխऱ፿ଃಛᇆ֗ᠧಛ੡ Aurora-2.0 ᇷற஄խऱ
"FAC_5Z31ZZ4A"ᚾፖԳᜢᠧಛ(babble noise)Δಛᠧֺ੡ 15dBΖطຍࠟቹݺଚאױৰࣔ
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Δࠡߢᠧಛۖొ࣍Δᠧಛ፿ଃઌኙנ઎چ᧩ logE௽ᐛ٨ݧፖ c0௽ᐛ٨ݧຟڶለՕऱ᙮
ᐈΔٍڼ᧭ᢞԱݺଚհছऱංᖄΖ 

 

 
ቹԿΕ౨ၦઌᣂ௽ᐛհפ෷᙮ᢜയ৫ቹΔ(a)੡ logE௽ᐛΕ(b)੡ c0௽ᐛ 

 
ጵٽՂ૪ऱංᖄ֗ቹࠏΔݺଚ᧭ᢞԱԫ੄ᠧಛ፿ଃխܶڶ፿ଃऱଃ௃ࠡ logE ௽ᐛ

ፖ c0 ௽ᐛઌኙొ࣍ᠧಛଃ௃ۖߢΔ؈ట࿓৫ለ՛Δ׊ᖑڶለՕऱ᙮ᐈΔٍڶࠠܛለࣔ
᧩ऱՂՀ஡ᛯ෼ွΖഗ࣍Ղ૪ᨠኘΔݺଚല༼נᄅऱൎ೜ࢤ፿ଃ௽ᐛ๠෻ݾ๬ ᙩଃ௽

ᐛإ๵֏ऄ(silence feature normalization, SFN)Δࠡ  հ৵ऱࠟᆏխΖ࣍Δ։૪ڤጟᑓࠟڶࠠ
ΰԲαᙩଃ௽ᐛإ๵֏ऄ I (silence feature normalization I, SFN-I) 

๵֏ऄإ๵֏ऄΔጠհ੡ψᙩଃ௽ᐛإऱᙩଃ௽ᐛڤଚտฯรԫጟᑓݺᆏխΔءڇ 

Iω (silence feature normalization I, SFN-I)Ιֱڼऄਢಾኙ଺ᙩଃଃ௃ኙᑇ౨ၦإ๵֏ऄ
(SLEN) [5]ߜޏאףΔؾऱਢݦඨኙ logEፖ c0հ౨ၦઌᣂ௽ᐛ೚๠෻Δࠌԫ੄ಛᇆխ
ॺ፿ଃ(non-speech)ຝٝऱ௽ᐛଖ೚إ๵֏Δۖܶڶ፿ଃհ೴഑ऱ௽ᐛଖঞঅ਍լ᧢Δ
 ೓෣፿ଃಛᇆհ౨ၦઌᣂ௽ᐛऱய࣠Ζנሒࠩૹ৬א

 ଈ٣Δݺଚ೗๻ x n ੡ԫ੄ᠧಛ፿ଃಛᇆհ logE௽ᐛࢨ c0௽ᐛհ٨ݧΙ௅ᖕݺ
ଚ࣍Ղԫ՛ᆏࢬ൓ࠩऱ࿨ᓵΔᠧಛ፿ଃխܶڶ፿ଃऱ೴੄ઌለొ࣍ᠧಛ೴੄Δࠡ logE
ፖ c0 ௽ᐛ٨ݧലᖑޓڶ೏ऱᓳ᧢᙮ᢜٝګΙݺڼڂଚ๻ૠԫ೏ຏྤૻ౧ᓢ᥼ᚨៀंᕴ
(high-pass infinite impulse response filter)ࠐ๠෻ڼ੄٨ݧΔࠡ᠏ངࠤᑇڕՀΚ 

1

1
        0 1

1
H z

z
Ζ                (14-2)ڤ 

 ΚقࢬՀڕڤᣂএנៀंᕴհᙁԵᙁڼۖ
1y n y n x n Δ                 (15-2)ڤ 

խyڤ n ੡ៀंᕴऱᙁנΔݺ׊ଚലࠡॣࡨଖ๻ࡳ੡ 0 0y Ζ(14-2)ڤհៀंᕴࠡൎ
৫᥼ᚨ(magnitude response)ڕቹقࢬ؄Δطቹխאױ࿇෼Δڼៀंᕴ౨ജڶய܅૾چ௽
ᐛ٨ݧխ൷२ऴੌ(near-DC)ऱٝګΔࠀലለ೏᙮෷ऱຝٝאףൎᓳΔڼለ೏᙮෷ऱٝګ

(a) 

(b) 
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൓ࠩऱࢬៀंᕴ᠏ང৵ڼᆖመڼڂ፿ଃፖొᠧಛऱ஁ฆΖנ᧩ડױ y n ലֺ଺ࡨ೶ᑇ

x n ᖑړޓڶऱய౨ܒࠐឰ፿ଃፖॺ፿ଃ೴੄Ζ 

 
ቹ؄Ε(14-2)ڤհ೏ຏៀंᕴऱൎ৫᥼ᚨ( 0.5 ) 

 ௅ᖕࢬ(15-2)ڤ൓հy n Δݺଚ܂ױԫ੄ಛᇆխ፿ଃፖॺ፿ଃଃ௃ऱܑܒΔۖၞࠀ
ലࠡॺ፿ଃऱଃ௃೚إ๵֏๠෻Δܛڼ੡ᙩଃ௽ᐛإ๵֏ऄ I (silence feature 
normalization I, SFN-I)ΔࠡڕڤՀΚ 

SFN-I: 
if 

log if 

x n y n

x n
y n

Δ             (16-2)ڤ 

ࠡխ Ε ፖ ։ܑ੡॰ាଖΕԫᄕ՛ऱإᑇ֗אԫؓ݁ଖ੡ 0 ᧢ฆᑇৰ՛ऱᙟᖲ᧢׊
ᑇΔx n ੡ᆖመ SFN-I๠෻৵ࢬ൓ࠩऱᄅ௽ᐛ೶ᑇΖࠡ॰ាଖ ૠጩڕڤՀΚ 

1

1
N

n

y n
N

Δ                         (17-2)ڤ 

խNڤ ੡ڼ੄፿ଃऱଃ௃᜔ᑇΖڼڂΔ॰ាଖܛ੡ᖞ੄፿ଃڶࢬy n ऱؓ݁ଖΔࠡૠ

ጩԼ։១ঁΔྤ׊Ꮑᠰ؆௽ܑ๻ૠհ๠Ζ 
ൕ(16-2)ڤ઎נΔૉ [ ]y n Օ࣍॰ាଖ Δঞലࠡࢬኙᚨհଃ௃ܒឰ੡፿ଃΔ׊଺௽

ᐛ೶ᑇঅ਍լ᧢Ι֘հঞലࠡូᣊ੡ॺ፿ଃଃ௃Δࠀല଺௽ᐛ೶ᑇإ๵֏ګԫᄕ՛ऱᙟ

ᖲ᧢ᑇΙઌለ࣍հছᙩଃଃ௃ኙᑇ౨ၦإ๵֏ऄ(SLEN)[5]ۖߢΔᙩଃ௽ᐛإ๵֏ऄ I
ଖΔۖࡳ๵֏੡ԫإലॺ፿ଃຝٝऱ௽ᐛ܍ᝩױ ᧢ಝᒭऱᜢᖂᑓীխऱࢬ౨ᖄીհ৵ױ

ฆᑇ(variance)᧢੡ 0ऱᙑᎄ෼ွขسΖݺଚאױຘመቹնࠐᨠኘ SFN-Iऄऱش܂Ζቹն
խΔ(a)ፖ(b)։ܑ੡଺ࡨऱ logE ௽ᐛ֗א٨ݧ c0 ௽ᐛڴ٨ݧᒵΙ(c)ፖ(d)։ܑ੡ᆖመᙩ
ଃ௽ᐛإ๵֏ऄ I๠෻৵ࢬ൓ࠩհ logE௽ᐛ֗א٨ݧ c0௽ᐛڴ٨ݧᒵΔࠡխદۥኔᒵ
ਢኙᚨ۟೓෣፿ଃ(Aurora-2.0 ᇷற஄խऱ"FAK_3Z82A"ᚾ)Εጸۥဠᒵፖ៴ۥរᒵঞ։
ܑ੡ኙᚨ۟ಛᠧֺ 15dBፖ 5dBऱᠧಛ፿ଃΖطຍࠄቹࣔ᧩چ઎נΔSFN-Iऄ๠෻መ৵
հ౨ၦઌᣂ௽ᐛଖאױለ᝟२࣍଺ࡨ೓෣፿ଃಛᇆհ௽ᐛଖΔሒࠩ૾؈܅టऱؾऱΖ 

 
ΰԿαᙩଃ௽ᐛإ๵֏ऄ II (silence feature normalization II, SFN-II) 

֏๵إ๵֏ऄΔጠհ੡ψᙩଃ௽ᐛإऱᙩଃ௽ᐛڤଚലտฯรԲጟᑓݺᆏխΔءڇ

ऄ IIω (silence feature normalization II, SFN-II)ΔSFN-IIऄፖছԫᆏհ SFN-Iऄ່Օऱ஁
ฆ࣍ڇΔSFN-II ਢല଺౨ၦઌᣂ௽ᐛ x n ଊՂԫᦞૹଖ(weight)Δۖ൓ࠩᄅ௽ᐛଖ
x n ΖSFN-IIऱዝጩऄڕՀقࢬڤΚ 

SFN-II:    x n w n x n  (18-2)ڤ                ,
ࠡխΔ 

1

2

1/ 1 exp if 

if 
1/ 1 exp

y n y n

w n
y n

y n

Δ              (19-2)ڤ 

200



 
                  (a)                                            (b) 

   
                         (c)                                          (d) 

ቹնΕᙩଃ௽ᐛإ๵֏ऄ I๠෻ছ((a)ፖ(b))ፖ๠෻৵((c)ፖ(d))౨ၦઌᣂ௽ᐛڴ٨ݧᒵ
ቹΔࠡխ(a)ፖ(c)੡ logE௽ᐛڴ٨ݧᒵΔ(b)ፖ(d)੡ c0௽ᐛڴ٨ݧᒵ 

ࠡխy n Δ੡قࢬ(15-2)ڤছԫᆏհڕ x n ຏመԫ೏ຏៀंᕴհᙁנଖΔ ੡॰ាଖΕ

1
ፖ

2
։ܑ੡ y n y n (Օ࣍॰ាଖ հڶࢬऱy n ֗א( y n y n  (՛࣍

॰ាଖ࣍࿛ࢨ հڶࢬऱy n ኙᚨհᑑᄷ஁Εࢬ( ੡ԫൄᑇΖSFN-IIհ॰ាଖ ᇿ SFN-I
ઌٵΔૠጩڕڤՀقࢬΚ 

1

1

N

n

N y n  (20-2)ڤ                         ,

խNڤ ੡ڼ੄፿ଃխଃ௃᜔ᑇΖ 
ऱᦞૹଖw(19-2)ڤ n Δࠡխ೗๻قࢬቹքڕ 0Ε

1
1Ε

2
֗א3 0.1Ζ

ᑇwࠤ࿇෼Δᦞૹଖאױቹքط n ੡ԫଡؐ׳լኙጠհᎠᏺऱ S  ᒵ(sigmoidڴݮ
curve)Δࠡଖտ࣍ ࡉ0 1հၴΖڼᦞૹଖזࢬ।ऱრᆠፖ SFN-IऄઌۿΔݺଚݦඨᄅ൓
ࠩऱ౨ၦઌᣂ௽ᐛx n ౨ڇ଺ࡨ௽ᐛଖৰՕழΔᕣၦፂ਍լ᧢Ιۖ଺ࡨଖለ՛ழΔঞࠌ

ࠡ᧢൓ޓ՛ΖSFN-IIऄࡉ SFN-Iऄլٵհ๠࣍ڇΔSFN-IIऄࠠڶ"ຌڤ"ऱ፿ଃጤរೠྒྷ
ެ࿜(soft-decision VAD)Δۖ SFN-I ऄঞ੡"࿏ڤ"ऱ፿ଃጤរೠྒྷެ࿜(hard-decision 
VAD)Ιڼڂ SFN-II ऄઌለ࣍ SFN-I ऄۖߢΔࠡ VAD ൓ֺࠐ౨ઌኙױᙑᎄऱᐙ᥼ࡳܒ
ለ՛Δய౨ՈᄎֺለړΔຍංუലᄎڇհ৵ऱີᆏ᧭ᢞΖ 

 
ቹքΕᦞૹଖࠤᑇ [ ]w n  რቹقᒵڴ

ቹԮ੡ SFN-IIऄ๠෻ছፖ๠෻৵౨ၦઌᣂ௽ᐛհڴᒵቹΖፖհছऱቹԿᣊۿΔ(a)ፖ(b)
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։ܑ੡଺ࡨऱ logE ௽ᐛ֗א٨ݧ c0 ௽ᐛڴ٨ݧᒵΙ(c)ፖ(d)։ܑ੡ᆖመᙩଃ௽ᐛإ๵
֏ऄ II ๠෻৵ࢬ൓ࠩհ logE ֗א٨ݧ c0 ኔᒵਢኙᚨ۟೓෣፿ଃۥᒵΔࠡխદڴ٨ݧ
(Aurora-2.0 ᇷற஄խऱ"FAK_3Z82A"ᚾ)Εጸۥဠᒵፖ៴ۥរᒵঞ։ܑ੡ኙᚨ۟ಛᠧֺ
15dBፖ 5dBऱᠧಛ፿ଃΖৰࣔ᧩چΔᆖط SFN-II๠෻መ৵հᠧಛ፿ଃऱ౨ၦઌᣂ௽ᐛΔ
ઃᣊۿ SFN-Iऄऱய Δ࣠ޓאױ᝟२࣍଺ࡨ೓෣፿ଃհ௽ᐛΔڶய૾܅ᠧಛທګऱ؈టΖ 

 
                 (a)                                 (b) 

 
                 (c)                                 (d) 

ቹԮΕᙩଃ௽ᐛإ๵֏ऄ II๠෻ছ((a)ፖ(b))ፖ๠෻৵((c)ፖ(d))౨ၦઌᣂ௽ᐛڴ٨ݧᒵ
ቹΔࠡխ(a)ፖ(c)੡ logE௽ᐛڴ٨ݧᒵΔ(b)ፖ(d)੡ c0௽ᐛڴ٨ݧᒵ 

 

ԿΕ౨ၦઌᣂ௽ᐛ๠෻ݾ๬հኔ᧭࿨࣠ፖಘᓵ 
ΰԫαΕ፿ଃᇷற஄១տ 

 ᄎ(European࠰ऱ፿ଃᇷற஄੡ᑛ੊ሽॾᑑᄷشࠌࢬ᧭ᓵ֮խऱ፿ଃᙃᢝኔء
Telecommunication Standard Institute, ETSI)࿇۩ऱ Aurora-2.0፿ற஄[7]Ζ،ਢԫ୚៶ط
ᠧಛΔࢤګףՂԶጟףՖΔߊڣګΔ፿ृ੡ભഏۭڗڗᙕ፹ऱຑᥛ૎֮ᑇڤԳՠऱֱא

։ܑ੡چՀᥳΕԳᜢΕ߫޳Ε୶ᥦ塢Ε塊ᨚΕဩሐΕᖲ໱Εీ߫־࿛Δ֗אլٵ࿓৫ऱ

ಛᠧֺΔ։ܑ੡ 20dBΕ15dBΕ10dBΕ5dBΕ0dB5-֗אdBΔॵףՂ೓෣(clean)፿றΖ 
ΰԲαΕ௽ᐛ೶ᑇऱ๻ࡳፖᙃᢝߓอऱಝᒭ 

ᓵ֮௅ᖕء Aurora-2.0ኔ᧭፿ற஄ᑑᄷ๻[7]ࡳΔ፿ଃ௽ᐛ೶ᑇ׌૞ਢشࠌමዿଙ᙮
ᢜএᑇ(mel-frequency cepstral coefficients, MFCC)֗౨ၦઌᣂ௽ᐛΔॵףՂࠡԫၸ஁ၦፖ
Բၸ஁ၦΖ੡Ա։࣫౨ၦઌᣂ௽ᐛऱᐙ᥼Δء࣍ᓵ֮խආิࠟشլٵऱ௽ᐛ೶ᑇΙรԫ

ิਢ 12 ፂමዿଙ᙮ᢜ௽ᐛଖ(c1Дc12)ףՂ 1ፂऱኙᑇ౨ၦ(logE)Δ׼ԫิঞਢشࠌ 12
ፂමዿଙ᙮ᢜ௽ᐛଖ(c1Дc12)ףՂรሿፂଙ᙮ᢜ௽ᐛএᑇ(c0)Ιۖิޢઃᄎף٦Ղԫၸ
ፖԲၸ஁ၦΔਚࠟิઃشԱ 39ፂऱ௽ᐛ೶ᑇΖᇡาऱ௽ᐛ೶ᑇ๻ࡳΔڕ।ԫقࢬΖ 

شܓଚݺ HTK࿓ࠐ[8]ڤಝᒭᜢᖂᑓীΔขسԱ 11(oh, zero, one~nine)ଡᑇڗᑓীא
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֗ᙩଃᑓীΔޢଡᑇڗᑓীܶץ 16ଡणኪ(states)Δۖޢଡणኪਢط 20ଡ೏ཎയ৫ࠤᑇ
෗ٽ(Gaussian mixtures)ګิࢬΖ 

।ԫΕءᓵ֮խشࠌࢬհ፿ଃ௽ᐛ೶ᑇ๻ࡳ 
 ᑌ᙮෷ 8kHz࠷
ଃ௃९৫(Frame Size) 25ms, 200រ 
ଃ௃ؓฝ(frame Shift) 10ms, 80រ 
ቃൎᓳៀंᕴ 1

1 0.97z  
ီ࿗ڤݮ ዧࣔ࿗(Hamming window) 
ແمᆺ᠏ངរᑇ 256រ 

ៀंᕴิ(filters) මዿࠥ৫ԿߡៀंᕴิΔ 
٥ 23ଡԿߡៀंᕴ 

௽ᐛٻၦ 
(feature vector) 

รԫิΚ 
1 12
i
c i , 

1 12
i
c i , 
2

1 12
i
c i , 

logE , logE , 2
logE

٥ૠ 39ፂ 

รԲิΚ 
1 12
i
c i , 

1 12
i
c i , 
2

1 12
i
c i , 

0c , 0c , 2
0c  

٥ૠ 39ፂ 
 

ΰԿα፿ଃᙃᢝኔ᧭࿨࣠ 
ለֺࠀ๬ऱ፿ଃᙃᢝΔݾࢤጟಾኙ౨ၦઌᣂ௽ᐛհൎ೜ٺ۩ଚലചݺຍԫᆏխΔڇ

ࠡய౨ΖೈԱݺଚࢬᄅ༼נऱᙩଃ௽ᐛإ๵֏ऄΰSFN-IፖSFN-IIα؆Δݺଚٵழኔ᧭
Աؓ݁ፖ᧢ฆᑇإ๵֏ऄ(mean and variance normalization, MVN)[9]Εؓ ݁ፖ᧢ฆᑇإ๵

֏ॵףARMAៀंᕴऄ(MVN plus ARMA filtering, MVA)[10]Εอૠቹ࿛֏ऄ(histogram 
equalization, HEQ)[11]Εኙᑇ౨ၦ೯ኪᒤ໮إ๵֏ऄ (log-energy dynamic range 
normalization, LEDRN)[3]Εኙᑇ౨ၦ֡৫ૹࠥऄ (log-energy rescaling normalization, 
LERN)[4]ፖᙩଃኙᑇ౨ၦإ๵֏ऄ(silence log-energy normalization, SLEN)[5]Δଖ൓ࣹრ
ऱਢΔ଺ࡨհMVNΕMVAፖHEQԿֱऄឈਢ๻ૠڶࢬ࣍ጟᣊऱ௽ᐛՂΔݺଚ੡Աေ۷
Δ؆׼๵֏ՂΔإlogEፖc0௽ᐛऱ࣍شല،ଚሎ׽ຍᇙڇ౨ၦઌᣂ௽ᐛऱய౨Δڇࠡ
LEDRNऄڶ։ᒵࢤፖॺᒵࠟࢤጟΔڇຍᇙݺଚ։ܑאLEDRN-IፖLEDRN-II।قΔۖ
LERNٍࠟڶጟठءΔݺଚ։ܑאLERN-IፖLERN-II।قΖ 
1Εಾኙኙᑇ౨ၦ௽ᐛ(logE)հൎ೜ڤ፿ଃݾ๬ጵٽ։࣫ 

