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Abstract

Current readability formulae have often been criticized for being unstable or not valid. They
are mostly computed in regression analysis based on intuitively-chosen variables and graded
readings. This study explores the relation between text readability and the conceptual
categories proposed in Prototype Theory. These categories form a hierarchy: Basic level
words like guitar represent the objects humans interact with most readily. They are acquired
by children earlier than their superordinate words (or hypernyms) like stringed instrument
and their subordinate words (or hyponyms) like acoustic guitar. Therefore, the readability of
a text is presumably associated with the ratio of basic level words it contains. WordNet, a
network of meaningfully related words, provides the best online open source database for
studying such lexical relations. Our preliminary studies show that a basic level word can be
identified by its frequency to form compounds (e.g. chair = armchair) and the length
difference from its hyponyms in average. We compared selected high school English
textbook readings in terms of their basic level word ratios and their values calculated in
several readability formulae. Basic level word ratios turned out to be the only one positively
correlated with the text levels.
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1. Introduction

Reading process is the core of language education. Teachers now have access to a vast
amount of texts extractable from the Internet inter alia, but the materials thus found are rarely
classified according to comprehension difficulty. It is not uncommon to see foreign language
teachers using texts not compatible with the students’ reading abilities.

Traditional methods of measuring text readability typically rely on the counting of
sentences, words, syllables, or characters. However, these formulae have been criticized for
being unstable and incapable of providing deeper information about the text. Recently, the
focus of readability formula formation has shifted to the search for meaningful predictors and
stronger association between the variables and the comprehension difficulty.

We start our research by assuming in line with Rosch et al.’s Prototype Theory [1] that
words form conceptual hierarchies in that words at different hierarchical levels pose different
processing difficulties. This processing difficulty is presumably correlated with the reading

difficulty of the text containing the words. Putting the logic into templates, the measurement



of text readability can be done by calculating the average hierarchical levels at which the
words of a text fall.

Our study comprises two stages. In the preliminary experiments, we utilized WordNet
[2], an online lexical database of English, to identify basic level words. In the subsequent
experiment, we compared selected readings in terms of their basic level word ratios and their
values calculated in several readability formulae. Basic level word ratios turned out to be the
only one positively correlated with the text levels.

The remainder of this paper is organized as follows: Section 2 reviews the common
indices the traditional readability formulae are based on and the criticism they have received.
In Section 3, we first review an approach that centers on ontology structure, and then propose
our own ontology-based approach. Section 4 is about methodology — how to identify basic
level words, and how to assess the validity of our method against other readability formulae.
Section 5 reports the results of the assessment and discusses the strength and weaknesses of

our approach. In this section, we also suggest what can be done in further research.

2. Literature Review

In this section we first summarize the indices of the traditional readability formulae and then

give an account of the criticism these formulae face.

2.1 Indices of Readability — Vocabulary, Syntactic, and Semantic Complexity

The earliest work on readability measurement goes back to Thorndike [3] where word
frequency in corpus is considered an important index. This is based on the assumption that
the more frequent a word is used, the easier it should be. Followers of this logic have
compiled word lists that include either often-used or seldom-used words whose presence or
absence is assumed to be able to determine vocabulary complexity, thus text complexity.
Vocabulary complexity is otherwise measured in terms of word length, e.g., the Flesch
formula [4] and FOG formula [5]. This is based on another assumption that the longer a word
is, the more difficult it is to comprehend [6].

Many readability formulae presume the correlation between comprehension difficulty
and syntactic complexity. For Dale and Chall [7], Flesch formula [4], and FOG index [5],
syntactic complexity boils down to the average length of sentences in a text. Heilman,
Collins-Thompson, Callan, and Eskenazi [8] also take morphological features as a readability
index for morphosyntactically rich languages. Das & Roychoudhury’s readability index [9]
for Bangla has two variables: average sentence length and number of syllables per word.

Flesch [4] and Cohen [10] take semantic factors into account by counting the abstract
words of a text. Kintsch [11] focuses on propositional density and inferences. Wiener, M.,

Rubano, M., and Shilkret, R. [12] propose a scale based on ten categories of semantic



relations including, e.g., temporal ordering and causality. They show that the utterances of
fourth-, sixth-, and eighth-grade children can be differentiated on their semantic density scale.

Since 1920, more than fifty readability formulae have been proposed in the hope of
providing tools to measure readability more accurately and efficaciously [13]. Nonetheless, it

is not surprising to see criticism over these formulae given that reading is a complex process.

2.2 Criticism of the Traditional Readability Formulae

One type of criticism questions the link between readability and word lists. Bailin and
Grafstein [14] argue that the validity of such a link is based on the prerequisite that words in a
language remain relatively stable. However, different socio-cultural groups have different
core vocabularies and rapid cultural change makes many words out of fashion. The authors
also question the validity of measuring vocabulary complexity by word length, showing that
many mono- or bi-syllabic words are actually more unfamiliar than longer polysyllabic terms.

These authors also point out the flaw of a simple equation between syntactic complexity

and sentence length by giving the sample sentences as follows:
(1) TIcouldn’t answer your e-mail. There was a power outage.
(2) Icouldn’t answer your e-mail because there was a power outage.

(2) is longer than (1), thus computed as more difficult, but the subordinator “because”
which explicitly links the author’s inability to e-mail to the power outage actually aids the
comprehension. The longer passage is accordingly easier than the shorter one.

Hua and Wang [15] point out that researchers typically select, as the criterion passages,
standard graded texts whose readability has been agreed upon. They then try to sort out the
factors that may affect the readability of these texts. Regression analyses are used to
determine the independent variables and the parameters of the variables. However, the
researchers have no proof of the cause-effect relation between the selected independent
variables and the dependent variable, i.e., readability.

Challenge to the formula formation is also directed at the selection of criterion passages.
Schriver [16] argue that readability formulae are inherently unreliable because they depend
on criterion passages too short to reflect cohesiveness, too varied to support between-formula
comparisons, and too text-oriented to account for the effects of lists, enumerated sequences
and tables on text comprehension.

The problems of the traditional readability formulae beg for re-examination of the

correlation between the indices and the readability they are supposed to reflect.

3. Ontology-based Approach to Readability Measurement
3.1 An ontology-based method of retrieving information

Yan, X., Li, X., and Song, D. [17] propose a domain-ontology method to rank documents on



the generality (or specificity) scale. A document is more specific if it has broader/deeper
Document Scope (DS) and/or tighter Document Cohesion (DC). DS refers to a collection of
terms that are matched with the query in a specific domain. If the concepts thus matched are
associated with one another more closely, then DC is tighter. The authors in their subsequent
study [18] apply DS and DC to compute text readability in domain specific documents and
are able to perform better prediction than the traditional readability formulae.

In what follows we describe the approach we take in this study, which is similar in spirit
to Yan et al.’s [18] method.

3.2 An Ontology-based Approach to the Study of Lexical Relations

In this small-scaled study, we focus on lexical complexity (or simplicity) of the words in a

text and adopt Rosch et al.’s Prototype Theory [1].

3.2.1 Prototype Theory

According to Prototype Theory, our conceptual categorization exhibits a three-leveled
hierarchy: basic levels, superordinate levels, and subordinate levels. Imagine an everyday
conversation setting where a person says “Who owns this piano?”’; the naming of an object
with ‘piano’ will not strike us as noteworthy until the alternative “Who owns this string
instrument?” is brought to our attention. Both terms are truth-conditionally adequate, but only
the former is normally used. The word ‘piano’ conveys a basic level category, while ‘string
instrument’ is a superordinate category. Suppose the piano in our example is of the large,
expensive type, i.e., a grand piano, we expect a subordinate category word to be used in e.g.
“Who owns this grand piano?” only when the differentiation between different types of
pianos is necessary.

Basic level is the privileged level in the hierarchy of categorical conceptualization.
Developmentally, they are acquired earlier by children than their superordinate and
subordinate words. Conceptually, basic level category represents the concepts humans
interact with most readily. A picture of an apple is easy to draw, while drawing a fruit would
be difficult, and drawing a crab apple requires expertise knowledge. Informatively, basic level
category contains a bundle of co-occurring features — an apple has reddish or greenish skin,
white pulp, and a round shape, while it is hard to pinpoint the features of ‘fruit’, and for a
layman, hardly any significant features can be added to ‘crab apple’.

Applying the hierarchical structure of conceptual categorization to lexical relations, we
assume that a basic level word is easier for the reader than its superordinate and subordinate

words, and one text should be easier than another if it contains more basic level words.



3.2.2 WordNet — An Ontology-Based Lexical Database of English

WordNet [2] is a large online lexical database of English. The words are interlinked by means
of conceptual-semantic and lexical relations. It can be used as a lexical ontology in
computational linguistics. Its underlying design principle has much in common with the
hierarchical structure proposed in Prototype Theory illustrated in 3.2.1. In the vertical
dimension, the hypernym/hyponym relationships among the nouns can be interpreted as
hierarchical relations between conceptual categories. The direct hypernym of ‘apple’ is
‘edible fruit’. One of the direct hyponyms of ‘apple’ is ‘crab apple’. Note, however,
hypernyms and hyponyms are relativized notions in WordNet. The word ‘crab apple’, for
instance, is also a hypernym in relation to ‘Siberian crab apple’. An ontological tree may well
exceed three levels. No tags in WordNet tell us which nouns fall into the basic level category

defined in Prototype Theory. In the next section we try to retrieve these nouns.

4. Methodology
4.1 Experiment 1

We examined twenty basic level words identified by Rosch et al. [1], checking the word
length and lexical complexity of these basic level words and their direct hypernyms as well as
direct hyponyms in WordNet [2]. A basic level word is assumed to have these features: (1) It
is relatively short (containing less letters than their hypernyms/hyponyms in average); (2) Its
direct hyponyms have more synsets' than its direct hypernyms; (3) It is morphologically
simple. Notice that some entries in WordNet [2] contain more than one word. We assume that
an item composed of two or more words is NOT a basic level word. A lexical entry composed
of two or more words is defined as a COMPOUND in this study. The first word of a
compound may or may not be a noun, and there may or may not be spaces or hyphens

between the component words of a compound.

Table 1: Twenty basic level words in comparison with their direct hypernyms and hyponyms

on (average) word length, number of synsets, and morphological complexity™

Basic Level Direct Hypernym Direct Hyponym
ftem W. Length | M. Complexity | W. Length Synsets | M. Complexity | W. Length | Synsets M. Complexity
guitar 6 A 18 1 B 10 6 A, B
piano 5 A 18 3 B 10 3 A, B
drum 4 A 20 1 B 7.4 8 A, B
apple 5 A 7.5 2 A, B 10.67 3 A, B
peach 5 A 9 1 B 9 0 N/A

A synset is a set of synonyms. The direct hypernym of ‘piano’, for instance, is grouped into three synsets: (1)
keyboard instrument, (2) stringed instrument, and (3) percussion instrument, percussive instrument.



grape 5 A 11 1 B 11.8 3 A,B
hammer 6 A 8 1 B 9.7 9 A,B
saw 2 A 8 1 B 8.7 7 A,B
screwdriver 11 A 8 1 B 19.8 3 B
pants 5 A 7 1 A 8.9 18 A,B
socks 4 A 7 1 A 7.2 5 A,B
shirt 5 A 7 1 A 7.56 9 A,B
table 5 A 5 1 A 13.8 6 A,B
lamp 4 A 20 1 B 9.88 17 A,B
chair 5 A 4 1 A 11.2 15 A, B
car 3 A 12 1 A, B 7 31 B
bus 3 A 15 1 A, B 8 3 B
truck 5 A 12 1 A, B 8 11 B
dog 3 A 10 2 A,B 7 18 B
cat 3 A 6 1 A, B 9 2 B

* A refers to “single word” and B refers to “compound”.

The results confirm our assumption. First, the average word length (number of letters) of
both the hypernyms and the hyponyms is much longer than that of the basic level words.
Second, the hyponyms have a lot more synsets than the hypernyms. Third, in contrast to the
basic level words which are morphologically simple, their direct hypernyms and hyponyms
are more complex. Many of the hypernyms are compounds. The hyponyms are even more

complex. Every basic level word (except ‘peach’) has at least one compounded hyponym.

4.2 Experiment 2

In this experiment, we examined the distribution of the compounds formed by the basic level
words and their hypernyms and hyponyms. We also randomly came up with five more words
that seem to fall into the basic level category defined by Rosch et al. [1]. These basic level
words (e.g. ‘guitar’) are boldfaced in each item set in Table 2 below. Above each basic level
word is its (or one of its) direct hypernym(s) (e.g. ‘stringed instrument’), under the basic level
word is the first-occurring direct hyponym (e.g. ‘acoustic guitar’). When the basic level word
has more than one level of hyponym, the first word at the second hyponymous level was also
examined (e.g. ‘movable barrier’, ‘door’, ‘car door’, ‘hatchback’). For words that have more
than one sense, we focused only on the sense defined in Rosch et al. [1]. For example, the
noun ‘table’ has six senses in WordNet; we only focused on the sense ‘a piece of furniture’.
For each target item, we clicked on its FULL HYPONYM in WordNet 3.0 [2] to find the
compounds formed by the target item. The next step was to count the compounds formed by
the target words. For example, among the twelve hyponyms of ‘guitar’, five are compounds
formed by ‘guitar’ — ‘acoustic guitar’, ‘bass guitar’, ‘electric guitar’, ‘Hawaiian guitar’, and
‘steel guitar’. In contrast, only one hyponym of ‘stringed instrument’ is a compound

containing ‘stringed instrument’. As for ‘acoustic guitar’, it has no hyponyms. We assume



that basic level words are more apt to form compounds than their hypernyms as well as
hyponyms, so their compound ratios are calculated: Number of compounds is divided by

number of hyponyms. We also keep record of the level where a compound occurs.

Table 2: Compound ratios and distribution of compounds in hyponymous levels

Hypernym Cpd Number of Compounds at Hyponymous Levels

Basic Level Word Cpd #/ Ratio

Hyponym Hyponym # o Ist 2nd 3rd 4th Sth oth
ypony (%) Level Level Level Level Level Level

stringed instrument 1/86 1 1 0 0 0

guitar 5/12 42 5

acoustic guitar 0/0 0

keyboard 0/35 0 0 0 0

piano 8/16 50 4

grand piano 3/8 38 3

baby grand piano 0/0 0

percussion 0/68 0 0 0 0

drum 5/14 36 5

bass drum 0/0 0

edible fruit 0/.. 0 0 0 0 0

apple 5/29 17 5 0 0

crab apple 2/8 25 2

Siberian crab 0/0 0

N/A N/A N/A

peach 0/0 0

N/A N/A N/A

edible fruit 0/.. 0 0 0 0 0

grape 6/17 35 3 2 1

muscadine 0/0 0

hand tool 0/... 0 0 0 0 0

hammer 7/16 44 7 0

ball-peen hammer 0/0 0

hand tool 0/.. 0 0 0 0 0 0

saw 25/30 83 13 12 0

bill 0/0 0 I

hand tool 0/.. 0 0 0 0 0 0

screwdriver 4/4 100 4

flat tip screwdriver 0/0 0

garment 4/448 1 0 0 0

pants 9/49 18 1

bellbottom trousers 0/0 0

hosiery 0/29 0 0 0




socks 5/13 5

anklet 0/0

garment 4/448 1 0
shirt 8/17 0

camise 0/0

furniture 4/... 4 0 0
table 39/79 32 7 0
alter 0/0

source of 0/108 0 0 0
lamp 27/ 68 14 12 1
Aladdin's lamp 0/0

seat 6/102 2 3 1
chair 31/48 17 14 0
armchair 0/10 0 0

captain’s chair 0/0

motor vehicle 0/153 0 0 0
car 21/76 19 2
amphibian 0/2 0

public transport 0/38 0 0 0
bus 3/5 3

minibus 0/0

motor vehicle 0/153 0 0 0
truck 15/48 10 5 0
dump truck 0/0

canine 0/... 0 0 0
dog 51/279 13 20 16
puppy 0/0

feline 0/... 0 0 0
cat 35/87 4 31

domestic cat 0/33 0

kitty 0/0

publication 1/211 0 1 0
book 39/ 145 21 14 4
authority 0/7 0

power of 0/0

language unit 0/... 0 0 0
word 35/220 28 7 0
anagram 0/1 0

antigram 0/0

material 16/ ... 14 2 0
paper 59/210 40 18 1




card 14/57 25 6 8

playing card 0/48 0

movable barrier 0/46 0 0 0 0
door 18/23 78 13 5

car door 0/1 0 0

hatchback 0/0 0

leaf 2/23 9 2 0 0
page 5720 25 5 0

full page 0/0 0

Note: The symbol “#” stands for “number”. Cpd refers to “compound”. The three dots indicate that the number of
hyponyms is too many to count manually. The number is estimated to exceed one thousand.

The most significant finding is that basic level words have the highest compound ratios.
In comparison with their hypernyms and hyponyms, they are much more frequently used to
form compound words. Although some hyponyms like ‘grand piano’ and ‘crab apple’ also
have high compound ratios, they should not be taken as basic level items because such
compounds often contain the basic level words (e.g. ‘Southern crab apple’), indicating that
the ability to form compounds is actually inherited from the basic level words.

Our data pose a challenge to Prototype Theory in that a subordinate word of a basic level
word may act as a basic level word itself. The word ‘card’, a hyponym of ‘paper’, is of this
type. With its high compound ratio of 25%, ‘card’ may also be deemed to be a basic level
word. This fact raises another question as to whether a superordinate word may also act as a
basic level word itself.

Many of the basic level words in our list have three or more levels of hyponym. It seems
that what is cognitively basic may not be low in the ontological tree. A closer look at the
distribution of the compounds across the hyponymous levels reveals another interesting
pattern. Basic level words have the ability to permeate through two to three levels of
hyponyms in forming compounds. By contrast, words at the superordinate levels do not have

such ability, and their compounds mostly occur at the direct hyponymous level.

4.3 Experiment 3

The goal of this experiment is to show that whether a word belongs to the basic level affects
its readability. This in turn affects the readability of a text and should be considered a
criterion in measuring text readability. An easy text presumably contains more basic level
words than a difficult one. Put in fractional terms, the proportion of basic level words in a
text is supposed to be higher than that of a more difficult text.

To achieve this goal, we need independent readability samples to be compared with our
prediction. As readability is subjective judgment that may vary from one person to another,

such independent samples are extremely difficult, if ever possible, to obtain. In this study, we




resorted to a pragmatic practice by selecting the readings of English textbooks for senior high
school students in Taiwan. Three textbooks from Sanmin Publishing Co., each used in the
first semester of a different school year, were selected. We tried to choose the same type of
text, so that text type will not act as a noise. Furthermore, since we do not have facility to run
large-scale experiment yet, we limited the scope to two-hundred-word text at each level.
Accordingly, the first two hundred words of the first reading subjectively judged as narrative
were extracted from the textbooks (Appendix 1). All the nouns occurring in these texts,
except proper names and pronouns, were searched for in WordNet [2]. Considering the fact
that for a word with more than one sense, the distribution of hyponyms differs from one sense
to another, we searched for the hyponyms of the word in the particular sense occurring in the
selected readings. We know that this practice, if used in a large-scale study, is applicable only
if sense tagging is available, and we hope that it will be available in the near future.

Based on the results of the two preliminary experiments, we assume that basic level
words have at least the following two characteristics: (1) They have great ability to form
compounded hyponyms; (2) Their word length is shorter than the average word length of
their direct hyponyms. These characteristics can be further simplified as the Filter Condition
to pick out basic level words:

(1) Compound ratio of full hyponym = 25%;

(2) Average word length of direct hyponym minus target word length = 4.

Note in passing that the second criterion differs fundamentally from the commonly used
criterion of word length. Ours compares the target word with its full hyponyms. Word length
is measured in relative terms: What is counted is the word length difference, not the word
length itself. Based on the two assumed characteristics of our filter condition, the information
for each noun we need includes: (1) Length of the target word, i.e. how many letters the word
contains; (2) Compound ratio of the target word, i.e. how many hyponyms of the word are
compounds formed by the word. Note that here the hyponyms refer to the full hyponyms, so
all the words in every hyponymous synset were counted; (3) Average word length of the

direct hyponyms. The next section reports the computed information via WordNet [2].

5. Results and Discussion

The three selected readings contain sixty nouns in total, of which twenty-one conform to the
proposed Filter Condition of basic level words. They are given in Table 3 below. A
comprehensive list of all the sixty nouns are given in Appendix 2 at the end of this paper.
Note in passing that the level numbers refer to the presumed difficulty levels of the selected
readings. Level 1 is presumably the easiest; Level 3, the hardest. These numbers should not
be taken as ratio measurement. Level 3, for example, is not assumed to be three times harder

than Level 1. We intend these numbers to stand for ordinal relations.
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Table 3: Basic Level Words from the 200-word Texts at Three Levels

Compound Ratio | Length of Target | Average Length of Direct
Target Word Level
(%) Word Hyponyms
food 1 53 4 8
apple 1 56.6 5 10
vinegar 1 60 7 11
potato 1 62.5 6 11
cold 1 66.6 4 8
test 1 72.7 4 9
orange 1 88.8 6 11
soap 1 93 4 9
language 2 35.12 8 12
job 2 37.5 3 8
heart 2 40 5 15
technology 2 47.22 10 19
factor 2 63.64 6 12
culture 2 85.19 7 19
physics 3 32.84 7 12.6
question 3 35.71 7 15
barometer 3 40 9 13.25
system 3 60.95 6 12.93
time 3 62.22 4 10
office 3 72.22 6 11.5
call 3 93.33 4 11

In order to measure the text difficulty, basic level word ratios of the selected texts were
computed. Table 4 shows the statistics. Diagrammatically, it is clear in Figure 1 that the basic
level word ratios are decreasing as the difficulty levels of the selected readings increase. The
text from Level-1 has the highest basic level word ratio; the text from Level-3 has the lowest

basic level word ratio. This finding conforms to the levels of these textbooks, and proves the

usefulness of the basic level word concept in the measurement of readability.

Table 4: Basic level word ratio at different levels

Number of nouns Number of Basic Ratio of Basic Level
Level Words Words
Level-1 17 8 47.1
Level-2 15 6 40.0
Level-3 28 7 25.0

11
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Figure 1: Basic Level Word Ratio of Selected Texts

Table 5 shows the readability scores of the selected readings measured by several
readability formulae. Figure 2 displays the overall tendency computed by these formulae:
Level-1 is the easiest, while Level-2 and Level-3 are at about the same difficulty level. The
readability formulae seem not to be able to decipher the difference between the texts of

Level-2 and Level-3 while our basic level word ratio can easily show their different difficulty

levels.

Table 5: Readability of the 200-word Texts Computed by Several Readability Formulae

Flesch
Dale-Chall | Grade | FOG | Powers | SMOG | FORCAST | Spache
Level
Level-1 4.6 2.1 7.8 4 6.4 7.7 24
Level-2 7.4 83 18.9 6.2 10.2 11.8 39
Level-3 6.3 9.5 16.4 59 10.5 9.1 4.8
20
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Figure 2: Readability of the 200-word Texts Computed by Several Formulae

This paper is just the first step to measure readability by lexical relations retrieved from

WordNet [2]. Twenty-five percent of the twenty basic level words defined by Rosch et al. [1]
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are NOT identified by our Filter Condition (e.g. ‘truck’, ‘shirt’, socks’). Among the identified
basic level words in the three selected texts, some look rather dubious to us (e.g. ‘barometer’,
‘technology’). The filter condition proposed in this study certainly leaves room to be
fine-tuned and improved in at least two respects. First, the two criteria of compound ratios
and word length difference have been used as sufficient conditions. We will postulate the
possibility of weighting these criteria in our subsequent research. Second, in addition to the
lexical relations proposed in this study, there are presumably other lexical relations between
basic level words and their hypernyms/hyponyms that are retrievable via WordNet [2].
Doubts can also be raised as to whether all basic level words are equally readable or easy.
Can it be that some basic level words are in fact more difficult than others and some
hypernyms/ hyponyms of certain basic level words are actually easier than certain basic level
words?

We thank our reviewers for raising the following questions, and will put them in the
agenda of our subsequent study: (1) The examined words in this study are all nouns. Can we
find relationships between verbs, adjectives, and even adverbs like the hypernym/hyponym
relationships with the basic level “nouns”? The tentative answer is yes and no. Take the
example of the verb ‘run’. It has hypernyms in WordNet (‘speed’, ‘travel rapidly’, etc.). It
also has subordinate lexical relation called ‘troponym’, which is similar to hyponym of nouns.
Admittedly, English verbs do not constitute compounds so often as English nouns, but other
lexical relations may exist between the verbs, and the relations are likely to be retrievable. (2)
Although the small scale size of our experiments makes the validity of the results
challengeable, the exciting findings of this study have provided the outlook of a large-scale
project in the future. (3) Are basic level words frequent words in general? Can we use
frequency to substitute for ‘basichood’ if the two criteria have approximately the same
indexing power? We like to extend this question and ask whether the ontological relations
between the lexical units in WordNet are correlated with word frequency. We hope we will be
able to answer this question in a study of larger scale.

Laying out the groundwork for further research, we aim to tackle the following issues
too. All traditional readability formulae implicitly suppose an isomorphic relation between
form and meaning as if each word has the same meaning no mater where it occurs. We
acknowledge that one of the biggest challenges and the most badly needed techniques of
measuring readability is to disambiguate the various senses of a word in text since the same
word may have highly divergent readability in different senses. Another tacit assumption
made by the traditional readability formulae is that the units of all lexical items are single
words. This assumption overlooks many compounds and fixed expressions and affects the
validity of these formulae.

Although our research has provided the study of readability a brand new perspective and

has offered exciting prospects, our challenges are still many and the road is still long.
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Appendix 1: Three Pieces of 200-word-text from a Senior High School
Textbook

Level 1: Book 1 Lesson 2

Scientist say that your tongue can recognize only four tastes. It can tell if something is sour
( like vinegar) or bitter ( like soap). But that’s all. To tell different foods apart, we also have to
use our noses.

Can you remember a time when you had a bad cold? Your food tasted very plain then. It
seemed to have little taste at all. That wasn’t because your tongue wasn’t working. It was
because your nose was stopped up. You couldn’t smell the food, and that made it seem
tasteless. You can prove this to yourself. Try eating something while you pinch your nose
shut. It won’t seem to have much taste.

Here’s another test. It shows how important the nose is in tasting. First you blindfold a
person. Then you put a piece of potato in his mouth. You tell him to chew it. At the same time,
you hold a piece of apple under his nose. Then ask what food is in his mouth. Most people
will say, “ An apple.” The smell of the apple fools them. The test works best when two foods

feel the same in the mouth. It won’t work well with apple and orange slices.

Level 2: Book 3 Lesson 2

When people from different cultures live and work together much more than before, change
takes place. The languages of the world’s dominant cultures are replacing the languages of
the smaller cultures. You’re learning English right now. Could this be the beginning of the
end for the Chinese language? Of course not. Mandarin remains the healthy, growing
language at the heart of Chinese culture. Mandarin steadily continues to spread among
Chinese people worldwide. Elsewhere, Swahili grows in Africa. Spanish continues to thrive
in South America. Hindi rules India. And of course almost everyone these days wants to learn
English. However, many less common regional languages haven’t been so lucky, because
most young people have stopped learning them.