ܛ፿ଃ௽ᐛ੡ছ૪հรԫิऱ௽ᐛ೶ᑇΔࠩشࢬ᧭՛ᆏհኔڼ 12 ፂමዿଙ᙮ᢜ௽
ᐛଖ(c1Дc12)ףՂ 1 ፂऱኙᑇ౨ၦ(logE)ΔॵࠡףԫၸፖԲၸ஁ၦΔ٥ 39 ፂΖۖຍᇙ
ऄΔઃਢ໢ొ๠෻ֱࢤऱԼጟ௽ᐛൎ೜ࠩشࢬ logE௽ᐛΔլەᐞࠡ، 12ፂऱමዿଙ᙮
ᢜএᑇΔ।Բנ٨Աഗ៕ኔ᧭֗ຍԼጟֱऄࢬ൓հؓ݁ᙃᢝ෷ΰ20dBΕ15dBΕ10dBΕ
5dBፖ 0dBնጟಛᠧֺՀऱᙃᢝ෷ؓ݁αΔࠡխ ARፖ RR։ܑ੡ઌለഗ៕࿨࣠հ࿪ኙ
ᙑᎄ૾܅෷(absolute error rate reduction)ࡉઌኙᙑᎄ૾܅෷(relative error rate reduction)Ζ
ൕ।ԲऱᑇᖕΔݺଚױᨠኘࠩՀ٨༓រ෼ွΚ 
Ϥ1 ଺ڶࢬ࣍ش܂ࡨጟᣊ௽ᐛհ MVNΕMVA ፖ HEQ ऄ໢ొ࣍ش܂ logE ௽ᐛழΔ

ڶഗ៕ኔ᧭࿨࣠Δ։ܑࠠ࣍ய࣠ՈԼ։ࣔ᧩Δઌለၞޏऱࠎ༽ࠡ 10.18%Ε11.70%ፖ
14.97%ऱᙃᢝ෷༼֒Ζઌኙ࣍ MVN ࣍طΔߢۖ MVA Աԫଡشࠌڍ ARMA ຏៀं܅
ᕴאൎᓳ፿ଃऱګ։Δۖ HEQ ᠰ؆ኙ፿ଃ௽ᐛऱ೏ၸ೯஁(higher-order moments)إ܂
๵֏Δृࠟאࢬய࣠ઃֺMVNᝫࠐ൓ړΖ 
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Ϥ2 հಾኙנ༽ࢬ᣸֮࢓א logE ௽ᐛ܂ᇖᚍऱٺጟֱऄΚLEDRN-IΕLEDRN-IIΕ
LERN-IΕ LERN-II ፖ SLENΔຟ౨൅ࠐԼ։᧩ထऱᙃᢝ෷༼֒Δࠡխᒵࢤ
LEDRN(LEDRN-I)ࣔ᧩ᚌ࣍ॺᒵࢤ LEDRN(LEDRN-II)Δࠡؓ݁ᙃᢝ෷ઌ஁ԱՕપ 4%Δ
ࠟጟठءऱ LERN(LERN-Iፖ LERN-II)Δய࣠ঞԼ։൷२Δ׊।෼ᚌ࣍ LEDRNΖۖء
ኔ᧭৛መנ༽ࢬװऱ SLENऄΔઌኙ࣍ഗ៕ኔ᧭ऱؓ݁ᙃᢝ෷ۖߢΔڶ 15.19%ऱ༼֒Δ
ࣔ᧩ᚌ࣍հছࢬ༼հ LEDRNፖ LERN࿛ֱऄΖ 

Ϥ3 ๵֏ऄΔSFN-Iإऱࠟጟᙩଃ௽ᐛנ༽ࢬᓵ֮ء  ፖ SFN-IIΔઌኙ࣍ഗ៕ኔ᧭࿨
Δؓ݁ᙃᢝ෷։ܑ༼֒Աߢۖ࣠ 15.38%ፖ 16.11%Δઌኙᙑᎄ૾܅෷ຟڇ ՂΔઌא50%
ለ࣍հছࢬ༼ऱٺጟֱऄΔSFN-Iፖ SFN-IIຟޓڶᚌฆऱ।෼Δڼ᧭ᢞԱݺଚࢬ༼ऱࠟ
ଡᄅֱऄΔຟ౨ڶயچ༼ࣙ logE ௽ᐛࢤګףڇᠧಛᛩቼՀऱൎ೜ࢤΔ׊ᚌؾ࣍ছ๺ڍ
ထټऱ logE௽ᐛإ๵֏ݾ๬Ζڼ؆ΔݺଚՈ࿇෼ΔSFN-IIࢬ൓հᙃᢝ෷ֺ SFN-IړޓΔ
࣍ط૪Δࢬհছڕڂ౨଺ױڼ SFN-IIڇ፿ଃೠྒྷ(voice activity detection)ऱެ࿜ᖲࠫፖ
SFN-IࠀլઌٵΔ፿ଃೠྒྷհᙑᎄڇ SFN-IIխઌኙᐙ᥼ለ՛Δۖࠡࠌઌኙ।෼ለࠋΖ 

।ԲΕಾኙ logE௽ᐛհൎ೜ڤ፿ଃݾ๬հᙃᢝ෷ऱጵֺٽለ।(%) 

 Method Set A Set B average AR RR 
(1) Baseline 71.98 67.79 69.89 ѧ ѧ 

(2) MVN 79.04 81.08 80.06 10.18 33.79 
(3) MVA 80.53 82.64 81.59 11.70 38.85 
(4) HEQ 83.91 85.79 84.85 14.97 49.69 
(5) LEDRN-I 82.01 79.70 80.86 10.97 36.43 
(6) LEDRN-II 77.21 75.53 76.37 6.49 21.53 
(7) LERN-I 83.64 83.35 83.50 13.61 45.19 
(8) LERN-II 82.71 81.94 82.33 12.44 41.31 
(9) SLEN 84.87 85.27 85.07 15.19 50.42 

(10) SFN-I 85.02 85.50 85.26 15.38 51.05 
(11) SFN-II 85.67 86.32 86.00 16.11 53.49 

2Εಾኙรሿፂଙ᙮ᢜ௽ᐛএᑇ(c0)հൎ೜ڤ፿ଃݾ๬ጵٽ։࣫ 
ܛ፿ଃ௽ᐛ੡ছ૪հรԲิऱ௽ᐛ೶ᑇΔࠩشࢬ᧭՛ᆏհኔڼ  12 ፂමዿଙ᙮ᢜ௽
ᐛଖ(c1Дc12)ףՂรሿፂଙ᙮ᢜ௽ᐛএᑇ(c0)ΔॵࠡףԫၸፖԲၸ஁ၦΔ٥ 39 ፂΖᣊ
ಾኙࡨଚല଺ݺছԫ՛ᆏΔۿ logE௽ᐛऱԼጟ௽ᐛൎ೜ֱࢤऄΔ࣍ش܂ c0௽ᐛՂΔࠡ
، 12ፂऱමዿଙ᙮ᢜএᑇঞፂ਍լ᧢Ζឈྥؾছ๠෻ऱਢ c0௽ᐛΔ܀੡Ա១ࣔದߠΔ
ຍᇙݺଚլല଺ٺءጟݾ๬ऱټጠ܂ଥޏΔڕࠏ LEDRNऄΔݺଚࠀլ௽ܑലࠡټޏ੡
c0-DRNऄΔۖսऎ᦭ࠡټΔֱࠡהऄټጠڼࠉᣊංΖ 
।Կנ٨Աഗ៕ኔ᧭֗ຍԼጟֱऄࢬ൓հؓ݁ᙃᢝ෷ΰ20dBΕ15dBΕ10dBΕ5dBፖ 0dB
նጟಛᠧֺՀऱᙃᢝ෷ؓ݁αΔۖࠡխऱ AR ፖ RR ։ܑ੡ઌለ࣍ഗ៕ኔ᧭࿨࣠հ࿪ኙ
ᙑᎄ૾܅෷ࡉઌኙᙑᎄ૾܅෷Ζൕ।ԿऱᑇᖕΔݺଚױᨠኘࠩՀ٨༓រ෼ွΚ 

Ϥ1 ᣊۿհছऱ।Բհ࿨࣠Δٺጟֱऄ࣍ش܂ c0௽ᐛழΔຟ౨൅ࠐ༼ࣙᙃᢝ෷ऱய࣠Δ
ࠡխΔLEDRN-Iፖ LEDRN-IIऱ।෼ֱֺࠡהऄ࿑஁Δ֠ ࠡਢ LEDRN-IIΔڶ׽ 3.57% հ
࿪ኙᙑᎄ૾܅෷(AR)Δࠡױ౨଺࣍ڇڂΔLEDRN଺ءਢಾኙ logE௽ᐛࢬ๻ૠΔૉݺଚ
ऴ൷ലࠡ୚࣍ش c0௽ᐛ๠෻ՂΔࠡشࠌࢬऱ೶ᑇࠀॺਢ່ࠋ֏ۖ൓Δᖄીய࣠լኦΖ 
Ϥ2Կጟ଺ڶࢬ࣍ش܂ءጟᣊ௽ᐛհֱऄΚMVNΕMVAፖ HEQऄΔ໢ొ࣍ش܂ c0௽ᐛ
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ழΔսྥא HEQ।෼່ړΔMVAऄڻհΔMVNऄለ஁Δڼ࢖܀।෼ऱ஁၏ڕآࠀհ
ছڇ।Բࠐ൓ࣔ᧩Ζڼ؆ΔLERN-IΕLERN-II ፖ SLEN ຟڶԼ։᧩ထऱၞޏய࣠Δഄ
ፖ।Բऱᑇᖕլٵհ๠Δ࣍ڇԿጟֱऄऱய౨Լ։൷२Δۖ LERN-Iฃᚌ࣍ SLENΖ  
Ϥ3ءᓵ֮נ༽ࢬऱࠟጟᙩଃ௽ᐛإ๵֏ऄΔSFN-Iፖ SFN-IIΔઌኙ࣍ഗ៕ኔ᧭࿨࣠ۖߢΔ
ؓ݁ᙃᢝ෷։ܑ༼֒Ա 13.79%ፖ 14.13%Δઌኙᙑᎄ૾܅෷પ੡ 46%Δᣊۿ।Բऱ࿨࣠Δ
SFN-IIսྥᚌ࣍ SFN-IΔ׊ຍࠟጟֱऄհ।෼սᚌڶࢬהࠡ࣍ऱֱऄΖڼ࿨࣠᧭ᢞԱݺ
ଚࢬ༼ऱࠟଡᄅֱऄΔ౨ڶயچ༼ࣙ c0௽ᐛࢤګףڇᠧಛᛩቼՀऱൎ೜ࢤΖ 

 

।ԿΕಾኙ c0௽ᐛհൎ೜ڤ፿ଃݾ๬հᙃᢝ෷ऱጵֺٽለ।(%) 
 Method Set A Set B Average AR RR 

(1) Baseline 71.95 68.22 70.09 ѧ ѧ 

(2) MVN 80.80 82.95 81.88 11.79 39.41 
(3) MVA 81.76 84.04 82.90 12.82 42.84 
(4) HEQ 82.89 84.59 83.74 13.66 45.65 
(5) LEDRN-I 79.04 77.36 78.20 8.11 27.13 
(6) LEDRN-II 74.08 73.22 73.65 3.57 11.92 
(7) LERN-I 83.81 83.65 83.73 13.65 45.61 
(8) LERN-II 83.03 82.53 82.78 12.70 42.44 
(9) SLEN 82.94 84.28 83.61 13.53 45.21 

(10) SFN-I 83.04 84.70 83.87 13.79 46.08 
(11) SFN-II 83.29 85.14 84.22 14.13 47.23 

 

ឈྥ SFNऄڶய܅૾چᠧಛኙ c0ທګऱ؈టΔၞۖ༼ࣙᙃᢝ෷Δ܀ᅝݺଚֺለ।
Բፖ।ԿழΔ࿇෼ྤᓵਢ SFN-Iࢨ SFN-IIΔ࣍ش܂ logE௽ᐛױ൓ࠩऱᙃᢝ෷ᄎ೏܂࣍
ڇش c0 ௽ᐛࢬ൓հᙃᢝ෷ΙڼطΔݺଚංឰط logE ௽ᐛࢬ൓հ SFN-I ऄፖ SFN-II ऄ
ࠡխऱ፿ଃጤរೠྒྷ(VAD)࿨࣠Δױ౨ᄎֺط c0 ଚݺංუΔڼΖ௅ᖕړऱࠐ൓࿨࣠ࢬ
ല଺ࠐಾኙ c0 ௽ᐛऱࠟጟ SFN ऄ࿑܂ଥޏΖ࣍ SFN-I խΔݺଚشܓ٣ logE ኙଃ௃೚
፿ଃ/ॺ፿ଃऱ։ᣊΔ٦ലܑܒڼ࿨࣠୚࣍ش c0ՂΔኙॺ፿ଃଃ௃ऱ c0೚(16-2)ڤڕհ
๵֏๠෻Ιۖإ SFN-IIՈਢشܓઌٵऱֱڤΔشܓ٣ logEኙଃ௃೚፿ଃ/ॺ፿ଃऱ։ᣊΔ
٦ലࠡ࿨࣠᠏ང۟ c0 ՂΔࠀኙ፿ଃፖॺ፿ଃଃ௃ऱ c0 ௽ᐛشࢬ(19-2)ڤࠡ࠷ޣ٨ݧऱ
ᑑᄷ஁

1
ፖ

2
Δྥ৵(18-2)ڤ܂հإ๵֏๠෻ΖݺଚലאՂऱଥ܂إऄ։ܑጠ܂ಾኙ c0

௽ᐛհଥڤإ SFN-Iऄ(modified SFN-I)ፖଥڤإ SFN-IIऄ(modified SFN-II)Ζ 
ಾኙ c0௽ᐛհଥڤإ SFN-Iऄፖଥڤإ SFN-IIऄΔࠡࢬ൓հؓ݁ᙃᢝ෷ڕ।ࢬ؄

ڤإቃཚऱΔଥࢬଚݺڕΔق SFNऄઌኙ࣍଺ࡨ SFNऄΔ౨ၞޓڶԫޡऱၞޏய࣠Δ
ኙ SFN-I ৵ृᠰ؆༼ࣙԱ࣍Δছृઌለߢۖ 1.29%ऱؓ݁ᙃᢝ෷Δۖኙ SFN-II Δߢۖ
ছृઌለ࣍৵ृᠰ؆༼ࣙԱऱ 1.33%ؓ݁ᙃᢝ෷Ζڼ࿨࣠ຝ։᧭ᢞԱݺଚऱංუΔܓܛ
ش logE௽ᐛࠐച۩፿ଃጤរೠྒྷ(VAD)Δࠡய࣠ᄎֺ c0௽ᐛࠐऱړΖ 

।؄Εಾኙ c0௽ᐛհ଺ࡨ SFNऄፖଥڤإ SFNऄհᙃᢝ෷ֺለ।(%) 
Method Set A Set B Average AR RR 
Baseline 71.95 68.22 70.09 ѧ ѧ 

SFN-I 83.04 84.70 83.87 13.79 46.08 
modified SFN-I 84.54 85.79 85.17 15.08 50.41 

SFN-II 83.29 85.14 84.22 14.13 47.23 
modified SFN-II 85.03 86.06 85.55 15.46 51.68 
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؄Εᙩଃ௽ᐛإ๵֏ऄፖࠡ،௽ᐛൎ೜ऄ࿨ٽհኔ᧭࿨࣠ፖಘᓵ     
ছԫີհԫ٨ߓऱኔ᧭Δ׌૞ਢ൶ಘٺጟ౨ၦઌᣂ௽ᐛ๠෻ݾ๬ய౨Δၞۖડ᧩נ

ڶ׽ኔ᧭խΔࠄ๵֏(SFN)ऄऱᚌฆ।෼Δຍإհᙩଃ௽ᐛנ༽ᄅࢬଚݺ logE ፖ c0 ࠟ
ጟ౨ၦઌᣂ௽ᐛ๯๠෻Δໍ 塒ऱමዿଙ᙮ᢜ௽ᐛএᑇ(c1~c12)ঞፂ਍լ᧢ΖڇຍԫີխΔ
࣍ش܂ଚቫᇢലݺ logEፖ c0௽ᐛऱ SFNऄፖ࣍ش܂ c1~c12հමዿଙ᙮ᢜ௽ᐛএᑇऱ
ൎ೜ݾࢤ๬אף࿨ٽΔ៶אᨠኘࠟृհၴਢࢤګףڶܡΔ౨ၞԫၞޏޡ፿ଃᙃᢝ෷Ζ 

հ༽ࢬଚᙇᖗհছݺຍᇙΔڇ MVN[9]ΕMVA[10]֗א HEQ[11]Կጟൎ೜ݾࢤ๬Δ
։ܑ࣍ش܂ c1~c12հමዿଙ᙮ᢜ௽ᐛএᑇՂΔۖലݺଚࢬ༼հ SFN-Iࢨ SFN-IIऄش܂
ࢨ౨ၦઌᣂ௽ᐛ(logE࣍ c0)ՂΔݺଚലࠡՂ૪ڶࢬऱኔ᧭࿨࣠։ܑნᖞګ।նፖ।քΖ 

ಾኙรԫิ௽ᐛ(logE, c1~c12)๠෻հ।նऱᑇᖕխΔ٨(2)~(4)ਢشܓ໢ԫൎ೜ݾ๬
(MVN, MVAࢨ HEQ)๠෻٤ຝ௽ᐛ೶ᑇհ࿨࣠Δۖ٨(5)~(10)ঞ։ܑ੡ᙩଃ௽ᐛإ๵֏
ऄ(SFN)࿨ࠡٽ،ֱऄհ࿨࣠Ζᅝݺଚല٨(2)Ε٨(5)ፖ٨(8)ऱ࿨࣠ઌֺለΕ٨(3)Ε٨(6)
ፖ٨(9)ऱ࿨࣠ઌֺለΔ֗٨(4)Ε٨(7)ፖ٨(10)ऱ࿨࣠ઌֺለΔຟאױ઎נല SFN-I ࢨ
SFN-II ࣍شࠌ logE௽ᐛΔֱהࠡشࠀऄڇشࠌ c1Дc12 ௽ᐛՂΔࢬ൓ࠩऱᙃᢝ෷ֺ໢
ᗑشࠌԫጟֱऄ๠෻٤ຝ௽ᐛऱᙃᢝ࿨࣠೏נ๺ڍΔ(9)٨ڕࠏհόSFN-II (logE) + MVA 
(c1~c12)ύऄΔࠡؓ݁ᙃᢝ෷೏ሒ 89.97%Δ၌။Ա٨(4)հόHEQ (logE, c1~c12)ύऄࢬ
൓հ 87.44%ऱؓ݁ᙃᢝ෷ΖٵழΔݺଚՈ઎נ SFN-IIऱய౨ཏሙᚌ࣍ SFN-IΔڼ࿨࣠
ᇿছԫີऱ࿨ᓵਢԫીऱΖۖᅝݺଚല।նፖ।ԲऱᑇᖕઌֺለழΔՈאױ઎נΔشࠌ

SFN๠෻ logE௽ᐛ࿨شࠌٽMVNΕMVAࢨ HEQऄᠰ؆๠෻ c1Дc12௽ᐛΔֺאױ໢
ᗑشࠌ SFN๠෻ logE௽ᐛ൓ࠩࠋޓऱᙃᢝய࣠Δڼ࿨࣠᧭ᢞԱ SFNऄፖMVNΕMVA
ࢨ HEQऄऱᒔࠠࢤګףڶΖ 

।նΕSFNऄڇش܂ logE௽ᐛ࿨ࠡٽ،፿ଃൎ೜ݾ๬࣍ش܂ c1Дc12௽ᐛ೶ᑇհؓ݁
ᙃᢝ෷ऱጵֺٽለ।(%) 

 Method Set A Set B average AR RR 
(1) Baseline 71.98 67.79 69.89 ѧ ѧ 

(2) MVN (logE, c1~c12) 83.55 83.75 83.65 13.77 45.71 
(3) MVA (logE, c1~c12) 86.69 86.89 86.79 16.91 56.13 
(4) HEQ (logE, c1~c12) 87.15 87.72 87.44 17.55 58.28 
(5) SFN-I (logE) + MVN (c1~c12) 87.33 87.81 87.57 17.69 58.72 
(6) SFN-I (logE) + MVA (c1~c12) 88.40 88.84 88.62 18.74 62.21 
(7) SFN-I (logE) + HEQ (c1~c12) 87.93 88.04 87.99 18.10 60.10 
(8) SFN-II (logE) + MVN (c1~c12) 88.45 88.88 88.67 18.78 62.36 
(9) SFN-II (logE) + MVA (c1~c12) 89.82 90.12 89.97 20.09 66.69 

(10) SFN-II (logE) + HEQ (c1~c12) 89.29 89.33 89.31 19.43 64.50 
ಾኙรԲิ௽ᐛ(c0, c1~c12)๠෻հ।քऱᑇᖕխΔ٨(2)~(4)ਢشܓ໢ԫൎ೜ݾ๬

(MVN, MVAࢨ HEQ)๠෻٤ຝ௽ᐛ೶ᑇհ࿨࣠Δۖ٨(5)~(16)ঞ։ܑ੡ᙩଃ௽ᐛإ๵֏
ऄ(SFN)࿨ࠡٽ،ֱऄհ࿨࣠Ζᣊۿ।նխ٨(1)~(10)ܧࢬ෼ऱ࿨࣠Δൕ।քխհ٨
(1)~(10)ፖ।ԿऱᑇᖕઌለΔشࠌ SFN๠෻ c0௽ᐛ࿨شࠌٽMVNΕMVAࢨ HEQऄᠰ
؆๠෻ c1Дc12௽ᐛΔֺאױ໢ᗑشࠌ SFN๠෻ c0௽ᐛ൓ࠩࠋޓऱய౨Δྥۖݺଚ࿇
෼Δല SFN-Iࢨ SFN-II࣍شࠌ c0௽ᐛΔֱהࠡشࠀऄڇشࠌ c1Дc12௽ᐛழΔࢬ൓ࠩ
ऱᙃᢝ෷ࠀॺ᜔ਢᚌ࣍໢ᗑشࠌԫጟֱऄ๠෻٤ຝ௽ᐛऱᙃᢝ࿨ ΰ࣠ຍࠄለ஁ऱᑇᖕڇ

।խא*ᇆုאףಖαΔ(6)٨ڕࠏհόSFN-I (c0) + MVA (c1~c12)ύऄΔࠡؓ݁ᙃᢝ෷੡
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87.77%Δઌለ(3)٨࣍հόMVA (c0, c1~c12)ύऄࢬ൓հ ౨଺ױ෼ွऱڼ൓஁Ζࠐ88.46%
شܓܛছԫີբᆖ༼ࠩΔڇΔڂ c0௽ᐛച۩ SFNऄխऱ፿ଃጤរೠྒྷ(VAD)ᄎֺለլ
壄ᒔΔၞۖ૾܅ SFNऱய౨ΖڼڂΔᣊۿছԫີΔڇຍᇙݺଚشࠌಾኙ c0௽ᐛհଥإ
ऱڤ SFNऄΔࠐፖMVNΕMVAࢨ HEQऄ܂࿨ٽΔຍࠄ࿨࣠࣍٨।քऱ٨(11)~(16)խΖ 

।քΕSFNऄڇش܂ c0௽ᐛ࿨ࠡٽ،፿ଃൎ೜ݾ๬࣍ش܂ c1Дc12௽ᐛ೶ᑇհؓ݁ᙃ
ᢝ෷ጵֺٽለ।(%) 

 Method Set A Set B Average AR RR 
(1) Baseline 71.95 68.22 70.09  ѧ ѧ 

(2) MVN (c0, c1~c12) 85.03 85.54 85.29  15.20  50.81 
(3) MVA (c0, c1~c12) 88.11 88.81 88.46  18.38  61.42 
(4) HEQ (c0, c1~c12) 86.99 88.13 87.56  17.48  58.42 
(5) SFN-I (c0) + MVN (c1~c12) 85.62 86.62 86.12  16.04  53.60 
(6) SFN-I (c0) + MVA (c1~c12) 87.38* 88.16* 87.77*  17.69  59.12 
(7) SFN-I (c0) + HEQ (c1~c12) 85.95* 86.53* 86.24*  16.16  54.00 
(8) SFN-II (c0) + MVN (c1~c12) 86.92 87.69 87.31  17.22  57.56 
(9) SFN-II (c0) + MVA (c1~c12) 89.04 89.61 89.33  19.24  64.32 

(10) SFN-II (c0) + HEQ (c1~c12) 87.43 87.88* 87.66  17.57  58.73 
(11) modified SFN-I (c0) + MVN (c1~c12) 87.49 87.89 87.69 17.61 58.85 
(12) modified SFN-I (c0) + MVA (c1~c12) 89.30 89.54 89.42 19.34 64.63 
(13) modified SFN-I (c0) + HEQ (c1~c12) 88.10 88.39 88.25 18.16 60.71 
(14) modified SFN-II (c0) + MVN (c1~c12) 88.25 88.33 88.29 18.21 60.86 
(15) modified SFN-II (c0) + MVA (c1~c12) 89.87 89.98 89.93 19.84 66.32 
(16) modified SFN-II (c0) + HEQ (c1~c12) 89.25 89.46 89.36 19.27 64.42 
 
ല।քհ٨(11)~(16)ऱᑇᖕፖ٨(1)~(10)ઌֺለΔݺଚࣔאױ᧩઎נಾኙ c0௽ᐛհଥإ
ڤ SFNऄ(modified SFN-I ፖ modified SFN-II)Δֺ଺ࡨ SFNऄऱய౨೏נ๺ڍΔ׊ፖ
MVNΕMVAࢨ HEQԫشࠌࠓ৵Δࠡ࿨ؘ࣠ྥᚌ࣍MVNΕMVAࢨ HEQ๠෻ڶࢬ௽ᐛ
ऱ࿨࣠Δࠡխ(15)٨אհόmodified SFN-II (c0) + MVA (c1~c12)ύऄࢬ൓ࠩऱؓ݁ᙃᢝ
෷່೏Δ੡ 89.93%Δፖհছ।նխ່ࠋᙃᢝ෷ 89.97%ΰ٨(9)ऱόSFN-II (logE) + MVA 
(c1~c12)ύऄαԼ։൷२Δڼ࿨࣠ࣔ᧩᧭ᢞԱଥڤإ SFN ऄᒔኔၞޓԫၞޏޡԱ c0 ௽
ᐛࢤګףڇᠧಛᛩቼՀऱൎ೜ࢤΖ 

ऱࠟጟᙩଃ௽ᐛנ༽ࢬ։᧭ᢞךאױଚݺรԿີፖร؄ີհ٤ຝऱኔ᧭ᑇᖕխΔط

๵֏ऄ(SFN-Iፖإ SFN-II)ኙ࣍౨ၦઌᣂ௽ᐛࠠړߜڶऱൎ೜֏ய࣠Δۖ SFN-IIࢬ൓ࠩ
ऱᙃᢝ෷᜔ਢֺ SFN-I ೏Δࠡױ౨଺ڕڂรԲີࢬຫ૪Δڂ੡ SFN-II ऄࠠڶ"ຌڤ"ެ
࿜հ፿ଃጤរೠྒྷ(soft-decision voice activity detection)ऱᖲࠫΔઌለ࣍ SFN-Iऄ"࿏ڤ"
ެ࿜հ፿ଃጤរೠྒྷ(hard-decision voice activity detection)ऱᖲ Δࠫছृऱ፿ଃ/ॺ፿ଃܒ
ܑᙑᎄࢬທګऱᐙ᥼ઌኙለ՛ΖྥۖΔ᜔ਔۖߢΔSFN-Iऄ SFN-IIऄऱٵ٥ᚌរ࣍ڇച
۩ՂԼ։១࣐ΰܛᓤᠧ৫ᄕ܅α׊ய࣠ৰᚌฆΔڼڂᄕࠠኔشऱᏝଖΖ 

նΕ࿨ᓵ 
๬ʳݾԫଡᄅऱ፿ଃൎ೜נ༽ଚݺᓵ֮խΔءڇ Ϋψᙩଃ௽ᐛإ๵֏ऄω(silence 

feature normalization, SFN)Δֱڼऄച۩ՂԼ։១׊࣐ய࣠ᚌฆΖ،ਢಾኙ౨ၦઌᣂ௽
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ᐛ(logEፖ c0)ࢤګףڂᠧಛທګऱ؈ట෼ွ܂ᔞᅝऱᇖᚍΖSFNऄشܓԱԫଡ೏ຏៀं
ᕴװ๠෻଺ࡨ౨ၦઌᣂ௽ᐛ٨ݧΔࠀലຏመڼ೏ຏៀंᕴࢬऱհᙁנ௽ᐛ٨ݧஞ܂ࠐ፿

ଃ/ॺ፿ଃऱ։ᣊΔࠀᚨش១໢ڶ׊யऱֱऄࠐ๠෻ॺ፿ଃຝٝऱ௽ᐛΔലᠧಛኙ፿ଃ
௽ᐛऱեឫ૾܅Δאཚ༼֒ಝᒭፖྒྷᇢᛩቼ֐಻৫Δၞ ۖ༼֒ᠧಛᛩቼՀऱ፿ଃᙃᢝ෷Ζ 
ൎ೜ڍ๺֗א᧭ኔءΔSFNऄֺഗߢ࿇෼Δ༉๠෻౨ၦઌᣂ௽ᐛۖױኔ᧭ᑇᖕխط 
֗אࡳ᡹ڇवಾኙ౨ၦઌᣂ௽ᐛ೚ᔞᅝऱᇖᚍΔױڼطऱᙃᢝ෷Ιړޓ๬൓ࠩݾ፿ଃڤ

ॺ᡹ࡳᠧಛᛩቼՀઃ൓ࠩԼ։᧩ထऱᙃᢝ෷༼ Δ֒᧩قԱ౨ၦઌᣂ௽ᐛܶࢬऱ፿ଃᦸܑ

ᇷಛਢᐙ᥼ᙃᢝ෷ऱԫଡૹ૞ਐᑑΖڼ؆Δᅝݺଚല SFN ऄፖࠡ،ൎ೜ڤ፿ଃݾ๬೚
࿨ٽΔ࿇෼ࠡᙃᢝ෷ֺ໢ᗑشࠌԫጟൎ೜ڤ፿ଃݾ๬ࢬ൓ࠩऱᙃᢝ෷ޓ೏ΔࠡխԾא

SFN-IIऄ࿨ٽMVAऄ൓ࠩऱᙃᢝ෷່೏Δױሒࠩല२ 90%ऱؓ݁ᙃᢝ෷Ζ 
౨ၦઌᣂ௽ᐛឈྥࠠ೏৫፿ଃᦸܑԺΔ܀ਢᠧಛኙࠡեឫ࿓৫ՈઌኙৰՕΔڼڂ౨

ၦઌᣂ௽ᐛ๠෻ऱړᡏΔലᄎৰऴ൷چᐙ᥼ࠩߓอऱᙃᢝய౨Δױڼطव౨ၦઌᣂ௽ᐛ

ऱൎ೜֏๠෻ࠐآڇսਢଖ൓൶ಘऱԫՕᓰᠲΙݺଚݦඨאױࠐآലࢬ࿇୶ऱݾ๬Δឩ

୶ྒྷᇢ۟ࠡ،ለՕڗნၦऱ፿ଃᙃᢝߓอՂΔ൶ಘຍᣊݾ๬ڇլٵᓤᠧ৫հ፿ଃᙃᢝߓ

อऱய౨Ζ׼؆Δݺࠐآଚսױཛٻ௣ೈࢤګףᠧಛऱֱٻᤉᥛ෡ԵઔߒΔՈאױಾኙ
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Abstract 

Speech and music discrimination is one of the most important issues for multimedia 
information retrieval and efficient coding. While many features have been proposed, seldom 
of which show robustness under noisy condition, especially in telecommunication 
applications. In this paper two novel features based on real cepstrum are presented to 
represent essential differences between music and speech: Average Pitch Density (APD), 
Relative Tonal Power Density (RTPD). Separate histograms are used to prove the robustness 
of the novel features. Results of discrimination experiments show that these features are more 
robust than the commonly used features. The evaluation database consists of a reference 
collection and a set of telephone speech and music recorded in real world. 

Keywords: Speech/Music Discrimination, Multimedia Information Retrieval, Real Cepstrum. 
 

1. Introduction 

In applications of multimedia information retrieval and effective coding for 
telecommunication, audio stream always needs to be diarized or labeled as speech, music or 
noise or silence, so that different segments can be implemented in different ways. However, 
speech signals often consist of many kinds of noise, and the styles of music such as 
personalized ring-back tone may differ in thousands ways. Those make the discrimination 
problem more difficult. 

A variety of systems for audio segmentation or classification have been proposed in the past 
and many features such as Root Mean Square (RMS) [1], Zero Crossing Rate (ZCR) [1,4,5], 
low frequency modulation [2,4,5], entropy and dynamism features [2,3,6], Mel Frequency 
Cepstral coefficients (MFCCs) have been used. Some features need high quality audio signal 
or refined spectrum detail, and some cause long delay so as not fit for telecommunication 
applications. While the classification frameworks including nearest neighbor, neural network, 
Hidden Markov Model (HMM), Gaussian Mixture Modal (GMM) and Support Vector 
Machine (SVM) have been adopted as the back end, features are still the crucial factor to the 
final performance. As shown in the following part of this paper, the discrimination abilities of 
some common features are poor with noisy speech. The main reason may explain as that they 
do not represent the essential difference between speech and music.  

In this paper, two novel features, called as Average Pitch Density (APD) and Relative Tonal 
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Power Density (RTPD) are proposed, which are based on real cepstrum analysis and show 
better robustness than the others. The evaluation database consists of two different data sets: 
one comes from Scheirer and Slaney [5], the other is collected from real telecommunication 
situation. The total lengths for music and speech are about 37 minutes and 28.7 minutes 
respectively.  

The rest of this paper is organized as follows: Section 2 introduces the novel features based 
on real cepstrum analysis. Section 3 describes the evaluation database and the comparative 
histograms of different features. The discrimination experiments and their results are given in 
section 4. Section 5 concludes this paper. 
 

2. Features Based on Real Cepstrum 

There are tremendous types of music, and the signal components of which can be divided into 
two classes: tonal-like and noise-like. The tonal-like class consists of tones played by all 
kinds of musical instruments, and these tones are catenated to construct the melody of music. 
The noise-like class is mainly played by percussion instruments such as drum, cymbal, gong, 
maracas, etc. The former class corresponds to the musical system, which construct by a set of 
predefined pitches according to phonology. The latter class can not play notes with certain 
pitch and is often used to construct rhythm.  

The biggest difference between speech and music lies on the pitch. Because of the restriction 
of musical system, the pitch of music usually can only jump between discrete frequencies, 
except for vibratos or glissandi. But pitch of speech can change continuously and will not 
keep on a fixed frequency for a long time. Besides the difference of pitch character, the noise 
part of music, which is often played by percussion instrument, also has different features 
from speech. That part of music does not have pitch, but it usually has stronger power. This 
phenomenon seldom exists in speech signal, because generally the stronger part of speech is 
voiced signal, which does have pitch.  

In order to describe the differences of pitch between speech and music, we use real cepstrum 
instead of spectrogram. Cepstrum analysis is a more powerful tool to analysis the detail of 
spectrum, which can separate pitch information from spectral envelop. The real cepstrum is 
defined as (Eq. (2) gives the Matlab expression) 

deeXrealRC njj
x log

2
1

ˆ
 

(1)

xfftabsifftrealRCx log  (2)

Where  is a frame of audio signal weighted by hamming window, of which the discrete 
Fourier transform is

x
jeX .  denotes extracting the real part of the complex results. 

 are the coefficients of real cepstrum. The coefficients that near zero origin reflect the 
big scale information of power spectrum such as the spectrum envelop, and those far from the 
zero origin show the spectrum detail. Figure 1 uses the latter to demonstrate the differences of 
pitch between speech and music. It is clear that the music pitches are jumped discretely while 
speech pitches do not. Figure 2 uses spectrogram to show the noise-like feature of a rock 
music segment, where most ictus have no pitch.  

)(real
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Figure 1. Pitch different between music (a) and speech (b) by means of 

real cepstrum. Only coefficients far from the zero origin are used. 
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Figure 2. Waveform and spectrogram of a segment of rock music. It is 

clear to find that most ictus have no pitch. 

To parameterize the above conclusion, we propose two novel features: Average Pitch Density 
(APD) and Relative Tonal Power Density (RTPD).  

A.  APD feature 

211



Because of the musical instruments and polyphony, the average pitch usually is higher than 
speech. The APD feature is independent with signal power and reflects the details about 
spectrum, which is defined as 

NNK

NKi

l

lj
i jRCx

L
KAPD

*

1*

2

1

)(1)( , where 112 llL  (3)

where K means the K-th analysis segment, and N is the length of it. L is number of RCx 
coefficients that far from zero origin, whose range is l1 to l2. This feature is relative simple, 
but it does prove to be robust for discrimination between speech and music. The histogram in 
figure 3 (e) demonstrate this conclusion. 
 

B.  RTPD feature 

While the detail information about spectrum can be used to discriminate tonal or song from 
speech, the variation of energy combined with pitch information may be used to separate 
percussive music from noisy speech. In clean or noisy speech signal, the segments that show 
clear pitch usually are voiced speech, which are likely to have bigger energy. So if all 
segments with pitch are labeled as tonal parts and the others are label as non-tonal parts, we 
can probably say that if the energy of tonal parts is smaller than that of non-tonal parts, then 
the segment may not be speech, otherwise the segment can be speech or music. 

In order to label tonal and non-tonal parts, we still use real cepstrum. Since if clear pitch does 
exist, a distinct stripe will appear in real cepstrum, even if in noise condition. We use the peak 
value of RCx that far from zero origin to judge tonal or non-tonal. The threshold we choose is 
0.2. Frames whose peak value is bigger than 0.2 are labeled as tonal, or else are labeled as 
non-tonal. Thus the RTPD can be defined as 

)()( jjii
RMSmeanRMSmeanKRTPD  (4)

where  consists of all tonal frames of K-th analysis segment, and is the entire set of 
frames of the segment. RMSi is the root mean square of the i-th frame. 
 

3. Discrimination Ability 
Due to the lack of a standard database for evaluation, the comparisons between different 
features are not easily. Our evaluation database consists of two parts: one comes from 
collection of Scheirer and Slaney[5], the other comes from the real records from 
telecommunication application. The former includes speech sets and music sets. Each set 
contains 80 15-second long audio samples. The samples were collected by digitally sampling 
an FM tuner (16-bit monophonic samples at a 22.05 kHz sampling rate), using a variety of 
stations, content styles, and noise levels. They made a strong attempt to collect as much of 
the breadth of available input signals as possible (See [5] for details). The latter set is 
recorded by us based on telecommunication application, which has 25 music files and 174 
noisy speech files, 17 and 11.7 minutes in length respectively. Especially, the speech signals 
of the latter set consist of many kinds of live noises, which are non-stationary with different 
SNR. 

Based on the two data sets above, we build an evaluation corpus by concatenating those files 
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randomly into two columns: CLN-Mix and ZX-Mix. CLN-Mix contains 20 mixed files, each 
concatenates 2 speech samples and 2 music samples which are all extracted from Scheirer’s 
database. ZX-Mix uses the same way except that all samples are chosen from our records. 
With these databases, we compared 4 commonly used features with our prompted ones. They 
are (1) RMS; (2)zero crossing rate; (3)variation of spectral flux; (4)percentage of  
“low-energy” frames. Figure 3 shows the discrimination abilities of each feature with 
Scheirer’s and our database. It is clear that those 4 features show poor performance in noise 
situation, while APD and RTPD show more robust 
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Figure 3. Histograms of different features for speech/music discrimination. (a)-(f) are RMS, 
ZCR, variation of spectral flux, percentage of “low-energy” frames, APD, RTPD.  

4. Discrimination Experiments 

In many speech and music discrimination system, GMM is commonly used for classification. 
A GMM models each class of data as the union of several Gaussian clusters in the feature 
space. This clustering can be iteratively derived with the well-known EM algorithm. Usually 
the individual clusters are not represented with full covariance matrices, but only the diagonal 
approximation. GMM uses a likelihood estimate for each model, which measurers how well 
the new data point is modeled by the entrained Gaussian clusters. 

We use 64 components GMM to modal speech and music signal separately. The feature 
vector consists of: (1) APD; (2) RTPD; (3) log of variance of RMS; (4) log of variance of 
spectral centroid; (5) log of variance of spectral flux; (6) 4Hz modulation energy; (7) 
dynamic range. Training data consists of the training part of Scheirer’s database and 8 
minutes of noisy speech recorded. CLN-Mix and ZX-Mix are used for evaluation.  

The frame length is 10ms, and the analysis windows for proposed features extraction is 1 
second (100 frames) with 10 new input frames each time. For comparison, MFCC + delta + 
acceleration (MFCC_D_A) feature for each frame is also examined. GMM with 64 mixtures 
is used for speech and music respectively. For classification, every proposed feature vector is 
used to calculate the log likelihood score, and correspondingly, 10 frames MFCC_D_A 
features are used. The experimental results are list in Table 1. Furthermore, we also use the 
adjacent 10 proposed feature vectors for one decision and 100 frames of MFCC_D_A 
features are used as well. The results are shown in Table 2. 

It is clear that MFCC _D_A features have good ability for discrimination with CLN-Mix data, 
but drop distinctly with ZX-mix, especially for music signals. But on both data sets, our 
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proposed features work well and express robustness in noise condition. 

Table 1. Speech/Music Discrimination Accuracies in Every 100ms 
MFCC_D_A Proposed Accuracy Speech Music Speech Music 

CLN-Mix 91.56% 89.81% 93.78% 91.48% 
ZX-Mix 99.91% 64.41% 94.19% 93.13% 

Table 2. Speech/Music Discrimination Accuracies in Every Second 
MFCC_D_A Proposed Accuracy Speech Music Speech Music 

CLN-Mix 93.98% 95.11% 95% 92.86% 
ZX-Mix 100% 67.39% 100% 94.45% 

5. Conclusion 

Two novel features have been presented in this paper for robust discrimination between 
speech and music, named Average Pitch Density (APD) and Relative Tonal Power Density 
(RTPD). As shown in separate histograms, many other commonly used features do not work 
in noisy condition, but the novels show more robustness. When combined with the other 5 
robust features, the accuracies of discrimination are higher than 90%. The results mean that 
the novel features may represent some essential differences between speech and music.   

There are many interesting directions in which to continue pursuing this work. Since the real 
cepstrum can show many differences between speech and music, there will be other novel 
features which represent the holding and changing characters of pitches. What’s more, more 
researches are needed for better classification and feature combinations. 

References 

[1] C. Panagiotakis, G. Tziritas, A Speech/Music Discriminator Based on RMS and 
Zero-Crossings, IEEE Transactions on Multimedia, Vol.7(1), February 2005. 

[2] O. M. Mubarak, E. A. Ambikairajah, J. Epps, Novel Features for Effective Speech and 
Music Discrimination, Proc. IEEE International Conference on Engineering of Intelligent 
Systems, pp.1-5, April 2006. 