When less common languages disappear, two factors are to blame: trade and technology.
Most international trade takes place in major world languages such as English or Mandarin.
Cultures that isolate themselves from international business and major world languages have
difficulty prospering.

Most children respect their own culture and traditions. But when it comes to getting a
job, knowing a major world language if often essential. It may mean the difference between

success and failure. For many, using a less common reginal language simply isn’t
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Level 3: Book 5 Lesson 2

Some time ago, I received a call from a colleague who asked if I would be the referee on the
grading of an examination question. He was about to give a student a zero for his answer to a
physics question, while the student claimed he should receive a perfect score and would if the
system were not set up against the student. The instructor and the student agreed to submit
this to an impartial judge, and I was selected.

I went to my colleagues’ office and read the examination question: “Show how it is
possible to determine the height of a tall building with the aid of a barometer.” The student
had answered: “Take the barometer to the top of the building, attach a long rope to it and
lower the barometer to the street. Then bring it up and measure the length of the rope. The
length of the rope is the height of the building.”

I pointed out that the student really had a strong case for full credit, since he had
answered the question completely and correctly. On the other hand, if full credit were given,

it could well contribute to a high grade for the

Appendix 2: Nouns Extracted from the Three Pieces of 200-word-text.

Target Item Direct Hyponyms
Item Level Cpd #/ Cpd Ratio| Length Avg. Length Number
Hyponym # (%)

scientist 1 37/174 21 9 13 20
tongue 1 0/4 0 6 0

taste 1 4/34 11.7 5 6

vinegar 1 3/5 60 7 11

soap 1 14/15 93 4 9

food 1 1234/2310 53 4 8 15
nose 1 4/22 18 4 6 8
time 1 1/0 0 4 0 0
cold 1 2/3 66.6 4 8 1
test 1 8/11 72.7 4 9 5
person 1 3152/13235 23.8 6 8 401
potato 1 10/16 62.5 6 11 5
mouth 1 3/10 30 5 4 6
apple 1 17/30 56.6 5 10 3
smell 1 2/23 8.6 5 6 4
orange 1 8/9 88.8 6 11 3
slice 1 2/10 20 5 6 2
culture 2 23/27 85.19 7 19 7
language 2 425/1210 35.12 8 12 16
world 2 2/9 22.22 5 11 3
end 2 23/54 42.59 3 6 14
heart 2 2/5 40 5 15 2
factor 2 14/22 63.64 6 12 6
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trade 2 16/66 2424 5 10 3
technology 2 17/36 47.22 10 19 7
business 2 54/163 33.13 8 8 12
child 2 34/55 61.82 5 7 21
tradition 2 0/7 0 9 6 4
job 2 3/8 37.5 3 8 15
difference 2 0/11 0 10 10 9
success 2 24/58 41.38 7 7 5
failure 2 7/50 14 7 7 8
time 3 28/45 62.22 4 10 16
call 3 14/15 93.33 4 11 8
colleague 3 0/0 0 9 N/A N/A
referee 3 0/0 0 7 N/A N/A
grading 3 0/0 0 7 N/A N/A
examination 3 20/32 62.5 11 9 24
question 3 10/28 35.71 7 15 3
student 3 16/48 33.33 7 9.25 20
Zero 3 0/0 0 4 N/A N/A
answer 3 0/2 0 6 8 2
physics 3 22/67 32.84 7 12.6 18
score 3 1/5 20 5 8.5 4
system 3 103/169 60.95 6 12.93 28
instructor 3 30/55 54.55 10 10.86 21
judge 3 7/33 21.21 5 7.33 3
office 3 13/18 72.22 6 11.5 8
height 3 0/7 0 6 7.5 2
building 3 212/485 43.71 8 9.76 54
aid 3 0/1 0 3 8 1
barometer 3 2/5 40 9 13.25 4
top 3 0/9 0 3 5.8 5
rope 3 15/37 40.54 4 7.21 19
street 3 22/32 68.75 6 8.95 21
length 3 1/19 5.26 6 8.8 5
case 3 0/2 0 4 8 1
credit 3 1/9 11.11 6 7 3
hand 3 0/1 0 4 4 1
grade 3 1/5 20 5 8.5 4

Note 1: Level ranges from 1 to 3, which respectively represents the English textbooks of Book I for the
first-year senior high school students, Book III for the second-year, and Book V for the third-year

senior high school students in Taiwan.

Note 2: Cpd ratio refers to the ratio of compounds formed by the target item to the total number of the target

item’s full hyponyms.
Note 3: Direct hyponyms refer to the lexical items at the level immediate below the target item.
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Abstract

In this paper, we take Determinative-Measure Compounds as an example to demonstrate how
the E-HowNet semantic composition mechanism works in deriving the sense representations
for all determinative-measure (DM) compounds which is an open set. We define the sense of
a closed set of each individual determinative and measure word in E-HowNet representation
exhaustively. We then make semantic composition rules to produce candidate sense
representations for any newly coined DM. Then we review development set to design sense
disambiguation rules. We use these heuristic disambiguation rules to determine the correct
context-dependent sense of a DM and its E-HowNet representation. The experiment shows

that the current model reaches 88% accuracy in DM identification and sense derivation.
RAsEEE - SEEE AR EBEE A - sEERE  ERANE > M

Keywords:  Semantic ~ Composition, Determinative-Measure =~ Compounds,  Sense

Representations, Extended How Net, How Net

1. Introduction

Building knowledge base is a time consuming work. The CKIP Chinese Lexical Knowledge
Base has about 80 thousand lexical entries and their senses are defined in terms of the
E-HowNet format. E-HowNet is a lexical knowledge and common sense knowledge

representation system. It was extended from HowNet [1] to encode concepts. Based on the
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framework of E-HowNet, we intend to establish an automatic semantic composition
mechanism to derive sense of compounds and phrases from lexical senses [2][3].
Determinative-Measure compounds (abbreviated as DM) are most common compounds in
Chinese. Because a determinative and a measure normally coin a compound with unlimited
versatility, the CKIP group does not define the E-HowNet representations for all DM
compounds. Although the demonstrative, numerals, and measures may be listed exhaustively,
their combination is inexhaustible. However their constructions are regular [4]. Therefore, an
automatic identification schema in regular expression [4] and a semantic composition method

under the framework of E-HowNet for DM compounds were developed.

In this paper, we take DMs as an example to demonstrate how the E-HowNet semantic
composition mechanism works in deriving the sense representations for all DM compounds.
The remainder of this paper is organized as follows. The section 2 presents the background
knowledge of DM compounds and sense representation in E-HowNet. We’ll describe our
method in the section 3 and discuss the experiment result in the section 4 before we make

conclusion in the section 5.

2. Background

There are numerous studies on determinatives as well as measures, especially on the types of
measures.' Tai [5] asserts that in the literature on general grammar as well as Chinese
grammar, classifiers and measures words are often treated together under one single
framework of analysis. Chao [6] treats classifiers as one kind of measures. In his
definition, a measure is a bound morpheme which forms a DM compound with the
determinatives enumerated below. He also divides determinatives word into four
subclasses:

i.Demonstrative determinatives, e.g. 32" this”, that”F[3”...

ii.Specifying determinatives, e.g. & every”, £ each”...

iii.Numeral determinatives, e.g. —-"two”, %) = three percentage”, VU5 7L+ four

hundred and fifty”...

iv.Quantitative determinatives, e.g. —” one”, Jg” full”, 2" many”...

Measures are divided into nine classes by Chao [6]. Classifiers are defined as ‘individual

measures’, which is one of the nine kinds of measures.
i.classifiers, e.g. /K7 a (book)”,

! Chao [6] and Li and Thompson [7] detect measures and classifiers. He [8] traces the diachronic names of
measures and mentions related literature on measures. The dictionary of measures pressed by Mandarin Daily

News Association and CKIP [9] lists all the possible measures in Mandarin Chinese.

19



ii.classifier associated with V-O constructions, e.g. F “hand”,

iii.group measures, e.g. ¥f’pair”,

iv.partitive measures, e.g. £5”some”,

v.container measures, €.g. & box”,

vi.temporary measures, €.g. £”’body”,

vii.Standard measures, e.g. 7\ K ’meter”,
viii.quasi-measure, e¢.g. [ country”,

ix.Measures with verb, e.g. Z{”’number of times”.
As we mentioned in the section of introduction, Chao considers that determinatives are
listable and measures are largely listable, so D and M can be defined by enumeration, and
that DM compounds have unlimited versatility. However, Li and Thompson [7] blend
classifiers with measures. They conclude not only does a measure word generally not take a
classifier, but any measure word can be a classifier. In Tai’s opinion [5], in order to better
understand the nature of categorization in a classifier system, it is not only desirable but also
necessary to differentiate classifiers from measure words. These studies on the distinction
between classifiers and measures are not very clear-cut. In this paper, we adopt the CKIP
DM rule patterns and Part-of-Speeches for morpho-syntactic analysis, and therefore inherit
the definition of determinative-measure compounds (DMs) in [10]. Mo et al. define a DM as
the composition of one or more determinatives together with an optional measure. It is used
to determine the reference or the quantity of the noun phrase that co-occurs with it. We use
the definition of Mo et al. to apply to NLP and somewhat different from traditional linguistics
definitions.

2.1 Regular Expression Approach for Identifying DMs

Due to the infinite of the number of possible DMs, Mo et al. [10] and Li et al. [4] propose to
identify DMs by regular expression before parsing as part of their morphological module in
NLP. For example, when the DM compound is the composition of one determinative, e.g.
for numerals in (1), roughly rules (2a), (2b) or (2¢) will be first applied, and then rules (2d),
(2e) or (2f) will be applied to compose complex numeral structures, and finally rules (2g) will
generate the pos Neu of numeral structures. From the processes of regular expression, the

numerals 534 and 319 in (1) is identified and tagged as Neu.’
(1) 5EhS34 N5E 31948 2 ik

guli wubaisanshisi ren wancheng sanbaiyishijiu xiang zhi lu

encourage 534 persons to accomplish the travel around 319 villages

2 . . . . . .
The symbol “Neu” stands for Numeral Determinatives. Generation rules for numerals are partially listed in

(2).
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Q) a. NO1 = {o,—, W, =, MU, AL 0N, UL+ U A BT 8L ERE,
2,

b, NO2 = {Z, 8,2 500, I 25 0 A6 A6, 85 (R UK, 2,5 )
c. NO3  ={1,2.3.4,5.6,7.8.,9.0.H, T.&.&Jk};

d.  INI > {NO1*,NO3*} ;

e. IN2 ->NO2*;

f. IN3 > {INT,IN2} {Z5,85,28,5%} ({5,180} ;

g. Neu > {IN1,IN2,IN3 } ;

Regular expression approach is also applied to deal with ordinal numbers, decimals,
fractional numbers and DM compounds for times, locations etc.. The detailed regular
expressions can be found in [4]. Rule patterns in regular expression only provide a way to
represent and to identify morphological structures of DM compounds, but do not derive the

senses of complex DM compounds.

2.2 Lexical Sense Representation in E-HowNet
Core senses of natural language are compositions of relations and entities. Lexical senses are
processing units for sense composition. Conventional linguistic theories classify words into
content words and function words. Content words denote entities and function words without
too much content sense mainly serve grammatical function which links relations between
entities/events. In E-HowNet, the senses of function words are represented by semantic
roles/relations [11]. For example, ‘because’ is a function word. Its E-HowNet definition is
shown in (1).

(1) because|[A Fy  def: reason={};
which means reason(x)={y} where x is the dependent head and y is the dependent daughter
of ‘;RI& .
In following sentence (2), we’ll show how the lexical concepts are combined into the sense
representation of the sentence.

(2) Because of raining, clothes are all wet. [R5 R » IKIRENE T
In the above sentence, ‘)% wet’, ‘7Xfg clothes’ and ‘ N[ rain’ are content words while ‘&[]

all’, 7 Le’and ‘[N 5 because’ are function words. The difference of their representation is
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that function words start with a relation but content words have under-specified relations. If a
content word plays a dependent daughter of a head concept, the relation between the head
concept and this content word will be established after parsing process. Suppose that the
following dependent structure and semantic relations are derived after parsing the sentence
(2).

(3) S(reason:VP(Head:Cb:[X £y
Da:#[ | Head:Vh:j%|particle:Ta: [') °

After feature-unification process, the following semantic composition result (4) is derived.

theme:NP(Head:Na:{Xfl}) | quantity:

dummy:VA: i)

The sense representations of dependent daughters became the feature attributes of the
sentential head ‘wet|)&’.
(4) def: {wet
theme={clothing|7x¥7},
aspect={Vachieve| [},
manner={complete|££},
reason={rain| N[ }}
In (3), function word ‘[X| 5 because’ links the relation of ‘reason’ between head concept ;%
)= {rain| T},

since for simplicity the dependent head of a relation is normally omitted. Therefore

N=
/5&.

wet’ and ‘ FR rain’. The result of composition is expressed as reason(wet

reason(wet|;&)={rain| N[} is expressed as reason={rain| N[ }; theme(wet|;&)={clothing|{¥

¥} is expressed as theme={clothing|7<#/)} and so on.

2.3 The sense representation for determinatives and measures in E-HowNet

The sense of a DM compound is determined by its morphemes and the set of component
morphemes are determinatives and measures which are exhaustively listable. Therefore in
order to apply semantic composition mechanism to derive the senses of DM compounds, we
need to establish the sense representations for all morphemes of determinatives and measures
first. Determinatives and measure words are both modifiers of nouns/verbs and their semantic
relation with head nouns/verbs are well established. We thus defined them by a semantic
relation and its value like (5) and (6) bellowed.

(5) The definition of determinatives in E-HowNet

this 2 def: quantifier={definite| EF5}
first & def: ordinal={1}
one — def: quantity={1}

We find some measure words contain content sense which need to be expressed, but for some
measure words, such as classifiers, their content senses are not important and could be

neglect. So we divided measure words into two types: with or without content sense, their
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sense representations are exemplified below:

(6) The definition of measure words in E-HowNet

a) Measure words with content sense

bowl i def: container={bowl|fi}
meter > def: length={meter| A K }

month H def: time={month| 5 }

b) Measure words without content sense
K copy def: {null}
] room def: {null}
#% kind def: {null}

3. Semantic Composition for DM Compounds

To derive sense representations for all DM compounds, we study how to combine the
E-HowNet representations of determinative and measure words into a DM compound
representation, and make rules for automatic composition accordingly. Basically, a DM
compound is a composition of some optional determinatives and an optional measure. It is
used as a modifier to describe the quantity, frequency, container, length...etc. of an entity.

The major semantic roles played by determinatives and measures are listed in the Table 1.
The basic feature unification processes [12]:

If a morpheme B is a dependency daughter of morpheme A4, i.e. B is a modifier or an

argument of 4, then unify the semantic representation of 4 and B by the following steps.

Step 1: Identify semantic relation between 4 and B to derive relation(4)={B}. Note: the

possible semantic relations are shown in Table 1.

Step 2: Unify the semantic representation of 4 and B by insert relation(4)={B} as a
sub-feature of 4.

It seems that a feature unification process can derive the sense representation of a DM
compound, as exemplified in (7) and (8), once its morpheme sense representations and
semantic head are known.
(7) one — def:quantity={1} + bowl #f def: container={bowl|#i} >

one bowl —i def: container={bowl|#i:quantity={1}}
(8) this 7= def: quantifier={definite| EFg} + 4 copy def:{null} >

this copy iEA def: quantifier={definite| EF5}

Table 1. Major semantic roles played by determinants and measures

Semantic Role D/M
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quantifier eg BBt B M H A3

ordinal eg F-H

qualification eg. F~T Hi-~1%- 0K X5~ Hi - =g -
Bl 5l 55 SO %

quantity eg — " E - E (T — 2B —

22N =i e = It == =107 A S L= AN (F A 5
EQRGY- REGERE{NE AN I FIEE A SN2 @
VE S REH S 22 A0~ (8 R S

Formal={.Ques.}

eg I 1~ (H

Quantity={over,

approximate, exact}

eg Bf~FF B 2% HEH - 5% BRSN - IR

position

eg FF by Byl BESRT

container

e.g. &(F) HT)FEE) BT (T B BT
BT~ BGE) ~ R85 ~ At IR AT ~ 3 #ECT)
) ~ #8077 ~ BECT) ~ BT ~ B AT~ )
RECFRL) ~ TR (F) ~ BT ~ BE () ~ Rt~ 35 i
B~ B0k

length

~

e.g AE A5 A AR A AR AR i
R gt R~ &R - f(inch) ~ R(feet) - (yard) - 1
(mile) ~ G~ [ ~ 08~ 2 B < o ok
K U BOR R R 6 oRsE
SRR oK~ Sk B SO SRR

%
3

size

e.g. AT~ AN~ T~ BRI~ W 4y~ S B
TN AR IR FHR - FIHIE

—hfe

weight

BN
e.g. A%~ AT AW T B AT (ET) ~ HEH
N

) ~ 5~ AFE - A AW TR T R 88 - W
5T~ BERE B A8 B B T A%

volume

e MR~ AT - BT BIHETD - f -
(pint)  ilfa(gallon) + SHECFL(bushel) » 23~ 77~
T NGBS B SR Ik
SLHIK ~ TS~ T  IAR - 5 -
IHHR A - B R

time

e.g. PlFb ~ BERD ~ B0 ~ BD5E ~ oy~ oy - 4 - ZlgE - B
BhEE ~ I~ /NRF B RO AT &R, 129 SR
(F)~ 28 F) ~ A A& F£@ 50 -
L~ FHBRE - 07 ~ B~ g - 2 FE o A0 B2
B R
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address eg B & M -HB M-~ -E-MH E-EB &
vEFH - F RSBmO M1

place eg W F R BB AR BB EE

duration cg H(F) - 7 @5 TF

However there are some complications need to be resolved. First of all we have to clarify the
dependent relation between the determinative and the measure of a DM in order to make a
right feature unification process. In principle, a dependent head will take semantic
representation of its dependent daughters as its features. Usually determinatives are modifiers
of measures, such as ZHH, —#i, 1= —H. For instance, the example (9) has the dependent

relations of
NP(quantifier: DM(quantifier:Neu:—|container:Nfa:#)[Head:Nab:%ii)

MF
guantifier
Ohd
quantifier container Head
Meu Mfe Mak
- T B

Figure 1. The dependent relations of —#ii%ii”a bowl of noddle”.

After feature unification process, the semantic representation of “— def: quantity={1}"
becomes the feature of its dependent head “Hii def: container={bowl|#ii} and derives the
feature representation of “one bowl —#fi  def:  container={bowl| Wi :quantity={1}}".
Similarly, “one bowl —#i” is the dependent daughter of “noodle|%H def: {noodle|%i}”. After

unification process, we derive the result of (9).
(9)one bowl of noodle|—Hi%H def: {noodle|#li:container={bowl|ii:quantity={1}} }
The above feature unification process written in term of rule is expressed as (10).
(10)  Determinative + Measure (D+M) > def: semantic-role(M) =

{Sense-representation(M): Representation(D)}

The rule (10) says that the sense representation of a DM compound with a determinative D
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and a measure M is a unification of the feature representation of D as a feature of the sense
representation of M as exemplified in (9).

However a DM compound with a null sense measure word, such as ‘this copy|Z24% ,  a
copy|—4’, or without measure word, such as ‘this three|?Z =, will be exceptions, since the
measure word cannot be the semantic head of DM compound. The dependent head of
determinatives become the head noun of the NP containing the DM and the sense
representation of a DM is a coordinate conjunction of the feature representations of its

morphemes of determinatives only.

For instance, in (8), ‘copy’ has weak content sense; we thus regard it as a null-sense measure
word and only retain the feature representation of the determinative as the definition of “this
copy|#E 4%”. The unification rule for DM with null-sense measure is expressed as (11).

(11) Determinative + {Null-sense Measure} (D+M) = def: Representation(D);

If a DM has more than one determinative, we can consider the consecutive determinatives as
one D and the feature representation of D is a coordinate conjunction of the features of all its
determinatives. For instance, “this one|?Z—" and “this one|?Z— 7" both are expressed as
“quantifier={definite|JEF5}; quantity={1}".

Omissions of numeral determinative are occurred very often while the numeral quantity is
“1”. For instance, “#2 7" in fact means “this one|?Z—4<". Therefore the definition of (8)
should be modified as:

=N def: quantifier={definite| £ f5}; quantity={1};

The following derivation rules cover the cases of omissions of numeral determinative.

(12) If both numeral and quantitative determinatives do not occur in a DM, then the
feature quantity={1} is the default value of the DM.

Another major complication is that senses of morphemes are ambiguous. The feature
unification process may produce many sense representations for a DM compound. Therefore

sense disambiguation is needed and the detail discussions will be in the section 3.1.

Members of every type of determinatives and measures are exhaustively listable except
numeral determinatives. Also the formats of numerals are various. For example, “5020” is
equal to “AE "E” and “ATZE -+ and “ATF . So we have to unify the numeral
representation into a standard form. All numerals are composition of basic numeral as shown
in the regular expressions (2). However their senses are not possible to define one by one. We

take a simple approach. For all numeral, their E-HowNet sense representations are expressed
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as themselves. For example, 5020 is expresses as quantity={5020} and will not further define
what is the sense of 5020. Furthermore all non-Arabic forms will be convert into Arabic
expression, e.g. “F1TZE .+ is defined as quantity={5020}.

The other problem is that the morphological structures of some DMs are not regular patterns.
Take “Wi{E-F two and half” as an example. “2} half” is not a measure word. So we collect
those word like “Z% many, } half, %4 many, [ up, A big, 2K more” for modify the quantity
definition. So we first remove the word “*f-” and define the “Wi{f” as quantity={2}.
Because the word “*}~” means quantity={0.5}, we define the E-HowNet definition for “Fy{#
2> as quantity={2.5}. For other modifiers such as “2% many, %% many, f& more, 2K more”,
we use a function over() to represent the sense of “more”, such as “+2%{ff§ more than 10” is

represented as quantity={over(10)}

The appendix A shows the determinatives and measures used and their E-HowNet definition
in our method. Now we have the basic principles for compositing semantics of DM under the
framework of E-HowNet.
Below steps is how we process DMs and derive their E-HowNet definitions from an input
sentence.

[. Input: a Chinese sentence.

II. Apply regular expression rules for DM to identify all possible DM candidates in the

input sentence.

II1. Segment DM into a sequence of determinatives and measure words.

IV. Normalize numerals into Arabic form if necessary

V. Apply feature unification rules (10-12) to derive candidates of E-HowNet

representations for every DM.

VI. Disambiguate candidates for each DM if necessary.

VII. Output: DM Compounds in E-HowNet representation.
For an input Chinese sentence, we use the regular expression rules created by Li et al. [2006]
to identify all possible DMs in the input sentence. Then, for every DM compound, we
segment it into a sequence of determinatives and measures. If any numeral exists in the DM,
every numeral is converted into decimal number in Arabic form. For every DM, we follow
the feature unification principles to composite semantics of DM in E-HowNet representations
and produce possible ambiguous candidates. The final step of sense disambiguation is

described in the following section.
3.1 Sense Disambiguation

Multiple senses will be derived for a DM compound due to ambiguous senses of its
morpheme components. For instance, the measure word “J5 head” has either the sense of
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{PH|head}, such as “jIE HEZ full head of white hairs” or the null sense in ”—F&E4> a cow”.

Some DMs are inherent sense ambiguous and some are pseudo ambiguous. For instances, the

above example “—PH” is inherent ambiguous, since it could mean “full head” as in the
example of “—PHHEZ full head of white hairs” or could mean “one + classifier” as in the
example of ”—FH4}~ a cow”. For inherent ambiguous DMs, the sense derivation step will
produce ambiguous sense representations and leave the final sense disambiguation until
seeing collocation context, in particular seeing dependent heads. Some ambiguous
representations are improbable sense combination. The improbable sense combinations
should be eliminated during or after feature unification of D and M. For instance, although
the determiner “—” has ambiguous senses of “one”, “first”, and “whole”, but “—/\ K has
only one sense of “one meter”, so the other sense combinations should be eliminated.

The way we tackle the problem is that first we find all the ambiguous Ds and Ms by looking
their definitions shown in the appendix A. We then manually design content and context
dependent rules to eliminate the improbable combinations for each ambiguous D or M types.
For instance, according to the appendix A, “BH” has 3 different E-HowNet representations
while functions as determinant or measure, i.e. “def:{null}”, “def:{head|JH }”, and
“def:ordinal={1}”. We write 3 content or context dependent rules below to disambiguate its

SEnscEs.

(13) §H”head”, Nfa, E-howNet: “def: {null}” : while E-HowNet of head word is “#fj
Y7({animate|4=¥}” and it’s subclass.

(14) FH“head, Nff, E-howNet: “def:{JH}” : while pre-determinant is —(Neqa)”one”

or Jypg full” or =7all” or ¥ total”.

(15) pE”first”, Nes, E-howNet: “def:ordinal={1}" : while this word is being a
demonstrative determinatives which is a leading morpheme of the compound.
The disambiguation rules are shown in appendix B. In each rule, the first part is the word and
its part-of-speech. Then the E-HowNet definition of this sense is shown, and followed by the
condition constraints for this sense. If there is still ambiguities remained after using the

disambiguation rule, we choice the most frequent sense as the result.

4. Experiment and Discussion

We want to know how good is our candidate production, and how good is our disambiguation
rule. We randomly select 40628 sentences (7536 DM words) from Sinica Treebank as our
development set and 16070 sentences (3753 DM words) as our testing set. We use
development set for designing disambiguation rules and semantic composition rules. Finally,
we derive 36 contextual dependent rules as our disambiguation rules. We randomly select
1000 DM words from testing set. We evaluate the composition quality of DMs with

E-HowNet representation before disambiguation. For 1000 DM words, the semantic
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composition rules produce 1226 candidates of E-HowNet representation from 939 words. The
program fails to produce E-HowNet representations for the rest of 61 words because of
undefined morphemes. There are 162 words out of the 939 words having ambiguous senses.
The result shows that the quality of candidates is pretty good. Table 2 gives some examples of
the result. For testing the correctness of our candidates, we manually check the format of
1226 candidates. Only 5 candidates out of 1226 are wrong or meaningless representations.
After disambiguation processes, the resulting 1000 DM words in E-HowNet representation
are judged manually. There are 880 correct E-HowNet representations for 1000 DM words in
both sense and format. It is an acceptable result. Among 120 wrong answers, 57 errors are
due to undefined morpheme, 28 errors are unique sense but wrong answer and the number of
sense disambiguation errors is 36. Therefore accuracy of sense disambiguation is
(162-36)/162=0.778.

Table 2. The result of semantic composition for DM compounds.

DM Compounds | E-HowNet Representation

—ETT def:role={money| & #5:quantity={200000} }

T def:qualification={other| 55 } ,quantity={1}

THZ=FNr defirole={57#:quantity={236} }

CIEEWS def:itime={day| H :qualification={preceding] F I },

quantity={5}}

—H—T Bt | defirole={357T:quantity={11670000000} }
3=

After data analysis, we conclude the following three kinds of error types.

A.Unknown domain error:
7" batter”, /577" inning”
Because there is no text related to baseball domain in development set, we get poor
performance in dealing with the text about baseball. The way to resolve this problem is
to increase the coverage of disambiguation rules for the baseball domain.

B.Undefined senses and morphemes:
& ={{&‘“each three”
We do not define the sense of ”each” and we only define ”all”, so we have to
add the sense of “each” in E-HowNet representation about 45
75 =1L “there are three persons”, [&]—{[ “the same”
Because 5 “have” and [E] “’the same” do not appear in our determinative list, it is not
possible to composite their E-HowNet definitions.

C.Sense ambiguities:
In parsed sentence: NP(property:DM: [--F-35 first half ”|Head:DM: .47 twenty
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minutes or twenty points”) . The E-HowNet representation of ——f47 twenty minutes or
twenty points” can be defined as “def:role={43#:quantity={20}}” or “def:time={%y
#%:quantity={20} }”. More context information is needed to resolve this kind of sense
ambiguity.
For unknown domain error and undefined rule, the solution is to expand the disambiguation
rule set and sense definitions for morphemes. For sense ambiguities, we need more

information to disambiguate the true sense.

5. Conclusion

E-HowNet is a lexical sense representational framework and intends to achieve  sense
representation for all compounds, phrases, and sentences through automatic semantic
composition processing. In this paper, we take DMs as an example to demonstrate how the
semantic composition mechanism works in E-HowNet to derive the sense representations for
all DM compounds. We analyze morphological structures of DMs and derive their
morphological rules in terms of regular expression. Then we define the sense of all
determinatives and measure words in E-HowNet definition exhaustively. We make some
simple composition rules to produce candidate sense representations for DMs. Then we
review development set to write some disambiguation rules. We use these heuristic rules to
find the final E-HowNet representation and reach 88% accuracy.

The major target of E-HowNet is to achieve semantic composition. For this purpose, we
defined word senses of CKIP lexicon in E-HowNet representation. Then we try to automate
semantic composition for phrases and sentences. However there are many unknown or
compound words without sense definitions in the target sentences. DM compounds are
occurring most frequently and without sense definitions. Therefore our first step is to derive
the senses of DM words. In the future, we will use similar methods to handle general
compounds and to improve sense disambiguation and semantic relation identification
processing. We intend to achieve semantic compositions for phrases and sentences in the

future and we had shown the potential in this paper.
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DI-> E ~JF~ b~ 3%~ A~ &~ ifig~ H ~ F 55 def: quantifier={definite| &
F5} 5 2L ~ HEL def: quantifier={definite|FEF5}, quantity={some|t}

D2-> 25 ~ & def: ordinal={D4}
D3-> |~ Fij def: qualification={preceding] - X } ~ T ~ {& def:
qualification={next| N2} ~ 54 * & def:ordinal={1} ~ K def: qualification={last| &%
1%} ~ X def:ordinal={2}
NESE
D4-> — ~ T~ B~ B | def: quantity={1 ~ 2~ 10000 ~ 2...} or def:ordinal={1~2 ~
10000 ~ 2...}
D5-> B ~ Z... def: ordinal={1 ~ 2...}
D6-> HAMr ~ Hek ~ B~ 55~ M~ 55~ 555b def: qualification={other| 55}
D7-> & ~ fFfa] ~ — ~ &~ i > B~ —1J] def: quantity={all| 4}
D8-> % def: qualification={individual| 53 F|HY}
D9-> F+ ~ AHY ~ —1b ~ Hify ~ FHLE def: quantity={some[£t}
D10-> 2} def: quantity={half]}*}
D11-> Z%/D ~ 465 def: quantity={.Ques.}
D12-> fa] ~ & ~ (& def: fomal={.Ques.}
DI3->8 ~ 5% ~ RE ~ 475 ~ 475% ~ i~ &~ FFEFS % - 8 REH
A0~ 2 B F52 def: quantity={many| %} ~ /DFF ~ DE 5T~ (EIE def:
quantity={few|/}

D14->8% ~ #F ~ 2% def: approximate() ~ /& ~ %% ~ IF def: exact() ~ 158 ~ 4% -
BHIN ~ 25 def: over();
DI15>0~1~2-3~4~5-6~7~8~9 def: quantity={1 ~2~3 ~4...}
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5 (Measure word)

2B = &z5(Measures with content sense )

Nff-> EiFEaE—5 ~ 0~ i~ &7 0~ Bt~ F -~ il def {555, ...}

Nff-> EiFE5E—F T -~ bif -~ # - BT - M~ B~ ZF def: position={£ T,

Ff5E1-....quantity={all| £} }

Nfe-> FesgEii—a(F) ~ E(F) ~ fa(F) ~ 5+ -~ B ~ B~ B(F)

F B ~ B AT ) ~ ) ~ B 8T ~ AT~ #B(TF)

BE(F) ~ ()~ B PN ~ NI~ BECERD) ~ B B EE -

(F)~ Z5Rb~ 38~ 55~ B~ B0~ #fk > &1 def: container={&L,[F.,...}

Nfg-> #EAE S5 —
FRE W RNE ST AR a5 - ABE TR -8
& R~ 5 R~ Kf(inch) ~ IR(feet) ~ f(yard) ~ H(mile) ~  C)H ~ J& ~ 15
RABE-~ Lok EBEDR B B3R 58 - J1IR S i< -
oRZE ~ SRR S ok ~ 2ok~ JEE ~ SEE S SBAE o def: length={/A77,...}
FRIETER > 0 ° WL~ ANEE ~ THEA ~ 2iEk ~ P8k~ 9~ B~ B B
NESETTAR S SETTARTY ~ FTT R T 50 ~ SEf o def: size={/ HA,...}
FKEEWN W AR AT AT 8 & (HT) - &80 -
W%~ NYE S A~ AR SERL T W B8 ME 5T~ SRR JERE - 08 -
29~ 27 TR~ AF o def: weight={/A%,...}
TR A0 AR STHET) BT GTHETR) 467 Spint -
hiw(gallon) ~ SHZH.(bushel) ~ A3 ~ AN~ AF -~ DG~ A3} =F
P % B B - TPk - ORI » TS - TN T
RO I3 A8~ IR~ 3~ i~ VAP © def: volume={ R, AT}
IS 40 - FRD ~ R ~ B~ RO - o3 - oo - A 208 - B - REEE -
BF o~ /NBF - B R A &C(ER, 12 4F) o~ D - R(H) > ERAGER - A -
) ~ A~ Ay~ &= F@&# - R~ F5 0 B~ 15~ o defitemporal={f
O H ...}, B8~ R def:duration={4}
FEEWEHY > 40 oy~ FACEE) ~ TT(ED) ~ B~ W~ e~ BB JABB(RH) - W
+ BT 8% BAT - BT Ee L Hiu- Hio 6% & A
EEHE o def: role={47, ...,money| &%, .. EFfH...}
$hlL 77~ $T(dozen) % + Ka(--15) - HiCgross) - AGE(great gross) - H
Fofe o 1k B~ T~ FFEL - IR~ 77 Bf(ere) » FORE - BL ~
B e FFR AT B A~ T B RO R S
A B 2 TR L - SYEL - N B MUEE - B -
def: quantity={7],f7,.... 5 H.,...}
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Nfh-> #E6t3—
FEITICTIE 40 - E0~ =] 8RB~ FE~ o g B~ % B8 - def: location={#f,,
...}

SHFR T 40 FE S B - (- BB BRAE - AR def: time={Z21H,
FAL,LD ~ &5l fEH(F) ~ T def: duration={TimeShort| 5 HF[H]}
femEEy > 40 m(5) ~ JHE ~ Z(5) ~ 77 o def: direction={EndPosition|
It ~ BE(5D) def: direction={aspect|{H]}

FSTFEEY > 40 9 ~ B~ /NER o def: quantity={F,fk...}

FEARRAY > Ae[a] ~ K~ - R N B BB R M BB
E B -EZ-R-O-J) BT R ¥R
T~ &t fBx 8~ 5~ i - A B~ [A]E ~ 22 © Defifrequency={D4,
D15} 43 defrrole={ 47 ¥ :quantity={D4,D15}} ~ b def:{ & } ~ Hi
defirole={#&i:quantity={D4,D15}} ~ ff def: {f}:quantity={D4,D15}}

Nfc-> #f #8 & &6 — ¥t - #  defiquantity={double| ¥ } ~ %] ( % %) ~ HE
def:quantity={mass| Jx :manner={ InSequence|F F¢ }} * & def:quantity={mass|
% :manner={relevant| fH §f }} ~ E& def:quantity={mass| % :dimension={linear| 4§ }} -
B EH B k) ~ Z£ - HL def: quantity={mass|Z} ~ 4l def: quantity={mass| 7 :
manner={relevant|fHff}} ~ & def: quantity={mass|F :cause={assemble/S¥ & 1} ~ f& -
#H ~ 15 def: {kind({object/#J5&})} -~ J% def:quantity={mass| . :cause={assemble| 5%
11 ~ & def:quantity={mass|F :cause={pile|HEiZ} } ~ %% def:quantity={mass|
Fcause={wrap|fEs}} - ¥ defquantity={mass| i :cause={assemble| Z¥ £ }} ~ [X
def:quantity={mass| i :manner={ InSequence|5 J7}} ~ T\, def: {kind({object|/#IF&})}
Nfd->& 73 &= z8—2E defiquantity={some|¢E} ~ FF53({7) ~ L ~ 44 ~ B ~ A% ~ 8 -
T~ B~ HiT def: quantity={fragment|Z} ~ [E] def: quantity={fragment|
#:shape={round|[E]} } ~ 3 def: quantity={ fragment|fj:cause={pile[sfE}}} ~ ¢ def:
quantity={ fragment|:’:cause={hold|&}} - + EH def: quantity={ fragment]|
Efi:shape={layered|:&} }

& & 3d(null-sense Measures)

Nfa-> {EfEE T—ZIK‘?E%‘W‘&B‘TP\?‘F“‘F@‘ E‘ﬁ’@‘%‘%‘ﬁ‘%‘

LERE %E ffﬁ(fﬂi) ’fm(i‘”ﬁ?) B~ 5% o (f) ~ e (EEED AR AT
Bt CECR B EERCE-EFE 95 f(32) »
Tﬁ‘fﬁﬁ‘/@!‘ﬁk?ﬁ“@_ iR G- TR 1A TR TR i
*“‘E‘%‘H‘ﬁﬁ‘Q‘E‘é‘%‘ﬁ?ﬁﬁ‘ﬂi‘L*‘Ti‘ﬁ‘fﬁrﬁ‘%ﬁ‘
BRIk HE-E-BFE BB M- HH
L~ AT R~ H o~ B [H] o def: {null}
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Nfc-> Ei‘é’fﬁ A —5F % BE ~ B 17 B ~ &% B 400R) ~ g~
IR ~ B~ UK~ BE - EE % - R S~ B~ 8 - TH o def: {null}

Nfd-> ﬁgﬁgéﬂ—m‘iﬁ%‘5%‘*&5‘*’3‘?@‘?&‘%%‘%5‘)4 ~
JE ~ [~ 5~ % > i o def: {null}

Nfb-> B XA S S~ TE 3 - 5 % o def: {null}

Nfi-> ghiEza—u ~ X~ 48 L TEFBREBE-RE
B~ F~ (2D 2~ 28 (B~ 28~ R~ O FB(F) ~ () ~ ME() B~ ()
b~ BF MR ()~ ME AR~ 55 JE - e i B S B~ 2 o deft {null}

Nfh-> et
PRI 40 R~ T 4 (] B N 5 o defs {mull)
B

#‘*”%7?@ RS BN [[CHRE /& IERRE /7 7 S I O [T
£~ B~ F8(50) o def: {null}
A
12 ~ FE—FARTE) ~ % ~ 5 o def: {null}
(AR ~ ——EERRESE) © def: {null}
Z2@#E T ) HR(TESZ Bl —4%—ZH A E)
45~ IR ~ [ o def: {null}
FAGER ) - H**(WH:ﬁTH*%%ﬁ%) > def: {null}
o~ Fl ﬁi BE ~ HE - 3 BRI o def: {null}
= /T ﬁ CECEE R %ﬁ 2K o def: {null}

Appendix B. The rule for candidate disambiguation

head-based rule

e.g.—, Neu, def:quantity={1}, while part-of-speech of head word is Na, except the
measure word is & body” or [ “face” or £ T-"nose” or M mouth” or Ht
Tbelly” or & cavity” .

e.g. B8, Nfg,defrole={money| &#}, while E-HowNet representation of head word is
“{money|E&#41”  or {null}, or head word is $%’money” or 34 dollar” or the s

uffix of word is ¥ currency” and previous word is not D1.

1%, ,Nfd,def: {null}, otherwise, use this definition.

e.g.1a1,Nfa,def: {null}, while part-of-speech of head word is Nab.

35



of

11, Nfh,def:direction={aspect|{Hl]}, otherwise use this one.

e.g.7H,Nfa,def: {null}, while head word is Nab and E-HowNet representation of head
word is “B#7) {animate|4E#7]}” and it’s subclass.

98, Nfh,def:direction={EndPosition|li7} , if part-of-speech of head word is Na, do
not use this definition. The previous word usually are 32 ’this” or #[$”that” or
5 ”another”.

e.g.All Nfi, def:frequency={}, while part-of-speech of head word is Verb, i.e. E-HowNet
representation of head word is {event/Z={4-} and it’s subclass. Except POS V 2 and
VG

All Nfi,def:{null}, while part-of-speech of head word is Noun, i.e. E-HowNet of
head word is {object/#Jf5} and it’s subclass.

e.g. 3, F%....Nfh,def:location={ }, if part-of-speech of head word is Na or previous

word is 327 this” or H["that” or & every”, do not use this definition.
1,0 ... Nfa,def: {null}, otherwise use this definition.

e.g. % Nfe,def:container={plate| % } ,while head word is food, ie. E-HowNet
representation of head word is {edible| &%} and it’s subclass.

fi% Nfb,def: {null},otherwise use this one.

e.g. 77 ,Nfg, defrrole={ 43}, while head word is $£ “money”, i.e. E-HowNet

representation of head word is {money| &%} and it’s subclass.

43 Nfg, defisize={ 47 }, while head word is H#f, “land”, ie. E-HowNet

representation of head word is {land|fzH} and it’s subclass.

47,Nfa, def:{null}, while part-of-speech of head word is Na or Nv. For example:

—orRbE s IR IR

e.g. B Nfh;Nfd,def: {null}, while part-of-speech of head word is Nab. If part-of-speech

head word is V, Naa or Nad, do not use this definition.

collocation-based rule

e.g.77,Nfh,def:role={score| 7T #{:quantity={D4,D15} }, while the sentence also contains
the words % “give an exam” (E-HowNet representation is {exam|ZZz{}) or 15 “get”
(E-HowNet representation is {obtain|{5%l[}) or Z<”lose” (E-HowNet representation is
{lose|%=7:}), then use this definition.
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e.g.57 Nfg,def:time={minute|53§#}, if the sentence contains the word B hour” or §#
HE’hour”.

e.g. W ,Nfg,def:weight={ {§y }, if the sentence contains the word E”weight” or =

E 9.

5= 'weight”.

W4, Nfg,def:role={money| &%}, if the sentence contains the word FF”sliver” or

#£”money” or 4" gold”
pre-determinant-based rule

e.g. 98, Nff,def:{head|BH}, while pre-determinant is —(Nega)”’one” or Jig full” or
£"all” or #£ total”.

e.g.Jill, Nff,def:{leg|fil}, while pre-determinant is —(Neqa)”one” or g full” or %=
“all” or #£”total” and part-of-speech of head word is not Na.

Hall, Nfi,def:frequency={}, while part-of-speech combination is V+D4,D15+Hil.

c.g. B Nfg, defitime={ B}, while part-of-speech of pre-determinant is D4 or
D15(1~24) and part-of-speech of previous word is not D1 or previous word is not
#have”.

2

e.g B, Nfg,def:time={#f}, while pre-determinant is 5 ” a function word placed in

front of a cardinal number to form an ordinal number” or B first”.

determinative-based rule

e.g.—~ .1 ~2..W..., Neu, def:ordinal={}, the determinant of word is 25, [,
NTT, PETC, HEFR, —J1L XX or 12XX, (four digits number).

— ~ —...1 ~ 2...[..., Neu,def:quantity={}, otherwise use this definition.
e.g.78,Nes,def:ordinal={1},the word B head” is determinant word.

e.g. W ,Neu,def:quantity={}, the word f{”a unit of weight equal to 50 grams” is

determinant word.

measure word based rule

e.g.—,Neqa,def:quantity={all| £}, the part-of-speech of the measure word behind —
is Nff, or the suffix of the measure word is -, (for example {1~ cabinet”, i
Tbottle”)or EEE" large basket”.
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Abstract

We propose a new method for organizing the numerous collocates into semantic thesaurus
categories. The approach introduces a thesaurus-based semantic classification model
automatically learning semantic relations for classifying adjective-noun (A-N) and verb-noun
(V-N) collocations into different categories. Our model uses a random walk over weighted graph
derived from WordNet semantic relation. We compute a semantic label stationary distribution
via an iterative graphical algorithm. The performance for semantic cluster similarity and the
conformity of semantic labels are both evaluated. The resulting semantic classification
establishes as close consistency as human judgments. Moreover, our experimental results
indicate that the thesaurus structure is successfully imposed to facilitate grasping concepts of
collocations. It might improve the performance of the state-of-art collocation reference tools.

Keywords: Collocations, Semantic classification, Semantic relations, Random walk algorithm,

Meaning access index.

1. Introduction

Submitting queries (e.g., a search keyword “beach” for a set of adjective collocates) to
collocation reference tools typically return many collocates (e.g., collocate adjectives with a
pivot word “beach’: “rocky”, “golden”, “beautiful”, “pebbly”, “splendid”, “crowded”, “superb”,
etc.) extracted from a English corpus. Applications of automatic extraction of collocations such
as TANGO (Jian, Chang & Chang, 2004) have been created to answer queries of collocation
usage.

Unfortunately, existing collocation reference tools sometimes present too much information
in a batch for a single screen. With web corpus sizes rapidly growing, it is not uncommon to find
thousands collocates for a query word. An effective reference tool might strike a balance between
quantity and accessibility of information. To satisfy the need for presenting a digestible amount
of information, a promising approach is to automatically partition words into various categories
to support meaning access to search results and thus give a thesaurus index.

Instead of generating a long list of collocates, a good, better presentation could be
composed of clusters of collocates inserted into distinct semantic categories. We present a robust
thesaurus-based classification model that automatically group collocates of a given pivot word
focusing on: (1) the adjectives in adjective-noun pairs (A-N); (2) the verbs in verb-noun pairs
(V-N); and (3) the nouns in verb-noun pairs (V-N) into semantically related classes.

Our model has determined collocation pairs that learn the semantic labels automatically
during random walk algorithm by applying an iterative graphical approach and partitions
collocates for each collocation types (A-N, V-N and V-N mentioned above). At runtime, we start
with collocates in question with a pivot word, which is to be assigned under a set of semantically

38



related labels for the semantic classification. An automatic classification model is developed for
collocates from a set of A-N and V-N collocations. A random walk algorithm is proposed to
disambiguate word senses, assign semantic labels and partition collocates into meaningful
groups.

As part of our evaluation, two metrics are designed. We assess the performance of
collocation clusters classified by a robust evaluation metric and evaluate the conformity of
semantic labels by a three-point rubric test over collocation pairs chosen randomly from the
results. Our results indicate that the thesaurus structure is successfully imposed to facilitate
grasping concepts of collocations and to improve the functionality of the state-of-art collocation
reference tools.

2. Related Work

2.1 Collocations

The past decade has seen an increasing interest in the studies on collocations. This has been
evident not only from a collection of papers introducing different definitions of the term
“collocation” (Firth, 1957; Benson, 1985; Lewis, 1997), but also from a number of research on
collocation teaching/acquisition associating to language learning (Lewis, 2000; Nation, 2001).
When analyzing Taiwanese EFL writing, Chen (2002) and Liu (2002) investigated that the
common lexical collocational error patterns include verb-noun (V-N) and adjective-noun (A-N).
Furthermore, with the technique progress of NLP, Word Sketch (Kilgarrift & Tugwell, 2001) or
TANGO (Jian, Chang & Chang, 2004) became the novel applications as collocation reference
tools.

2.2 Meaning Access Indexing

Some attention has been paid to the investigation of the dictionary needs and reference
skills of language learners (Scholfield, 1982; Béjoint 1994), especially the structure for easy
comprehending. According to Tono (1992 & 1997), menus that summarize or subdivide
definitions into groups ahead of entries in dictionaries would help users with limited reference
skills. The System “Signposts” of the Longman Dictionary of Contemporary English, 3rd edition,
the index “Guide Word” of the Cambridge International Dictionary of English, as well as the
“Menus” of the Macmillan English Dictionary for Advanced Learners all value the principle.

2.3 Similarity of Semantic Relations

The construction of practical, general word sense classification has been acknowledged to
be one of the most ambitious and frustrating tasks in NLP (Nirenburg & Raskin, 1987), even
WordNet with more significant contribution of a wide range of lexical-semantic resources
(Fellbaum, 1998). Lin (1997) presented an algorithm for word similarity measure by its
distributional similarity. Unlike most corpus-based word sense disambiguation (WSD)
algorithms where different classifiers are trained for separate words, Lin used the same local
context database as the knowledge sources for measuring all word similarities. Distributional
similarity allows pair wise word similarity measure to deal with infrequent words or unknown
proper nouns. However, compared to distributional similarity measure, our model by random
walk algorithm has remarkable feature to deal with any kind of constraints, thus, not limited to
pair-wise word similarities, and can be improved by adding any algorithm constraints available.

More specifically, the problem is focused on classifying semantic relations. Approaches
presented to solve problems on recognizing synonyms in application have been studied (Lesk,
1986; Landauer and Dumais, 1997). However, measures of recognizing collocate similarity are
not as well developed as measures of word similarity, the potential applications of semantic
classification are not as well known. Nastase and Szpakowicz (2003) presented how to
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automatically classify a noun-modifier pair, such as “laser printer”, according to the semantic
relation between the head noun (printer) and the modifier (laser). Turney (2006) proposed the
semantic relations in noun pairs for automatically classifying. As for VerbOcean, a
semi-automatic method was used to extract fine-grained semantic relations between verbs
(Chklovski & Pantel, 2004). Hatzivassiloglou and McKeown (1993) presented a method towards
the automatic identification of adjectival scales. More recently, Wanner et al. (2006) has sought
to semi-automatically classify the collocation from corpora by using the lexical functions in
dictionary as the semantic typology of collocation elements. Nevertheless, there is still a lack of
fine-grained semantically-oriented organization for collocation.

3. Methodology

We focus on the preparation step of partitioning collocations into categories: providing each
word with a semantic label and thus presenting collocates under thesaurus categories. The
collocations with the same semantic attributes by the batch size are then returned as the output.
Thus, it is crucial that the collocation categories be fairly assigned for users’ easy-access.
Therefore, our goal is to provide a semantic-based collocation thesaurus that automatically
adopts characterizing semantic attributes. Figure 1 shows a comprehensive framework for our

unified approach.
Word Sense Inventory Uncategorized
(e.g., WordNet) Collocates

A\ 4
Random Walk on Word
Sense Assignment

A

Random Walk on Semantic
Label Assignment

Collocation

Thesaurus

’ Integrated Semantic Knowledge (ISK) ! Extension @

Figure 1.A comprehensive framework for our classification model.

3.1 Problem Statement

We are given (1) a set of collocates Col = {C;, C, ..., C,} (e.g., sandy, beautiful, superb,
rocky, etc.) denoted with a set of part-of-speech tags P, {P € Pos| P = adjective Py, verb P, or
noun P,} for a pivot word X (e.g., beach) extracted from a corpus of English texts (e.g., British
National Corpus); (2) a combination of thesaurus categories (e.g., Roget's Thesaurus), TC = {(W,
P,L)| W e Voc, P € Pos, L € Cat}, where Voc is the thesaurus vocabulary words W, ordered by
general-purpose topics hereinafter called the semantic labels (e.g., feelings, materials, art, food,
time, etc.), Cat = {L; L, ..., L,}, with conceptual-semantic attributes as the basis for
organization; and (3) a lexical database (e.g., WordNef) as our word sense inventory S/ for
semantic relation population. S7 is equipped with a measure of semantic relatedness of W, REL(S,
S”) encoding semantic relations REL € SR holding between word sense S and S”.

Our goal is to partition Col into subsets Sub of similar collocates, Sub < Col, by means of
an integrated semantic knowledge crafted from the mapping of 7C and S/ that is likely to express
closely related meanings of Co/ in the same context of X mentioned herein beach. For this, we
use a graph-based algorithm to give collocations a thesaurus index by giving each collocate in
Col a semantic label L.
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3.2 Learning to Build a Semantic Knowledge by Iterative Graphical Algorithms

Recall that we attempt to provide each word with a semantic label and partition collocations
into thesaurus categories. In order to partition a large-scale collocation input and reduce the
out-of-vocabulary (OOV) words occurred, automating the task of building an integrated semantic
knowledge base is a necessary step, but also imposes a huge effort on the side of knowledge
integration and validation. An integrated semantic knowledge (ISK) is defined to interpret a word
in triples (W, L, S), i.e., the given word, a semantic label representing one of thesaurus categories,
and its corresponding word sense, as cognitive reference knowledge. At this first stage,
interconnection is still between words and labels from the given thesaurus category 7C and not
between word senses and semantic labels. For interpreting words in triples (W, L, S) as an ISK
and corresponding to the fact that there’s a limited, almost scarcely found, resource that is
intended for such semantic knowledge, we proceeded as follows to establish one comprehensive
ISK allowing concentrating on our task of populating it with new semantic relations between
words and labels, overcoming the problem of constructing a resource from scratch.

3.2.1 Word Sense Assignment for Integrated Semantic Knowledge

In the first stage of the learning process, we used a graph-based sense linking algorithm
which automatically assigns senses to all words under a thesaurus category by exploiting
semantic relations identified among word senses. It creates a graph of vertices representing a set
of words and their admissible word senses in the context of a semantically consistent list. The
pseudo code for the algorithm is shown as Figure 2.

By adding synonymous words through semantic relations, it can broaden the word coverage
of TC, which may reduce significantly the number of OOV words in 7C and cope with the
problem of collocates that form a group by itself. This strategy relies on a set of general-purpose
topics as semantic labels L in a thesaurus category 7C and a word sense inventory S/ encoding
semantic relations. 7C and SI are derived from separate lexicographical resources, such as
Longman Lexicon of Contemporary English and WordNet.

The algorithm assumes the availability of a word sense inventory S/ encoding a set of
semantic relations as a measure of semantic relatedness. Given a set of words with corresponding
admissible senses in S/, we build a weighted graph G = (V, E) for SI such that there is a vertex V'
for each admissible sense, and a directed edge E for each semantic relation between a pair of
senses (vertices).