[3] J. E. Muñoz-Expósito , S. García-Galán , N. Ruiz-Reyes , P. Vera-Candeas, Adaptive 
Network-based Fuzzy Inference System vs. Other Classification Algorithms for Warped 
LPC-based Speech/Music Discrimination, Engineering Applications of Artificial 
Intelligence, Vol. 20(6), pp.783-793, September, 2007. 

[4] M. J. Carey, E. S. Parris, H. Lloyd-Thomas, A Comparison of Features for Speech, Music 
Discrimination, Proc. IEEE International Conference on Acoustics, Speech, and Signal 
Processing, Vol.1, pp. 149-152, March 1999. 

[5]  E. Scheirer, M. Slaney, Construction and Evaluation of a Robust Multifeature Speech 
/Music Discriminator, Proc. IEEE International Conference on Acoustics, Speech, and 
Signal Processing, Vol.1, pp. 1331-1334, April 1997. 

[6] T. Zhang, J. Kuo, Audio Content Analysis for On-line Audiovisual Data Segmentation 
and Classification, IEEE Transactions on Speech Audio Processing, Vol. 9 (3), pp. 
441-457, May 2001. 

215



Robust Voice Activity Detection Based on Discrete Wavelet 

Transform 
 

Kun-Ching Wang 

Department of Information Technology & Communication 
 Shin Chien University 

kunching@mail.kh.usc.edu.tw 
 

Abstract 

This paper mainly addresses the problem of determining voice activity in presence of noise, 

especially in a dynamically varying background noise. The proposed voice activity detection 

algorithm is based on structure of three-layer wavelet decomposition. Appling 

auto-correlation function into each subband exploits the fact that intensity of periodicity is 

more significant in sub-band domain than that in full-band domain. In addition, Teager 

energy operator (TEO) is used to eliminate the noise components from the wavelet 

coefficients on each subband. Experimental results show that the proposed wavelet-based 

algorithm is prior to others and can work in a dynamically varying background noise. 

Keywords: voice activity detection, auto-correlation function, wavelet transform, Teager 

energy operator 

 

1. Introduction 

Voice activity detection (VAD) refers to the ability of distinguishing speech from noise and is 

an integral part of a variety of speech communication systems, such as speech coding, speech 

recognition, hand-free telephony, and echo cancellation. Although the existed VAD 

algorithms performed reliably, their feature parameters are almost depended on the energy 

level and sensitive to noisy environments [1-4]. So far, a wavelet-based VAD is rather less 

discussed although wavelet analysis is much suitable for speech property. S.H. Chen et al. [5] 

shown that the proposed VAD is based on wavelet transform and has an excellent 

performance. In fact, their approach is not suitable for practical application such as 

variable-level of noise conditions. Besides, a great computing time is needed for 

accomplishing wavelet reconstruction to decide whether is speech-active or not.  

216



Compared with Chen's VAD approach, the proposed decision of VAD only depends on 

three-layer wavelet decomposition. This approach does not need any computing time to waste 

the wavelet reconstruction. In addition, the four non-uniform subbands are generated from the 

wavelet-based approach and the well-known "auto-correlaction function (ACF)" is adopted to 

detect the periodicity of subband. We refer the ACF defined in subband domain as subband 

auto-correlation function (SACF). Due to that periodic property is mainly focused on low 

frequency bands, so we let the low frequency bands have high resolution to enhance the 

periodic property by decomposing only low band on each layer. In addition to the SACF, 

enclosed herein the Teager energy operator (TEO) is regarded as a pre-processor for SACF. 

The TEO is a powerful nonlinear operator and has been successfully used in various speech 

processing applications [6-7]. F. Jabloun et al. [8] displayed that TEO can suppress the car 

engine noise and be easily implemented through time domain in Mel-scale subband. The later 

experimental result will prove that the TEO can further enhance the detection of subband 

periodicity.  

To accurately count the intensity of periodicity from the envelope of the SACF, the 

Mean-Delta (MD) method [9] is utilized on each subband. The MD-based feature parameter 

has been presented for the robust development of VAD, but is not performed well in the 

non-stationary noise shown in the followings. Eventually, summing up the four values of 

MDSACF (Mean-Delta of Subband Auto-Correlation Function, a new feature parameter 

called "speech activity envelope (SAE)" is further proposed. Experimental results show that 

the envelope of the new SAE parameter can point out the boundary of speech activity under 

the poor SNR conditions and it is also insensitive to variable-level of noise.  

This paper is organized as follows. Section 2 describes the concept of discrete wavelet 

transform (DWT) and shows the used structure of three-layer wavelet decomposition. Section 

3 introductions the derivation of Teager energy operator (TEO) and displays the efficiency of 

subband noise suppression. Section 4 describes the proposed feature parameter, and the block 

diagram of proposed wavelet-based VAD algorithm is outlined in Section 5. Section 6 

evaluates the performance of the algorithm and compare to other two wavelet-based VAD 

algorithm and ITU-T G.729B VAD. Finally, Section 7 discusses the conclusions of 

experimental results. 
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2. Wavelet transform 

The wavelet transform (WT) is based on a time-frequency signal analysis. The wavelet 

analysis represents a windowing technique with variable-sized regions. It allows the use of 

long time intervals where we want more precise low-frequency information, and shorter 

regions where we want high-frequency information. It is well known that speech signals 

contain many transient components and non-stationary property. Making use of the 

multi-resolution analysis (MRA) property of the WT, better time-resolution is needed a high 

frequency range to detect the rapid changing transient component of the signal, while better 

frequency resolution is needed at low frequency range to track the slowly time-varying 

formants more precisely [10]. Figure 1 displays the structure of three-layer wavelet 

decomposition utilized in this paper. We decompose an entire signal into four non-uniform 

subbands including three detailed scales such as D1, D2 and D3 and one appropriated scale 

such A3. 

 

Figure 1. Structure of three-layer wavelet decomposition 

 

3. Mean-delta method for subband auto-correlation function 

The well-known definition of the term "Auto-Correlation Function (ACF)" is usually used for 

measuring the self-periodic intensity of signal sequences shown as below: 

0
( ) ( ) ( ),   0,1,......

p k

n
R k s n s n k k p , (1) 
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where p  is the length of ACF. k  denotes as the shift of sample. 

In order to increase the efficiency of ACF about making use of periodicity detection to detect 

speech, the ACF is defined in subband domain, which called "subband auto-correlation 

function (SACF)". Figure 2 clearly illustrates the normalized SACFs for each subband when 

input speech is contaminated by white noise. In addition, a normalization factor is applied to 

the computation of SACF. This major reason is to provide an offset for insensitivity on 

variable energy level. From this figure, it is observed that the SACF of voiced speech has 

more obviously peaks than that of unvoiced speech and white noise. Similarly, for unvoiced 

speech the ACF has greater periodic intensity than white noise especially in the 

approximation 3A . 

Furthermore, a Mean-Delta (MD) method [9] over the envelope of each SACF is utilized 

herein to evaluate the corresponding intensity of periodicity on each subband. First, a 

measure which similar to delta cepstrum evaluation is mimicked to estimate the periodic 

intensity of SACF, namely "Delta Subband Auto-Correlation Function (DSACF)", shown 

below: 
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where MR  is DSACF over an -sampleM  neighborhood ( 3M  in this study). 

It is observed that the DSACF measure is almost like the local variation over the SACF. 

Second, averaging the delta of SACF over a -sampleM  neighborhood MR , a mean of the 

absolute values of the DSACF (MDSACF) is given by 
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M M
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R R k
N

. (3) 

Observing the above formulations, the Mean-Delta method can be used to value the number 

and amplitude of peak-to-valley from the envelope of SACF. So, we just only sum up the four 

values of MDSACFs derived from the wavelet coefficients of three detailed scales and one 

appropriated scale, a robust feature parameter called "speech activity envelope (SAE)" is 

further proposed.  
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Figure 3 displays that the MRA property is important to the development of SAE feature 

parameter. The proposed SAE feature parameter is respectively developed with/without 

band-decomposition. In Figure 3(b), the SAE without band-decomposition only provides 

obscure periodicity and confuses the word boundaries. Figure 3(c)~Figure 3(f) respectively 

show each value of MDSACF from D1 subband to A3 subband. It implies that the value of 

MDSACF can provide the corresponding periodic intensity for each subband. Summing up 

the four values of MDSACFs, we can form a robust SAE parameter. In Figure 3(g), the SAE 

with band-decomposition can point out the word boundaries accurately from its envelope. 

 

  

Figure 2. SACF on voiced, unvoiced signals and white noise 
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Figure 3. SAE with/without band-decomposition 

 

4. Teager energy operator 

The Teager energy operator (TEO) is a powerful nonlinear operator, and can track the 

modulation energy and identify the instantaneous amplitude and frequency [7-10].  

In discrete-time, the TEO can be approximate by  

2[ ( )] ( ) ( 1) ( 1)d s n s n s n s n , (4) 

where [ ( )]d s n  is called the TEO coefficient of discrete-time signal ( )s n . 

Figure 4 indicates that the TEO coefficients not only suppress noise but also enhance the 

detection of subband periodicity. TEO coefficients are useful for SACF to discriminate the 

difference between speech and noise in detail.  
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Figure 4. Illustration of TEO processing for the discrimination between speech and noise by 
using periodicity detection 

 

5. Proposed voice activity detection algorithm 

In this section, the proposed VAD algorithm based on DWT and TEO is presented. Fig. 8 

displays the block diagram of the proposed wavelet-based VAD algorithm in detail. For a 

given layer j , the wavelet transform decomposed the noisy speech signal into 1j  

subbands corresponding to wavelet coefficients sets ,
j

k nw . In this case, three-layer wavelet 

decomposition is used to decompose noisy speech signal into four non-uniform subbands 

including three detailed scales and one appropriated scale. Let layer 3j , 

3
, { ( ),3},    1.... ,  1....4k mw DWT s n n N k , (5) 

where 3
,k mw  defines the thm  coefficient of the thk  subband. N  denotes as window length. 

The decomposed length of each subband is 2kN  in turn. 

For each subband signal, the TEO processing [8] is then used to suppress the noise 
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component, and also enhance the periodicity detection. In TEO processing, 

3 3
, ,[ ],   1...4k m d k mt w k . (6) 

Next, the SACF measures the ACF defined in subband domain, and it can sufficiently 

discriminate the dissimilarity among of voiced, unvoiced speech sounds and background 

noises from wavelet coefficients. The SACF derived from the Teager energy of noisy speech 

is given by 

3 3
, ,[ ],   1...4k m k mR R t k . (7) 

To count the intensity of periodicity from the envelope of the SACF accurately, the 

Mean-Delta (MD) method [9] is utilized on each subband. 

The DSACF is given by  

3 3
, ,[ ],   1...4k m k mR R k . (8) 

where [ ]  denotes the operator of delta. 

Then, the MDSACF is obtained by  

3 3
,[ ]k k mR E R . (9) 

where [ ]E  denotes the operator of mean. 

Finally, we sum up the values of MDSACFs derived from the wavelet coefficients of three 

detailed scales and one appropriated scale and denote as SAE feature parameter given by  

4
3

1
k

k
SAE R . (10) 

 

6. Experimental results 

In our first experiment, the results of speech activity detection are tested in three kinds of 

background noise under various values of the SNR. In the second experiment, we adjust the 

variable noise-level of background noise and mix it into the testing speech signal. 

6.1. Test environment and noisy speech database 
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The proposed wavelet-based VAD algorithm is based on frame-by-frame basis (frame size = 

1024 samples/frame, overlapping size = 256 samples). Three noise types, including white 

noise, car noise and factory noise, are taken from the Noisex-92 database in turn [11]. The 

speech database contains 60 speech phrases (in Mandarin and in English) spoken by 32 native 

speakers (22 males and 10 females), sampled at 8000 Hz and linearly quantized at 16 bits per 

sample. To vary the testing conditions, noise is added to the clean speech signal to create 

noisy signals at specific SNR of 30, 10, -5 dB. 

6.2. Evaluation in stationary noise 

In this experiment we only consider stationary noise environment. The proposed 

wavelet-based VAD is tested under three types of noise sources and three specific SNR 

values mentioned above. Table 1 shows the comparison between the proposed wavelet-based 

VAD and other two wavelet-based VAD proposed by Chen et al. [5] and J. Stegmann [12] and 

ITU standard VAD such as G.729B VAD [4], respectively. The results from all the cases 

involving various noise types and SNR levels are averaged and summarized in the bottom 

row of this table. We can find that the proposed wavelet-based VAD and Chen's VAD 

algorithms are all superior to Stegmann's VAD and G.729B over all SNRs under various types 

of noise. In terms of the average correct and false speech detection probabilities, the proposed 

wavelet-based VAD is comparable to Chen's VAD algorithm. Both the algorithms are based 

on the DWT and TEO processing. However, Chen et al. decomposed the input speech signal 

into 17 critical-subbands by using perceptual wavelet packet transform (PWPT). To obtain a 

robust feature parameter, called as "VAS" parameter, each critical subband after their 

processing is synthesized individually while other 16 subband signals are set to zero values. 

Next, the VAS parameter is developed by merging the values of 17 synthesized bands. 

Compare to the analysis/synthesis of wavelet from S. H. Chen et al., we only consider 

analysis of wavelet. The structure of three-layer decomposition leads into four non-uniform 

bands as front-end processing. For the development of feature parameter, we do not again 

waste extra computing power to synthesize each band. Besides, Chen's VAD algorithm must 

be performed in entire speech signal. The algorithm is not appropriate for real-time issue 

since it does not work on frame-based processing. Conversely, in our method the decisions of 

voice activity can be accomplished by frame-by-frame processing. Table 2 indicates that the 

computing time for the listed VAD algorithms running Matlab programming in Celeron 2.0G 

CPU for processing 118 frames of an entire recording. It is found that the computing time of 

Chen's VAD is nearly four times greater than that of other three VADs. Besides, the 
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computing time of Chen's VAD is closely relative to the entire length of recording. 

 

Table 1. Comparison performance. 

 

 
Table 2. Illustrations of subjective listening evaluation and the computing time 

VAD types  Computing time (sec) 
Proposed VAD  0.089 
Chen’s VAD [5] 0.436 

Stegmann’s VAD [12] 0.077 
G.729B VAD [4] 0.091 

 

6.3. Evaluation in non-stationary noise 

In practice, the additive noise is non-stationary in real-world, since its statistical property 

change over time. We add the decreasing and increasing level of background noise on a clean 

speech sentence in English and the SNR is set 0 dB. Figure 6 exhibits the comparisons among 

proposed wavelet-based VAD, other one wavelet-based VAD respectively proposed by S. H. 

Chen et al. [5] and MD-based VAD proposed by A. Ouzounov [9]. Regarding to this figure, 

the mixed noisy sentence "May I help you?" is shown in Fig. 9(a). The increasing noise-level 

and decreasing noise-level are added into the front and the back of clean speech signal. 

Additionally, an abrupt change of noise is also added in the middle of clean sentence. The 

three envelopes of VAS, MD and SAE feature parameters are showed in Figure 6(b)~Figure 
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6(d), respectively. It is found that the performance of Chen's VAD algorithm seems not good 

in this case. The envelope of VAS parameter closely depends on the variable level of noise. 

Similarly, the envelope of MD parameter fails in variable level of noise. Conversely, the 

envelope of proposed SAE parameter is insensitive to variable-level of noise. So, the 

proposed wavelet-based VAD algorithm is performed well in non-stationary noise. 

 

 
Figure 6. Comparisons among VAS, MD and proposed SAE feature parameters 

 

7. Conclusions 

The proposed VAD is an efficient and simple approach and mainly contains three-layer DWT 

(discrete wavelet transform) decomposition, Teager energy operation (TEO) and 

auto-correlation function (ACF). TEO and ACF are respectively used herein in each 

decomposed subband. In this approach, a new feature parameter is based on the sum of the 

values of MDSACFs derived from the wavelet coefficients of three detailed scales and one 

appropriated scale, and it has been shown that the SAE parameter can point out the boundary 

of speech activity and its envelope is insensitive to variable noise-level environment. By 

means of the MRA property of DWT, the ACF defined in subband domain sufficiently 

discriminates the dissimilarity among of voiced, unvoiced speech sounds and background 
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noises from wavelet coefficients. For the problem about noise suppression on wavelet 

coefficients, a nonlinear TEO is then utilized into each subband signals to enhance 

discrimination among speech and noise. Experimental results have been shown that the 

SACF with TEO processing can provide robust classification of speech due to that TEO can 

provide a better representation of formants resulting distinct periodicity. 

 

References 

[1] Cho, Y. D. and Kondoz, A., "Analysis and improvement of a statistical model-based voice 

activity detector", IEEE Signal Processing Lett., Vol 8, 276-278, 2001. 

[2] Beritelli, F., Casale, S. and Cavallaro, A., "A robust voice activity detector for wireless 

communications using soft computing", IEEE J. Select. Areas Comm., Vol 16, 1818-1829, 

1998. 

[3] Nemer, E., Goubran, R. and Mahmoud, S., "Robust voice activity detection using 

higher-order statistics in the LPC residual domain", IEEE Trans. Speech and Audio 

Processing, Vol. 9, 217-231, 2001. 

[4] Benyassine, A., Shlomot, E., Su, H. Y., Massaloux, D., Lamblin, C. and Petit, J. P., 

"ITU-T Recommendation G.729 Annex B: a silence compression scheme for use with 

G.729 optimized for V.70 digital simultaneous voice and data applications", IEEE 

Communications Magazine, Vol. 35, 64-73, 1997.  

[5] Chen, S. H. and Wang, J. F., "A Wavelet-based Voice Activity Detection Algorithm in 

Noisy Environments", 2002 IEEE International Conference on Electronics, Circuits and 

Systems (ICECS2002), 995-998, 2002. 

[6] Kaiser, J. F., "On a simple algorithm to calculate the 'energy' of a signal", in Proc. 

ICASSP'90, 381-384, 1990. 

[7] Maragos, P., Quatieri, T., and Kaiser, J. F., "On amplitude and frequency demodulation 

using energy operators", IEEE Trans. Signal Processing, Vol. 41, 1532-1550, 1993.  

[8] Jabloun, F., Cetin, A. E., and Erzin, E., "Teager energy based feature parameters for 

speech recognition in car noise", IEEE Signal Processing Lett., Vol. 6, 259-261, 1999. 

[9] Ouzounov, A., "A Robust Feature for Speech Detection", Cybernetics and Information 

227



Technologies, Vol. 4, No 2, 3-14, 2004. 

[10] Stegmann, J., Schroder, G., and Fischer, K. A., "Robust classification of speech based on 

the dyadic wavelet transform with application to CELP coding", Proc. ICASSP, Vol. 1, 

546 - 549, 1996. 

[11] Varga, A. and Steeneken, H. J. M., "Assessment for automatic speech recognition: II. 

NOISEX-92: A database and an experiment to study the effect of additive noise on 

speech recognition systems", Speech Commun., Vol. 12, 247-251, 1993. 

[12] Stegmann, J. and Schroder, G., "Robust voice-activity detection based on the wavelet 

transform", IEEE Workshop on Speech Coding for Telecommunications Proceeding, 99 - 

100, 1997. 

228



 ߒ፿ଃᙃᢝհઔࢤൎ೜࣍๵֏ऄإଙ᙮ᢜอૠڤٽิ
Associative Cepstral Statistics Normalization Techniques for Robust 

Speech Recognition 
 

 壁 Wen-hsiang Tu֮ޙ
ዄতഏᎾՕᖂሽᖲՠ࿓ᖂߓ 

Dept of Electrical Engineering, National Chi Nan University, Taiwan 
aero3016@ms45.hinet.net 

 
 Kuang-chieh Wu ٠ࣧܦ
ዄতഏᎾՕᖂሽᖲՠ࿓ᖂߓ   

Dept of Electrical Engineering, National Chi Nan University, Taiwan 
s95323529@ncnu.edu.tw 

 
 ೛ Jeih-weih Hungݳੋ

ዄতഏᎾՕᖂሽᖲՠ࿓ᖂߓ 
Dept of Electrical Engineering, National Chi Nan University, Taiwan 

jwhung@ncnu.edu.tw 
 

ኴ૞ 
ԫ୚۞೯፿ଃᙃᢝߓอΔڇᠧಛᛩቼՀࠡᙃᢝய࣠ຏൄᄎࣔࠩ࠹᧩ᐙ᥼Δᇠڶ۶ڕ

யࣚ܌چຍᑌऱംᠲΔԫऴࠐאຟਢڼᏆ഑ઔߒऱૹរΔءᓵ֮ܛਢಾኙڼംᠲאףઔ

๵֏፿ଃإط៶๬Δਢݾၞޏ٨ऱߓԫڶխΔߒऱઔװመڇ๬Ζݾၞޏ༓ጟנ༽Δۖߒ

௽ᐛऱอૠ௽܅૾ࠐࢤᠧಛऱᐙ᥼ΔڕࠏΚଙ᙮ᢜؓ݁௣װऄΕଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇ

ய༼֒፿ଃ௽ᐛڶאױऱய౨Δ᧩ࣔڶऄ๯ᢞࣔઃֱࠄ๵֏ऄፖอૠቹ࿛֏ऄ࿛Δຍإ

๬੡હནΔ࿇୶ݾ֏๵إຍԿጟଙ᙮ᢜ௽ᐛ೶ᑇאਢܛᓵ֮ءΖࢤᠧಛᛩቼՀऱൎ೜ڇ

ԫၞޏ٨ߓհൎ೜ֱࢤऄΖ 

ছ૿ࢬ༼ࠩऱԿጟ௽ᐛ೶ᑇإ๵֏ݾ๬խࢬႊࠩشऱ௽ᐛอૠଖΔຏൄਢطᖞ੄ऱ

፿ׂࢨ؁੄ऱ፿ܶץࢬ؁ऱ௽ᐛޣ൓Δۖڇመءװኔ᧭৛ऱઔߒխΔམሎאشᒘ᡻

(codebook)੡ഗ៕ऱֱ࠷ޣࠐڤຍࠄอૠଖΔ࿇෼ઌኙ࣍հছऱ܂ऄ౨ޡၞ᧩ࣔڶΖڇ
 ፿ଃೠྒྷ(voice activityشࠌΔࠡխݧऱᒘ᡻৬ዌ࿓ڤߜޏԫנ༽ଚݺᓵ֮รԫຝ։Δء
detection, VAD) ݾ๬ࠐ։ሶಛᇆխऱ፿ଃګ։ፖॺ፿ଃګ։Δྥ ৵شܓ፿ଃຝ։ऱ௽ᐛ

ࢬݧ࿓ڼᓿղᦞૹ(weight)Δ(codeword)ڗଡᒘޢհᒘ᡻խऱم৬ࢬழኙٵ৬ዌᒘ᡻Δࠐ
৬ዌऱᒘ᡻Δᆖኔ᧭ᢞኔΔאױ༼֒଺ࡨᒘ᡻ڤ(codebook-based)௽ᐛ೶ᑇإ๵֏ऄऱ
ய౨ΖۖڇรԲຝٝΔݺଚঞਢᖞٽՂ૪հᒘ᡻ڤ (codebook-based)ፖᖞ੄ڤ
(utterance-based)ࠟᣊֱऄࢬ൓ࠩհ௽ᐛอૠᇷಛΔ࿇୶ࢬנᘯऱิڤٽ(associative)௽ᐛ
೶ᑇإ๵֏ऄΖڼᣊิڤٽऱᄅֱऄઌለ࣍ᖞ੄ڤፖᒘ᡻ڤऱֱऄΔ౨൓ࠩړޓऱய

࣠Δڶޓயࢤګף֒༽چᠧಛᛩቼՀ፿ଃऱᙃᢝ壄ᒔ৫Ζ 

 

Abstract 
The noise robustness property for an automatic speech recognition system is one of the most 
important factors to determine its recognition accuracy under a noise-corrupted environment. 
Among the various approaches, normalizing the statistical quantities of speech features is a 
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very promising direction to create more noise-robust features. The related feature 
normalization approaches include cepsral mean subtraction (CMS), cepstral mean and 
variance normalization (CMVN), histogram equalization (HEQ), etc. In addition, the 
statistical quantities used in these techniques can be obtained in an utterance-wise manner or 
a codebook-wise manner. It has been shown that in most cases, the latter behaves better than 
the former. 
In this paper, we mainly focus on two issues. First, we develop a new procedure for 
developing the pseudo-stereo codebook, which is used in the codebook-based feature 
normalization approaches. The resulting new codebook is shown to provide a better estimate 
for the features statistics in order to enhance the performance of the codebook-based 
approaches. Second, we propose a series of new feature normalization approaches, including 
associative CMS (A-CMS), associative CMVN (A-CMVN) and associative HEQ (A-HEQ). 
In these approaches, two sources of statistic information for the features, the one from the 
utterance and the other from the codebook, are properly integrated. Experimental results 
show that these new feature normalization approaches perform significantly better than the 
conventional utterance-based and codebook-based ones. As the result, the proposed methods 
in this paper effectively improve the noise robustness of speech features. 

ᣂ᝶ဲΚ۞೯፿ଃᙃᢝΕᒘ᡻Εൎ೜ࢤ፿ଃ௽ᐛ 

Keywords: automatic speech recognition, codebook, robust speech feature 

ԫΕፃᓵ 

ᠧಛᛩቼՀΔኙಝᒭፖྒྷᇢԲृऱࢤګףڇ૞ਢ׌๬Δݾڤऱൎ೜נ༽ಘᓵ֗ࢬᓵ֮ء

፿ଃ௽ᐛ೶ᑇऱอૠ௽إאףࢤ๵֏Δࠟ܅૾אᛩቼऱլ֐಻Ζࠡխݺଚشܓමዿଙ᙮

ᢜএᑇ(mel-frequency cepstral coefficients, MFCC)೚੡፿ଃ௽ᐛΔ࿨ٽ፿ଃೠྒྷݾ๬
(voice activity detection, VAD)[1]ፖ௽ᐛอૠଖإ๵֏ऱ壆ݾڍ๬Δࠐ༼֒፿ଃ௽ᐛףڇ
 ๵֏ऄ։ܑ੡Κإಘᓵऱ௽ᐛ೶ᑇࢬᓵ֮խءΖࢤᠧಛᛩቼՀऱൎ೜ࢤګ

ΰԫαᖞ੄ڤ(utterance-based)௽ᐛ೶ᑇإ๵֏ऄ 

ऄװଙ᙮ᢜؓ݁௣ڤႚอऱᖞ੄ܛ     (utterance-based cepstral mean subtraction, 
U-CMS)[2]Εᖞ੄ڤଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(utterance-based cepstral mean and 
variance normalization, U-CMVN)[3]ፖᖞ੄ڤอૠቹ࿛֏ऄ(utterance-based histogram 
equalization, U-HEQ)[4]Ζڼᣊֱऄਢאԫᖞ੄፿؁੡ഗᄷ۷װጩޢԫፂ௽ᐛ೶ᑇऱอૠ
௽ࢤΔࠀച۩௽ᐛ೶ᑇإ๵֏Ζ 

ΰԲαᒘ᡻ڤ(codebook-based)௽ᐛ೶ᑇإ๵֏ऄ 

।ಝᒭ፿ଃ௽ᐛፖྒྷᇢ፿ଃ௽ᐛऱอૠזנଚ۷ጩݺܗᚥࠐᒘ᡻ط៶ᣊֱऄਢڼ    
ଖΔ៶ڼച۩፿ଃ௽ᐛإ๵֏Ζڇመװऱઔߒᇙ[5][6][7]Δ࿇෼ڼᣊऱֱऄΔץਔᒘ᡻
ଙ᙮ᢜڤऄ(codebook-based cepstral mean subtraction, C-CMS)ፖᒘ᡻װଙ᙮ᢜؓ݁௣ڤ
ؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(codebook-based cepstral mean and variance normalization, 
C-CMVN)࿛Δࠡய࣠ຟֺছԫᣊհᖞ੄ڤ௽ᐛإ๵֏ऄࠐऱړΖ 

 ՀΚڕ๬Δ։૪ݾऱၞޏ٨ߓԫנ༽૪ऱԲᣊֱऄࢬՂאᓵ֮௅ᖕء

ਢല٤ຝऱಝᒭ፿ற᠏ངऱ௽ᐛڤ൓ֱ࠷๵֏ऄխ[5-7]Δᒘ᡻إ௽ᐛڤᒘ᡻װመڇ 
೶ᑇٻ܂ၦၦ֏Δຍᑌऱֱױڤ౨ᄎࠡࠌխ๺ڍᒘڗਢኙᚨࠩॺ፿ଃऱᙩଃ(silence)
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ऱᦞૹ๯๻ڗଡᒘޢழΔٵΔࢤ।ז፿ଃ௽ᐛऱ׎ለ౒ڗᒘࠄຍࠌΔۖٝګᠧಛࢨ

੡ઌ࿛Δຍᑌױ౨ᄎࠌհ৵ࢬ඿ૠጩऱ௽ᐛอૠଖለլ壄ᒔΖءڇᓵ֮խΔݺଚᚨ

։ፖګԫ੄ಛᇆऱ፿ଃ(speech)נ๬ೠྒྷݾጤរೠྒྷ(voice activity detection, VAD)ش
ॺ፿ଃ(silence)ګ։Δྥ৵شࠌ׽፿ଃګ։ऱ௽ᐛװ፹܂ᒘ᡻ΔٵழΔլٵऱᒘڗ௅
ᖕࠡኙᚨऱ଺ࡨ௽ᐛᑇڍؾኒ๻ࠡࡳᦞૹ(weight)Δຍጟᄅऱᒘ᡻৬ዌ࿓ݧᚨޏאױ
࿳Ղ૪հ౒រΔၞۖ༼֒ٺጟᒘ᡻ڤ௽ᐛإ๵֏ऄऱய౨Ζ 

ଚᖞݺਢݧ૞࿓׌๵֏ऄΔࠡإ௽ᐛ(associative)ڤٽԱԫᄅֱऄΔጠ੡ิנ༽ଚݺ 
ڼ៶ૠጩ௽ᐛऱอૠଖΔࠐऱ௽ᐛอૠᇷಛΔشࠌࢬֱࠟڤፖᖞ੄ڤছ૪հᒘ᡻ٽ

ऱࠟᣊֱڤፖᖞ੄ڤऱֱऄֺᒘ᡻ڤٽᣊิڼ๵֏Ζኔ᧭࿨࣠࿇෼إച۩௽ᐛऱࠐ

ऄΔ౨ሒࠩࠋޓऱய࣠Ζױ౨଺࣍ڇڂΔิڤٽऱֱऄ૾܅Աᒘ᡻ֱڤऄխޢ࠷׽

੄ಛᇆছ༓ଡଃ௃܂੡ొᠧಛ۷ྒྷऱլᄷᒔயᚨΔۖ  ੡壄ᒔΖޓ൓ऱ௽ᐛอૠଖࢬࠌ

๬ΖรԿݾ֏๵إ௽ᐛ(utterance-based)ڤଚല១໢տฯᖞ੄ݺհ৵ऱรԲີᇙΔڇ    
ີലᎅࣔᄅऱဠᚵᠨຏሐᒘ᡻ऱ৬م࿓ݧΔ៶ၞޏڼᒘ᡻ڤ(codebook-based)௽ᐛإ๵
֏ऄऱய౨Ζڇร؄ີխΔݺଚඖ૪ءᓵ֮ࢬᄅ༼נऱิڤٽ(associative)௽ᐛإ๵֏
ऄΖรնີܶץԱءᓵ֮հኔ᧭شࠌࢬհ፿ற஄տฯፖءᓵ֮ࢬ༼ࠩऱٺጟ௽ᐛإ๵֏

 ୶ඨΖࠐآ๬հኔ᧭࿨࣠ፖઌᣂऱಘᓵ։࣫Ζ່৵Δรքີ੡࿨ᓵፖݾ
 
ԲΕᖞ੄ڤ(utterance-based)௽ᐛ೶ᑇإ๵֏ݾ๬ 
๬Δ։ݾ֏๵إऱ௽ᐛ೶ᑇش፿ଃᙃᢝխΔൄ๯ᚨࢤൎ೜ڇଚ១૞տฯԿጟݺີء    
ܑ੡ᖞ੄ڤଙ᙮ᢜؓ݁௣װऄ(utterance-based cepstral mean subtraction, U-CMS)[2]Εᖞ
੄ڤଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ (utterance-based cepstral mean and variance 
normalization, U-CMVN)[3]ፖᖞ੄ڤଙ᙮ᢜอૠቹ࿛֏ऄ (utterance-based cepstral 
histogram equalization, U-HEQ)[4]Ζ 
ΰԫαᖞ੄ڤଙ᙮ᢜؓ݁௣װऄ (U-CMS) 
    ଙ᙮ᢜؓ݁௣װऄ(CMS)ऱؾऱਢݦඨԫ፿ଃ௽ᐛ٨ݧխΔޢԫፂ৫ऱଙ᙮ᢜএᑇ
९ழၴؓ݁ଖ੡0Ζ೗๻ࠡଖլ੡0ழΔݺଚ༉ലီڼ੡ຏሐᠧಛۖڬאףೈΔڼጟֱऄ
ኙ܅૾࣍ຏሐᠧಛயᚨਢԫጟ១໢شڶ׊ऱݾ๬Δ܀ਢڶழኙࢤګף܅૾࣍ᠧಛՂՈڶ

ԫࡳऱய࣠Ζڍڇᑇऱ܂ऄՂΔଈݺ٣ଚലᖞ੄፿ଃޢԫፂऱଙ᙮ᢜএᑇ݁ؓ࠷ଖΔྥ

৵ലޢԫፂऱএᑇ྇ൾࠡؓ݁ଖΔܛڼڕ൓ࠩᇖᚍ৵հᄅ௽ᐛΔڼጠ੡ᖞ੄ڤଙ᙮ᢜؓ

݁௣װऄ(utterance-based cepstral mean subtraction, U-CMS)Ζ௅ᖕຍᑌऱ଺ঞΔݺଚ೗๻
, 1, 2,...,X n n N ੡ԫ੄፿ଃࢬឯࠩ࠷ऱਬԫፂଙ᙮ᢜ௽ᐛ೶ᑇ٨ݧΔڇᆖመᖞ੄

ऄװଙ᙮ᢜؓ݁௣ڤ (U-CMS)๠෻৵Δ൓ࠩᄅऱᆖመᇖᚍऱ௽ᐛ೶ᑇ٨ݧ
, 1, 2,...,

U CMS
X n n N ΔࠡᑇᖂڕڤՀقࢬΚ 

                    , 1, 2,..., .
U CMS X
X n X n n N (2.1)ڤ             

ࠡխ 
1

1
N

X

n

X n
N

, N ੡ᖞ੄፿ଃऱଃ௃ଡᑇΖ 

ڇΔڼڂ U-CMSऄխΔإאش๵֏ऱؓ݁ଖ
X
ਢط଺ࡨᖞ੄ऱ௽ᐛࢬ٨ݧ൓Ζ 

ΰԲαᖞ੄ڤଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ (U-CMVN) 

    ፿ଃಛᇆڇᆖመࢤګףᠧಛऱեឫհ৵Δࠡ ଙ᙮ᢜհؓ݁ଖࡉ଺ء೓෣፿ଃଙ᙮ᢜ

ؓ݁ଖհၴຏൄᄎڇژԫೣฝၦ(bias)Δٵழࠡ᧢ฆᑇઌኙ࣍೓෣፿ଃଙ᙮ᢜ೶ᑇऱ᧢
ฆᑇۖߢঞຏൄᄎڶᜍ՛ऱ෼ွΔঁڼڕທګԱಝᒭፖྒྷᇢ௽ᐛऱլ֐಻Δۖ૾܅ᙃᢝ
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ய࣠Ζشࠌଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(CMVN)ऱؾऱਢޢނԫፂऱଙ᙮ᢜ௽ᐛ೶
ᑇհؓ݁ଖإ๵֏੡ 0Δࠀലࠡ᧢ฆᑇإ๵֏੡ 1Δঁڼڕ౨૾܅Ղ૪ऱ؈టΔאሒࠩ
༼֒ଙ᙮ᢜ௽ᐛ೶ᑇऱൎ೜ࢤΖ 
ଙ᙮ᢜؓ݁௣شܓଚਢ٣ݺऄՂΔ܂๵֏ऄ(CMVN)ऱإଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇڇ    
Δྥ(ԫፂଙ᙮ᢜএᑇؓ݁ଖ੡0ޢ๠෻መ৵ऱࠌ)๠෻܂װऄ(CMS)װ ৵٦ല๠෻৵ऱޢ

ԫፂଙ᙮ᢜএᑇೈࠡאᑑᄷ஁Δڼڕ൓ࠩᄅऱ௽ᐛ٨ݧΖڇU-CMVN(utterance-based 
cepstral mean and variance normalization)ऄխΔ೗๻ , 1, 2,...,X n n N ਢԫ੄፿ଃऱ

ਬԫፂଙ᙮ᢜ௽ᐛ೶ᑇ٨ݧΔڇᆖመU-CMVN๠෻৵Δ൓ࠩᄅऱ௽ᐛ೶ᑇ
, 1, 2,...,

U CMVN
X n n N ΔࠡᑇᖂڕڤՀقࢬΚ 

                  [ ]
[ ] , 1, 2,...,

X

U CMVN

X

X n
X n n N  (2.2)ڤ               .

ࠡխ            
1

1
[ ]

N

X

n

X n
N

, 2

1

1
[ ]

N

X X

n

X n
N

 

ऱؓ݁ଖشࢬU-CMVNխΔڇΔڼڂ
X
ፖᑑᄷ஁

X
ઃطᖞ੄፿ଃऱ௽ᐛ٨ۖݧ൓Ζ 

ΰԿαᖞ੄ڤอૠቹ࿛֏ऄ(U-HEQ) 

    อૠቹ࿛֏ऄ(HEQ)ऱؾऱΔਢݦඨאشಝᒭፖྒྷᇢհ፿ଃ௽ᐛࠟृ౨ജࠠڶઌٵ
ऱอૠ։܉௽ࢤΔ៶֐ڼط಻ऱ᠏ངመ࿓Δ૾ྒྷ܅ᇢ௽ᐛፖಝᒭ௽ᐛհၴ࣍طᠧಛᐙ᥼

Ζࠡݮ಻ൣ֐ऱլګທࢬ ழሓ२ԫٵ܉ऄਢലྒྷᇢ፿ଃ௽ᐛፖಝᒭ፿ଃ௽ᐛऱᖲ෷։܂

೶ەᖲ෷։܉Ζءڇᓵ֮խشࠌࢬऱ೶ەᖲ෷։܉੡ԫᑑᄷൄኪ։܉Ζ 
    ௅ᖕՂ૪Δݺଚ೗๻ , 1, 2,...,X n n N ੡ԫ੄፿ଃਬԫፂଙ᙮ᢜ௽ᐛ೶ᑇݧ

٨ Ι
X
F x ੡ X n ऱ ᖲ ෷ ։ ܉

X
F x P X x Δ ، ਢ ط ᖞ ੄ հ ௽ ᐛ

, 1, 2,...,X n n N ൓Ιޣ
N
F x ੡೶ەᖲ෷։܉Ζঞᖞ੄ڤอૠቹ࿛֏ऄ

(utterance-based histogram equalization, U-HEQ)ऱᑇᖂ᠏ངڕڤՀقࢬΚ 
                      1

,
U HEQ N X
X n F F X n (2.3)ڤ                      

ࠡխ
U HEQ
X n  อૠቹ࿛֏ऄ๠෻৵ऱᄅ௽ᐛ೶ᑇΖڤ੡ᆖመᖞ੄ܛ

ԿΕڤߜޏᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬ 
    ሎࢬشᘯऱဠᚵᠨຏሐᒘ᡻(pseudo stereo codebooks)۷ࠐጩ೓෣፿ଃፖܶᠧಛ፿
ଃհ௽ᐛอૠ௽ࢤΔၞۖച۩௽ᐛ೶ᑇإ๵֏ݾ๬Δ౨ڶய༼֒ᠧಛᛩቼՀ፿ଃᙃᢝ

෷Ζڇመװઔߒխ[5-7]נ༽ࢬհଙ᙮ᢜอૠᇖᚍऄ(cepstral statistics compensation)Δਢ
ኙܶᠧಛհ፿ଃଙ᙮ᢜএᑇ೚᠏ངΔࠌ൓ᆖመ᠏ང৵ऱ፿ଃଙ᙮ᢜ௽ᐛհอૠଖޓઌۿ

๵֏ᇖᚍΖإଙ᙮ᢜ܂ಾኙᠧಛ፿ଃ௽ᐛ׽ڤ೓෣ಝᒭ፿ଃଙ᙮ᢜऱอૠଖΔຍጟֱ࣍

֏๵إ܂ழಾኙ೓෣፿ଃፖᠧಛ፿ଃଙ᙮ᢜ௽ᐛ೶ᑇٵΔঞਢڤհֱנ༽ࢬᓵ֮ءڇۖ

๠෻Ζ׼؆Δڇհছऱଙ᙮ᢜอૠᇖᚍऄխΔشࢬऱޢଡᒘڗ(codeword)ਢآشܓ๠෻
ऱ೓෣፿ଃ௽ᐛಝᒭۖ൓Δޢ׊ଡᒘڗऱֺૹઌٵΔۖݺڇଚၞޏऱֱऄՂΔݺଚᚨش

Ա፿ଃೠྒྷݾ๬(voice activity detection, VAD)[1]๠෻೓෣፿ଃಛᇆΔലಛᇆխऱ፿ଃ೴
੄ፖॺ፿ଃ೴੄೴ሶࠐנΔྥ৵ొشܓ፿ଃ೴੄ऱ፿ଃ௽ᐛࠐಝᒭᒘڗΔڼ؆Δຍࠄᒘ

ૠጩऱ፿ଃ௽ࢬڗᒘࠄຍطΔڼڂऱᦞૹ(weight)Δٵᓿղլؾ௅ᖕࠡො።ऱ௽ᐛᑇڗ
ᐛอૠଖΔᚨᇠޓ੡壄ᒔΕޓ౨ז।፿ଃ௽ᐛऱ௽ࢤΖኔ᧭ᢞࣔΔຍᑌऱଥڤֱإ౨൅