The input to this stage is a word sense inventory S/ encoding a set of semantic relations SR
attributing the senses of S/, and a set of words W = {w;, wy, ..., w,} listed under L;in a set of
semantic labels Cat used in a thesaurus 7C. The semantic relations SR comprise REL(S, S°)
where S and S’ are admissible senses in S/, and REL is a semantic relation (e.g., synonyms,
hypernyms, and hyponyms holding between senses) existing between S and S’ and explicitly
encoded in SI. Notice that semantic relations typically hold between word senses but not
necessarily between words. We apply semantic relations to identify the intended senses for each
word in the list. Accordingly these intended senses will form a semantically consistent set with
maximal interconnecting relations

We use random walk on the weighted graph G encoding admissible senses as vertices V" and
semantic relations SR as edges E with a view to discovering the most probable sense S for W.
The edges will be stepped through by imaginary walkers during the random walk in a
probabilistic fashion. Through the random walk on G, the probability of intended senses will
converge to a higher than usual level because of the influx via incoming edges representing
semantic relations. All vertices in the weighted graph G start with a uniform probability
distribution. The probability is reinforced by edges that participate in a SR until the
reinforcement of probability converges for the given sense consistency, leading to a stationary
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distribution over sense probability P;, represented as scores (O attached to vertices in the graph.
In all, the weights on G indicating the sense strength converge to arrive at the consistency of
senses, which become the output of this learning stage. The procedure is repeated for all word
lists in 7C. Recall that these most probable senses are useful for extending the limited coverage
of 7C and reducing the number of OOV words effectively.

Algorithm 1. Graph-based Word Sense Assignment

Input: A word W from a set annotated with a semantic label L under a category Cat from a thesaurus 7C;
A word sense inventory S7 with a measure of semantic relatedness of W, REL (S, §’) encoding semantic
relations REL € SR holding between word meanings S and S".

S is one of the admissible senses of W listed in S7, and so as S’ of ",

Output: A list of linked word sense pairs (W, S*)

Notation: Graph G = {V, E} is defined for admissible word senses and their semantic relations, where a
vertex v € V is used to represent each sense S whereas an edge in E represents a semantic relation in SR
between S and S’. Word sense inventory S/ is organized by semantic relations SR, where REL (S, S”), REL
€ SR is used to represent one of the SR holding between word sense S of W and S’ of W".

PROCEDURE AssignWordSense(L,ST)

Build weighted graph G of word senses and semantic relations
(1)  INITIALIZE V and E as two empty sets
FOR each word Win L
FOR each of n admissible word sense S of W in SI, n = n(W)
ADD node Sto V'
FOR each node pair (S,S") in V'x V'
IF (S RELS’) € SRand S #S’ THEN ADD edge E(S,S") to E
FOR each word W AND each of its word senses S in V'

?) INITIALIZE P;= I/n(W) as the initial probability
(2a) ASSIGN weight (1-d) to matrix element Mg
(2b) COMPUTE e(S) as the number of edges leaving S
FOR each other word W= Win L AND each of W’ senses S’
A3) IF E(S,S’) € E THEN ASSIGN Weight d/e(S) to M-

OTHERWISE ASSIGN 0 to My

Score vertices in G

REPEAT
FOR each word W AND each of its word senses S in V'
@) INTIALIZE Qs to Pg* Mg
FOR each other word W’#W in L AND each of W’ senses S’
(4a) INCREMENT Qs by Ps * Ms:s

FOR each word W AND
Sum Qs over n(W) senses as N,
FOR each sense S of W
(4b) Replace Ps by Qg¢/N,, so as normalize to sum to 1
UNTIL probability Ps converges

Assign word sense
(5)  INITIALIZE List as NULL
FOR each word W
6) APPEND (W,S%*) to List where S* maximizes P,

(7)  OUTPUT List
|

Figure 2.Algorithm for graph-based word sense assignment.
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The algorithm (referring to Figure 2) for the best sense assignment S° for W consists of
three main steps: (1) construction of a word sense graph; (2) sense scoring using graph-based
probability ranking algorithm; and (3) word sense assignment.

In Step 1, the weighted graph G = (V, E) is built by populating candidate n(#) admissible
senses S of each given word W as vertices from S/, such that for each word W and its sense S,
there is a vertex V for every intended sense S. In addition, the edge E(S, S’) in E, a subset of V' x
V, s built up by adding a link from vertex S to vertex S’ for which a semantic relation REL(S, S”)
between the two vertices is derived, where S is one of the admissible senses of Wand S’ of .

In Step 2, we initialize the probability P, to a uniform distribution over each vertex S. And
we set the weight of self-loop edge as (/-d) (Step 2a), and the weights of other outbound edges as

d/e(S), calculated as Q= Q, +m
S e(S)
In our ranking algorithm for the weighted graph, the decision on what edge to follow during
a random walk considers the weights of outbound edges. One with a higher probability follows
an edge that has a larger weight. The ranking algorithm is particularly useful for sense
assignment, since the semantic relations between pairs of senses (vertices) are intrinsically
modeled through weights indicating their strength, rather than a decision on binary 0/1 values.

As described in Step 3, the weights are represented as a matrix M for which the weights of
all outbound edges from § are normalized to sum to 1. Our random walk algorithm holds that an
imaginary walker who is randomly stepping over edges will eventually stop walking. The
probability, at any step, that the walker will continue is a damping factor, a parameter usually
denoted by d. The d factor is defined as the vertex ratio of the outgoing edges and the self-loop
edge as the result of dividing the vertex weight of the damping constant. The damping factor is
subtracted from 1. The value for (/-d) introduced is the principal eigenvector for the matrix M.
The value of the eigenvector is fast to approximate (a few iterations are needed) and in practice it
yields fairly optimal results. In the original definition of a damping factor introduced by
PageRank (Brin and Page, 1998), a link analysis algorithm, various studies have tested different
damping factors, but it is generally assumed that the damping factor will be set around 0.85
whereas we use variant value for d in our implementation.

In Step 4 of vertex scoring, we compute the probabilistic values of each vertex at every
iteration. The set of probabilities Qs of each sense S for the next iteration is computed by
multiplying the current probability P, with the matrix M. For instance (Step 4a), suppose a
walker is to start at one vertex of the graph. The probability of Oy is the probability of a walker
stands at a vertex of S forming a self-loop plus the sum of the influx of P,- weighted by M. In
Step 4b, we normalize Qy for the probability of all admissible senses with each word to sum to 1
and replace P; by Q..

o)

The normalized weighted score is determined as:  Ps(W ) = ——t—
o)
lesenses(W)

Subsequently, in Step 5, we calculate the ranking score of maximum probability P that
integrates the scores of its start node. And thus the resulting stationary distribution of
probabilities can be used to decide on the most probable set of admissible senses for the given
word. For instance, for the graph drawn in Figure 3, the vertex on the vertical axis represented as
the sense #3 of “fine” will be selected as the best sense for “fine” under the thesaurus category
“Goodness” with other entry words, such as, “lovely”, “superb”, “beautiful”, and “splendid”’. The
output of this stage is a set of linked word sense pairs (W, S$*) that can be used to extend the
limited thesaurus coverage. The overall goal of ranking admissible senses is to weight highly the
senses that tend to arrive at the consistency of word senses.
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Figure 3.Highest scoring word sense under category “Goodness” assigned automatically by
random walk.

Recall that our goal is to select the word senses for each specific collocate, categorized by
the corresponding semantic label, for example, sandy, rocky, pebbly beach with label Materials;
beautiful, lovely, fine, splendid, superb beach with Goodness. In order for the word coverage
under thesaurus category to be comprehensive and useful, we need to expand the words listed
under a label. This output dataset of the learning process is created by selecting the optimal
linked word sense pairs (W, S*) from each semantic relation in our word sense inventory where
the specific semantic relation is explicitly defined.

Although alternative approaches can be used to identify word senses of given words, our
iterative graphical approach has two distinctive advantages. First, it enables a principled
combination of integrated similarity measure by modeling through a multiple types of semantic
relations (edges). Secondly, it transitively merits local aggregated similarity statistics across the
entire graph. To perform sense propagation, a weighted graph was constructed. On the graph,
interconnection of edges is aggregated on a semantic relatedness level by random walk. The
sense edge voltage is transitively propagated to the matching sense vertex. The effect depends on
the reinforcement of the semantic relations (edges) and magnitude of the sense relations
(vertices), creating a flexible amplitude-preserving playground like no other optional way of
modeling a transcended graph propagation of senses. By doing so, our model is carved out to be
a robust, more flexible solution with possible alternatives of combining additional resources or
more sophisticated semantic knowledge. This approach is relatively computationally inexpensive
for unsupervised approach to the WSD problem, targeting the annotation of all open-class words
in lexical database using information derived exclusively from categories in a thesaurus. The
approach also explicitly defines semantic relations between word senses, which are iteratively
determined in our algorithm.

3.2.2 Extending the Coverage of Thesaurus

Automating the task of building a large-scale semantic knowledge base for semantic
classification imposes a huge effort on the side of knowledge integration and validation. Starting
from a widespread computational lexical database such as WordNet overcomes the difficulties of
constructing a knowledge base from scratch. In the second stage of the learning process, we
attempt to broaden the limited thesaurus coverage as the basis of our applied semantic
knowledge that may induce to unknown words in collocation label assignment in Section 3.3.
The sense-annotated word lists generated as a result of the previous step are useful for extending
the thesaurus and reducing OOV words that may render words that form a group by itself.

In the previous learning process, “fine” with other adjective entries “beautiful, lovely,

44



splendid, superb” under semantic label “Goodness” can be identified as belonging to the word
sense fine#3 “characterized by elegance or refinement or accomplishment” rather than other
admissible senses (as shown in Table 1). Consider the task of adding similar word to the set of
“fine#3” in the thesaurus category “Goodness”. We apply semantic relation operators for novel
word extension for “fine#3”. Some semantic relations and semantic operators available in the
word sense inventory are shown in Table 2.

In this case, “similar_to”, the semantic relation operator of “fine#3” can be applied to derive
similar word “elegant#I” as the extended word for “fine#3” identified with the sense definition
“characterized by elegance or refinement”.

Table 1.Admissible senses for adjective “fine.”

Sense Definition Example Synsets of
Number Synonym
et |(beingsatistconyorin | L e i are all| okt ok
satisfactory condition) L e » T ’
right”; “things are okay okay#1
(characterized by “fine wine” ; “a fine gentleman”’;
fine #3 elegance or refinement or | hi d o olinist” elegant#1
accomplishment) ‘fine china and crystal”’; “a fine violinist
fine #4 |(thin in thickness or “a fine film of 0il”’; “fine hairs”; thin#1
diameter) “read the fine print”
Table 2.Some semantic operators in word sense inventory.
o Relations Hold
SR Operators Description ¢lations Ho
for
syn operator zlrl]f[):)im sets for every word that are interchangeable in some all words
sim operator |adjective synsets contained in adjective clusters adjectives

3.3 Giving Thesaurus Structure to Collocation by Iterative Graphical Algorithms

The stage takes full advantage of the foundation built in the prior learning process,
established an extended semantic knowledge to build a thesaurus structure for online collocation
reference tools. We aim to partition collocations in groups according to semantic relatedness by
exploiting semantic labels in a thesaurus and assign each collocate to a thesaurus category.

In this stage of the process, we apply the previously stated random walk algorithm and
automatically assign semantic labels to all collocations by exploiting semantic relatedness
identified among collocates. By doing so, our approach for collocation label assignment can
cluster collocations together in groups, which is helpful for dictionary look-up and learners to
find their desired collocation or collocations under a semantic label.

We use a set of corresponding admissible semantic labels L to assign labels under thesaurus
category L € Cat to each collocate C € Col, such that the collocates annotated with L can be
partitioned into a subset corresponding to a thesaurus category, Sub = { (C, L) | C € Col, L € Cat
€ TC }, which facilitate meaning-based access to the collocation reference for learners. We
define a label graph G = (V, E) such that there is a vertex v € V for every admissible label L of a
given collocate C, and there is an edge e € E between two vertices where the two vertices have
the same label. Edge reinforcement of the label (vertex) similarity distance between pairs of
labels is represented as directed edges e € E, defined over the set of vertex pairs V' x V. Such
semantic label information typically lists in a thesaurus.

Given such a label graph G associated with a set of collocates Col, the probability of each
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label P, can be iteratively determined using a graph-based ranking algorithm, which runs over the
graph of labels and identifies the likelihood of each label (vertex) in the graph. The iterative
algorithm is modeled as a random walk, leading to a stationary distribution over label
probabilities P,, represented as scores Q; attached to vertices in the graph. These scores Q, are
then used to identify the most probable semantic label L« for each collocate C, resulting in a list
of annotations (C, L+) for all collocates in the input set. The algorithm is quite similar to the one
for graph-based word sense assignment shown in Figure 2. But note that the overall goal of
ranking admissible labels is to weight highly the semantic labels that help arrange collocations in
a thesaurus category and provide learners with a thesaurus index.

In other word, our goal is to assign corresponding semantic labels to each specific collocate,
for example, “sandy, rocky, pebbly beach with label Materials.” In order for the semantic
structure to be comprehensive and useful, we try to cover as much OOV words as possible by
applying semantic relation operators (e.g., derivational relations). We propose the replacement of
OOV words for their derivational words such as the replacement of “rocky” for “rock™ and
“dietary” for “diet”. For a few number of derivationally substitutable OOV words occurred, such
as pebbly beach, we apply the built-in vocabulary of words, i.e., pebble, as a substitution for
pebbly by exploiting the derivational relations from the obtainable sense inventory as we will
discuss in more detail in the section of experimental set-up.

The output of this stage is a list of linked label-annotated collocate pairs (C, L*) that can be
used to classify collocations in categories.

4. Experimental Settings

4.1 Experimental Data

In our experiments, we applied random walk algorithm to partitioning collocations into
existing thesaurus categories, thus imposing a semantic structure on the raw data. In analysis of
learners’ collocation error patterns, the types of verb-noun (V-N) and adjective-noun (A-N)
collocations were found to be the most frequent error patterns (Liu, 2002; Chen, 2002). Hence,
for our experiments and evaluation, we focused our attention particularly on V-N and A-N
collocations.

Recall that our classification model starts with a thesaurus consisting of lists of semantic
related words extended by a word sense inventory via random walk Algorithm. Then, the
extended semantic knowledge provides collocates with topic labels for semantic classification of
interest. Preparing the semantic knowledge base in our experiment consists of two main steps: (1)
Integration, and (2) Extension. Two kinds of resources are applied as the input data of this
learning process of semantic knowledge integration described below.

4.1.1 Input Data 1: A Thesaurus for Semantic Knowledge Integration

We selected the set of thesaurus categories from the dictionary of Longman Lexicon of
Contemporary English (LLOCE). LLOCE contains 15,000 distinct entries for all open-class
words, providing semantic fields of a pragmatic, everyday common sense index for easy
reference. The words in LLOCE are organized into approximately 2,500 semantic word sets.
These sets are divided into 129 semantic categories and further organized as 14 semantic fields.
Thus the semantic field, category, and semantic set in LLOCE constitute a three-level hierarchy,
in which each semantic field contains 7 to 12 categories and each category contains 10 to 50 sets
of semantic related words. The LLOCE is based on coarse, topical semantic classes, making them
more appropriate for WSD than other finer-grained lexicon.

4.1.2 Input Data 2: A Word Sense Inventory for Semantic Knowledge Extension
For our experiments, we need comprehensive coverage of word senses. Word senses can be
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easily obtained from any definitive records of the English language (e.g. an English dictionary,
encyclopedia or thesaurus). In this case, we applied WordNet to broaden our word coverage from
15,000 to 39,000. WordNet is a broad-coverage machine-readable lexical database, publicly
available in parsed form (Fellbaum, 1998). WordNet 3.0 lists 212,557 sense entries for open-class
words, including nouns, verbs, adjectives, and adverbs. In order to extend the sense coverage, we
applied random walk Algorithm to match a significant and manageable portion of the WordNet
sense inventory to the LLOCE thesaurus.

WordNet can be considered a graph over synsets where the word senses are populated as
vertices and the semantic relations edges. WordNet is organized by the sets of synsets; a synset is
best thought of as a concept represented by a small set of synonymous senses: the adjective
{excellent, first-class, fantabulous, splendid}, the noun {enemy, foe, foeman, opposition}, and
the verb {fight, contend, struggle} form a synset.

4.2 Experimental Configurations

We acquired all materials of the input data (1) and (2) to train and run the proposed model,
using the procedure and a number of parameters as follows:

4.2.1 Step 1: Integrating Semantic Knowledge

To facilitate the development of integrated semantic knowledge, we organize synsets of
entries in the first input data, LLOCE, into several thesaurus categories, based on semantic
coherence and semantic relations created by lexicographers from WordNet. The integrated
semantic knowledge can help interpret a word by providing information on its word sense and its
corresponding semantic label, (i.e., “fine” tagged with “Materials™).

Recall that our model for integrating word senses and semantic labels is based on random
walk algorithm on a weighted directed graph whose vertices (word senses) and edges (semantic
relations) are extracted from LLOCE and WordNet 3.0. All edges are drawn as semantic
relatedness among words and senses, derived using the semantic relation operators (Table 3).

Table 3.The semantic relation operators used to link the lexical connection between word senses.

Relation . . . Relations
Operators Semantic Relations for Word Meanings Hold for
synonym sets for every word that are interchangeable in some context
Syn operator  |without changing the truth value of the preposition in which they are all words
embedded
h hypernym/hyponym (superordinate/subordinate) relations between nouns
yp operator synonym sets verbs
verb synsets that are similar in meaning and should be grouped
vgp operator . . verbs
together when displayed in response to a grouped synset search.
Sim operator |adjective synsets contained in adjective clusters adjectives
der operator  |words that have the same root form and are semantically related all words

In particular for all semantic relation operators, we construct a maximum allowable edge
distance MaxED, informing a constraint over the edge path between words for which the word
sense likelihood is sought. For our experiments, the MaxED is set to 4.

4.2.2 Step 2: Extending Semantic Knowledge

Once we have mapped the sense-label from the stationary distribution in the random walk
graph, another step is taken to take advantage of the mapped semantic knowledge by adding
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more novel words to the thesaurus categories. The word coverage in question is extended by
more than twice as many LLOCE thesaurus entries. For the extension of our semantic knowledge,
we need information on joint word sense and semantic label pairs, and semantic relation among
words from the previous step. Various kinds of the above-mentioned semantic relation operators
can be derived, depending on the type of semantic operators available for the word class at hand.
In experiments, we focus on the synset operation provided in WordNet.

4.3 Test Data

We used a collection of 859 V-N and A-N collocation pairs for testing, obtained from the
website, JustTheWord (http://193.133.140.102/JustTheWord/). JustTheWord clusters collocates
into sets without understandable label. As a result, we will compare the performance of our
model with JustTheWord in Section 5

We evaluated semantic classification of three types of collocation pairs, focusing on A-N,
V-N and V-N. We selected five pivot words for each type of collocation pairs for their varying
level of abstractness and extracted a subset of their respective collocates from the JustTheWord.
Among 859 testing pairs, 307 collocates were extracted for A-N, 184 for V-N, and 368 for V-N.

To make the most appropriate selection from testing data in JustTheWord, we have been
guided here by research into language learners’ and dictionary users’ needs and skills for second
language learning, taking account especially of the meanings of complex words with many
collocates (Tono, 1992; Rundell, 2002). The pivot words we selected for testing are words that
have many respective collocations and are shown in boxes around each entry in Macmillan
English Dictionary for Advance Learners.

5. Results and Discussions

Two pertinent sides were addressed for the evaluation of our results. The first was whether
such a model for a thesaurus-based semantic classification could generate collocation clusters
based on human-like word meaning similarities to a significant extent. Second, supposing it did,
would its success of semantic label assignment also strongly excel in language learner
collocation production? We propose innovative evaluation metrics to examine our results
respectively in these two respects and assess whether our classification model can reliably cluster
collocates and assign a helpful label in terms of language learning. In the first subsection, first
we explain why we propose a new evaluation metrics in order to explore how the method results
in simple, robust designs yet influences each facet of the question for lexicographic and
pedagogical purposes. In the following subsections, the evaluation metrics are presented
individually in two regards, for assessing the performance of collocation clusters, and for the
conformity of assigned semantic labels.

5.1 Performance Evaluation for Semantic Cluster Similarity

The collection of the traditional evaluation (Salton, 1989) of clustering works best for
certain type of clustering method but might not be well suited to evaluate our classification
model, where we aim to facilitate collocation referencing and help learners improve their
collocation production. In that case, for assessing collocation clusters, we propose a robust
evaluation method by setting up the items to be evaluated as a test for semantic similarity to
judge the performance of clustering results. For semantic labeling results, we developed a
grading rubric with performance descriptions for the conformity of labels as a reference guide.
Two human judges were asked to give performance assessment by scoring each item. The
evaluation methodology is aimed at fostering the development of innovative evaluation designs
as well as encouraging discussion regarding language learning by means of the proposed method.

Landauer and Dumais (1997) were first proposed using the synonym test items of the Test
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of English as a Foreign Language (TOEFL) as an evaluation method for semantic similarity.
Fewer fully automatic methods of a knowledge acquisition evaluation, one that does not depend
on knowledge being entered by a human, have been capable of performing well on a full scale
test used for measuring semantic similarity. An example provided by Landauer (1997) is shown
below where “crossroads” is the real synonym for “intersection”.

You will find the office at the main intersection.
(a) place (b) crossroads (c) roundabout (d) building

For this experiment, we conducted the task of evaluating the semantic relatedness among
collocation clusters according to the above-mentioned TOEFL benchmark to measure semantic
similarity and set up target items out of our test data as sheet of clustering performance test. Our
human judges performed a decision task similar to TOEFL test takers: They had to decide which
one of the four alternatives was synonymous with the target word. A sample question is shown
below where grouping “sandy” and “rocky” together with the target word “beach” because they
belong to the same category of concept as the collocation is more appropriate than clustering
“sandy” and any of others together.

sandy beach
(a)long (b)rocky (c)super (4)narrow

There are 150 multiple choice questions randomly constructed to test the cluster validation,
50 questions for each 3 testing collocation types and therein 10 for each of A-N, V-N, and V-N
testing collocation pairs. In order to judge how much degree our model ultimately has achieved
in producing good clusters, two judges were asked to primarily choose the one most nearly
correct answer. If the judges find one of the distracters to be also the plausible answer, giving
collective answer options is allowed for our evaluation in order to test the cluster validation
thoroughly from grey area among options given inadvertently. If the judges think no single
correct answer is plausible enough, 0 point can be given for no satisfactory option considered.
Table 4 shows the performance figures of collocation clusters generated by the two systems. As
is evidence from the table, our model showed significant improvements on the precision and
recall in comparison with JustTheWord.

Table 4.Precision and recall of our classification model and those of JustThe Word

Results
Judge 1 Judge 2 Inter-Judge
System
Precision Recall Precision Recall Agreement
Ours .79 71 73 .67
.82
JustTheWord .57 58 57 .59

Without doubt, subjectivity of human judgments interferes with the performance evaluation
of collocation clusters, for inter-judge agreement is just above 80 %. The closer our precision
(79% and 73%) is to the discrimination ratio, the more effectively that an automatic method
distinguishes subjects in accordance with human judgment.

5.2 Conformity of Semantic Labels
The second evaluation task here focuses on whether the semantic labels facilitate users to
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scan the entry quickly and find the desired concept of the collocations. From the experiments, we
show that the present online collocation learning tools may not be an appropriate place to seek
guidance on fine discrimination between near synonyms. This problem could be alleviated if the
alphabetical frequency ordering of the learning tool could be supplemented by thematic
treatment in our thesaurus-based semantic classification model. Our evaluation result will
indicate the extent to which semantic labels are useful, to what degree of reliability. Only to the
extent that evaluation scores are reliable and the test items are solidly grounded in its practical
viewpoint can they be useful and fair to the assessment.

Two human informants were asked to grade collocation with label, half of them randomly
selected from our output results. The assessment was obtainable through different judges that
participated in evaluating all of the collocation clusters as described above. One native American
graduate and a non-native PhD researcher specializing in English collocation reference tools for
language learners were requested to help with the evaluation. We set up a three-point rubric score
to evaluate the conformity of semantic labels. When earning two points on a three-point rubric, a
label has performed well in terms of guiding a user finding a desired collocation in a collocation
reference tool. If the assigned label is somewhat helpful in collocation look-up, a score of one is
shown that labels are achieving at an acceptable level. To assign judgments fairly and to
calculate a fair reflection of the conformity of the labels, a zero score can be given if the labels
can be considerably misleading to what is more indicative of the concepts. We set up an
evaluation guide to present judges with the description for each rubric point, and allow the
judges to grade each question as “0”, “0.5” or “1” for the item.

Table 5 shows that 77% of the semantic labels assigned as a reference guide has been
judged as adequate in terms of guiding a user finding a desired collocation in a collocation
learning tool, and that our classification model provably yields productive performance of
semantic labeling of collocates to be used to assist language learners. The results justify the
move towards semantic classification of collocations is of probative value.

Table 5.Performance evaluation for assigning semantic labels as a reference guide

Judge 1 Judge 2

Ours .79 75

JustTheWord Not available Not available

6. Conclusion

The research sought to create a thesaurus-based semantic classifier within a collocation
reference tool limited to the collocates occurring without meaning access indexes. We describe a
thesaurus-based semantic classification for a semantic grouping of collocates with a pivot word
and the construction of a collocation thesaurus that is used by learners to enhance collocation
production. The thesaurus-based semantic classification classifies objects into semantically
related groups that can participate in the same semantic relation with a given word. Rather than
relying on a distributional analysis, our model is resourced from an integrated semantic
knowledge, which is then generalized to combat sparsity. The evaluation shows that this robustly
designed classification model facilitates the existing computational collocation reference tools
and provides users with the collocations they desire to make semantically valid choices. The
thesaurus structure is successfully imposed to facilitate grasping concepts of collocations.

Given that there is very little precedent review for us to follow, this research offers insights
into how such a collocation thesaurus could be structured and useful. The semantic labeling
described here improves collocation reference tools and has given us a tool for studies of
collocation acquisition. The final results convincingly motivate the move towards semantic
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classification of collocations.

Many avenues exist for future research and improvement of our classification model.
Another possibility would be to train more set of variables, each of which may take one among
several different semantic relations for each collocation types. There is also a set of constraints
which state compatibility or incompatibility of a combination of variable semantic relations.