 ऱᙃᢝ෷Ζړޓࠐ
๬Δ։ܑ੡Κݾ֏๵إ௽ᐛ೶ᑇ(utterance-based) ڤଚտฯԱԿጟᖞ੄ݺՂԫີΔڇ    
U-CMSΕU-CMVNፖU-HEQΖڇຍᇙΔݺଚലشܓᄅଥإऱᒘ᡻৬ֱمऄΔ৬مဠᚵ
ᠨຏሐᒘ᡻Δച۩ԫߜޏ٨ߓऱᒘ᡻ڤ(codebook-based)௽ᐛ೶ᑇإ๵֏ݾ๬Ζ 
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ΰԫαဠᚵᠨຏሐᒘ᡻հ৬ڤֱم 
ࢬਢലಝᒭ፿ற஄ᇙڤֱم๵֏ऄ [5-7] խΔᒘ᡻հ৬إ௽ᐛ೶ᑇڤऱᒘ᡻ࡨ଺ڇ    
᠏ང۟මዿଙ᙮ᢜ௽ᐛ೶ᑇհመ࿓խΔঅఎՀ፿ଃፖᠧಛࠠໂᒵڇऱ೓෣፿ଃಛᇆΔڶ

೓෣፿ଃհխտ௽ᐛ೶ᑇࠄലຍ׊ࠀऱխտ௽ᐛ೶ᑇ(intermediate feature)Δࢤ௽ףઌࢤ
ಝᒭګԫิᒘ᡻(codebook)Δڼԫ೓෣፿ଃᒘ᡻ΔՕીՂזאױ।೓෣፿ଃڇխտ௽ᐛ
೶ᑇऱ௽ࢤΖྒྷڇᇢ፿ଃֱ૿Δኙޢ࣍ԫ؁ܶᠧಛऱྒྷᇢ፿ଃΔ೗๻ࠡছጤຝ։੡ొᠧ

ಛΔྥ৵ലຍ੄ొᠧಛ᠏ང۟Ղ૪ऱխտ௽ᐛ೶ᑇΔ࣍ط೓෣፿ଃፖొᠧಛڇխտ௽ᐛ

೶ᑇ഑ࠠڶᒵࢤઌף(linearly additive)ऱ௽ࢤΔڼڂലຍొࠄᠧಛऱխտ௽ᐛ೶ᑇऴ൷
ᒵࢤઌ٣࣍ףছಝᒭړऱ೓෣፿ଃऱޢଡᒘڗՂΔঁ൓ࠩԱז।ᠧಛ፿ଃ(noisy speech)
խտ௽ᐛ೶ᑇڇ।೓෣፿ଃፖᠧಛ፿ଃזխտ௽ᐛ೶ᑇऱᒘ᡻Ζ່৵Δലຍࠟิ։ܑڇ

഑խऱᒘڗ᠏ང۟ଙ᙮ᢜ഑Δࢬ൓ऱࠟิଙ᙮ᢜ௽ᐛᒘ᡻Δ༉ጠ੡ဠᚵᠨຏሐᒘ᡻Ζ 
Κ࣍ڇរٵऄऱࠟଡլمऱᒘ᡻৬ࡨऄΔፖ଺مऱᒘ᡻৬ڤߜޏנ༽ࢬᓵ֮խءڇ    
(1) ലಝᒭ፿ற஄ᇙڶࢬऱ೓෣፿ଃಛᇆΔ֮شܓ٣᣸[1]ࢬ༼հ፿ଃೠྒྷݾ๬(voice 
activity detection, VAD)ೠྒྷנ፿ଃ(speech)ፖᙩଃ(silence)ګ։Δྥ৵شࠌ׽፿ଃຝ։ऱ
խտ௽ᐛ೶ᑇࠐಝᒭ೓෣፿ଃऱᒘ᡻Ζۖڇ଺ࡨऱֱऄᇙΔႛਢآشࠌՂ૪๠෻ऱ೓෣

፿ଃಛᇆհխտ௽ᐛಝᒭᒘ᡻Ζ 
(2) լٵऱᒘڗ௅ᖕࠡො።ऱ௽ᐛၦΔਐࡳլٵऱᦞૹ(weight)Δٍܛො።ለڍၦ௽ᐛऱ
ᒘڗΔ۾ࢬऱᦞૹՈ༉ყՕΔڼრ࠺ထޢଡᒘڗऱנ෼ᖲ෷ࠀլઌٵΖຍࠄᦞૹشאױ

ޢऱֱऄᇙΔࡨ଺ڇ壄ᄷऱ௽ᐛอૠၦΖۖޓ๵֏ऄᇙΔ۷ྒྷإ৵ᥛऱ௽ᐛอૠܗᚥࠐ

ଡᒘآڗ๯ᓿղᦞૹΔࠡឆܶԱޢଡᒘڗऱנ෼ᖲ෷ਢ݁࿛(uniform)ऱΖ 

 መ࿓Κمဠᚵᠨຏሐᒘ᡻հ৬ڼଚᇡ૪ݺՀΔא

೓෣ಝᒭ፿றנ๬[1]೴ሶݾԫ؁೓෣፿றΔຘመ፿ଃೠྒྷޢଚ٣ല፿ற஄խݺ    
խΔ᥆࣍፿ଃ೴੄ऱຝٝΔྥ৵ᆖطමዿଙ᙮ᢜ௽ᐛ೶ᑇ (mel-frequency cepstral 
coefficients, MFCC)ឯੌ࠷࿓ऱছתຝΔലڼ᥆࣍፿ଃ೴੄ऱຝٝΔ᠏ངګԫխտ௽ᐛ
ଖΔՈ༉ਢؓנխտ௽ᐛ੡මዿៀंᕴհᙁڼ٨Δݧၦ(intermediate feature vector)ऱٻ
ᒷ֏৵հᒵࢤ᙮ᢜ(linear spectrum)Δຍطࠄ೓෣፿றࢬ൓ऱխտ௽ᐛٻၦΔຘመٻၦၦ
֏(vector quantization, VQ)৵Δ৬مԫิܶץM ଡᒘڗऱႃٽΔא | 1x n n M ࠐ

।قΔٵழΔࠡኙᚨऱᦞૹ੡ | 1
n
w n M Ζຍิڇխտ௽ᐛ೶ᑇ഑Ղऱ೓෣፿ଃ

ᒘ᡻հڶࢬᒘڗΔط٦MFCCឯੌ࠷࿓ऱ৵תຝ᠏ང۟ଙ᙮ᢜ഑ΔڕՀقࢬڤΚ 

                               [ ] [ ]x n f x n  (3.1)ڤ                          

ࠡխ (.)f ΔڼڂΔݧ।᠏ང࿓ז , | 1
n

x n w n M ੡᠏ང۟ଙ᙮ᢜऱᒘ᡻֗ᦞૹ

ଖΔຍ༉ਢ೓෣፿ଃऱଙ᙮ᢜᒘ᡻֗ᦞૹଖΖ 

ኙᚨ۟ᇠم৬ࠐΔڗխտ௽ᐛ೶ᑇ഑Ղऱᒘڇ೓෣፿ଃط៶ଚݺᠧಛ፿ଃֱ૿Δڇ    
੄ܶᠧಛհྒྷᇢ፿ଃऱᒘ᡻Ζݺଚലޢԫྒྷᇢ፿ଃ۷ྒྷࠩऱొᠧಛΔڇխտ௽ᐛ೶ᑇ഑

ΰᒵࢤ᙮ᢜ഑αՂشԫิٻၦ | 1n p p P խտڇ೓෣፿ଃፖొᠧಛ࣍طΔق।ࠐ

௽ᐛ೶ᑇ഑Ղࠠڶᒵࢤઌףऱ௽ࢤΔڼڂᠧಛ፿ଃऱᒘױڗ।ګقՀڤΚ 

                         
( 1)

| ,
m n P p

y m x n n p  (3.2)ڤ                 

່৵Δᣊ(3.1)ڤۿΔݺଚലy m ᆖط MFCC ឯੌ࠷࿓৵תຝ᠏ང۟ଙ᙮ᢜ഑ΔڕՀڤ
 Κقࢬ

                               ( ),y m f y m  (3.3)ڤ                        
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ଡyޢΔ؆ڼ m ऱᦞૹଖ
m
v ঞ๻ࡳ੡Κ 

                              
( 1)

,
n

m m n P p

w
v

P
!(3.4)ڤ!!!!!!!!!!!!!!!!!!!!!!

Δyڼڂ m հᦞૹΰܛ
m
v αਢࠡኙᚨऱ೓෣፿ଃᒘڗx n հᦞૹ

n
w ऱ

1

P
ΔࠡխP ਢ

ొᠧಛٻၦ [ ]n p ऱଡᑇΖਚ [ ], | 1
m

y m v m MP ঁਢז।؁ڼᠧಛ፿ଃڇଙ᙮ᢜ

഑Ղऱᒘ᡻֗ᦞૹଖΖ ,
n

x n w ፖ ,
m

y m v ຍࠟิ։ܑז।೓෣ಝᒭ፿ଃፖᠧಛྒྷ

ᇢ፿ଃऱᒘڗΔݺଚጠհ੡ဠᚵᠨຏሐᒘ᡻Ζࢬᘯဠᚵऱრ৸Δਢڂ੡ᠧಛ፿ଃऱᒘ᡻

 ൷൓ࠩऱΖၴࢬ೓෣፿ଃᒘ᡻ፖొᠧಛ۷ጩଖطᠧಛ፿ଃ൓ࠩΔۖਢᆖطլਢऴ൷ࠀ
ΰԲαᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬ 
    ຍԫᆏխΔݺଚലտฯᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬Ζڇছ૿མ༼ࠩΔڼᣊإ๵֏ݾ
๬Δਢٵழಾኙ೓෣፿ଃፖᠧಛ፿ଃଙ᙮ᢜ௽ᐛ೶ᑇ܂๠෻Ζۖڇຍᇙऱᒘ᡻ڤ௽ᐛ೶

ᑇإ๵֏ݾ๬Δਢ៶ڇطছԫᆏխ༴૪ऱဠᚵᠨຏሐᒘ᡻Δࠐ৬م௽ᐛհอૠၦΔၞۖ

ኙ௽ᐛ೚إ๵֏ΖຍԿጟ௽ᐛ೶ᑇإ๵֏ݾ๬։ܑ੡Κଙ᙮ᢜؓ݁௣װऄ(CMS)Εଙ᙮
ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(CMVN)Εፖଙ᙮ᢜอૠቹ࿛֏ऄ(HEQ)Ζኙ࣍CMSፖCMVN
૪հᒘ᡻ፖᦞૹࢬছԫᆏشܓଚݺΔߢۖ ,

m
x m w ፖ ,

m
y m v Δૠጩנ։ܑז।೓

෣፿ଃፖᠧಛ፿ଃ௽ᐛऱ२ۿอૠଖΔڕՀقࢬڤΚ!

,

1

( [ ]) ,

N

X i n i

n

w x n !
222

, ,

1

[ ] .

N

X i n X ii

n

w x n          (3.5)ڤ!!!!!!!!!!!!!!!!!!

,

1

( [ ]) ,

NP

Y i m i

m

v y m  
222

, ,

1

[ ] .

NP

Y i m Y ii

m

v y m  (3.6)ڤ                  

ࠡխ( )
i
u ၦuհรiፂΔٻ।ٚრז

,X i
ፖ 2

,X i
։ܑז।೓෣፿ଃ௽ᐛٻၦxรiፂऱؓ݁

ଖፖ᧢ฆᑇΙ
,Y i
ፖ 2

,Y i
։ܑז।ᠧಛ፿ଃ௽ᐛٻၦyรiፂऱؓ݁ଖፖ᧢ฆᑇΔࡉհছ

֮᣸[5-7]խऱֱऄࣔ᧩஁ฆ࣍ڇΔݺࠥڼଚشࢬऱอૠଖ(ؓ݁ଖፖ᧢ฆᑇ)ਢףאᦞؓ
݁(weighted average)ऱྒྷࢬڤݮ൓Δۖॺ[5-7]խհ݁֌ؓ݁(uniform average)ऱڤݮΖ !

!!!!ᒘ᡻ڤଙ᙮ᢜؓ݁௣װऄ(codebook-based cepstral mean subtraction, C-CMS)Δਢኙ
ଙ᙮ᢜ௽ᐛհؓ݁ଖإ܂๵֏๠෻Δࠡᑇᖂ।ڕڤقՀΚ 

                      
, ,

( ) ( ) , ( ) ( ) .
i i X i i i y i
x x y y  (3.7)ڤ               

ࠡխxፖy։ܑ੡೓෣፿ଃ௽ᐛxፖᠧಛ፿ଃ௽ᐛyڇᆖመ C-CMS๠෻৵ऱᄅ௽ᐛଖΖ 

    ۖᒘ᡻ڤଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ (codebook-based cepstral mean and 
variance normalization, C-CMVN)Δਢಾኙଙ᙮ᢜ௽ᐛհؓ݁ଖፖ᧢ฆᑇ೚إ๵֏๠෻Δ
ࠡᑇᖂ।ڕڤقՀΚ 

                     , ,

, ,

( ) ( )
( ) , ( ) .

i X i i Y i

i i

X i Y i

x y
x y  (3.8)ڤ               

ࠡխxፖy։ܑ੡೓෣፿ଃ௽ᐛxፖᠧಛ፿ଃ௽ᐛyᆖመ C-CMVN๠෻৵ऱᄅ௽ᐛଖΖ 

    ່৵Δᒘ᡻ڤଙ᙮ᢜอૠቹ࿛֏ऄ(codebook-based!cepsteral!histogram equalization, 
C-HEQ)Δࠡഗ܂ءऄਢشܓ ,

n
x n w ፖ ,

m
y m v ࠟ୚ᒘ᡻։ܑૠጩנ೓෣፿ଃ௽ᐛ

ፖᠧಛ፿ଃ௽ᐛհޢԫፂհ२ۿऱᖲ෷։܉(probability distribution)Δྥ৵ޣԫ᠏ངࠤ
ᑇΔࠌԲृհޢԫፂ௽ᐛ೶ᑇհᖲ෷։܉ઃሓ२࣍ਬԫࡳ٣ࠃᆠհ೶ەᖲ෷։܉Ζࠠ᧯
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!Հ༴૪Κڕऄ܂

೗๻ݺଚ෼ط៶ڇᒘ᡻ [ ],
n

x n w ৬مร iፂ೓෣፿ଃ௽ᐛ( )
i
x ऱีᗨയ৫ࠤᑇΔ࣍طᒘ

᡻ߪءრ࠺ထᠦཋऱڤݮΔૉݺଚ೗๻ร ix ኙᚨհᙟᖲ᧢ᑇ੡ߪء i
X Δঞ

i
X ऱᖲ෷

ᔆၦࠤᑇ(probability mass function)شױՀڤ।قΚ 

                             [ ] ,
i ni

P X x n w  (3.9)ڤ                     

ۖ
i
X ऱᖲ෷യ৫ࠤᑇ(probability density function, pdf)ΔאױܛՀڤ।قΚ!

!!!!!!!!!!!!!!!!!!!!!!!!!!
1

( ) [ ] ;
i

M

X n i

n

f x w x x n  (3.10)ڤ!!!!!!!!!!!!!!!!!!

ࠡխ ੡໢ۯ౧ᓢ(unit impulse)ࠤᑇΔਚ
i
X հᖲ෷։܉Δࢨጠ੡ีᗨᖲ෷യ৫ࠤᑇ

(cumulative density function)Δ੡Ղڤ ( )
i
X
f x հᗨ։Δ।ڕقՀΚ!

!!!!!!!!!!!!!!!!!!!
1

( ) [ ] ;
i

M

X i n i

n

F x P X x w u x x n  (3.11)ڤ!!!!!!!!!!!!

ࠡխu x ੡໢ޡۯၸࠤᑇ(unit step function)Δࡳᆠ੡Κ!

!!!!!!!!!!!!!!!!!!!!!!!!!!!

1, 0

0, 0
{

x

x

u x  (3.12)ڤ!!!!!!!!!!!!!!!!!!!!!!!

Δรڼڂ iፂ೓෣፿ଃ௽ᐛ ix հᖲ෷։܉ঞ(3.11)ڤطױऱ ( )
i
X
F x ।قΔٵ෻Δ៶طᒘ

᡻ [ ],
m

y m v ৬مհรiፂᠧಛ፿ଃ௽ᐛ
i
y ऱᖲ෷։طױ܉Հڤ।قΚ 

!!!!!!!!!!!!!!!!!!!
1

[ ] ;
i

MP

Y i m i

m

F y P Y y v u y y m  (3.13)ڤ!!!!!!!!!!!!!

ऄ൓ࠩ܂Ղ૪ط ( )
i
X
F x ፖ

i
Y
F y հ৵Δ௅ᖕଙ᙮ᢜอૠቹ࿛֏ऄ(HEQ)ऱ଺෻Δݺଚܓ

๵֏รiፂհಝᒭ೓෣፿ଃ௽ᐛإ։ܑڤՀ૿ࠟش ix ፖྒྷᇢᠧಛ፿ଃ௽ᐛ i
y Κ!

!!!!!!!!!!!!!!!!!!!!!!!!!!! 1

i
iN Xi

x F F x  (3.14)ڤ!!!!!!!!!!!!!!!!!!!!!-

                           1
( )

i
N Y ii

y F F y  (3.15)ڤ                      .

ࠡխ
N
F ੡ԫ೶ەᖲ෷։܉(ຏൄ੡ᑑᄷൄኪ։܉)Δ 1

N
F ੡

N
F ऱ֘ࠤᑇΔxፖyঞ

੡ᆖC-HEQإ๵֏৵ऱᄅ௽ᐛଖΖ 
 
    ጵאٽՂࢬ૪Δڇመװऱᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬խΔشࢬऱᒘڗਢشܓ଺آࡨ
։੄հ೓෣ಛᇆ௽ᐛಝᒭۖ൓Δޢ׊ଡᒘڗऱֺૹઃઌٵΔۖڇຍᇙנ༽ࢬऱڤߜޏᒘ

᡻৬مऄՂΔݺଚᚨش፿ଃೠྒྷݾ๬٣ല೓෣፿ଃಛᇆխऱ፿ଃ೴੄ፖॺ፿ଃ೴੄೴ሶ

ᓿؾො።ऱ௽ᐛᑇࢬڗऱᒘٵΖ൷ထΔ௅ᖕլڗ፿ଃ೴੄ऱ௽ᐛಝᒭᒘشܓΔྥ৵ࠐנ

ղઌኙհᦞૹ(weight)ΔڼڂΔຍࠄᒘࢬڗૠጩנऱ፿ଃ௽ᐛอૠଖࢨᖲ෷։܉Δᚨᅝ
࿇୶ऱᒘ᡻ࢬᒘ᡻ڤߜޏڼط៶ร؄ີऱኔ᧭࿨࣠խΔലᢞࣔڇΖࢤ।ז੡壄ᒔۖࠠޓ

!ऱᙃᢝய࣠Ζړޓ๵֏ऄΔ౨ᛧ൓إ௽ᐛ೶ᑇڤ

!