To top it all off, existing methods for extracting the best collocation pairs from a corpus of
text could be implemented. Domain knowledge, heuristics, and WSD techniques could be used
to improve the identification of semantic label types. Semantic relations could be routed to
classification model that performs best for more types of collocation pair (such as
adverb-adjective pairs).
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CNA  |FO51 6583 3468 1092 297 151
MO51 6661 3332 1207 270 129

U= r S

) ﬂJ%J*’?i}' re=s r%f’?k}' 57 ¥k

[

N [?E e R

ey E*L

T AT 608 - S s
IE[ Jll:_ﬁ; P‘“—:j{‘ <) £ |$ Eﬂﬁl B FE*E[%??‘%" , EI e FEfL(ij'[ gT‘VFgl)RJ;:g? UF EﬁLIEI SHL
S et A g Eﬂﬁ%&*ug[ TR E RS BJ,%EFE} 10 O/%n o A i

58



B IS (O AT S U Fujisakif) B2 > Fujisakif) B gt = fr il
et 2 R AT RS o
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59



YUY A > FLTIASYIORE [ T Ap=E Aafs Y - WIMMFEH‘—TAp@Aap J:FIYEU}
T HS{ER 7L*‘”JHPGWEI?Fﬁ % Fujisaki model S LI RSBy T sk «?%\Iw;@

-1 o

A7~ 2O HPGYHE AR SIS ek

Bl %?ﬁ Aa Ap Total

054 | 76.66% | 73.80% | 75.23%
mo056 | 73.66% | 66.89% | 70.28%
FO51 | 87.71% | 56.25% | 71.98%
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An ANN based Spectrum-progression Model and Its Application to
Mandarin Speech Synthesis
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A s TP SVM %D Eigen-MLLR SRR b 25555 F0 500 - EATR
ubiquitous ZE5I1J5 Eﬁ#ﬁ%%fﬁ st L R R i A il R AR AT = S
SRR, > T %;ﬂﬁﬁ{f@mﬁf’%%ﬁﬁf AN 2L MER] SVM Al Eigen-MLLR 1)
FFVECERS AR BT SERE > B kaE A3 R BREE M JEH LR TR 2 B

2] o AERE S PEIIRS o (] SVM $HTHIEARE B TR R - FEEHTE A S Y
MLLR RS2 BOERE » R H B IRRE A LA 5 A LAY o et PN i
A ARELUAY) MLLR matrix 1 Eigenspace PRIVELERER - i RAE RS ST AT
MLLR matrix ° AHELHIERE A LA HHERICRAT 1] LI T 5~8 % -

Abstract
This work presents a novel architecture using SVM and Eigen-MLLR for rapid on-line
multi-speaker adaptation in ubiquitous speech recognition. The recognition performance in

speaker independent system is better than in conventional speaker dependence system, and
the key point is speaker adaptation techniques. The adaptation approach is on the basis of
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combine SVM and Eigen-MLLR, generating a classification model and building parameters
vector-space for all speakers’ individual training data. While in recognition, to find test
speaker classification by SVM and look for MLLR parameters matrix correspond to speaker
classification, then the MLLR parameters matrix and original acoustic model will integrate
into speaker dependent model. Last, we estimate the adapted MLLR transformation matrix
set by weighting function with recognition result, the present MLLR matrix, and Eigenspace.
The estimate result will be used to update the MLLR matrices in adaptation phase. The
experimental results show that the proposed method can improve 5% to 8% speech
recognition accuracy with speaker adaptation.

BHtA] ¢ ubiquitous » FEE 5 » SVM > MLLR

Keywords: ubiquitous, speaker adaptation, SVM, MLLR,
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FHERZ IO B Y NI RE KO TR AR Ay M RS — 25 T TR SR B
BHFTAE © AENBYZETG R - W5 > J& N BGE A A o e S BR T - AR IR
A — > GBS > ARG ATE RN - RET S Z IR EEE - (HAEE R
PG ERFURKERFIN] > RE S IS W DA E N EREE A IR e B v Al ) 5 — Rl (e fie -
BERE S RH R LR A SR DR 5 i

FEE AN R OASEETE > B THHE S E0EEE  BE R RS DL A
IR R A THE T ERR - A RIGEEEAr > GESEY i A\ SRS AR o [ A Bl G Jad
RO R o GBS YRR T E R T B e R B LUK R S R B R T 0 AR
HREHIMT L > EERAE —UIRARA » ] R Bk R AR BE 8 » e i E T
Je IR — o JbAL o GRS RS AERE T S iR FrRE a4 (robustness )
HIRTRE > —ERMANTAE— T B W BR B DL R (o F 5 iRE e R MR Ak
FHE LR RTIRE S HERAE T o MAEEEE - GEFTHE (speaker adaptation ) Fffir
e — B - (AR RE S PR R R A S B — R PRI —
iy A > Mt E ] DR e S R R A - (HE A TRAER N A AR &
F X ARSI i e AP AT =K - TG e thirumt & b > ARy 4515 (digital
life) ST RAEFRMNAETG 2 R EAE e i BN A VEER] » S Ay 2 n] DABEHY
B i B FH BB 220 ~ B EZR TPy S A EE A 2B TS H i T 3 e ARG S kL
flir (Ubiquitous Speech Recognition Techniques ) » % A\ MAEZ TR — (b 520 vl LA
G Rk P A A2 B s 2R AR VG ] © [T RE B P R A I S 2 P B E Y
AE] > A o iy o] AR T 2 aB-E o 71 SRah e R Bz
FHE R B REE A RAFHERRE

(=)~ WH5Esim

(R YRR AR H0IE— 77 » T3 — LSRR (acoustic model ) SEHHEE S
R TR RN (0 25 T R ORSE « S 25 ORI K
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MEER} (training corpus ) A8FHATR Y5 AUAENLINT R o £ 17 A o0 A SRR A 0 I IF BB N
SRR RIS O BR B A ZR AN RIS RS e RT THT T AT SRR > FT AR R
ZANFIERBEIN R NRERL - DIHERF B S AT O HERENE » (B E R e B R
FEPUTEREEIN R > EERER A RIRE AR A IR — APk - AERfa s il > IR
FHRAA R BRI A S W iRl i 191 - Rl > PG E tli e s — s
BENER o — AR SR (EE 2 A RGE A PR AR RS e e T =izt
VLR NRFESR (speaker independent model, ST model ) - SR RHE R T
RS RERUEEE » ANRTRES T I S RHIE N IREFRFIE « FTLASS 1 AN Al REA A e Ot
AT BT HIHIEIEE - ML ERC AR AR LRI R AHGE B L ~ F% > & T1F
(R RaRE#iiE (speaker adaptation ) » £E(H FIRF-E BRI ARREA A B S AU AR
DMEIE % > s i SR R R af-& R e 1AL (speaker dependent model, SD model ) °
{EE S il BT 25 4T g TR - ATl AR T ORI A AR R e (A B0 Rkt T T A
PORAE IS (R R A Rne e B A ik i e 3& (0 HIRTRa
AT TR 22 iR — R -

e e e e e S e e e e g et

e - |Front-End Speech

.......... Processing

......

...............................

..........................

FF e
. =Illlllllllllii

B Acoustic model
training

-
_
Corpora i

... _
. .
[ ..
B2 el

— A R AU

e 2Rt s E b FUHE DU IGHEE T (Bayesian adaptation ) F33EHE > S5 {65
IS v DR R S i 5 el A G E A RS T A R » (E B (2 & T SR IVEE
FHHERIA > B BETE 58 & W RAMAC G _ R ESK S Beah > AR AR ARER
WARIFEEE A1 (unsupervised adaptation ) FY[ETZ T » By i A R (A {5
HURFEHE L o UTAF A i BAF TR GE 8 50 532 e 0 F s A AL R A P el ff - ( Maximum
Likelihood Linear Regression, MLLR ) » FFZ Mo e B g SR i alas B 1 IL vk n] DAAER
SRR DR FE B R A AR - ARIMAE MLLR o > SRR IR Ry 228
INMANRAERE R AT > AR 4 R S AL 56 22 « 72 (1] Frie
] Eigenspace-MLLR  F33LHRET PR A - (% G 7 I W SRR, > M
T DAERERHL D HIE T T A 28y n] S50 > 1 HAEFEETE A E 1 T~ 5830
B o A s LA AR N PSS E R B GE S M 2 o SVM R A i
PP BT 748 classification )~ [B]§7f( regression )~ DU [RSEA{EHI( novelty detection )
JEEeAHRRYRTE - - HFER RS » A IAERIAPEZE2E (machine learning ) | > 1
HIF L MERNREE A (speaker verification ) {1 [2] [3] HYMAFFEE{H L MLLR £55%
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BERZ LR SVM ACE SR R BRI - AEAGR S D BELL SVM S AMBAE R R 04
(S ] DA/ E MLLR oA SRR RE (2208 - 311 HL o] DU FOARRRE A il 22 8 -

(=)~ WgeEEE R

Afam sl FRE R EE AL A AL o S E 2 AR SVM Hil Eigen-MLLR g1l
NI ERp = ve R ey R R INE N I S N I S b e aag =1 U R DA = iiob ey S N[N B
I SVM $15EF M8 > LUK Eigen-MLLR 37 FirA AR RHE A 228 2ei - A6 Hg
SVM HiyfEl 15348 Eigen-MLLR HRi R A S 22 82 7 — (AN FERI RIS » 8
)RS B (Training phase ) o 2 SRAERF— (L HIEAGEFBE R » (g /B SVM #5E
FHE AT HE > W SE AT S ER) MLLR FR#28 » A0 IR e e
JFURI R S RS S GRS R B > P TRE S - SETR WP EY (Recognition
Phase ) o 5 (B EAS O PERASH - REFAEIEY MLLR R8RS S5
= HAAF FHEEEE IR > 67 H AR A RIS BT UGBS AH B Y MLLR Fr2% > 8
FafsaiiEPE B¢ (Adaptation phase ) - ARIEE s - BAIASSHEH 17 SVM LUK Eigen-MLLR
M T A RE S R PR P HHEE A B E A > TEBEfasige - odm 1
eIt -

A2 R A BUE SR ASTR S AT 2 S R 5 T IR DU s R AR T T e
SVM BRI/ o 25 = S ARGy /aat e A LU BT B0 > 2504
SRAEEREAE MR T B BRI A R USRI HLErINDABERS - 55 To s U AR SO
EHIRRR LR A AR iR 5

=~ MBS ElE

158 EE B RE R B T DU VR  DURCENA SVM R MLLR 8 A%

TR » GE B R A ] DAE AR ~ R AR AVE S5 = ISR > AR — sl -

SVM AT A 4 B 12 119158 FHAE /38 (classification ) ~ [Blfs (regression ) ~ DL SH

FEH] (novelty detection ) AHBHIURTRE L « SVM [4] [7] BYATAAHBEE it n] DAL 2

(i A SR a S B A i B - MILLR YA 25 B AR AN R Fi e 1 2 8t

FH A 1 RHE R R A7 A 2 — (AR M B K B B AR - 1 ] DARE B P B AAR L
(Maximum Likelihood, ML) JHREAR KA S B0 IR B BB (% -

(—)~ FEETEIEN

A e e SR H FAERY R FH R AR LR BRGER) » AGE R A A B A5 1Y
HEREETT - Fo— IR BAT AR 3 H - TERAMAVAEACE - B ARRESET TREE T
AR > ZHSIESREE IR B AYRER IR RIIRGE (training data) B F R}
(adaptation data) * BATRMIE ARERCE]— A RERHERRE — KAYRE - MRS )7 ik
(‘sequential adaptation ) : AIIHUE— JHEFHATAIRERHFHERE RS - SRR LKL
(batch adaptation ) » ATRAEFLEFERHN AIEACHE > WIFRMFICIFREERIIANZA >tk
BB AR — RIS AR AR S AR R A MR e 22 B Os tfeery
e > Ja AR E o UMiE 1L (supervised adaptation ) MY » A ANABERERHIAZA -
JRSCHTRE R R R REAS A T ERE R A B AR - R R IR BB G ik
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(unsupervised adaptation ) °

HEak A A YR S (acoustic model ) W ARG 55 ¥ A FFE A (speaker
independent model, SI model ) » ~/ FEES AR (initial model ) o 75 DU £ JL 81 25
T30 ARG GRS R E e oA (U ) > Wi = AE (frame ) Fip
FHYE FE e T RERURAIREE » FL 2R SR A S T — RS IRILL - AEH RIS B $8 =5
$7: (Search Algorithm » 411 Viterbi ) HHFTAEASAAS SR B ARG A KRR -
Fifr DA E e S RS e s L BR g R AR U e A AH KRR -

FnIEIREF N AE 2K > A ] FS RAREIEAE R © — S RE S R R B m =
BRI (feature-based adaptation ) » - EUE DUFREGE S SR & > s
A AU 22 B GE RS HE R I B AL I — 2 A R R AR 22 S SR 1 1 B 1
(model-based adaptation ) » {§i£3 1] DASEARUSHEEREE IR o T KA 2 ISR
DAY 5 BLE A 5 1A DR SRR 1 A B LA BRI R A G i
Bt s T 209 BT B 2 PR FH RE MR E B 3 5 =X o s R AR DL B AR e
(MLLR) ~ HKE# S (R A SRR > Maximum a Posterior » MAP) ©

Fo— ~ GER IR

R s I BB Rz bl
DA | T (sequential adaptation ) » $ELKGH5E 72 (batch adaptation ) °
DAGERl 4 BB = CFE L (supervised adaptation ) JEEEF =(G# 12 (unsupervised
adaptation ) °
IV NZER Frfa ) & R 2L FieE S (feature-based adaptation ) » F5IU S22 YK E L
W (model-based adaptation )

(=)~ X =#% (Support Vector Machine, SVM )

ZigrmEbg (SVM) & H aia s F 2k i Fs 348 (classification ) Bi¢[lfF (regression )
M o ERS T — O BT E R % o IR SR T DS HFISR (training ) J&
13— (model) o (2% » A5 E AR FENERHINAKE > SZHR s n] DUKIR ST
R AR AP (predict ) » MR E S ZE AT 4380 o 11K AR R R
R AR B ERMS AR - Fr USRS B B (supervised learing) 1Y
Fiik o R RS E S (Linear Classification) FY 515 » HIOLEREH —(#
F7R1A Chyperplane ) 17 A LARFHERFEZER T (feature space ) TSI ERNE BN
SrBAR A FRIRYEE R -

7R e A A B R M (S e R SR T B i AL IR e RO T Sk P i
FEACE IR MR iR R > RIS SVM {5 1] Lagrange multipliers KRG AE (Al 247
AR - fE 25 208k (4] 9015 ° SVM HYELREE— (8 F] A% O 88 ( Kernel function )
K(., . WERIAEN T — S W a R s > HEEASE TR -

f(X)=Z%tiK(X,X,-)+§ )
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ST IR D, Yt =0 A E % >0 o AR Xi S
PR 2 T ST BB BERE ( Support Vectors )  FEASFKIL (A SRR S 4810
S 1 RS+ 1) SR 2 CELERS — 1) - SRS Wi 0P ]
e AT EIESYE (threshold) 2 a2 F -

(=)~ B E AR T (Eigen-Maximum Likelihood Linear
Regression, Eigen-MLLR )

EeBAMRE AN MLLR ESACE (3] (5] BL/5Em R R e i e SO R 1Y
ST EA S S RIHE— RS SRR 0% - AR

Y=AX +B )

A LB AR R AR T R R — R R A s L 22 ] g e o
— kA > iR T RRRZ BRI 2L IR B HBER R - AT PAGE AT LU
i KB (Maximum Likelihood, ML) fHHIBEACREF A ~ B HYfiE - AT NATR -

A=argmax f(x16,A,B)
A

B=argmax f(x16,A,B) ®)

1EEM 0 FRI R ITARE S 2 MBS - x HIFOREERERHEBIIE -
TERF M REE T ot KRR S A Al B vy 5 v 1l e 2 Py JEE P AR RS G
PIATE L B AR v DUEHSIR SR PR - 7 AU R Ml b > JERE
PRI Z2 BT LIRSS — {2 2/ 59 /720 (affine transformations ) 2 FGH#
B Y o dme A FHALL JEE A 4 ] it 0 58 7 s (53 FH 45 B ot ey =X 20 ) 5 vy BT 9 5 A 7R
( Gaussian mixture model, GMM ) A ESITCAAEIE (mean ) » [f[E]—{E1{5 5T
LRI ] DI T A TR G e Forik T -
/ai = A:ui +b Vi 4)

1 FRAE GMM USSR P AE > 117 2, 2R EASHE S -
FERZHIER R D RO AT DA 2 A - AR5 S it 5 =CrT LA
FEAFRIFED L] > AR TR -

&4, =Au+b, Vi e class, ®)
A =A,u +b, Vi eclass, (6)

AEFL—RIZARAE A TR T A 7 U s R R AU A E Y » FHAAEE (1
a3 A UE R EIRE R B A A A ARSI T ] A
FEUDF R RERORBRACR T A, b > ATDMERE GRS - SRS EE &
7l > RURTAT RS2 e n] DL S - 58 e e R RR P e v ] DURE A DR
HRRA I EZEA -

Ff(-MLLR [8] [10]55—di K 20y MLLR » H: H e DURFl A s 22 fEfa 350 MLLR (o] i
ik (Eigen-MLLR ) » = ZUEERAL 1 DA 22 [ R BE0E & R4 A R o DS (34 MLLR
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FREERY o 1) R 2= ] R B & R AR S R (R e i T ke B2 22 M e
o> MR IE ) R — B ] (SRR B A 2] - LR - AR ehT TRRA ARy - AT
) ARG LU H A AR E B B 22 ] R rTRERYALE - DAL RR AL E — Bk
E o HEAR EAR B BN B2 B < AR T - Lr S22 R D ERATR

Stepl BARUBE R  Ft > MRS AIAIRRGE AR R e A 2 B wf > [
TEEREEEE SD model #LFTAT SR AT EF & > G —E—EiER R - A
12 R 2°% 5 U S i A0 7= ) N | P et S S S S (ST 0o S Rl =
SD Ay M fielis ity > AR AR D (2 Mxn -

Step2. BRI 2 e BAHBOERE © £ M2 A3 HELHTE SD AL S BT I
& > BRI RS HERL P > Btk FHREE L S DL row vector FYZERERH 5 — (i AHife
Z > FREEIEEES K > U Z RN KxD

Step3.FHEZERIELIE £ %A T EHBEARRL 2" - Z(correlation matrix ,Z" 75 Z (¥ FER)
R i (eigenvector FERE ISR DYRBEALI AN » 18 L RIGAVRFEU SRR i &
ZE ] EE IR (basis) > AERAA i R — ELACRIYRFR > A DOREGHY 22 [E CEAR R v

Eg

2] (Eigenspace) °

i Eigen-MLLR {EEHIIRT > AR S22 (R TR AR 28 MLLR [HIgRAT
GRS AR b) > AT LA DAGE 8L - BR 7RERE A a2 b P2 s
HANFREZS - WA 2EAEYBE 2 IR E - NIHEETSIE T Ariai
S S A E SR ATHOE B i B R SRS SN YRR 2 - Bigen-MLLR AHE Y (AR 5
o AR E IFIBRGERE T > & B 1 ARSI e -

=~ FridHE RS
FEAEG TP BAMTR S oAE — LR E T SR T 5 Ao » M H ARG AR -

(—) HBEHRETR

AEAETLRE S PRI SAE BRI > SR R ah 2 NRE e B R W ARl - Tl

G 2GR E (Mandarin Across Taiwan, MAT-400) ¢ s alll BREEASHE  #Lim f25
T#7 400 {lE5EF ek B 3L 5,000 lEASFIRYREF R LU 77,324 {[5AREAT 5,353 {6 7)1
HEFHIA AT

K GELE T GERER
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Databases | Number of | Prompting Item | Speaking Description
Files Numbers Style

MATDRB-1 3600 1-9 spontaneous | Short answering statements

MATDB-2 2000 10-14 read Numbers pronounced in
five different ways

MATDB-3 4800 15-26 read Mandarin syllables

MATDB-4 12000 27-56 read Words of 2 to 4 syllables

MATDB-5 4000 57-66 read Phonetically balanced

sentences

SEE SR R BRI 13 LR R R I (MFCC) B B B[ (e
A (delta) » FEEAIFE=

F= AT A 2 BERIGEE

IERAER 8 kHz

THHRIE I An 1-0.97z

VARONT e Hamming Window

T T e 20ms
FHETE 10ms

FREER R A B 23

e e L 2 13 MFCC + A + AA
L & log energy + A + AA

g BRI B0 v > JIE SR Y fi e FH 1 s A8 7 B S v SR A58 (continues  density hidden
Markov models, CDHMM) » £ /545 (left-to-right) [ HUHE » Hijit 2 IRAEHERL | I A
TR —HRREBE AT KRB R AT R AR UARIARAE L o 1A EAR BT S8 - T
PRA B EIATHRA S 32 e R 5 [HRRE - 3 s - 1 (e - 1 [
TS o s B A el R B2 bR fikry HTK [6] T H AT -

(=)~ EFEEAE

HARE A AR T 5B RS B > ANAkFS B (Training Phase) HEFE B (Recognition
Phase ) FIFM#PEE: (Adaptation Phase ) o & R4 —BHIATHRLIR - B ool FHAllkGEE R et
TLHIRAIIIRERY » EET 2 1% (HEE T’E#%ﬁﬁ’]hﬂseﬁﬁfﬂlﬁﬁa HHIRE S AU
B o AR A RE SRR e
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[—_—_—_—_—_—_—_—l L R o e— g
et T S Training data Test data
I ramming Phase Speakers {1..5) f {one of § speakers)

v 4 v

il

WM classification

Y

SWM Muodel
for T Class |

Weight matrix set -

) E Miimum likelihood |
MLLR regression ~ | woor dinate estimation [
| - matrix set by ML L)

Adaptation Phase

]~ R SRR A
BAHEE A RS BEAAG R -

FliskFEEY (Training Phase) :

LEANFRIEES » B e MR B IIRAGE S A — 1 R YRR A K & M w ) REE L
{57 A G U B G AR - a3 S (EFIRREE T S —EE+ LB A
PREERPFIFERE S M LA 2 BT RS C A i A AN R A e i e e [ i
Friffi (MLLR full regression matrices ) » ¥ 55—\ 56# T H A BAYREEH— KK
FEMARE A P B RT3 5 1 B8 DA [ Bt » <1tz H AR kGE R e E e Sy ] AR
s RHER S o IR —ERISREE AR T C R E AR REDLRE A  ll t
W ERAR R A] DUE B — B R A R 5 - B 18 S MREE R a MRS E

PR S (ERARE S - S EFHEGEM (eigen-matrices ) » g R FAMMHEHL S
B0 - A B LR (B AP A i s 5 2 e s e 3 R DAy
TR i o S R AR R IR S BHAA B B - 53— 5T > 35 P B i st o
B SR & (SVM) SRUSGEER M - 45 S @l - 6 H AR R
FA [ Pt o7 R R e o I AR T - (iAo B A B R R R

86



i > T E A SRR (R e AR f Y

AEAT B AR e AR BLEE R0t - P A P AT — Sl R A P R e et
PR AR A B AU R V[ s AR 11 A5 Bl A (Rl R AR A
PR 22 8 T ER R R R R R e A T e E R A s 2= A I T
{2 o A FEE R U A0 A ERER A IS 2]AY MLLR [HIfgAfd - iy
DAREEFRIEa AR R AT S SR EaA, « At =Fros

i Training Phase

Training Data '
Speakers (1...S) '

v ¥ v
| - MLLR full regression Training SVM | |
| w matrix estimation for SI |
1 1
i v v
: \ . SVM model | i
i | Eigen-matrix |¢—| MLITR regression for S classes | 1
! . matrix model !
1| extraction !
1 1
! v :
1 . 1
! | Eigenspace !
| |
S e A A 1

\ 4 \ 4

Maximum likelihood SVM classification
coordinate estimation | [MLLR regression | | (Recognition Phase)
(Adaptation Phase) | [Matrix database

] = ~ RIREE B e

WERMEEY (Recognition Phase ) :
[ DY S R IS B TR AR ] - ARSI B TP BRI kGBI RE & Hh P —(Efi
il H R S HRE S R - LR SVM H o A5 EELS n
B AT » (34 f AOREMA S A e e [ B AL P B 5 v PR A S RS {0 AR
BekL P RF L Sl e R e BRSO R IR s e RS S GRE AR e Y > P DU (AR
HEFTRE R - R A I o 35 (TR SR AR o e (e i s e v S g it
PRI — i = 222 -
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————————————————————————————————————————————————————

i Recognition Phase

! Test Data |
! (One of S speakers) | 1
: v :
1

: SVM '
1| classification W !
I v '
1

! > Speech i
! » Finding speaker recognition !
! MLLR matrix set — !
R R i

A 4 A 4

To find speaker Adaptation Data
MLLR matrix set | [MLLR regression (Adaptation Phase)
(Adaptation Phase) | [Matrix database

[ VU~ i s e
FIEMEEY (Adaptation Phase) :

LERS A B A HPRRRt 0% - SRk SR S aiieiaE k) (adaptation data ) »
A g — (G FE 5 i 2 1k A 3 8 56 R e (o P e K AR PS5 T ( Maximum
Likelihood estimate, ML ) J5{ 3K a6 18 AR R [ R [ R o S AAHURE
At IS AR A T s i (o P B e e A e e — (T Ak o Al Mk % Py
FERHIFS RS IR SVM. sk T FERE #1) MLLR  [mlBiffd » =55 —1{
weighting [ » RFAERRIRS A FAGEE1Y MLLR (ISR ERT - A2 F
e 7 [10] Hi Equation (5) 0 7 —{lF5E (= LRI o N o1 —{E 5
BRI -

c.