؄Εิڤٽ௽ᐛ೶ᑇإ๵֏ݾ๬ 
    ছԫີ༼ࠩΔឈྥᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ऄհ।෼ཏሙֺᖞ੄ڤऱֱऄࠐऱړΔ׊
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ࠠໂԱܛழሎጩऱᚌរΔױࠡ܀౨ऱ౒រొ࣍ڇᠧಛᇷಛլߩΔᖄીࢬ൓ऱᠧಛ፿ଃᒘ

᡻լജ壄ᄷΖڼڂΔݺີءଚಾኙՂ૪౒រΔ༼ڤٽิנऱ௽ᐛ೶ᑇإ๵֏ݾ๬Δ១໢

հ௽ᐛอૠ࠷ޣࢬऄֱڤፖᖞ੄ڤտฯऱᒘ᡻ࢬԱհছٽऄխΔᖞֱࠄຍڇଚݺᎅΔࠐ

௽ࢤΔݦඨ൓ࠩޓ壄ᒔऱอૠଖࠐച۩ٺጟ௽ᐛإ๵֏ऄΖຍֱࠄऄΔݺଚอጠ੡ิٽ

ऄװଙ᙮ᢜؓ݁௣ڤٽଚঁኙิݺՀࠟ՛ᆏΔא๵֏ऄΖإ௽ᐛ೶ᑇ(associative)ڤ
(associative CMS, A-CMS)Εิڤٽଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(associative CMVN, 
A-CMVN)ፖิڤٽଙ᙮ᢜอૠቹ࿛֏ऄ(associative HEQ, A-HEQ)։ܑ܂տฯΖ 
ΰԫαิ ଙ᙮ᢜؓ݁ଖፖ᧢ฆڤٽऄ(associative CMS, A-CMS)ፖิװଙ᙮ᢜؓ݁௣ڤٽ
ᑇإ๵֏ऄ(associative CMVN, A-CMVN) 

    ຍԫᆏխല։ܑտฯ A-CMS ፖ A-CMVN ࠟጟ௽ᐛ೶ᑇإ๵֏ऄΖݺଚ៶طԫ೶
ᑇଖ ऱᓳᖞΔᔞᅝچᖞٽᒘ᡻ፖᖞ੄௽ᐛհอૠᇷಛΔݦඨ౨ሒࠩለࠋհᙃᢝய࣠Ζ

༉ᖞ੄፿؁(utterance)ऱ௽ᐛۖߢΔ೗๻
1 2
, ,...,

N
X X X X ੡ԫ੄ಝᒭྒྷࢨشᇢش፿

ଃࢬڇឯࠩ࠷ऱਬԫፂଙ᙮ᢜ௽ᐛ೶ᑇ٨ݧΔঞࠡᖞ੄ڤհ௽ᐛऱؓ݁ଖፖ᧢ฆᑇطױ

Հࠟڤૠጩۖ൓Κ 

                                 
1

1
,

N

u i

i

X
N

 (4.1)ڤ                       

                              22

1

1
,

N

u i u

i

X
N

 (4.2)ڤ                   

ࠡխ
u
੡ᖞ੄ڤհ௽ᐛؓ݁ଖΔ 2

u
੡ᖞ੄ڤհ௽ᐛ᧢ฆᑇΔN ੡ᖞ੄፿ଃऱଃ௃ᑇΖ 

ᒘ᡻Ղऱ௽ᐛֱ૿Δ೗๻ڇۖ    
1 2
, ,...,

M
C C C C ੡ٵԫ੄፿ଃኙᚨࠩऱٺᒘڗ

(codewords)ऱਬԫፂ(ፖছԫ੄ࢬ૪հፂଖઌٵ)հႃٽΔঞڼ੄፿ଃ௽ᐛհᒘ᡻ڤऱؓ
݁ଖፖ᧢ฆᑇطױՀࠟڤૠጩۖ൓Κ 

                                 
1

,

M

c j j

j

w C  (4.3)ڤ                        

                             2 2 2

1

,

M

c j j c

j

w C  (4.4)ڤ                       

ࠡխ
c
੡ᒘ᡻ڤհ௽ᐛؓ݁ଖΔ 2

c
੡ᒘ᡻ڤհ௽ᐛ᧢ฆᑇΔ

j
w ੡ޢԫᒘࢬڗኙᚨࠩऱ

ᦞૹΔM ੡ᒘڗᑇؾΖ 

ऱ௽ᐛ೶ᑇհؓ݁شࠌࢬऄ(associative CMS, A-CMS)խΔװଙ᙮ᢜؓ݁௣ڤٽΔิڼڂ
ଖ

a
ΔطױՀڤૠጩۖ൓Κ 

                          1
a c u

 (4.5)ڤ                     ,

ࠡխ
u
ፖ

c
։ܑ(4.1)ڤڕፖقࢬ(4.3)ڤΔۖ ੡ԫᦞૹଖΔ0 1Ζ 

!੡Κق।ױΔA-CMS๠෻৵ऱᄅ௽ᐛ೶ᑇΔڼڂ

      A-CMS:       , 1 .
i i a
X X i N  (4.6)ڤ                       

ऱ௽شࠌࢬ๵֏ऄ(associative CMVN, A-CMVN)խΔإଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇڤٽิۖ
ᐛ೶ᑇհؓ݁ଖ

a
ፖ᧢ฆᑇ 2

a
ΔطױՀ૿ࠟڤૠጩۖ൓Κ!

                          1 ,
a c u

 (4.7)ڤ                     
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                    2 2 2 2 2 2
1

a c c u u a
 (4.8)ڤ            ,

ࠡխ
u
Ε

c
Ε 2

u
ፖ 2

c
։ܑ(4.1)ڤڕΕ(4.3)ڤΕ(4.2)ڤፖقࢬ(4.4)ڤΔۖ ੡ԫᦞૹଖΔ

0 1Ζ 
A-CMVN๠෻৵ऱᄅ௽ᐛ೶ᑇΔױ।ق੡Κ!

A-CMVN:                   i a

i

a

X
X  (4.9)ڤ                         

Δנ઎᧩ࣔױ(4.8)ڤፖ(4.7)ڤΕ(4.5)ڤط ऱՕ՛ެࡳԱิֱڤٽऄխΔشࠌᒘ᡻ڤอ

ૠၦፖᖞ੄ڤอૠၦऱֺࠏΖᅝ 1ழΔA-CMSࢨA-CMVNܛ੡଺ࡨհᒘ᡻ڤ
CMS(C-CMS)ࢨᒘ᡻ڤCMVN(C-CMVN)Δઌ֘چΔᅝ 0ழΔA-CMSࢨA-CMVNܛ
੡଺ࡨհᖞ੄ڤCMS(U-CMS)ࢨᖞ੄ڤCMVN(U-CMVN)Ζ!
!

ΰԲαิڤٽଙ᙮ᢜอૠቹ࿛֏ऄ(associative HEQ, A-HEQ) 

 ,อૠቹ࿛֏ऄ(associative histogram equalizationڤٽଚലտฯิݺຍԫᆏխΔڇ    
A-HEQ)Δᣊۿհছऱᨠ࢚Δݺଚᇢထᖞٽ໢ԫ፿؁(utterance)௽ᐛ֗ࠡኙᚨհᒘٽิڗ
(codebook)ֱࠟऱอૠᇷಛΔྥ৵৬ዌנԫז।ڼ፿؁௽ᐛऱᖲ෷։܉
X
F x P X x Δ܂א੡ HEQऄ࿛֏௽ᐛشࢬΖאՀΔݺଚ༴૪ A-HEQച۩ޡᨏΚ 

    ೗๻ਬԫৱإ๵֏ऱ଺፿؁հ௽ࡳԫፂऱ௽ᐛ٨ݧ੡
1 2
, ,...,

N
X X X Δࠡ խN ੡ڼ

੡قΔ।ڗԫፂऱᒘٵ٨հ௽ᐛ᜔ᑇΔۖࠡኙᚨࠩհݧ
1 2
, ,...,

M
C C C Δᦞૹ੡

1 2
, ,...,

M
w w w ΔࠡխM ੡ᒘڗᑇؾΖଈ٣Δݺଚ๻ࡳԫ೶ᑇ )0 *Δڼ೶ᑇ

੡ؾԫิᑇسଚขݺΖ൷ထΔࠏᇷಛऱֺڤᖞ੄شࠌ࣍ᇷಛઌኙڤᒘ᡻شࠌ।Աז N

ऱᄅ௽ᐛ
k
C Δิڼᄅ௽ᐛਢطᒘڗ

m
C ௅ᖕࠡᦞૹଖ

m
w ऱΔᄅ௽ᐛم৬ࢬ

k
C խ

ڶ [ ]
m

N w ଡ௽ᐛऱଖࡉ
m
C )Δٵ٤ઌݙ [ ]

m
N w ।ז

m
N w ؄ඍնԵ৵ऱ࠷

ଖ)ΔངߢհΔᄅ௽ᐛ
k
C ੡ԫิᖞٽԱᦞૹଖऱᄅᒘڗΔᅝ଺ᒘڗ

m
C ࠡᦞૹଖ੡

m
w

ழΔ،༉ᄎڇᄅ௽ᐛ
k
C խנ෼[ ]

m
N w ੡ٽႃڗΔ೗๻଺ᒘڕࠏΔڻ 3,5,7 Δኙᚨ

հᦞૹ੡ 0.2,0.5, 0.3 Δঞᅝ೗๻ᄅ௽ᐛ
k
C ऱ᜔ᑇ੡ 20 ழΔ

k
C ༉ץਔԱ 4 ଡ

3 (20 0.2 4)Δ10 ଡ 5 (20 0.5 10)ፖ 6 ଡ 7 (20 0.3 6)ΔڼڂΔ
k
C ੡ܛ

10 6

{3, 3, 3, 3,5, 5, 5,..., 5, 7, 7, 7,..., 7}

ˇଡ ଡ ଡ

ΰኔᎾՂΔ؄࣍طඍնԵऱᣂএΔ່ ৵൓ࠩऱᄅ௽ᐛ
k
C

᜔ࠡᑇױ౨լᄎ৾ړਢ N Δړ৾ܛ੡଺፿؁௽ᐛᑇؾN ऱ ଍αΖ!

൷ՀࠐΔݺଚ༉ല଺፿؁௽ᐛ
1 2
, ,...,

N
X X X ፖז।ᒘڗऱᄅ௽ᐛ

1 2
, , ...,

N
C C C

ۭᜤದࠐΔࡳެٵ٥ԫิז।ڼ፿؁௽ᐛऱᖲ෷։܉Κ!

!!!!!!!!!!!!!!!!
1 1

1
,

1

NN

X n k

n k

F x u x X u x C
N

 (4.10)ڤ!!!!!!!!

່৵Δشܓ HEQऱ଺෻Δݺଚല଺፿؁௽ᐛإ๵֏ΔڕՀقࢬڤΚ 

    A-HEQ:                   1

N X
x F F x  (4.11)ڤ                        

ࠡխ
N
F ੡೶ەհᖲ෷։܉Δx੡଺ࡨ௽ᐛ೶ᑇ(ܛছ૿༼ࠩऱ

1 2
, ,...,

N
X X X )Δxܛ੡

A-HEQऄࢬ൓հᄅ௽ᐛ೶ᑇΖ 
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܉Δ଺፿ଃ௽ᐛհᖲ෷։נ઎ױ(4.10)ڤط
X
F x ᖞ؁௽ᐛط

n
X ፖᄅᒘڗ௽ᐛ

k
C ٥

પ੡ؾ੡NΔ৵ृᑇؾΔছृᑇࡳެٵ N Δڼڂ೶ᑇ Օ՛ެࡳԱA-HEQխΔᄅᒘڗ
௽ᐛ

k
C ኙ

X
F x ऱᐙ᥼࿓৫Δᅝ 0ழΔઌᅝ࣍ᒘ૿ֱڗऱᇷಛ٤ݙ๯࢙ฃΔA-HEQ

HEQऄ(U-HEQ)Δۖᅝڤտฯհᖞ੄ࢬ੡଺٣᧢ܛ ৰՕ) *ழΔ଺٣፿؁ऱ௽

ᐛ
n
X հᇷಛঞ༓׏๯ઊฃΔঞڼழA-HEQܛ᝟२࣍଺ࢬ٣տฯհᒘ᡻ڤHEQ 

(C-HEQ)Ζ!
տࢬԱছࠟີٽழᖞٵ๬ݾ๬Δຍᣊݾ֏๵إ௽ᐛڤٽଚտฯԱิݺຍԫີխΔڇ    
ฯհᖞ੄ڤፖᒘ᡻ݾڤ๬شࢬऱ௽ᐛอૠᇷಛΔຘመ(4.5)ڤΕ(4.7)ڤΕ(4.8)ڤፖ(4.10)ڤ
խհ೶ᑇ ፖ ऱᓳᖞΔݺଚאױᐘࢬֱࠟࡳެچࢤ൓հอૠᇷಛऱֺࠏΖڇՀԫີऱ

ኔ᧭࿨࣠Δݺଚല઎ࠩຍᣊิڤٽ௽ᐛإ๵֏ݾ๬౨൅ړޓࠐऱ፿ଃᙃᢝ壄ᒔ৫Ζ 
 

նΕᙃᢝኔ᧭࿨࣠ፖઌᣂಘᓵ 
Δۖڤอய౨ऱေ۷ֱߓऱ፿ଃᇷற஄ፖشࠌࢬᓵ֮Ղءڇਢտฯࡨၲີء     ৵ऱփ

୲੡ءᓵ֮ࢬ༼֗հٺጟൎ೜ࢤ፿ଃ௽ᐛ೶ᑇݾ๬հᙃᢝኔ᧭Δࠡઌᣂ࿨࣠ፖಘᓵΖ 
ΰԫα፿ଃᇷற஄១տ 
ᄎ࠰ऱ፿ଃᇷற஄੡ᑛ੊ሽॾᑑᄷشࠌᓵ֮ء     (European Telecommunication 
Standard InstituteΔETSI)࿇۩ऱAURORA 2፿ଃᇷற஄[8]Δփ୲ਢຑᥛऱ૎֮ᑇۭڗڗΔ
ࠡխਢאભഏߊڣګՖࢬᙕ፹ऱ೓෣ᛩቼຑᥛᑇڗ፿ଃΔྥ ৵ףՂԱԶጟլٵऱࢤګף

ᠧಛፖຏሐயᚨΖຍࢤګףࠄᠧಛ։ܑ੡ΚچՀᥳ(subway)ΕԳऱትᠧᜢ(babble)Ε߫޳
(car)Ε୶ᥦᄎ(exhibition)Ε塊ᨚ(restaurant)Εဩሐ(street)Εᖲ໱(airport)Εీ߫־(train station)
࿛ᛩቼᠧಛ٥ૠԶጟΔۖຏሐயᚨࠟڶጟΔ։ܑ੡G712ፖMIRS[9]Ζ 
ᓵ֮ء࣍طऱྒྷᇢᛩቼΔٵऱಝᒭᛩቼ֗ԿጟլٵጟլࠟڶAURORA 2ᇷற஄ᇙڇ    
 ।ԫհԫጟಝᒭᛩቼፖࠟጟྒྷᇢᛩቼΖࠩشࠌ׽ຍᇙΔڇڼڂᠧಛ೚ಘᓵΔࢤګףಾኙ׽
ΰԲαኔ᧭๻ࡳ 
ऱ௽ᐛ೶ᑇ੡13ፂΰร0ፂ۟ร12ፂαऱමዿଙ᙮ᢜএᑇشࠌࢬᓵ֮խء    
(mel-frequency cepstral coefficients, MFCC)ΔףՂࠡԫၸࡉԲၸ஁ၦΔ᜔٥੡39ፂऱ௽ᐛ
೶ᑇΖᑓীऱಝᒭਢشࠌឆ៲֛ױ್ڤᑓীՠࠠ(Hidden Markov Model ToolkitΔHTK)[10]
� ,ᑓী(oh, zero, oneڗ11ଡᑇسಝᒭΔขࠐ…., nine)ፖԫଡᙩଃᑓীΔޢଡᑇڗᑓীܶץ
16ଡणኪΔޢଡणኪ20ܶץଡ೏ཎയ৫෗ٽΖ 
ΰԿαٺጟൎ೜ݾࢤ๬հᙃᢝ࿨࣠ፖಘᓵ 
 ๵֏ऄऱᙃᢝ࿨࣠إ௽ᐛڤհᒘ᡻ߜޏ .1    
ଙڤᒘ᡻࣍شΔ։ܑᚨݧ࿓مհᄅऱᒘ᡻৬נ༽ࢬᓵ֮ءଚലտฯݺຍԫᆏխΔڇ    
᙮ᢜؓ݁௣װऄ(C-CMS)Εᒘ᡻ڤଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(C-CMVN)ፖᒘ᡻ڤ
ଙ᙮ᢜอૠቹ࿛֏ऄ(C-HEQ)ऱᙃᢝ࿨࣠Ζݺଚ᧢೯ࢬሎشऱᒘڗᑇؾM Δ։ܑ๻੡
16Ε64ፖ256ΔࠐᨠྒྷࠡயᚨΖኙొ࣍ᠧಛऱ۷ྒྷଖ [ ],1n p p P Δݺଚਢޢאԫ੄

ྒྷᇢ፿ଃऱছ10ଡଃ௃܂੡ొᠧಛଃ௃ऱז।Δܛ 10P ΖאՀΔ।ԲΕ।Կፖ।؄

։ܑ੡ᄅऱᒘ᡻৬م࿓ࢬݧ൓հC-CMSΕC-CMVNፖC-HEQڇլٵᒘ᡻ᑇM հՀࢬ൓
ऱؓ݁ᙃᢝ෷ΰ20dBΕ15dBΕ10dBΕ5dBፖ0dBնጟಛᠧֺՀऱᙃᢝ෷ؓ݁αΔARፖRR
։ܑ੡ઌለ࣍ഗ៕ኔ᧭࿨࣠հ࿪ኙᙑᎄ૾܅෷(absolute error rate reduction)ࡉઌኙᙑᎄ
"ף।խࠄຍڇ෷(relative error rate reduction)Ζ܅૾ "ᑑಖृ(C-CMS C-CMVNࢨ *Δ
ঞ੡଺ࡨᒘ᡻৬م࿓ࢬ[7-5]ݧኙᚨհC-CMSࢨC-CMVNऄΔۖU-CMSΕU-CMVNፖ
U-HEQ։ܑ੡ᖞ੄ڤCMSΕCMVNፖHEQΖॵ൅ԫ༼ऱਢΔ࣍ط଺ࡨᒘ᡻௽ᐛإ๵֏
ऄऱ֮᣸[5-7]ᇙΔ׽༼֗C-CMSፖC-CMVNΔآࠀտฯC-HEQΔڇڼڂ।؄խΔݺଚ
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 ለΖֺ܂HEQ(U-HEQ)ऱய౨ڤലᄅऱC-HEQፖᖞ੄׽
 

।ԫΕኔ᧭شࢬհAurora-2፿ற஄ઌᣂᇷಛ 

AURORA2፿ଃᇷற஄ 

 ᑌ᙮෷ 8kHz࠷

፿ଃփ୲ ૎֮ᑇڗ 0Д9(zero, one, two, three, four, five, six, seven, eight, nine, 
oh)Δ٥ 11ଡଃΖ 

፿ଃ९৫ ޢԫ੄፿ଃܶץլ၌መԮଡऱ૎֮ᑇڗ 

ಝᒭ፿ற ؁ᑇΚ8440؁ 
ኹᗨࢤᠧಛΚG712ຏሐΙࢤګףᠧಛΚྤࢤګףᠧಛ 

Aิᠧಛᛩቼ Bิᠧಛᛩቼ ྒྷᇢ፿ற 

؁ᑇΚ28028؁ 
ኹᗨࢤᠧಛΚG712ຏሐ 

 ᠧಛΚࢤګף
 Հᥳᠧಛ(subway)چ
Գऱትᠧᜢᠧಛ(babble) 

 ᠧಛ(car)߫޳
୶ᥦ塢ᠧಛ(exhibition) 

ᠧಛൎ৫(signal-to-noise ratio, 
SNR)ΚcleanΕ20dBΕ15dBΕ10dBΕ

5dBΕ0dB 

؁ᑇΚ28028؁ 
ኹᗨࢤᠧಛΚG712ຏሐ 

 ᠧಛΚࢤګף
塊ᨚᠧಛ(restaurant) 
ဩሐᠧಛ(street) 
ᖲ໱ᠧಛ(airport) 

 ᠧಛ(train station)ీ߫־
ᠧಛൎ৫(signal-to-noise ratio, 

SNR)ΚcleanΕ20dBΕ15dBΕ10dBΕ
5dBΕ0dB 

 

ൕຍԿଡ।௑ऱ࿨࣠ΔݺଚױᨠኘࠩՀ٨༓រΚ 

    Ϥ1 ༉ CMS ऄۖߢΔ଺ࡨհ C-CMS(C-CMS*)ઌኙ࣍ഗ៕ኔ᧭࿨࣠ၞޡለ՛(ڇڕ
N =256ՀΔڇ Set AՀ༼֒Ա 6.00%Δڇ Set BՀ༼֒Ա 7.41%)Δࠡய࣠੷ֺ۟ᖞ੄ڤ
CMS(U-CMS)ࠐऱ஁ΔྥۖΔݺଚנ༽ࢬऱᄅ C-CMSΔঞ൅ࠐ᧩ထऱၞڇڕ)ޡN =256
ՀΔڇ Set AՀ༼֒Ա 9.54%Δڇ Set BՀ༼֒Ա 13.70%)ΔڼطᢞኔΔݺଚشࢬऱᄅऱ
ᒘ᡻৬ዌ࿓ݧᒔኔ౨ڶய༼֒ C-CMS ऱய࣠Δۖࠡ׊ய࣠ࠀլᄎᙟထᒘڗᑇؾऱՕ
՛Δۖࣔڶ᧩ऱ᧢֏Ζࠡய࣠ڇ Set AՀᚌ࣍ U-CMSΔڇ Set BՀঞฃ᎝࣍ U-CMSΔ
ຍױ౨଺࣍ڇڂΔC-CMS ڇᠧಛ۷ྒྷΔຍ܂ԫ੄፿ଃছ༓ଡଃ௃شࠌ Set B ࡳॺ᡹ڼ
(non-stationary)ᠧಛᛩቼխਢֺለլ壄ᒔऱΖ 

    Ϥ2 ༉ CMVN ऄۖߢΔ଺ࡨհ C-CMVN(ܛ C-CMVN*)ઌኙ࣍ഗ៕ኔ᧭࿨࣠ឈբڶ
Ալᙑऱᙃᢝ෷༼֒(ڇڕM =256 ՀΔڇ Set A Հ༼֒Ա 14.75%Δڇ Set B Հ༼֒Ա
18.46%)Δ܀ਢઌለ࣍ᖞ੄ڤ CMVN(U-CMVN)ۖߢΔڇM =16ፖM =64ՀΔࠡய࣠ຟ
ֺ U-CMVN ᝫ૞஁ΔྥۖΔݺଚנ༽ࢬհᄅऱ C-CMVNΔঞࣔڶ᧩ऱၞޡΔྤᓵڇ
M =16ΕM =64 Mࢨ =256 ՀΔࠡய࣠ຟֺ଺ࡨऱ C-CMVN ᝫ૞ړΔ׊༓׏ຟᚌ࣍
U-CMVN(ႛڇM =16ழΔSet Bհؓ݁ᙃᢝ෷ฃ᎝࣍ U-CMVN)ΔڼطᢞኔΔݺଚشࢬ
ऱᄅऱᒘ᡻৬ዌ࿓ݧᒔኔ౨ڶய༼֒ C-CMVN ऱய࣠Δۖࠡ׊ய࣠ࠀլᄎᙟထᒘڗऱ
Օ՛Δۖࣔڶ᧩ऱ᧢֏Ζ 