M N,
AW > 7, (m)W,
Wc = éconf ’ S m/\71 o= + (1 - gconf ) ' chresem (7)
A+ 2 7, (m)
m=1 n=1

M FORFRFREIAIRIEE - n FORTRAE Ne TI—(JIR G ICH: > ra(m)ForAERFHISS ¢
RIS > W e s W EIOEN s w eommare o s et o E i el e - e
ML A RF e IR - UK MLLR full regression il 2ferry[ml g HEE -
W, 55 BT [l B R - &, RO ERER o (50 LL B AL e et B T 15
() o SIS O LE 2 B o0 S AR ik SR e R St 52, e S RE S
RCICETEY, DGEEARE S R Y, ACEEURE (AR AR BOGRGE © R
At 71 o
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SVM classification MLLR regression
(Recognition Phase) Matrix database

A
' Adaptation Phase i Update :
\ 4 database'
Adaptation ST Model Find speaker L 5
Data MLLR-MS

. MLLR‘full r‘egre.ssion_> MLLR-RMS |—p|Weight
matrix estimation

| Maximum likelihood MLLR-RMS
P . . . >
coordinate estimation By ML

Eigenspace
Training Phase

e 71, ~ 5w P A e

VU~ B R R

BATEBE RS S DLEE 5 GGEE MAT-400 SBE0EHURE SRR - Fsrp]
eV H A HIREARAT T~10 il > eI DI B80S H A HIRE R - 665
R E A EFRAER = » ZAIBEH MLLR G5l S DR g — A A1y AL K
SVM Rl > SR e R S AR I8 LS AR AR S - BeqMIBE( ] HTK[6] 2
FREAT bty ARG HL 2 5B 3 MLLR AREETT Ay -

FPRUASE LAY H BARf# - REAUREACE 1 SVM ReEif AR - IR
SVM IR &g HAFRE H R I BAEUA Y SVM Rfyr SR — LR

e

R E SR - (] TIZAEsE S W% 5 (ubiquitous speech recognition system ) & 3H]
a o RRILEE 7 6 S mr S v AR S TR R A > O B v DA S T A T
PSS > A&l /s o FHIA RS 20 I EEAf R 28 vo JRHA 1 G =X - o A AR e E bR
EAGESMRAFHIRE > FRLABERE 6 228wl {di FH 26 3@E R 7 (multi-channel mixer ) i)
Ji=C B A P o e MR B [9] (Subspace Speech Enhancement,
Using SNR and Auditory Masking Aware Technique ) {Eage s e aiTBE B A S et it
S FBHGHGE SRR -
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ﬁ 2.5 h
3 B 2.1
b Ll 4 R‘xa
9
[l /N~ Y AEES SR 51

HEREFERU A 1 10 e A Rte CEalRRER U GHEIRE - R R RRER U
£ 15 41 o TR HRECRG TR DUERER R - B RIEIeFoR - 580 E

T ek IEHERE A8

P E R = — 100% 8

L~ T TR ®
FVUBAE S AA AT RE A G AN AERE S WA T ATHIERARS R vT DA sivI G
A AR B T — R B AR AR R R HERESRE - AP HERER S 85.7% -

FVY ~ RAATAGEHTETE 150 4] 475 FH REHES

WERSEE | 1 | 2 | 3 | 4| 5 | 6 | 7| 8 | 9 | 10 | KkER
IEHESEA] | 130 | 124 | 126 | 133 | 129 | 126 | 127 | 131 | 134 | 125 | 1285
gEsmsEAT | 20 | 26 | 24 | 17 | 21 | 24 | 23 | 19 | 16 | 25 215
¥ 3 IE 7
(%) 86.6 | 82.6 | 84 |88.7| 86 | 84 |84.7(87.3|89.3|833| 857
FEE IR DUEARY) MAP GEFEE 7 2 AR SRR MAP GEF R %Y

it AL o HT DL E R FE (5 5

2%~3 %l HEMEREET | > M/ EHERERES 88.2% -

11~ T MAP SEEEE 150 4275 HIREHIR

A L 1R 0 PR AT A HERE R A

HERSEE | 1 2 3 4 5 6 7 8 9 10 | ks
IERESEA] | 135 | 126 | 131 | 136 | 134 | 129 | 132 | 135 | 137 | 128 | 1323
gEMSEAT | 15 | 24 | 19 | 14 | 16 | 21 | 18 | 15 | 13 | 22 177
B IE e 90 | 84 [87.3190.7/89.3| 86 | 8 | 90 |91.3[853| 882
(%)

NI T MLLR G

AR S FH R AR ARG L AHIES MAP ek -

HEHEEAHERR > ERapGE AR R AT W RERIIRIAIE 15 AIRYFHEREENE MAP 2
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RUTIEH D& IR MAP EIEREBRRASE AR S8 - AR MLLR - [ZffE
LE BB RN B A Ay 268 > EERFRE IEfER 2 5%~8% - L& MAP %
Hi 3%~5 %1 HE% IERER o

N~ ] MLLR SR 150 A)2E75 FIRRHER

HERAZES | | 2 3 4 5 6 7 8 9 10 | REREER
IERESEA] | 139 | 136 | 137 | 142 | 142 | 135 | 142 | 141 | 142 | 138 | 1394
gESEEA] | 11 | 14 | 13 8 8 15 8 9 8 12 106
¥ 3% 1IE THE
(%)
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Abstract

The performance of an automatic speech recognition system is often degraded due to the
embedded noise in the processed speech signal. A variety of techniques have been proposed
to deal with this problem, and one category of these techniques aims to normalize the
temporal statistics of the speech features, which is the main direction of our proposed new
approaches here.

In this thesis, we propose a series of noise robustness approaches, all of which attempt to
normalize the modulation spectrum of speech features. They include equi-ripple temporal
filtering (ERTF), least-squares spectrum fitting (LSSF) and magnitude spectrum interpolation
(MSI). With these approaches, the mismatch between the modulation spectra for clean and
noise-corrupted speech features is reduced, and thus the resulting new features are expected
to be more noise-robust.

Recognition experiments implemented on Aurora-2 digit database show that the three
new approaches effectively improve the recognition accuracy under a wide range of
noise-corrupted environment. Moreover, it is also shown that they can be successfully
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combined with some other noise robustness approaches, like CMVN and MVA, to achieve a
more excellent recognition performance.

F%fd?é?ﬂ?] PR RS ?ﬁﬁ%"%ﬁﬁfﬁ-‘ ™~ TR R
keyword: speech recognition, modulation spectrum, robust speech features
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LT‘F?H“: il e
RRERYC AT T TR R I (e Rl Ly 4 [E5 = T Y ['“‘(least—squares)ﬁflj*Eﬁﬁiﬂﬁ% . FL['?;EI FaE
Elfjﬁﬁ,fjﬁﬁclosed -form solution) fi’ I =4 &
= (WiW, + WW,) " (WiY, + WY, (23.8)
B ) > 2 3.8)f 1fiY y J5% LSSF 1 A j/ﬁé%’ﬁj e {y )} > H 2P gm/ DFT I
. 3)F'ij‘*$‘§%ﬁ@ﬂfﬂ V] S ek o[ T R Y AL R
(=) §F{ I 1k ﬁfﬂi‘ (magnitude spectrum interpolation, MSI)
By sl Ny L N B Bl <n < N -1 - £
]HNE’!‘HJ:*—‘E&%%@%FF[ ) [EET, [I—u;[?j |- I/?‘ﬁa@ﬂfg T SRR g N SR
Y (w,) =V (w, )| exp (j6y (), 0<k’<N—1 (=4 3.9)
ELF[1AEIAE F‘/me (w,) Ebzn) 2V N EAEY DFT A7 - MST 2 B ATV LSSF o~ il
R F T S (P ][affsvmﬁéﬁ (L Lot s MU
it (UEOR] T HRREN LY T 25T U PRy LSSE BT [ QPEFF
02 I L (P ()]0 < b < 2P — LI QDT )R GO 19 N Bt
A 7 )]+ > R 2P B YA AR o0 ()
g*tﬁ[ﬂ[ﬁ[fﬁj ’ ?iiF;ﬁFE e (- PN E SN Jﬁ(hnear interpolation)[10]fY #3% » Fx1=4(3.4)
B 5 pu 2P R {|Y(wk)”()§k§2P—1} TRV G9) I N B

{\Y(wk,)uo <K <N- 1} DEOI o RGPV (w, )} £1- #Ert) Jg,g»%er@j,ﬁ

AR §§i@ﬁ‘%[’}}{‘? (wy) ‘} S S L ‘y =7 (@ s ER

e AL oY (@)} 5 RS PR R V(e \} SR

“y(%')uoﬁk/ } IR N R N E R N {‘Y(wk, \} RS
<

“Y(wk,)HN—l—Bf‘ K SN—l} fﬂﬁ?ﬂ{‘?(wk,)uoSk/SN_1} o 2 IR

B3, Q)Elfj{ % ( } fé‘(N Eﬁm@;ﬁ%ﬁﬁﬁ o }E@(inverse discrete Fourier transform,
IDFT) » I'| rﬁ;@?ﬂfﬁ]&zﬁ Gl {yinl} - I

27k’

n]:—ZY(wk,)e] ¥ 0<n<N-1. #(3.10)

Pl Fpud tlﬂﬁj ti,gF;@ﬂ)_E FF[ Jﬁiiﬁ (magnitude spectrum interpolation, MSI) -
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I) %ﬁ@ﬂf; L#J (= l/;é?ﬂjyiﬁu‘;'srg\l
lﬁ'ﬂf—j f{]ﬁf%b * WF%EL"EWJ;E %ﬂjﬁﬁ’ﬁ# MFCC Hj &9 %@ﬂf?
rtﬁl NIRRT Eeﬁ‘ "E“Q%H 73 WIESRUE 9 Aethi e lrJ*Ef l’,Tﬁﬁcl)Fr IR HHH
ERTF 3% + LSSF 122 MSI $R S & i df I,‘IL‘%@EIH@Q%I * T VRS A
ug,l* frgl[ iﬂﬁgﬂﬁﬂﬂﬁgﬁ“ fkL AURORA 2 E*erg‘[ ¥y MAH 4625A ”Hf[ fl > R
EUR (p FYEE(SNR)fIUEY ™ ;@(subway);é@

5 E
10° L ———-SNR=10dB 7
104 SNR=0dB ]
: Reference
10° ;
10° ‘
10" —
) ]
10 St -
107 [ K
107 ' : I | :
0 10 20 20 40 0 "
BV N I IS Zi[5% F5 il A
i > IR o b e U BRTE e b A s s
10" ' '
3 —— clean g
> —=—==SNR=10dB 3
........... SNR=0dB 1
10 L Reference
10" |
10" |
10" : ' I |
o 10 20 2 =8 >

7 PIRRSEE=D ™ o RU o RS LSSF 1 RER L T o Fﬂu’*f"“@‘@‘
10 T T T T

) i clean ]
.0 ———-SNR=10dB 3
----------- SNR=0dB
2

- Reference 3

10" b E

10" | 5

10'1 ' ' I | H
10 20 = b G-

A fﬂ AL ’_F“;’HCI IR MST R Rl e b s S

ﬁfj%L Hgﬂl A Eﬂﬁgﬁl E’[ %'I*[/ﬁgll“ %[[uﬁﬂqﬁl* R I&[F’ﬁ _kf?‘%!ﬁ]‘“]m:

@ [ ERTF HA] TSN 1 [ LR Eﬂﬁr&ﬁfumws : [‘PF‘JV’% B
o I Pﬁlﬁmﬁdﬂipﬁrﬁ CERp I 1 BRTF g Elfgidi Ij“%’;
T R E"[pﬁjj} JSEF [*@Enqg\,Tgwrxjeépm} ﬂfg“@rga@ﬁmgv I (SIS B
A VAL %ﬁmﬁﬁ VI R ok o AL [ T W;awF TSN
E{;E{fjj?’sr%\l JF[FJﬂETEIsu ; t T [l", n TSI\F2 ;zi]E[Jj?'sl‘%\l N%j\_, “&:[A‘g&cxwfﬁlﬁlm 1{1‘3[1
VRO S F%ZH%& (equi-ripple ﬁlter design) %ﬂ'ﬁﬁf&?ﬁ JIVEL A o s il

:
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FEFETN IUE lij'l szrl/%ﬁ@ﬂfﬂ
©) LSSIJ<i el MSI ii F Sl B [jﬁ E4iNES Jjﬁ?@% F@J@?(modulatlon spectral domain) -
AN A7 o1 g 1S BRTE D) o S

pﬂj ﬁj«ﬂf@jﬂi‘lﬁlh&wE#’rw:ﬁipﬁﬁ}ﬂ?@rj‘@fl'h&\ ool v R
I\[EE N ~~[n |ﬁ%‘1€f\$§@§ﬂ@L¢§J] RS E PR R B H 1 MS

pt;L ﬁﬂﬂif[[“ﬁﬂ’@;@@%"ﬁ[lj{ﬁllﬁra" PRI R A VTR | gu;uj

e ol L R A (i A lﬁ%??“‘ﬂi}ﬂ?ﬁ Jff%ﬁﬁl%%@ﬁdﬁ’?f V—‘?ﬁ%%«r

P I R IR S T W AT ﬁ%%@%wﬁyﬁmﬂﬁﬁ

DY Eﬁﬁﬂ;ﬁ?ﬁ T | "‘#?ijﬁ:[?ﬁf%%ﬂﬂj?ﬁ? FA T4 [ ey I e R

£f.l§'“ fol kL] =5 Py = *‘E"F Feh Bl [I AR SRR ]G A
(equi-ripple temporal filtering, ERTF) ~ &/ 7 FF F{LF %f (least squares spectrum fitting,
LSSF)?[@‘; B rf[[ ;Fl;fﬁi (magmtude spectrum interpolation, MSI);EF'JF‘%@J«IE:@?L pUEs

R REBIEE II (LD  B s
ﬁ%ﬂwﬁ&»»ﬁ%ﬁpgﬁ%Wﬁ? R TR £ IR ERIR AL
—’*:j; R~ Hp J}rsrﬁbjﬁgﬂ
(~)*%ﬁ$ R

‘4: i IR B PR f[ EMH ’?ﬁ[ £ [Eﬁ) VA5 =15, 7 (European  Telecommunication
Standard Institute, ETST)ra i~ | [/47{“[’1?_” AUR RA 2. 0[5] IR RLI SRRy 5 18 A
B YA gt S fl jF”[zj: Syt P&%f Jp»;iy [ P ST R
PR ] A5+ 3L B 1 g B g e
}ﬁl,ﬁ%‘é?*%*, SPREUSEEIE e - ST IR G712 MIRJ[ o A,E%pﬂx B “'Jfl
T iS5 RS T A T ( |FHEE(signal-to-noise ratio, SNR)}{J\E“ » 77 ML 20dB
15dB ~ 10dB - 5dB OdB *ﬁ?-SdB EHIFJIMFEJ iR pﬁ;@’f?*%i@fw";ﬁ?ﬁ e
b [ﬂ;@@ﬁj (EJERN [ %ﬁﬁp W Set A ~ Set B=2 Set C = 5'[9] »

’ﬁ‘*ﬁﬂiﬂm% “ R A’ jdfi?‘ {I E'(hldden Markov model tool kit, HTK)[12]3"
ARETE o B 11 [RS8 (zero, one, two, ..., nine » oh)!'] bfirjg’[ (silence)fsi & » &l
B g€ “lj 716 [ FI}L-IJ‘F:EJ 220 lﬁﬁ J?“‘F@ffip

() O (18 (oo e ki

EN i éﬁf’? E| R A N YR f’ ﬁj = EL AN 82 B F S 3 B (mel-frequency  cepstral
coefficients, MFCC)> imFEH;F'JpJMFcc#ﬁf;gwgﬁ 1358(c0~c12)» 1 FE — [E52 £l (delta)
A1~ 7 &l (delta-delta) » @A 55395 '“':"fj B2l o B4 P @ (baseline experiment)fll'] EUQF
MFCCQ’f\ﬁ@rf‘xﬁgm‘nt b RS TSN-13K Ry ﬁl FITFFT£7 5 {VF’[J/ ’EU,‘[F, TSN i - |fif TSN-2
* E‘Hiﬂﬁ’rﬁlﬁf} TSN i g ) [~ W RS T VS T TSN-152 TSN-2F i
Eﬂj H] 2% IJigkiEfzaLgi@f%ﬁﬂ » IPERLE 2% TSN v BR8]y » ERTF i
(O TR B 8 K521 [ LSSF 5% MST i 777 [fi DFT Bir2P (412 (3.3)777
il 551024 o ™ Fe— Fl‘ » F M5 07 TSN-1 ~ TSN-2 ~ ERTF ~ LSSF ~ MSI » »3 £fy
BT [~ 5 CMVNDIAI MVA[S] > 31 S B2 2 U MPCC 4 B gl o1 12
Ak (20dB ~ 15dB ~ 10dB ~ 5dB Z70dB = FEI U= AUEEss T #59) > E 1 AR =
RR 57 I ELAFRERT Bl A Hr il 0 & ’“]L% = {3 (absolute error rate reduction)ﬂlﬁ"iq“ﬁﬁ
2[5 [X3 (relative error rate reduction) °

SRS e A (i  TAR N L 5 io = A O

102



o ST R D P (%)

Method Set A Set B Set C | average AR RR
Baseline 72.46 68.31 78.82 73.20 - -

TSN-1 73.61 70.44 77.19 73.75 0.55 2.05
TSN-2 80.29 82.36 75.82 79.49 6.29 23.47
ERTF 85.45 86.92 85.34 85.90 12.70 47.39
LSSF 84.37 86.21 84.72 85.10 11.90 44.40
MSI 83.61 85.36 84.28 84.42 11.22 41.87
CMVN 85.03 85.56 85.60 85.40 12.20 45.52
CMVN+ARMA(MVA)| 88.12 88.81 88.50 88.48 15.28 57.01

@%LZJF[ TSN 3 (TSN-1)3%f MFCC ﬁjfi\rri% UL FUREESR fUd T R LERED F LE
#70.55% > SR TSN-28k 114 55 PHEFR Jﬂﬁ%&} A (Set C [#91) » 7 Set A 71 Set B 2
N T IS %N-lﬁ FroT M 8% 14% % ¢y o JUEiel > Al

E ﬁlﬁ*ﬁﬁﬁ%ll FlJﬂ_ﬁ frSNz = TSN-1 21 F [ RIEEFVE f%gé%f@ﬂf@,ﬁs;u, §ickia
W g P ST e FL Y TSN 3£ ?iE 5T (R #—“f;f*%iﬁ Flﬁ’mf,jﬁ
MFCC 4 B4 ] 35 ﬁq« A m&p SNl rlrﬁ%o
@ERTF ~ LSSF == MSI = *E@F’ﬁﬂi “*ﬂ IFilF J%@*%Tﬁ f < S| P o
+TSetAﬁi?ﬁp =0 LL[F'%J H[J@?ﬁ%:};ﬁi[ 12, 99% 11.91%% 11. 15%’+TSetBIEiiT;‘1
mf[ PR H[H%v‘l 18.61% ~ 17.90%%2 17.05% » i+ Set c%u;?* PERE T IR
97 6.52% ~ 5.90%% 5.46% o 15— k1> < I ERTF skl i+ PHEAERS LSSF
HEE MSIEE [ PR HT‘E‘*T% it ?ﬂﬁ E 40%I°] F o PHEHIEHT TSN-1 3
=2 TSN-2 5 o pIgt » i — HEpURL » TSN-2 37 Set C flIiV3S{ = TSN-1 == L REH e
3% 5 {F ERTF ~ LSSF == MSI i F‘{ F R AN -
® W ‘m% GRS RS e aine if‘irf CMVN = MVA 3 S fuff A ?H
51 B » CMVN [rszse 2 (PR fio = F2pity bk At » (56 7 5" CMVN 22 ARMA
VRO R MVA B BT T CMVN e pugs ﬁlﬁ” i ﬁ”&‘ﬁ"—% ok MR AT
=5 PP 5 fﬁ‘?%@ F‘F‘H‘J‘H [“3% CMVN 355 MVA 39710 ;gﬁ : ﬁﬁ?q‘ﬁ?ﬁtﬁ
1%%} R P

F’,‘&lf’ﬁ[ﬁi“ LSSF if:*"* MSI Eﬁ ‘“&lf‘ﬂ* }lﬁ“ﬁlﬁF P B R 2P¥f v
ﬁ;}ﬁ“ﬂf,“@ﬁﬁ @ ’ﬁip A ﬂ 2P > N » J]FEJK’* VR H 2 RS N
Eﬂﬂaqﬂjéﬁ H@Wtﬁgg ]| t/’F %P N[[a{a‘r‘%h lgmu[‘eji #N phik F ey

AR M %@7 I‘EG%'F” S S TS e
%W” TaC/R U AR frx,aﬁ‘“/‘? (1Ekd(leakage)[ IO]FUET;’%“ P\UF“ i& IF'EJ 7t LSSF
= MSI 3 T@F‘ FEJ%E’:T H _}{_j LI EY N E’!‘]EIJ fi—ﬁf [J r]{i,[ (Hanning
window)[10] » [l [ B3 'y »FIJT L3 %v@*“ ENEL RS \,p & iﬂ%#l LSSF 1#
== MSI gl ’W[FEJ?’IHF‘ SN 5 I ER S =" LSSF 3 Jmodlﬁed LSSF)== g =4
MSI 3% (modified MSI) -

H EVRU R ST LSSF %= MSI (=9 FERU MFCC 4 B - il = 1T -
Ellﬁ{;ﬂfllp P54 fE1-=¢ LSSF #ﬁlﬁ#ﬁﬁp LSSE B[Ny » 1 S9PREAT | 0.67%(1VE.
| s pJ £ MSI T‘EIHI@ET"FLIIF'} MSI [ 2 » v SRR e 0.92%) J#H[ FrF=ZS {7
R T (ST R (RO E 35U LSSF 1 MSIEuISE -
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PE 86 85.77

81

80

LSSF & £ X LSSF MSI & £ XMSI
Q&%H . VEL;‘!F"[*[H"%}?“ LSSF == MSI ["EE'JJE?V}%'WF"[ MFCC% E USSP Y

(= ) RIS (136 3 BT PR 15 W
F T HRE] - AR SRR T (1 (cepstral mean and variance normalization,
CMVN)[3 355 R U Elfjg—iﬁﬁ P PRV Wlku“iﬁ?ﬁ' = B RV B
R (72 CMVN B (53 SR MFCC 8 BPAEsl CMVN Bkl )
Qiﬁ?ﬁ%“iﬁﬁﬁfﬁjfﬁ? il I"Eﬁ?;{.i‘ 3 FIRZSF Eﬁﬁﬂﬁfgiﬁﬁiﬂgaﬁ? ﬁ ii_ﬁ F PRy RIS -
Z HI » ZG 'ﬂ?ﬁi’ 17 CMVN 3£ 55 [l L\[ TSN-1 ~ TSN-2 ~ ERTF ~ LSSF ~ MSI ¥ ARMA
VL (MVA)[ST 5 A ot ISR > i1 AR = RR 57 pIEM A - CMVN
P 61 SEfEH S [R5k (absolute error rate reduction)ﬂlﬁl‘éﬁ?ﬂﬂ% {%5k (relative error rate
reduction) °

-

F T~ F AR RN (B T CMVN BCEL  MFCC s B [ PR (%)
Method Set A Set B Set C | average AR RR
CMVN 85.03 85.56 85.60 85.40 — —

CMVN+TSN-1 89.42 90.03 89.03 89.49 4.10 28.05

CMVN+TSN-2 89.59 90.36 89.34 89.76 4.36 29.90

CMVN-+ERTF 89.61 90.67 89.28 89.85 4.45 30.52

CMVN-+LSSF 89.12 90.17 89.16 89.48 4.09 27.98

CMVN-+MSI 89.59 90.56 89.60 89.92 4.52 30.95
CMVN+ARMA(MVA)| 88.12 88.81 88.50 88.48 3.08 21.09

Flsh T FOBPIEE 2 FTR gl ) izl gy

D TSN-1 11 =55 CMVN SR MECC ) B> H S g fussfiao ST - Af
O H1~ CMVN 12, 7% Set A~Set B Set C }%ii?'fﬁ\ STHIE E) 4.39%4.47%5% 3.43%
o PSR 03P 5 TSN EREVRULE 2 RRBTHL VA fl » AP A A 23
T TSN-1 7' s, oty 'F’@[F"[ MFCC H Bfuzigy - T‘jiﬁ?ﬂ » TSN-1 R
PR S EEAURUN Ao FLAT » CMVN k=T H A 35l [VEU MPCC ) B0
W U i ﬂ%p@#@: » [ TSN-1 Fffﬁxﬁ&“z%%f@*ﬁ??ﬁ@ ik
G« oy PR, o IS 25 PIAHE] - TNT A TSN S b s
BRG] > (H TSN-2 EJ?—’?E?%};%EF TSN-1 il > |~ “VERGIRL TSN i [l
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Wsers T4 [P R RL T S RIpy
@ ﬁliy A gi ERTF ~ LSSF == MSI ¥ {&H [~ CMVN 52E i MFccﬁf'fg_\er
HIBEE - CMVN SR SOPERARTI ) » §iyd | TR 2, > A Set AR
%n VIES FE OIS ) 4.58% 4,000 456%pugﬁ%$} HLR > g iﬁgﬁqa?
T CMVN B AL pupns o = ][ﬂgﬁﬂiﬁl » ERTF #1 MSI 3;&3@3&!5 j?l_SF‘— TSN-1
FY TSN-2 3R 1 8 Sk LSSF VRS I (LORL R RN TR A - WH ”_UIEIJ,
ﬁu‘!F LSSF A1 MSI # p’ i ffip s&ﬂg? El}%@aeakage)zgl% VR {Lj{'g‘r‘g , [H =
[ F5 PR (S0 LSSF # * MSI j;ﬁ  CMVN ﬁﬁ%gﬁ[ i Jﬂ'%‘é“ﬁ%

@ IR e % I MFCC ERTF AR LSSF A1 v
PR (LR HITS PR g =yt A CMVN iiw G o SR )
SFH TR CMVN i éf.wltﬁw’ MFCCH§ B 53 F puga it ! > i) i i

el SR 5 By JﬁuJ: WM ISR o
IpV i ERER rUJFILSSF PEAIMST R i o E ﬂfﬁﬁiﬁd(leakage)pﬁz;@fk pRl =24
Mg B [ e po 52 LSSF =2 MSIE - [EH[FE CMVN HE By MFCC &
t‘f ri P R AR R RUR IV EquCMVN B U MFCC g st -~
2341 ti(Hanning window) » % xﬁfﬁiﬁ HRITRL 0 AR U LSSF L MST 5
CMVN REYINE 27N
H ~ RVRUGER (S50 LSSF =2 MSI (B4 [55 CMVN 58 i MFCC ) Bl - Ttk
"fq\al PRI Pl A ) CMVN i - (3120 LSSF B AFERC Rl LSSF #p]
Fr 0 E] 0.85%1 T SR Fu;c,%ﬂ f [FlfERY » f ,L U MSI 1A NFL;JL MSI [ F
J 0.47%. Y 1 PPtk pufr| > = HT ISPEREETEGE 90% © 9t “i%i NI W——
T ST Hagpya s miqiﬁ CMVN i % rimF»ﬁ SR T R R
CMVN ii“?F gu TSN-1 1 (89. 49%)5 TSN-2 1(89.76%) » I'] | ':Ll:%\l?p B RS
IERE-E B R TR [N R H S

92
ie)
&S 90.33 90.39
%) 90 89.92
89.48
88
87
86
85 .
LSSF & £ X LSSF MSI & £ X MSI
+CMVN  +CMVN +CMVN ~ +CMVN

o - wf ST LSSF == MSI &8 [ CMVN 3 52 s MFCC 4 & T Ik
A =~ H
) )E%h@ﬂ/f? |_L A F/\I I?H/:EFF[ IR e [ ;ﬁ:F I E [ }J[:FIIE}QI’LJ

FJ»"T TEPE P Bk e ?Ff\l
HiFEHEE] HVJTFFEﬁj SRR T | “’*:ka VIR ER EORE T TSR AR (MVA)[5]
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= SWSEFEFH R PSS ?ﬁfﬁf | PIRER e =I5 Jf”?ﬂ 73 BR PP f
EISH2 AT CMVN ["\”Wi ?F:"«&IFEJ}{"’“*F‘%@% A [T MVA (S Etf' L
BRI BT (15 (5 125 MVA 1) U mrcl e 1 e
MVA LA E iy 4 o EME*HII&[FEJ%{MVA#FIIFUARMA?ELME&EBEEW 2(&:%[5])
TN R ‘*&IF'EJ/HL“ 1" MVA ¥ 55 [ll5#% & TSN-1 ~ TSN-2 ~ ERTF ~ LSSF == MSI &
RATHH U PR > T AR RR ) IE}J[JWFEIHT{E?EH— MVA 3 V5 U ser st 2 ke
{5k (absolute error rate reduction)f[lﬁl‘é*#%ﬁ Z[5% [R5k (relative error rate reduction)

F= B FRRHIE N [FR RE MVA BE iV MECCH BtV PEii (%)

Method Set A Set B Set C | average AR RR

MVA 88.12 88.81 88.50 88.48 — —
MVA+TSN-1 89.58 90.19 89.74 89.84 1.36 11.80
MVA+TSN-2 89.81 90.34 89.84 99.00 1.52 13.19
MVA+ERTF 89.75 90.81 89.64 90.07 1.59 13.80
MVA-+LSSF 89.63 90.87 89.94 90.14 1.67 14.49
MVA-+MSI 89.71 90.91 89.94 90.19 1.71 14.84

FliZe= [ > TSN-1 75 ( MVA (% > & }Psrﬂ:*éj FH J?Eﬂffll i TSN-1 I TSN-2
RV B AEIR T PHRE 0 (ERL w Jiibia f%ﬁ—’:ﬂ “HERAY TSN-2 I’JW%IFT‘F*&&* ’
HISEHEHT - MVA iiﬂﬁ?%qu wEFF[ MVA #7 TSN-1 7l $5PERS FHA
1.36% > i TSN-2 ] 2" 1.52% = [=9f > MVA 3 7 % > Z$ {4 1AY ERTF ~ LSSF
=2 MSI = {3 584 TSN-1Z2 TSN-2> ﬁ L FLO ) MSTE 0 7 ik FHLF] 1.71%>
WL LSSF 3 » ] 97 1.67% » ERTE JFE [ 57 1.59% -« | L,FI,Z/[HF“ 5 M PHEE T
o SR TR 6 MVA B STl (O oA AR AT = 1 ST -

f/DmJijjéﬁf’?ﬁﬁiJ/ hUF LSSF 255 MSI V= *Hé@ﬁ rj::LFﬂ‘E[ > f&fFEJ[ﬁVf%‘;WEH%I"%
7% LSSF 1% MSI 5 7 MVA PR3 > A5 ful; LSSF By MSI i VoA 1
ijf ,‘{ﬁj’rﬁlﬁ’ N Elﬂ/ MVA 1 f}ﬁ% &V MFCC J[»ijfz?ﬂ‘ /JE‘: -y I{i,[(Hanmng window) »
@F‘mxﬂﬁﬂiﬁél’% E ﬁw* °

SRR EESSN LSSF 2 MSI B MVA 3 HE] 6 MFCCH Bl = Haptigad =2
q?q\l E'Hﬁ%ﬂ A A £ MVA SRRV J#ﬂ* » i£7-=4 LSSF 3iﬁlﬂfw”’”LﬁF LSSF
TR E 0 F ) 0.65% T FPEE SR AU ST MSIEATE R MSI iipﬁ " E] 0.48%
= *daf:’ﬁ%} PR - PP 25 (MR e S T fﬂf fil FUQH“‘J?? A W IS

92
91 9079 96.67
;}%3&90
&%)
89
88
87
86
85 ‘
LSSE & £ X LSSF MSI & JE X MSI
+MVA +MVA +MVA +MVA
[ = RURAIFSIFS LSSF 2 MSI i [543 MVA 1 6E s MFCC ) B2 7 bttty

106



v~ i
T [ EF U MECC 5 &1 > =5 ({58 4 - E%TSN 1 (TSN-D JEW“ETEL#J HRRL
jf);iytl N P REPVRIN DY — > JL AT TSN 2 3kE HH E| 53 B PR PJ
S {FHELTPYZ AT AHRERS TSN-1722 TSN-2» HIf2F| Rl &ﬁu*ﬁ%ﬂ’ \[EF[1~ I'] ERTF
oV AJUR > b ERTF 22 TSN-2 [ UE| 7 7251 r&%ﬁfﬁmwﬁhpﬁgﬁ HEE R
A Z5 [ ERTF G2 s pogael gy » B8 TSN E ESL Jir—,‘a;dghggﬁljéﬁy%%tﬁﬁ o Jﬁ@ﬁ“ ii 1=
T4 o TS PR gk (8 [ CMVN ?ip‘/ MVA 1 s iy MECC o (> 3
FUE AR H- CMVN B EY MVA 305 1% B S W L ae s R AN
=7 géﬁﬂi IR TG R{ET TSN-1 2= TSN £ o =9 G {8 LSSF %= MSI
B [ = o AT R (leakage) il [ HETAFSPEEVIS T B > BAEEETS TE
Eh; o BUE) LSSF 325 MSI 95 -

TR *E'ﬁf’?t‘ * rEL [P={EL54ek » ERTF 5= LSSF k8 pIHEES dik A > MSI 3k fI[[#F155fdE -] »
fﬂ‘zﬁERTF ify@ﬁF MFCC ﬁ%vﬁ = AP LSSF 152 MSI i i+ » u;“ [ [Fﬁ]‘ﬁ
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Abstract

A realistic Chinese word segmentation tool must adapt to textual variations with minimal
training input and yet robust enough to yield reliable segmentation result for all variants.
Various lexicon-driven approaches to Chinese segmentation, e.g. [1,16], achieve high f-scores
yet require massive training for any variation. Text-driven approach, e.g. [12], can be easily
adapted for domain and genre changes yet has difficulty matching the high f-scores of the
lexicon-driven approaches. In this paper, we refine and implement an innovative text-driven
word boundary decision (WBD) segmentation model proposed in [15]. The WBD model
treats word segmentation simply and efficiently as a binary decision on whether to realize the
natural textual break between two adjacent characters as a word boundary. The WBD model
allows simple and quick training data preparation converting characters as contextual vectors
for learning the word boundary decision. Machine learning experiments with four different
classifiers show that training with 1,000 vectors and 1 million vectors achieve comparable
and reliable results. In addition, when applied to SigHAN Bakeoff 3 competition data, the
WBD model produces OOV recall rates that are higher than all published results. Unlike all
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previous work, our OOV recall rate is comparable to our own F-score. Both experiments
support the claim that the WBD model is a realistic model for Chinese word segmentation as
it can be easily adapted for new variants with robust result. In conclusion, we will discuss

linguistic ramifications as well as future implications for the WBD approach.

Keywords: segmentation.
1. Background and Motivation

The paper deals with the fundamental issue why Chinese word segmentation remains a
research topic and not a language technology application after more than twenty years of
intensive study. Chinese text is typically presented as a continuous string of characters
without conventionalized demarcation of word boundaries. Hence tokenization of words,
commonly called word segmentation in literature, is a pre-requisite first step for Chinese
language processing. Recent advances in Chinese word segmentation (CWS) include popular
standardized competitions run by ACL SigHAN and typically high F-scores around 0.95 from
leading teams [8]. However, these results are achieved at the cost of high computational
demands, including massive resources and long machine learning time. In fact, all leading
systems are expected to under-perform substantially without prior substantial training. It is
also important to note that SigHAN competitions are conducted under the assumption that a
segmentation program must be tuned separately for different source texts and will perform
differently. This is a bow to the fact that different communities may conventionalize the
concept of word differently; but also an implicit concession that it is hard for existing

segmentation programs to deal with textual variations robustly.

[15] proposed an innovative model for Chinese word segmentation which formulates it as
simple two class classification task without having to refer to massive lexical knowledge base.
We refine and implement this Word Boundary Decision (WBD) model and show that it is
indeed realistic and robust. With drastically smaller demand on computational resources, we
achieved comparable F-score with leading Bakeoff3 teams and outperform all on OOV recall,

the most reliable criterion to show that our system deals with new events effectively.

In what follows, we will discuss modeling issues and survey previous work in the first
section. The WBD model will be introduced in the second section. This is followed by a
description of the machine learning model is trained in Section 4. Results of applying this

implementation to SigHAN Bakeoff3 data is presented in Section 5. We conclude with
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discussion of theoretical ramifications and implications in Section 6.
2. How to model Chinese word segmentation

The performance of CWS systems is directly influenced by their design criteria and how
Chinese word segmentation task is modeled. These modeling issues did not receive in-depth

discussion in previous literature:

Modeling Segmentation. The input to Chinese word segmentation is a string of characters.
However, the task of segmentation can be modeled differently. All previous work share the
assumption that the task of segmentation is to find our all segments of the string that are
words. This can be done intuitively by dictionary lookup, or be looking at strength of
collocation within a string, e.g. [12]. Recent studies, e.g. [14, 16, 5, 17], reduce the
complexity of this model and avoided the thorny issue of the elusive concept of word at the
same time by modeling segmentation as learning the likelihood of characters being the edges
of these word strings. These studies showed that, with sufficient features, machine learning
algorithms can learn from training corpus and use their inherent model to tokenize Chinese
text satisfactorily. The antagonistic null hypothesis of treating segmentation as simply

identifying inherent textual breaks between two adjacent characters was never pursued.

Out-of-Vocabulary Words. Identification of Out-of Vocabulary words (OOV, sometimes
conveniently referred to as new words) has been a challenge to all systems due to data
sparseness problem, as well as for dealing with true neologisms which cannot be learned
from training data per se. This requirement means that CWS system design must incorporate
explicit or implicit morphology knowledge to assure appropriate sensitivity to context in

which potential words occur as previously unseen character sequences.

Language Variations. Especially among different Chinese speaking communities. Note that
different Chinese speaking communities in PRC, Taiwan, Hong Kong Singapore etc.
developed different textual conventions as well as lexical items. This is compounded by the
usual text type, domain, and genre contrasts. A robust CWS system must be able to adapt to
these variations without requiring massive retraining. A production environment with it's time
restrictions possesses great demands on the segmentation system to be able to quickly
accommodate even to mixture of text types, since such a mixture would introduce confusing
contexts and confuse system that would rely too heavily on text type, i.e. particular lexicon

choice and specific morphology, and too large a context.
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Space and time demands. Current CWS systems cannot avoid long training times and large
memory demands. This is a consequence of the segmentation model employed. This is
acceptable when CWS systems are used for offline tasks such as corpora preprocessing,
where time and space can be easily provided and when needed. However, for any typically
web-based practical language engineering applications, such high demand on computing time

is not acceptable.
2.1 Previous works: a critical review

Two contrasting approaches to Chinese word segmentation summarize the dilemma of
segmentation system design. A priori, one can argue that segmentation is the essential tool for
building a (mental) lexicon hence segmentation cannot presuppose lexical knowledge. On the
other hand, as a practical language technology issue, one can also argue that segmentation is
simply matching all possible words from a (hypothetical) universal lexicon and can be
simplified as mapping to a large yet incomplete lexicon. Hence we can largely divide

previous approaches to Chinese word segmentation as lexicon-driven or text-driven.

Text-Driven. Text-driven approach to segmentation relies on contextual information to
identify words and do not assume any prior lexical knowledge. Researches in this approach
typically emphasize the need for an empirical approach to define the concept of a word in a
language. [12] work based on mutual information (MI) is the best-known and most
comprehensive in this approach. The advantage of this approach it can be applied to all
different variations of language and yet be highly adaptive. However, the basic
implementation of MI applies bi-syllabic words only. In addition, it cannot differentiate

between highly collocative bigrams (such as Fi- jiubu “...then not...”) and words. Hence

it typically has lower recall and precision rate than current methods. Even though text-driven
approaches are no longer popular, they are still widely used to deal with OOV with a

lexicon-driven approach.

Tokenization. The classical lexicon-driven segmentation model, described in [1] and is still
adopted in many recent works. Segmentation is typically divided into two stages: dictionary
look up and OOV word identification. This approach requires comparing and matching tens
of thousands of dictionary entries in addition to guessing a good number of OOV words. In
other words, it has a 10* x 10* scale mapping problem with unavoidable data sparseness. This
model also has the unavoidable problem of overlapping ambiguity where e.g. a string [ C.1, C,

Cj,1] contains multiple sub-strings, such as [Cr.;, €] and [C;, Cj;], which are entries in the
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dictionary. The degree of such ambiguities is estimated to fall between 5% to 20% [2, 6].

Character classification. Character classification or tagging, first proposed in [14], became a
very popular approach recently since it is proved to be very effective in addressing problems
of scalability and data sparseness [14, 4, 16, 17]. Since it tries to model the possible position
of a character in a word as character-strings, it is still lexicon-driven. This approach has been
also successfully applied by to name entity resolution, e.g. [17]. This approach is closely
related to the adoption of the machine learning algorithm of conditional random field (CRF),
[7]. CRF has been shown [11] to be optimal algorithm for sequence classification. The major

disadvantages are big memory and computational time requirement.

3. Model

Our approach is based on a simplified idea of Chinese text, which we have introduced earlier
in [15]. Chinese text can be formalized as a sequence of characters and intervals as illustrated

in Figure 1.

c.le, l,....,e~1,1~-1,¢,
Figure 1. Chinese text
formalization

There is no indication of word boundaries in Chinese text, only string of characters ¢
Characters in this string can be conceived as being separated by interval /. To obtain a
segmented text, i.e. a text where individual words are delimited by some graphical mark such
as space, we need to identify which of these intervals are to be replaced by such word

delimiter.

We can introduce a utility notion of imaginary intervals between characters, which we

formally classify into two types:
Type 0: a character boundary (CB) is an imaginary boundary between two characters
Type 1: a word boundary (WB), an interval separating two words.

With such a formulation, segmentation task can be easily defined as a classification task and
machine learning algorithms can be employed to solve it. For conventional machine
learning algorithms, classifications are made based on a set of features, which identify certain

properties of the target to be classified.

In a segmented text, all the intervals between characters are labeled as a word boundary or as
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a character boundary, however, characters are not considered as being part of any particular
word. Their sole function is to act as a contextual aid for identification of the most probable
interval label. Since the intervals between characters (be it a word boundary or a character
boundary) don't carry any information at all, we need to rely on the information provided by

group of characters surrounding them.

Now we can collect n-grams that will provide data for construction of features that will
provide learning basis for machine learning algorithm. A sequence, such the one illustrated in
Figure 1, can be obtained from segmented corpus, and hence the probability of word
boundary with specified relation to each n-gram may be derived. The resulting table which

consists of each distinct n-gram entry observed in the corpus and the probability of a word

v/— bi—gjams x

preceeding containing following

CcCB CB CBC BC BCC

\/

unigrams

Figure 2: The feature vectors used in this stuay.
While C denotes a character in the sequence, B
indicates the imaginary boundary. Thus CBC
denotes a bi-gram containing the interval.

boundary defines our n-gram collection.

Figure 2 shows the format of the feature vectors, or interval vectors, used in this study. We

build the n-gram model up to n = 2.
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To allow for a more fine-grained statistical information we have decomposed an interval

Basic corpus Other corpus

ccB,CBJCBC,BC,BCC . 7
‘ LV.d

y  ——— Training data

N-gram collection T——

<

Classifier

[y
|
I

|

—\% Testing data ‘ ’ Segmented text ‘

surrounding context into two unigrams and three bi-grams. For convenience, we can define
each interval by the two characters that surround it. Then, for each interval <b,> in a
4-character window abcd we collect two unigrams 0 and ¢ and three bi-grams ab, bc, ¢d and
compute probability of that interval being a word boundary. These five n-grams are stored in
a vector, which is labeled as Type 0 (character boundary) or Type 1 (word boundary): <ab, b,
be, ¢, cb, 0> or <ab, b, bc, ¢, ¢b, 1>. An example of an encoding of a sample from the

beginning of Bakeoff 3 AS training corpus: "Kffi] : = H-+H" (shijian:sanyueshiri), which

AB B BC C CD Typ. Inter.
0.500 0.595 0.003 0.173 0.021 0 IEF ]
0983 0958 1.000 0998 1.000 1 il

1.000 0998 1.000 0.713 0994 1 —
0.301 0.539 0.010 0318 0054 0 —H
0964 0.852 1.000 0426 0468 1 HT
0.002 0.245 0.065 0490 0.010 0 +—H

Table 1. Example of encoding and labeling of interval vectors in a
4-character window ABCD

would be correctly segmented as "HFff] : = H-fH" (shijian : sanyue shiri) can be seen in

Table 1.

Set of such interval vectors provides a training corpus on which we apply machine learning
algorithm, in our case logarithmic regression. Unsegmented text is prepared in the same

fashion and the interval vectors are subsequently labeled by a classifier.
4. Training the Machine Learning Model

It is our goal to develop a segmentation system that would be able handle different types of
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text. A large uniform training corpus is desirable for high precision of segmentation, but that
would cause a specialization of the classifier to types of texts contained in the corpus and

system's generality would be compromised.

Furthermore, using a training data set converted from an independent corpus may give
supplementary information and provide certain adaptation mechanism for the classifier

during training, but leave the basic n-gram collection untouched. However, a smaller set of

No of vectors LogReg LDA NNet SVM
17,577,301 0.9857  0.9784 0.9865 0.9862
1,000,000 0.9862 09796 09881 0.9876
100,000  0.9856  0.9796 0.9844 0.9867
10,000 09872 09811 09892 0.9879
1,000  0.9910  0.9820 0.9940 0.9920

100 1.0000 0.9700  1.0000 0.9900

Table 2: Performance during training

training data may give similar performance but with much lower cost.

If the features in the n-gram collection are properly defined, the final results from different
machine learning algorithms may not differ too much. On the contrary, if the available
n-gram collection does not provide efficient information, classifiers with ability to adjust the

feature space may be necessary.

In our preliminary tests, during which we wanted to decide which machine learning algorithm
would be most appropriate, the Academia Sinica Balance Corpus (ASBC) is used for the
derivation of the n-gram collection and training data. The CityU corpus from the SigHAN

Bakeoff2 collection is used for testing.

In order to verify the effect of the size of the training data, the full ASBC (~17 million
intervals) and a subset of it (I million randomly selected intervals) are used for training

separately.

No of vectors LogReg LDA NNet SVM
17,577,301  0.9386  0.9326 0.9373 0.9362
1,000,000 09386  0.9325 0.9360 0.9359
100,000 0.9389  0.9326 0.9331 0.9369
10,000  0.9393 0.9326 0.9338 0.9364
1,000  0.9373 0.9330 0.9334 0.9366

100  0.9106 09355 09198 0.9386

Table 3. Performance during Iesﬁ/?&



Furthermore, four different classifiers, i.e., logistic regression (LogReg) [9], linear
discriminative analysis (LDA)[13], multi-layer perceptron (NNET)[13], and support vector
machine (SVM)[3], were tested.

The segmentation results are compared with the "gold standard" provided by the SigHAN
Bakeoff2.

No of vectors LogReg LDA NNet SVM
17,577,301  0.9386  0.9326 0.9373 0.9362

1,000,000 09386  0.9325 0.9360 0.9359
100,000 09389 09326 09331 0.9369
10,000  0.9393 0.9326  0.9338 0.9364
1,000  0.9373 0.9330 0.9334 0.9366

100 09106 09355 09198 0.9386

Table 4: Performance during training: new corpus

Tables 2 and 3 show the training and testing accuracies of various classifiers trained with the
ASBC. All classifiers tested perform as expected, with their training errors increase with the
size of the training data, and the testing errors decrease with it. Table 2 clearly shows that the
training data size has little effect on the testing error while it is above 1000. This proves that
once a sufficient n-gram collection is provided for preparation of the interval vectors,

classifier can be trained with little input.

It is also shown in Table 2 that four classifiers give similar performance when the training
data size is above 1000. However, while the training sample size drops to 100, the SVM and
LDA algorithms show their strength by giving similar performance to the experiments trained

with larger training data sets.

No of vectors LogReg LDA NNet SVM
1,000,000 09424 09390 0.9423 0.9443
100,000  0.9425 0.9387 09417 0.9441
10,000  0.9421 0.9410 0.9409 0.9430
1,000 09419 09418 0.9332 0.9400
100 0.8857 0.9350 0.8812 0.9299

Table 5. Performance during testing.: new corpus
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To further explore the effectiveness of our approach, we have modified the experiment to
show the performance in model adaptation. In the modified experiments the training and
testing data sets are both taken from a foreign corpus (CityU), while our n-gram collection is
still from ASBC. The relation between the derived features and the true segmentation may be
different from the ASBC, and hence is learned by the classifiers. The results of the modified

experiments are shown in Tables 4 and 5.
5. Results

In our test to compare our performance objectively with other approaches, we adopt
logarithmic regression as our learning algorithm as it yielded best results during our test. We
apply the segmentation system to two traditional Chinese corpora, CKIP and CityU, provided
for SigHAN Bakeoff 3. In the first set of tests, we used training corpora provided by SigHAN
Bakeoff3 for n-gram collection, training and testing. Results of these tests are presented in

Table 6.

cityu  ckip cityu  ckip
F-measure 0.933 0919 F-measure 0.920 0.925
OOV Rate 0.179 0.204 OOV Rate 0.167 0.187
OOV Recall Rate 0.888 0.871 OOV Recall Rate 0.920 0.893
IV Recall Rate 0.941 0.943 IV Recall Rate 0.920 0.930
Table 7: Results (Bakeoff 3 dataset): Table 6: Combined results (Bakeoff 3
traditional Chinese dataset): traditional Chinese

In addition, to underline the adaptability of this approach, we also tried combining both
corpora and then ran training on random sample of vectors. This set of tests is designed to
exclude the possibility of over-fitting and to underline the robustness of the WBD model.
Note that such tests are not performed in SigHAN Bakeoffs as many of the best performances

are likely over-fitted. Results of this test are shown in Table 7.

Table 6 and 7 show that our OOV recall is comparable with our overall F-score, especially
when our system is trained on selected vectors from combined corpus. This is in direct
contrast with all existing systems, which typically has a much lower OOV recall than IV
recall. In other words, our approach applies robustly to all textual variations with reliably

good results. Table 8 shows that indeed our OOV recall rate shows over 16% improvement
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over the best Bakeoff3 result for CityU, and over 27% improvement over best result for CKIP
data.

ckip  cityu
Microsoft Research Asia  0.702  0.792

IASL 0.656 0.792
Respective corpus 0.888 0.871
Combined corpora 0.893 0.920

Table 8. Our 00V recall results compared to

6. Discussion

We refined and implemented the WBD model for Chinese word segmentation and show that
it is a robust and realistic model for Chinese language technology. Most crucially, we show
that the WBD model is able to reconcile the two competitive goals of the lexicon-driven and
text-driven approaches. The WBD model maintains comparable F-score level with the most
recent CRF character-classification based results, yet improves substantially on the OOV

recall.

We showed that our system is robust and not over-fitted to a particular corpus, as it yields
comparable and reliable results for both OOV and IV words. In addition, we show that same
level of consistently high results can be achieved across different text sources. Our results
show that Chinese word segmentation system can be quite efficient even when using very

simple model and simple set of features.

Our current system, which has not been optimized for speed, is able to segment text in less
then 50 seconds. Time measurement includes preparation of testing data, but also training
phase. We believe that with optimized and linked computing power, it will be easy to
implement a real time application system based on our model. In the training stage, we have
shown that sampling of around 1,000 vectors is enough to yield one of the best results. Again,
this is a promise fact for the WBD model of segmentation to be robust. It is notable, that in
case of training on combined corpora (CKIP and CityU) the results are even better than test in
respective data sets, i.e. CKIP training corpus for segmenting CKIP testing text, or CityU
respectively. This is undoubtedly the result of our strategy of granulation of the context
around each interval. Since four characters that we use for representation of the interval

context are broken up into two unigrams and three bi-grams, we let the system to get more
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refined insight into the segmented area.

Consequently, the system is learning morphology of Chinese with greater generality and this
results in higher OOV scores. It can be argued that in our combined corpora test, the OOV
recall is even higher, because the input contains two different variants of Chinese language,
Taiwanese variant contained in CKIP corpus and Hong Kong variant contained in CityU

corpus.

Text preparation and post-processing also add to overall processing time. In our current
results, apart from context vector preparation there was no other preprocessing employed and
neither any post-processing. This fact also shows that our system is able to handle any type of
input without the need to define special rules to pre- or post-process the text. Early results

applying our model to simplified Chinese corpora are also promising.

In sum, our WBD model for Chinese word segmentation yields one of the truly robust and
realistic segmentation program for language technology applications. If these experiments are
treated as simulation, our results also support the linguistic hypothesis that word can be
reliably discovered without a built-in/innate lexicon. We will look into developing a more
complete model to allow for more explanatory account for domain specific shifts as well as

for effective bootstrapping with some lexical seeds.
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ABSTRACT

There are very few input systems supporting Taiwanese and Hakka on the market at
present. Our purpose is to provide an input system supporting Mandarin and Taiwanese
which is toneless and complies with multiple types of phonetic symbols, we hope that such an

approach can resolve the problems resulting from tone and phonetic symbols. In this paper,
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we use an algorithm based on three continuous longest word first whose precision is 89.59%

in one type of phonetic symbols, and 88.54% in the combination of many types of phonetic

symbols.
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Keywords: toneless input system, phoneme to character, three continuous longest word first.
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Abstract

Propositional terms in a research abstract (RA) generally convey the most important
information for readers to quickly glean the contribution of a research article. This paper
considers propositional term extraction from RAs as a sequence labeling task using the IOB
(Inside, Outside, Beginning) encoding scheme. In this study, conditional random fields
(CRFs) are used to initially detect the propositional terms, and the combined association
measure (CAM) is applied to further adjust the term boundaries. This method can extract
beyond simply NP-based propositional terms by combining multi-level features and inner
lexical cohesion. Experimental results show that CRFs can significantly increase the recall
rate of imperfect boundary term extraction and the CAM can further effectively improve the

term boundaries.
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1. Introduction

Researchers generally review Research Abstracts (RAs) to quickly track recent research
trends. However, many non-native speakers experience difficulties in writing and reading
RAs [1]. The author-defined keywords and categories of the research articles currently
utilized to provide researchers with access to content guiding information are cursory and
general. Therefore, developing a propositional term extraction system is an attempt to exploit
the linguistic evidence and other characteristics of RAs to achieve efficient paper
comprehension. Other applications of the proposed method contain sentence extension, text
generation, and content summarization.

A term is a linguistic representation of a concept with a specific meaning in a particular
field. It may be composed of a single word (called a simple term), or several words (a
multiword term) [2]. A propositional term is a term that refers to the basic meaning of a
sentence (the proposition) and helps to extend or control the development of ideas in a text.
The main difference between a term and a propositional term is that a propositional term,
which can guide the reader through the flow of the content, is determined by not only syntax
or morphology but semantic information. Take RAs to illustrate the difference between a term
and a propositional term. Cheng [3] indicted that a science RA is composed of background,
manner, attribute, comparison and evaluation concepts. In Figure 1, the terms underlined are
the propositional terms which convey the important information of the RA. In the clause

“we present one of the first robust LVCSR systems that use a syllable-level acoustic unit for
LVCSR,” the terms “LVCSR systems” , “syllable-level acoustic unit”  and

“LVCSR” respectively represent the background, manner and background concepts of the
research topic, and can thus be regarded as propositional terms in this RA. The background
concepts can be identified by clues from the linguistic context, such as the phrases

“most...LVCSR systems” and “in the past decade” , which indicate the aspects of
previous research on LVCSR. For the manner concept, contextual indicators such as the
phrases “present one of...” , “thatuse” and “for LVCSR” express the aspects of the
methodology used in the research. Propositional terms may be composed of a variety of word
forms and syntactic structures and thus may not only be NP-based, and therefore cannot be
extracted by previous NP-based term extraction approaches.