    Ϥ3 ༉ HEQऄۖߢΔC-HEQٵᑌՈ౨ڶய༼ࣙᙃᢝ෷Δྤ܀ᓵڇ AิᠧಛᛩቼՀࢨ
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BิᠧಛᛩቼՀΔࠡ ؓ݁ᙃᢝ෷ຟֺ U-HEQࠐ൓஁Δݺଚංྒྷࠡ଺ױڂ౨࣍ڇΔC-HEQ
ທۖڂ।Δז੡ొᠧಛଃ௃ऱ܂ԫ੄ྒྷᇢ፿ଃऱছ༓ଡଃ௃ޢאᠧಛऱ۷ྒྷՂΔਢొڇ

ګ൓ऱᠧಛ፿ଃᒘ᡻լജ壄ᄷΔ່ึທࢬΔᖄીߩᠧಛᇷಛլొګ C-HEQ ᙃᢝ෷ֺ
U-HEQᝫ૞஁ऱ࿨࣠Ζ 
 

।ԲΕU-CMSΕ଺ࡨC-CMS(C-CMS*)ΕፖᄅC-CMSऱؓ݁ᙃᢝ෷(%) 

Method Set A Set B average AR RR 
Baseline 71.92 67.79 69.86ʳ
U-CMS 79.37 82.47 80.92ʳ 11.07ʳ 36.71ʳ

C-CMS*(M=16) 74.21 70.81 72.51ʳ 2.65ʳ 8.81ʳ
C-CMS*(M =64) 74.03 70.74 72.39ʳ 2.53ʳ 8.39ʳ
C-CMS*(M =256) 77.92 75.20 76.56ʳ 6.71ʳ 22.24ʳ

C-CMS(M =16) 79.04 79.56 79.30ʳ 9.45ʳ 31.33ʳ
C-CMS(M =64) 80.79 80.19 80.49ʳ 10.64ʳ 35.28ʳ
C-CMS(M=256) 81.46 81.49 81.48ʳ 11.62ʳ 38.55ʳ

 

।ԿΕU-CMVNΕ଺ࡨC-CMVN(C-CMVN*)ΕፖᄅC-CMVNऱؓ݁ᙃᢝ෷ 

Method Set A Set B average AR RR 
Baseline 71.92 67.79 69.86ʳ

U-CMVN 85.03 85.56 85.30ʳ 15.44ʳ 51.22ʳ
C-CMVN*(M =16) 84.44 82.40 83.42ʳ 13.57ʳ 45.00ʳ
C-CMVN*(M=64) 84.13 81.53 82.83ʳ 12.98ʳ 43.04ʳ
C-CMVN*(M=256) 86.67 86.25 86.46ʳ 16.61ʳ 55.08ʳ

C-CMVN(M=16) 85.41 85.21 85.31ʳ 15.46ʳ 51.27ʳ
C-CMVN(M=64) 86.92 86.81 86.87ʳ 17.01ʳ 56.43ʳ

C-CMVN(M=256) 87.10 87.32 87.21ʳ 17.36ʳ 57.57ʳ
 

।؄ΕU-HEQፖᄅC-HEQऱؓ݁ᙃᢝ෷ 

Method Set A Set B average AR RR 
Baseline 71.92 67.79 69.86ʳ
U-HEQ 87.00 88.33 87.67ʳ 17.81ʳ 59.08ʳ

C- HEQ(M=16) 84.03 84.46 84.25ʳ 14.39ʳ 47.74ʳ
C- HEQ(M=64) 86.32 85.90 86.11ʳ 16.26ʳ 53.92ʳ
C-HEQ(M=256) 86.22 86.07 86.15ʳ 16.29ʳ 54.04ʳ

 
 ๵֏ऄհᙃᢝ࿨࣠إ௽ᐛ೶ᑇڤٽิ.2
๬հݾ֏๵إ௽ᐛ೶ᑇ(associative)ڤٽհิנ༽ࢬᓵ֮ءଚലտฯݺຍԫᆏխΔڇ

ᙃᢝ࿨࣠ΔຍԿጟݾ๬։ܑ੡ิڤٽଙ᙮ᢜؓ݁௣װऄ(associative CMS, A-CMS)Εิٽ
֏อૠቹ࿛ڤٽ๵֏ऄ(associative CMVN, A-CMVN)ፖิإଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇڤ
ऄ(associative histogram equalization, A-HEQ)Ζڇ A-CMSΕA-CMVNፖ A-HEQԿጟإ
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๵֏ݾ๬խΔڇ࣍طլٵऱᒘڗᑇؾN ՀΔขࠋ່سᙃᢝ෷ऱ ଖ((4.5)ڤڕΕ(4-7)ፖ
(4.8)խࢨ(قࢬ ଖ((4.10)ڤڕխقࢬ)լጐઌٵΔאڇڼڂՀऱኔ᧭ᙃᢝ࿨࣠խΔݺଚ
ऱNٵլڇ෼ܧ׽ ଖழΔࢬข݁ؓࠋ່سᙃᢝ෷հ ଖࢨ ଖհ࿨࣠Ζ 

ଈ٣Δ।ն੡ A-CMSڇᒘڗᑇؾN ։ܑ੡ 16Ε64ፖ 256ՀΔࢬ൓ࠩऱ່ࠋᙃᢝ
࿨࣠Δ੡ԱֺለದߠΔݺଚՈല।Բխऱഗءኔ᧭ΕC-CMS(M =256)ፖ U-CMSऱؓ݁
ᙃᢝ෷ڇ٨।խΖൕڼ।խΔݺଚאױᨠኘࠩאՀ༓ጟൣݮΚ 

    Ϥ1 ᑇMڗᒘڇΔྤᓵߢۖ᧭ኔءഗ࣍ऄ(A-CMS)ઌለװଙ᙮ᢜؓ݁௣ڤٽิ =16Ε
64ፖ 256ՀΔࠡؓ݁ᙃᢝ෷ઃڶՕ༏ऱၞޡΔԿृڇ AิᠧಛᛩቼՀ։ܑڶ 11.86%Ε
11.30%ፖ 10.98%ऱᙃᢝ෷༼֒Δڇ B ิᠧಛᛩቼՀ։ܑڶ 17.76%Ε16.82%ፖ 16.83%
ऱᙃᢝ෷༼֒Δױڼط઎נ A-CMSࠠڶլᙑհ௽ᐛൎ೜֏ய࣠Ζ 

Ϥ2  A-CMSٺڇጟլٵऱᒘڗᑇN հՀΔࠡؓ݁ᙃᢝ෷ઃֺ C-CMSፖ U-CMSࠐ
൓ړΔࠡխڇN =16ழ౨ࠋ່ڶऱய࣠Δڇ Aิᠧಛᛩቼፖ BิᠧಛᛩቼՀհؓ݁ᙃ
ᢝ෷։ܑ੡ 83.78%ፖ 85.55%Δઌለ࣍ C-CMS M࠷ =256 ᙃᢝ෷ΔA-CMSࠋ൓հ່ࢬ
ڇ A ิᠧಛᛩቼፖ B ิᠧಛᛩቼՀ։ܑၞޡԱ ࡉ2.32% 4.06%Δຍޡၞࠄຟ᧩قԱ
A-CMSᚌ࣍ C-CMSΖ່৵ઌለ࣍ U-CMSΔA-CMSڇ Aิᠧಛᛩቼፖ BิᠧಛᛩቼՀ
ࠡᙃᢝ෷։ܑאױ༼֒ ࡉ4.41% 3.08%Ζطڼڂኔ᧭ᑇᖕխאױᢞࣔΔઌኙ࣍ C-CMS
ፖ U-CMSۖߢΔA-CMSຟאױ൓ࠩለړऱᙃᢝ࿨࣠Δຍױ౨ਢڂ੡ A-CMSٵழᖞٽ
Ա C-CMSፖ U-CMSشࢬऱอૠᇷಛΔޓ،אࢬ౨ڶயޏ࿳፿ଃڇᠧಛՀऱൎ೜ࢤΖ 
 

।նΕU-CMSΕᄅC-CMSፖA-CMSऱؓ݁ᙃᢝ෷ 

Method Set A Set B average AR RR 
Baseline 71.92 67.79 69.86ʳ
U-CMS 79.37 82.47 80.92ʳ 11.07ʳ 36.71ʳ

C-CMS(M=256) 81.46 81.49 81.48ʳ 11.62ʳ 38.55ʳ
A-CMS(M=16, =0.5) 83.78 85.55 84.67ʳ 14.81ʳ 49.13ʳ
A-CMS(M=64, =0.6) 83.22 84.61 83.92ʳ 14.06ʳ 46.64ʳ
A-CMS(M=256, =0.6) 82.90 84.62 83.76ʳ 13.91ʳ 46.13ʳ

 
൷ထΔ।ք੡A-CMVNڇᒘڗᑇؾM ։ܑ੡16Ε64ፖ256ՀΔࢬ൓ࠩऱ່ࠋᙃᢝ࿨

࣠Δڇ।խΔݺଚՈנ٨଺।Կխऱഗءኔ᧭ΕC-CMVN(M =256)ፖU-CMVNऱؓ݁
ᙃᢝ෷ֺࠎאለΖൕڼ।խΔݺଚאױᨠኘࠩאՀ༓ጟൣݮΚ 

    Ϥ1 Mؾᑇڗᒘڇ๵֏ऄ(A-CMVN)إଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇڤٽิ =16Ε64ፖ 256
ՀΔઌለ࣍ഗءኔ᧭ۖߢΔࠡؓ݁ᙃᢝ෷ઃڶՕ༏ऱၞޏΔຍԿጟ A-CMVNڇ Aิᠧ
ಛᛩቼՀ։ܑڶ 16.19%Ε16.08%ፖ 15.43%ऱᙃᢝ෷༼֒Δڇ B ิᠧಛᛩቼՀ։ܑڶ
21.18%Ε20.77%ፖ 20.26%ऱᙃᢝ෷༼֒Δאױڼط࿇෼ A-CMVNᒔኔ౨૾ࢤګף܅ᠧ
ಛኙ፿ଃ௽ᐛऱեឫΔۖ༼֒ᙃᢝ壄ᒔ৫Ζ 
    Ϥ2  A-CMVNٺڇጟᒘڗᑇNऱൣݮՀΔࠡؓ݁ᙃᢝ෷ઃֺC-CMVNΕU-CMVNࠐ
൓ړΔࠡխאN =16ழ।෼੡່ࠋΔڇAิᠧಛᛩቼፖBิᠧಛᛩቼՀհؓ݁ᙃᢝ෷։
ܑ੡88.11%88.97%ࡉΔઌለ࣍C-CMVN࠷M Aิڇᙃᢝ෷ΔA-CMVNࠋ൓հ່ࢬ256=
ᠧಛᛩቼፖBิᠧಛᛩቼঞ։ܑၞޡԱ1.01%ፖ1.65%Δຍޡၞࠄຟ᧩قԱA-CMVNᚌ࣍
C-CMVNΙۖᇿU-CMVNֺለழΔA-CMVNڇAิᠧಛᛩቼፖBิᠧಛᛩቼՀΔࠡᙃᢝ
෷։ܑ3.41%ࡉ3.08%֒༽אױΔࠡઌኙޏ࿳෷։ܑ੡20.55%ፖ23.62%Ζᣊۿհছऱ
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A-CMSΔA-CMVNٵழᖞٽԱC-CMVNፖU-CMVNشࢬऱอૠᇷಛΔݺڼڂଚቃཚ،
ࠠໂԱࠋޓऱ፿ଃ௽ᐛൎ೜֏ऱய Δ࣠ኔ᧭ᑇᖕՈᒔኔ᧭ᢞԱA-CMVNऱ।෼ࣔ᧩ᚌ࣍
C-CMVNፖU-CMVNΖ 

।քΕU-CMVNΕᄅC-CMVNፖA-CMVNऱؓ݁ᙃᢝ෷ 

Method Set A Set B Average AR RR 
Baseline 71.92 67.79 69.86ʳ

U-CMVN 85.03 85.56 85.30ʳ 15.44ʳ 51.22ʳ
C-CMVN(M=256) 87.10 87.32 87.21ʳ 17.36ʳ 57.57ʳ

A-CMVN(M =16, =0.7) 88.11 88.97 88.54ʳ 18.69ʳ 61.98ʳ
A-CMVN(M=64, =0.8) 88.00 88.56 88.28ʳ 18.43ʳ 61.12ʳ

A-CMVN(M=256, =0.8) 87.35 88.05 87.70ʳ 17.85ʳ 59.20ʳ
 

່৵Δ।Ԯ੡A-HEQڇᒘڗᑇؾM ։ܑ੡16Ε64ፖ256ՀΔࢬ൓ࠩऱ່ࠋᙃᢝ࿨࣠Δ
੡ԱֺለದߠΔݺଚՈല।؄խऱഗءኔ᧭ΕC-HEQ(M=256)ፖU-HEQऱؓ݁ᙃᢝ෷٨
 ΚݮՀ༓ጟൣאᨠኘࠩאױଚݺ।խΔڼ।խΖൕڇ

Ϥ1 ኙڤٽิ࣍อૠቹ࿛֏ऄ(A-HEQ)ۖߢΔྤᓵڇᒘڗᑇM =16Ε64ፖ256ՀΔࠡ
ؓ݁ᙃᢝ෷ઌለ࣍ഗءኔ᧭ۖߢΔຟڶՕ༏ऱၞޏΔԿृڇAิᠧಛᛩቼՀ։ܑڶ
18.15%Ε17.28%ፖ15.76%ऱᙃᢝ෷༼֒ΔڇBิᠧಛᛩቼՀ։ܑ23.08ڶ%Ε22.36%ፖ
21.10%ऱᙃᢝ෷༼֒Δ᧩قԱA-HEQڇ፿ଃ௽ᐛൎ೜ࢤऱய౨Δ׊ઌለ࣍հছࢬ૪ऱ
ࠟጟิڤٽ௽ᐛإ๵֏ऄA-CMSፖA-CMVNΔA-HEQऱ।෼ޓ੡ᚌฆΖ 
    Ϥ2 A-HEQٺڇጟᒘڗᑇMऱൣݮՀΔࠡؓ݁ᙃᢝ෷ઃֺC-HEQፖU-HEQࠐ൓ړΔ
ࠡխאM=16ࢬ൓ऱؓ݁ᙃᢝ෷੡່ࠋΔڇAิᠧಛᛩቼፖBิᠧಛᛩቼՀհᙃᢝ෷։ܑ
੡90.07%90.87%ࡉΔઌለ࣍C-HEQ࠷M Aิᠧಛᛩڇᙃᢝ෷ΔA-HEQࠋ൓հ່ࢬ256=
ቼፖBิᠧಛᛩቼՀࠡᙃᢝ෷ঞ։ܑၞޡԱ3.85%ፖ4.80%Δຍޡၞࠄຟ᧩قԱA-HEQᚌ
AิᠧಛᛩቼፖBิᠧಛᛩቼՀࠡᙃᢝ෷։ܑڇC-HEQΙۖᇿU-HEQֺለழΔA-HEQ࣍
༼֒Ա3.07%ፖ2.54%Δࠡઌኙޏ࿳෷։ܑ੡23.62%ፖ21.76%Ζᣊۿհছऱ࿨࣠Δຍᇙ
A-HEQֺC-HEQፖܛऱֱऄΔڤፖᖞ੄ڤᒘ᡻࣍ऱֱऄᚌڤٽᢞԱิ᧭ڻଚ٦ݺ
U-HEQޓ౨༼֒ᠧಛᛩቼՀ፿ଃᙃᢝऱ壄ᒔ৫Ζ 

।ԮΕU-HEQΕᄅC-HEQፖA-HEQऱؓ݁ᙃᢝ෷ 

Method Set A Set B Average AR RR 
Baseline 71.92 67.79 69.86ʳ
U-HEQ 87.00 88.33 87.67ʳ 17.81ʳ 59.08ʳ

C-HEQ(M=256) 86.22 86.07 86.15ʳ 16.29ʳ 54.04ʳ
A-HEQ(M=16, =0.9) 90.07ʳ 90.87ʳ 90.47ʳ 20.62ʳ 68.39ʳ
A-HEQ(M=64, =0.9) 89.20ʳ 90.15ʳ 89.68ʳ 19.82ʳ 65.75ʳ
A-HEQ(M=256, =1) 87.68ʳ 88.89ʳ 88.29ʳ 18.43ʳ 61.14ʳ

քΕ࿨ᓵፖࠐآ୶ඨ 
ऄװ๬Δ։ܑ੡ଙ᙮ᢜؓ݁௣ݾ֏๵إ૞ಘᓵऱ௽ᐛ೶ᑇ׌ଚݺᓵ֮խΔءڇ

(CMS)Εଙ᙮ᢜؓ݁ଖፖ᧢ฆᑇإ๵֏ऄ(CMVN)ፖଙ᙮ᢜอૠቹ࿛֏ऄ(HEQ)ΔຍԿ
ጟݾ๬ઃႊࠩشࠌ௽ᐛऱอૠၦΖႚอՂΔຍࠄอૠၦਢᆖطԫᖞ੄ऱ፿ଃ௽ᐛ۷ྒྷۖ

൓ΖڼڂΔࠡኙᚨऱݾ๬Δݺଚอጠ੡ᖞ੄ڤ(utterance-based)௽ᐛ೶ᑇإ๵֏ݾ๬Ζڇ
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२ࠐڣΔءኔ᧭৛࿇୶Աᒘ᡻ڤ(codebook-based)௽ᐛ೶ᑇإ๵֏ݾ๬Δ։ܑ੡C-CMS
ፖC-CMVNΖ᥽ټ৸ᆠΔڇຍֱࠄऄխΔشࠌࢬऱ௽ᐛอૠၦਢطᒘ᡻ૠጩۖ൓Δኔ᧭
ᢞኔຍࠄᒘ᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬ࠡ।෼ՕીՂઃᚌ࣍ᖞ੄ڤ௽ᐛ೶ᑇإ๵֏ݾ

๬Ζྥۖݺଚ࿇෼Δ،ଚսྥၞڶԫޡऱޏ࿳़ၴΖڼڂΔءᓵ֮խݺଚ༼נԱԫ୚ޏ

๬๠෻೓ݾԱ፿ଃೠྒྷشଚᚨݺ࣍ڇհ๠Δٵऱլݧ଺࿓࣍Δઌኙݧ࿓مऱᒘ᡻৬ڤߜ

෣፿ଃಛᇆΔྥ৵ొشܓ፿ଃ೴੄ऱ፿ଃ௽ᐛࠐಝᒭᒘڗΙڼ؆Δຍࠄᒘڗ௅ᖕࠡො።

ऱ௽ᐛᑇؾᓿղլٵऱᦞૹ(weight)ΔߜޏڼऄڇรԿີڶᇡาऱᎅࣔΖ 
    ೈԱ༼נՂ૪ڤߜޏऱᒘ᡻৬م࿓ݧհ؆Δءᓵ֮׼ԫૹរ࣍ڇΔݺଚ༼נԱԫߓ
ࠄ๬Δ։ܑ੡A-CMSΕA-CMVNፖA-HEQΔຍݾ֏๵إ௽ᐛ೶ᑇ(associative)ڤٽ٨ิ
৵հอૠٽᖞڼشऱ௽ᐛอૠᇷಛΔشࢬ๬ݾڤ๬ፖᒘ᡻ݾڤԱᖞ੄ٽଚᖞݺ๬խΔݾ

ၦࠐച۩CMSΔCMVNࢨHEQΔࠡᇡ૪࣍ร؄ີխΔຍᑌऱݾ๬ڶאױயچᇖᚍᒘ᡻
๵إऱ௽ᐛ೶ᑇڤٽऱ౒រΔรնີխऱኔ᧭࿨࣠ᢞኔΔิߩ๬խΔొᠧಛᇷಛլݾڤ

 ᙃᢝ壄ᒔ৫Ζ֒༽چ᧩ࣔޓ๬Δ݁౨ݾ֏๵إ௽ᐛ೶ᑇڤፖᒘ᡻ڤ๬ֺᖞ੄ݾ֏
    ឈྥิڤٽ௽ᐛ೶ᑇإ๵֏ݾ๬ய࣠Լ։᧩ထΔࠋ່ࠡ܀।෼ڶᘸ࣍ਬط۞ࠄ೶ᑇ
խऱ(4.8)ڤΕ(4.5)ڤܛ) խऱ(4.10)ڤ֗ )ऱ֫೯ᓳᖞࠐᖞٽᒘ᡻ڤፖᖞ੄ڤհอૠᇷ
ಛΔࠐآڇڼڂऱ࿇୶ՂΔݺଚݦඨ౨۞೯ࠋ່נ࠷ޣچऱ ፖ ࿛೶ᑇଖΔࠐኙֱࠟ

ऱอૠᇷಛޓ܂壄ᒔऱᖞٽΔٵழΔڇ৬ዌᠧಛ፿ଃᒘ᡻ऱ࿓ݧՂΔݺଚՈݦඨ౨೶ە

๺ڍᠧಛ۷ྒྷऱֱऄΔޓ壄ᒔྒྷ൓ԫ੄፿ଃխొᠧಛऱอૠ௽ࢤΔཚৱڶޓயچ༼֒ᒘ

᡻ڤ௽ᐛ೶ᑇإ๵֏ݾ๬ऱய౨Ζ 
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