Most large vocabulary continuous speech recognition (LVCSR) systems in the past decade have used a
context-dependent (CD) phone as the fundamental acoustic unit. In this paper, we present one of the
first robust LVCSR systems that use a syllable-level acoustic unit for LVCSR on telephone-bandwidth
speech. This effort is motivated by the inherent limitations in phone-based approaches-namely the lack
of an easy and efficient way for modeling long-term temporal dependencies. A syllable unit spans a
longer time frame, typically three phones, thereby offering a more parsimonious framework for
modeling pronunciation variation in spontaneous speech. We present encouraging results which show
that a syllable-based system exceeds the performance of a comparable triphone system both in terms of
word error rate (WER) and complexity. The WER of the best syllable system reported here is 49.1% on
a standard SWITCHBOARD evaluation, a small improvement over the triphone system. We also report
results on a much smaller recognition task, OGI Alphadigits, which was used to validate some of the
benefits syllables offer over triphones. The syllable-based system exceeds the performance of the
triphone system by nearly 20%, an impressive accomplishment since the alphadigits application

consists mostly of phone-level minimal pair distinctions.

Figurel. A Manually-Tagged Example of Propositional Terms in an RA

In the past, there were three main approaches to term extraction: linguistic [4], statistical
[5, 6], and C/NC-value based [7,8] hybrid approaches. Most previous approaches can only
achieve a good performance on a test article composed of a relatively large amount of words.
Without the use of large amount of words, this study proposes a method for extracting and
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weighting single- and multi-word propositional terms of varying syntactic structures.

2. System Design and Development

This research extracts the propositional terms beyond simply the NP-based propositional
terms from the abstract of technical papers and then regards propositional term extraction as a
sequence labeling task. To this end, this approach employs an IOB (Inside, Outside,
Beginning) encoding scheme [9] to specify the propositional term boundaries, and
conditional random fields (CRFs) [10] to combine arbitrary observation features to find the
globally optimal term boundaries. The combined association measure (CAM) [11] is further
adopted to modify the propositional term boundaries. In other words, this research not only
considers the multi-level contextual information of an RA (such as word statistics, tense,
morphology, syntax, semantics, sentence structure, and cue words) but also computes the
lexical cohesion of word sequences to determine whether or not a propositional term is
formed, since contextual information and lexical cohesion are two major factors for
propositional term generation.

(Training IS & [ Testing
i
Abstract
— = =
J— — ¥ i .
e  Dormin
Diomain Paper > Parser Terminology
~_Corpus & Acronym
v List
Parameter | b+ | Multi-Level ~“WordNet |
Estimation Feature Extraction — &SUMO —
l | | _' AWL '_ |
+ -
Fropositional
CRF Model  —["»  Term (PT) |
= Detection
& CRF-baged PTs
o Combined .
= - Propositional
- Association - Terms Generation
h A Measure A

Figure 2. The System Framework of Propositional Term Extraction

The system framework essentially consists of a training phase and a test phase. In the
training phase, the multi-level features were extracted from specific domain papers which
were gathered from the SCI (Science Citation Index)-indexed and SCIE (Science Citation
Index Expanded)-indexed databases. The specific domain papers are annotated by experts
and then parsed. The feature extraction module collects statistical, syntactic, semantic and
morphological level global and local features, and the parameter estimation module calculates
conditional probabilities and optimal weights. The propositional term detection CRF model
was built with feature extraction module and the parameter estimation module. During the
test phase users can input an RA and obtain system feedback, i.e. the propositional terms of
the RA. When the CRF model produces the preliminary candidate propositional terms, the
propositional term generation module utilizes the combined association measure (CAM) to
adjust the propositional term boundaries. The system framework proposed in this paper for
RA propositional term extraction is shown in Figure 2. A more detailed discussion is
presented in the following subsections.
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2.1. Assisted Resource

In order to produce different levels of information and further assist feature extraction in the
training and test phases, several resources were employed. This study chooses the ACM
Computing Classification System (ACM CSS) [12] to serve as the domain terminology list
for propositional term extraction from computer science RAs. The ACM CSS provides
important subject descriptors for computer science, and was developed by the Association for
Computing Machinery. The ACM CSS also provides a list of Implicit Subject Descriptors,
which includes names of languages, people, and products in the field of computing. A
mapping database, derived from WordNet (http://wordnet.princeton.edu/) and SUMO
(Suggested Upper Merged Ontology) (http://ontology.teknowledge.com/) [13], supplies the
semantic concept information of each word and the hierarchical concept information from the
ontology. The AWL (Academic Words List) (http://www.vuw.ac.nz/lals/research/awl/) [14] is
an academic word list containing 570 word families whose words are selected from different
subjects. The syntactic level information of the RAs was obtained using Charniak’s parser
[15], which is a “maximum-entropy inspired” probabilistic generative model parser for
English.

2.2. Conditional Random Fields (CRFs)

W ={w,w,,...,

For this research goal, given a word sequence .} | the most likely propositional

term label sequence™ = ¥»%>>%} in the CRF framework with the set of weights ¥ can be

obtained from the following equation.

S =argmaxg P, (S |W) (1)

A CRF is a conditional probability sequence as well as an undirected graphical model
which defines a conditional distribution over the entire label sequence given the observation
sequence. Unlike Maximum Entropy Markov Models (MEMMs), CRFs use an exponential
model for the joint probability of the whole label sequence given the observation to solve the
label bias problem. CRFs also have a conditional nature and model the real-world data
depending on non-independent and interacting features of the observation sequence. A CRF
allows the combination of overlapping, arbitrary and agglomerative observation features from
both the past and future. The propositional terms extracted by CRFs are not restricted by
syntactic variations or multiword forms and the global optimum is generated from different
global and local contributor types.

The CRF consists of the observed input word sequence " =-"»--"} and label state

sequence S=1812808,} such that the expansion joint probability of a state label sequence

given an observation word sequence can be written as
1
P(S|w) =—exp[ZZﬂkfk (5,028, W)+ D> g, (s,,W)j
Z() t ok t ok (2)
where /(55") are the transition features of the global observation sequence and the states

at positions t and t-1 in the corresponding state sequence, and g (7)) s a state feature

function of the label at position t and the observation sequence. Let A be the weight of each
1

fk, H be the weight of &+ and % be a normalization factor over all state sequences,
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where Z, = Zexp[zz/ikfk (505 W)+ D> g, (st,W)j.

Ao ;) , is usually estimated by maximizing the

n

The set of weights in a CRF model, ¥ =
conditional log-likelihood of the labeled sequences in the training data D:{S(”,W“)}

i=l1
(Equation (3)) For fast training, parameter estimation was based on L-BFGS (the
limited-memory BFGS) algorithm, a quasi-Newton algorithm for large scale numerical
optimization problems [16]. The L-BFGS had proved [17] that converges significantly faster
than Improved Iterative Scaling (IIS) and General Iterative Scaling (GIS).

L= log(R, (s |w")) 3)

After the CRF model is trained to maximize the conditional log-likelihood of a given
training set P(S|W), the test phase finds the most likely sequence using the combination of
forward Viterbi and backward A* search [18]. The forward Viterbi search makes the labeling
task more efficient and the backward A* search finds the n-best probable labels.

2.3. Multi-Level Features

According to the properties of propositional term generation and the characteristics of
the CRF feature function, this paper adopted local and global features which consider
statistical, syntactic, semantic, morphological, and structural level information. In the CRF
model, the features used were binary and were formed by instantiating templates, and the
maximum entropy principle was provided for choosing the potential functions. Equation (4)
shows an example of a feature function, which was set to 1 when the word was found in the
rare words list (RW).

n)_{l, if s, =sMisRW (W,)

gs,wl,wz,.,.,wn (St’ M)] (4)

0, otherwise

2.3.1. Local Feature
(1). Morphological Level:

Scientific terminology often ends with similar words, e.g. “algorithm” or “model”, or is
represented by connected words (CW) expressed with hyphenation, quotation marks or
brackets. ACMCSS represents entries in the ACM Computing Classification System (ACM
CSS). The last word of every entry in the ACM CSS (ACMCSSATY) satisfies the condition
that it is a commonly occurring last word in scientific terminology. The existing propositional
terms of the training data were the seeds of multiword terms (MTSeed).

Words identified as acronyms were stored as useful features, consisting of IsNenadic,
IsISD, and IsUC. IsNenadic was defined using the methodology of Nenadi¢, Spasi¢ and
Ananiadou [19] to acquire possible acronyms of a word sequence that was extracted by the
C/NC value method. IsISD refers to the list of Implicit Subject Descriptors in the ACM CCS
and IsUC signifies that all characters of the word were uppercase

(2). Semantic Level:

MeasureConcept  infers that the word was found under SUMO’s
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“UNITS-OF-MEASURE” concept subclass and SeedConcept denotes that the concept of the
word corresponded to the concept of a propositional term in the training data.

(3). Frequency Level:

A high frequency word list (HF) was generated from the top 5 percent of words in the
training data. A special words list (SW) consists of the out-of-vocabulary and rare words.
Out-of-vocabulary words are those words that do not exist in WordNet. Rare words are words
not appearing in the AWL or which appear in less than 5 different abstracts.

4). Syntactic Level:

This feature was set to 1 if the syntactic pattern of the word sequence matched the
regular expression “(NP)*(preposition)?(NP)*’ (SynPattern), or matched the terms in the
training data (SeedSynPattern). SyntaxCon means that concordances of ACMCSSATff or
ACMCSSAftSyn (ACMCSSAff synonyms) used the keyword in context to find the syntactic
frame in the training data. If the part-of-speech (POS) of the word was a cardinal number,
then this feature CDPOS was set to 1.

(5). Statistical and Syntactic Level:

This research used the CRF model to filter terms extracted by the C/NC value approach
with no frequency threshold

2.3.2. Global Feature
(1). Cue word:

KeyWord infers that the word sequence matched one of the user’s keywords or one word
of the user’s title. IsTransW and IsCV represent that a word was found in an NP after TransW
or CV respectively. TransW indicates summative and enumerative transitional words, such as

99 ¢ 99 ¢

“in summary”, “to conclude”, “then”, “moreover”, and “therefore”, and CV refers to words

29 C¢ 29 C¢

under SUMO’s “communication” concepts, such as “propose”, “argue”, “attempt” and so on.
(2). Tense:

If the first sentence of the RA is in the past tense and contains an NP, then the word
sequence of that NP was used as a useful feature PastNP. This is because the first sentence
often impresses upon the reader the shortest possible relevant characterization of the paper,
and the use of past tense emphasizes the importance of the statement.

(3). Sentence structure:

Phrases in a parallel structure sentence refers to the phrases appearing in a sentence
structure such as Phrase, Phrase, or (and) Phrase, and implies that the same pattern of words
represents the same concept. ParallelStruct indicates that the word was part of a phrase in a
parallel structure.

2.4. Word Cohesiveness Measure

By calculating the cohesiveness of words, the combined association measure (CAM) can
assist in further enhancing and editing the CRF-based propositional term boundaries for
achieving a perfect boundary of propositional terms. CAM extracts the most relevant word
sequence by combining endogenous linguistic statistical information, including word form
sequence and its POS sequence. CAM is a variant of normalized expectation (NE) and
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mutual expectation (ME) methods.

To characterize the degree of cohesiveness of a sequence of textual units, NE evaluates
the average cost of loss for a component in a potential word sequence. NE is defined in
Equation (5) where the function ¢(-) means the count of any potential word sequence. An
example of NE is shown in Equation (6).

C([wl...wi...wn]) (5)
’li(C([wl...wi...w" ])—i— ; C([wl...ﬁ/i...wn])j

NE ([large vocabulary continuous speech recognition])

NE([WI...W,....WH])Z

C ([large vocabulary continuous speech recognition])

C ([large vocabulary continuous speech recognition]) (6)
+C ([large continuous speech recognition])

% +C ([large vocabulary speech recognition])
+C ([large vocabulary continuous recognition])

+C ([large vocabulary continuous speech])

Based on NE and relative frequency, the ME of any potential word sequence is defined
as Equation (7), where function P(-) represents the relative frequency.

ME([WI...Wi...Wn]) = P([wl...wl....wn])x NE([WI...Wi...Wn]) (7

CAM considers that the global degree of cohesiveness of any word sequence is
evaluated by integrating the strength in a word sequence and the interdependence of its POS.
Thus CAM evaluates the cohesiveness of a word sequence by the combination of its own ME
and the ME of its associated POS sequence. In Equation (8), CAM integrates the ME of word
form sequence [w..w,..w,| and its POS [p..p,..p,]. Let o be a weight between 0 and 1,

which determines the degree of the effect of POS or word sequence in the word cohesiveness
measure.

CAM ([Wl...Wi...Wn]) = ME([WI...WZ....W"])& xME([pl...pf...pn])lfa (8)

This paper uses a sliding window moving in a frame and compares the CAM value of
neighboring word sequences to determine the optimal propositional term boundary. Most
lexical relations associate words distributed by the five neighboring words [20]. Therefore
this paper only calculates the CAM value of the three words to the right and the three words
to the left of the CRF-based terms. Figure 3 represents an illustration for the CAM
computation that was fixed in the [(2*3) + length(CRF-Based term)] frame size with a sliding
window. When the window starts a forward or backward move in the frame, the three
marginal words of a term are the natural components of the window. As the word number of
the CRF term is less than three words, the initial sliding windows size is equal to the word
number of the term.
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Frame Size =(2*3)+length(CRF-based Term})
| CRF-based Term |
WI[W2 W3 W4 W5 W6 W7 W8 W9 WIoO W11 ] WIi2
W1 W2 W3 W4 W5 We W7 W8 WO WIowlil|wi2

WIIW2 W3 W4 W5 W6 W7 WE W9 WI0WIT1 | wi2
WI[W2 W3 W4 W5 W6 W7 W8 W9 WI0WI1 ]| wiz2

-E‘_ WI[W2 W3 W4 W5 We W7 W8 WO WIowWIll | wi2
» WITW2 W3 W4 W5 We W7 W8 W9 WI0[WI1 ] WI2
T OWI[W2 W3 W4 WS We W7 W8 WO[WIOWI1 | wWI2
2 WI[W2 W3 W4 W5 W6 W7 W8 W9 WIOWII1 | Wi2
TOWI[W2Z W3 W4 W5 We W7 W8 W9 WI0WI1]wi2
2 WI[W2 W3 [W4| W35 We W7 WE W9 WI0OWI11 | wWi2
T owl [ W2 W3 W4 WS W6 W7 W8 W9 WIO W11 | WI2
2 WI[w2 WS*W@ W35 W6 W7 W8 W9 WIOWI1]WI2
TOWI[W2 W3 W4 W5 W6 W7 W8 W9 WIOWI1]WI2
'y

2

Figure 3. An Illustration for the CAM Computation Steps

To find the optimal propositional term boundary, this study calculates the local
maximum CAM value by using the Modified CamLocalMax Algorithm. The principle of the
original algorithm [21] is to infer the word sequence as a multiword unit if the CAM value is
higher than or equal to the CAM value of all its sub-group of (n-1) words and if the CAM
value is higher than the CAM value of all its super-group of (n+1) words. In the Modified
CamLocalMax Algorithm, when the CAM value of the combination of CRF-based single
word propositional terms and its immediate neighbor word is higher than the average of the
CAM value of bi-gram propositional terms in the training data, the components of the
CRF-based single word propositional terms are turned into a bi-gram propositional term. The
complete Modified CamLocalMax Algorithm is shown in the following, where cam means
the combined association measure, size(:) returns the number of words of a possible
propositional term, M represents a possible propositional term, {,:; denotes the set of all the
possible (n+1)grams containing M, Q,; denotes the set of all the possible (n-1)grams
contained in M, and bi-term typifies bi-gram propositional terms in the training data.

Input: M, a possible propositional term, Yy eQ,  the set of all the possible (n+1)grams
containing M, VvxeQ, the set of all the possible (n-1)grams contained in M
Output: CT={ct,cty,...ct,}, a CRF+CAM-based propositional term set
If  (sizeeM)=2and cam(M) > cam(y))
or (size(M)>2 and cam(M) = cam(x) and cam(M) >cam(y))
or (size(M)=1 and cam(bi-gram) = cam(M) )
Endif
Return ct

2.5. Propositional Term Generation Algorithm

The Propositional Term Generation algorithm utilizes the CRF model to generate a
CRF-based propositional term set T={t,t,,...t,} and calculates the CAM value to produce a
CRF+CAM-based propositional term set CT={ct;,cty,...ct,}. The detailed processes of the
Propositional Term Generation algorithm are as follows
k
Ly : the word form sequence from the first word 1 to last word k of CRF-based propositional term t,
Input: Word sequence w’
Output: T={1,t,,...t,}, a CRF-based propositional term set and, CT={ct,,ct,,...ct,}, a CRF+CAM-based
propositional term set
Input W" to generate T={1,,t,,...t,} by CRF
ForallteT
Fora=0toa =2 Step 1
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cti=Modified_CamLocalMax( tjk” ) tjk“H Lt

]
CT € CT Ut
End for
Ift; & CT Then
Fora=0toa=-2 Step -1

c(,=M0diﬁed_CamL0calMax(tha , l‘;w*l , tjl“l”)
CT € CT Uct;
End for
End if
End for
Return T, CT

2.6. Encoding Schema

The IOB encoding scheme was adopted to label the words, where I represents words Inside
the propositional term, O marks words Outside the propositional term, and B denotes the
Beginning of a propositional term. It should be noted that here the B tag differs slightly from
Ramshaw and Marcus’s definition, which marks the left-most component of a baseNP for
discriminating recursive NPs. Figure 4 shows an example of the IOB encoding scheme that
specifies the B, I, and O labels for the sentence fragment “7The syllable-based system exceeds
the performance of the triphone system by...”. An advantage of this encoding scheme is that it
can avoid the problem of ambiguous propositional term boundaries, since IOB tags can
identify the boundaries of immediate neighbor propositional terms, whereas binary-based
encoding schemes cannot. In Figure 4, “syllable-based system”, and “exceeds” are individual
and immediate neighbor propositional terms distinguished by B tags.

Input: The syllable-based system exceeds the performance of the triphone system by

IOB: O B 11 B o o O O B I O
-

Terms: [svllable-based system] [exceeds] [triphone system]

Figure 4. An Example of the IOB Encoding Scheme
3. Evaluation

3.1. Experimental Setup

To facilitate the development and evaluation of the propositional term extraction method,
experts manually annotated 260 research abstracts, including speech, language, and
multimedia information processing journal papers from SCI and SCIE-indexed databases. In
all, there were 109, 72, and 79 annotated research abstracts in the fields of speech, language,
and multimedia information processing, respectively. At run time, 90% of the RAs were
allocated as the training data and the remaining 10% were reserved as the test data for all
evaluation.

In system implementation, the CRF++: Yet Another CRF toolkit 0.44 [22] was adopted.
The training parameters were chosen using ten-fold cross-validation on each experiment.

The proposed system was compared with three baseline systems. The first was the
C/NC-value algorithm with no frequency threshold, because the C/NC-value algorithm is a
hybrid methodology and its historical result is better than the linguistic and statistical
approaches. The second baseline system proposed by Nenadi¢ et al. [8] is a variant of the
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C/NC-value algorithm enriched by morphological and structural variants. The final baseline
system is a linguistic approach proposed by Ananiadou [4]. That study, however, made no
comparisons with statistical approaches which are suitable for a document containing a large
amount of words.

To evaluate the performance in this study, two hit types for propositional term extraction:
perfect and imperfect [23] are employed. A perfect hit means that the boundaries of a term’s
maximal term form conform to the boundaries assigned by the automatic propositional term
extraction. An imperfect hit means that the boundaries assigned by the automatic
propositional term extraction do not conform to the boundaries of a term’s maximal term
form but include at least one word belonging to a term’s maximal term form. Taking the word
sequence “large vocabulary continuous speech recognition” as an example, when the system
detects that “vocabulary continuous speech recognition” is a propositional term, it then
becomes an imperfect hit. There is only one perfect hit condition where “/arge vocabulary
continuous speech recognition” is recognized. The metrics of recall and precision were also
used to measure the perfect and imperfect hits. The definition of recall and precision of
perfect hits and imperfect hits are shown in Equation (9) and Equation (10). Thus, our system
is evaluated with respect to the accuracies of propositional term detection and propositional
term boundary detection. That is, our motivation for propositional term extraction was to
provide CRF and CRF+CAM for accurate detection of propositional terms and the
improvement of the detected propositional term boundaries.

Recal]= Hits Perfect (or Imperfect)
Target Termforms ©

Precision= Hits Perfect (or Imperfect)/

Extracted Termforms (10)

3.2. Experimental Results

This study evaluated empirically two aspects of our research for different purposes. First, the
performance of propositional term extraction for CRF-based and CRF+CAM-based
propositional term sets on different data was measured. Second, the impact of different level
features for propositional term extraction using CRF was evaluated.

Evaluation of Different Methods
Table 1. The Performance of Imperfect Hits on Different Data

Method R P F R P F
All Data Language Data
CRF Inside Testing 2932 945 939 (967 981 974
CRF +CAM Inside Testing 96.6 96.0 96.3 98.4 - 99.6 99.0
CRF Outside Testing 77.1 74.1 75.6 78.6 763 77.4
CRF +CAM Outside Testing 82.6 82.5 82.6 85.8 | 88.8 87.2
C/NC Value 53.4 65.3 58.8 48.1 533 50.6
Ananiadou 513 700  59.2 524 684 593
Nenadic¢ et al. 580 723 644 60.1 69.0 643
Speech Data Multimedia Data
CREF Inside Testing 96.6 99.0 98.2 98.0 199.2 98.6
CRF +CAM Inside Testing 97.5 99.0 99.4 98.6 1993 99.0
CRF Outside Testing 74.9 76.1 74.3 61.2 1650 63.1
CRF +CAM Outside Testing 82.6 83.9 84.2 654 |71.2 68.2
C/NC Value 535 790 627 677 532 59.6
Ananiadou 1531 684 598 654 |60.0 62.6
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[ Nenadi¢ et al. 1596 722 653 689 552 613 |

Table 1 lists the recall rate, the precision rate and F-score of propositional term
extraction for imperfect hits of different domain data. In each case, the recall and precision of
imperfect hits using CRF inside testing was greater than 93%. The CRF outside test achieved
approximately 73% average recall and 73% average precision for imperfect hits, and the
CAM approach improved the original performance of recall and precision for imperfect hits.
The C/NC-value approach achieved approximately 56% average recall and 63% average
precision for imperfect hits. The performance of Ananiadou’s approach was about 56%
average recall and 67% average precision for imperfect hits. Another baseline, the approach
of Nenadi¢, Ananiadou and McNaught, obtained approximately 62% average recall and 67%
average precision for imperfect hits.

Table 2. The Performance of Perfect Hits on Different Data

Method R P F R P F
All Data Language Data
CREF Inside Testing 66.5 66.2 66.3 66.4 67.5 67.0
CRF +CAM Inside Testing 69.0 68.6 68.8 69.4 69.9 69.6
CRF Outside Testing 39.8 42.2 41.9 43.2 373 40.0
CRF +CAM Outside Testing 43.5 49.2 46.2 45.3 45.4 453
C/NC Value 27.6 37.8 31.9 28.9 29.1 29.0
Ananiadou 26.3 37.9 31.1 313 37.7 34.2
Nenadi¢ et al. 30.2 41.0 34.8 31.2 40.9 354
Speech Data Multimedia Data
CREF Inside Testing 62.3 61.0 - 61.7 70.9 70.3 70.6
CRF +CAM Inside Testing 69.6 67.9 | 68.7 73.1 70.3 71.6
CRF Outside Testing 36.9 416 39.1 42.1 42.5 423
CRF +CAM Outside Testing 428 489 456 456 450 44.3
C/NC Value 29.0 40.0 33.6 34.6 29.9 32.1
Ananiadou 27.4 37.7 31.7 29.3 38.0 33.1
Nenadi¢ et al. 1300 386 337 353 376 353

Table 2 summarizes the recall rates, precision rates and F-score of propositional term
extraction for perfect hits of data from different domains. The CRF inside test achieved
approximately 67% average recall and 66% average precision on perfect hits, but the CRF
outside test did not perform as well. However, the CAM approach still achieved an increase
of 1%-7% for perfect hits. The C/NC-value approach obtained approximately 30% average
recall and 34% average precision for perfect hits. Ananiadou’s approach achieved
approximately 29% average recall and 38% average precision for perfect hits. The
performance of Nenadi¢, Ananiadou and McNaught’s approach was about 32% average recall
and 40% average precision for perfect hits.

The results show that the C/NC-value does not demonstrate a significant change over
different fields, except for the multimedia field, which had slightly better recall rate. The
main reasons for errors produced by C/NC-value were propositional terms that were single
words or acronyms, propositional terms that were not NP-based, or propositional terms that
consisted of more than four words.

Ananiadou’s approach was based on a morphological analyzer and combination rules for
the different levels of word forms. Experimental results showed that this approach is still
unable to deal with single words or acronyms, and propositional terms that are not NP-based.

Nenadi¢ et al.’s approach considered local morphological and syntactical variants using
C value to determine the propositional terms. This approach had slightly better performance
than the C/NC value methodology. Acronyms were included in the propositional term
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candidates but were filtered by frequency, as they often appear only a few times. This
approach also ignored single words, and propositional terms that were not NP-based.
Furthermore, none of these three baseline systems are suitable for handling special symbols.

For CRF inside testing, both the precision and recall rates were significantly better for
imperfect hits, but the precision and recall rates were reduced by about 30% for perfect hits in
most RAs. Due to insufficient training data, CRF no longer achieved outstanding results. In
particular, the large variability and abstract description of the multimedia field RAs led to
huge differences between measures. For example, in the sentence “For surfaces with varying
material properties, a full segmentation into different material types is also computed”, “full
segmentation into different material types” is a propositional term that it isn’t concretely
specified as a method. CRF achieved a better result in recall rate, but failed on propositional
term boundary detection, unlike the C/NC-value approach.

The CAM approach effectively enhanced propositional term boundary detection by
calculating word cohesiveness, except in the case of multimedia data. The CAM approach
couldn’t achieve similar performance for the multimedia data as a result of the longer word
count of terms that differ from the data of other fields. However, the CAM approach
performed best with a equal to 0.4, which demonstrates that the POS provided a little more
contribution for multiword term construction. The CAM approach not only considered the
POS sequence but also the word sequence, therefore the results are a little better for speech
data, which is the biggest part of the training data (SCI and SCIE-indexed databases).

The above results show that the CRF approach exhibited impressive improvements in
propositional term detection. The major reason for false positives was that the amount of the
data was not enough to construct the optimal model. Experimental results revealed that the
CAM is sufficiently efficient for propositional term boundary enhancement but the longer
word count of propositional terms were excluded.

Evaluation of Different Level Features

In order to assess the impact of different level features on the extraction method, this
paper also carried out an evaluation on the performance when different level features were
omitted. Table 3 presents the performance of CRF when omitting different level features for
imperfect hits and the symbol “-” denoted the test without a level feature. For all data, the
recall rate was reduced by approximately 1%- 5% and the precision rate was reduced by
approximately 2%- 6% in inside testing result. In all data outside testing, the recall rate was
reduced by 2%-10% and the precision rate was reduced by 1%-5%. The recall and precision
for speech data retained similar results from semantic level features, but showed little impact
from other local features. For language data, without morphological, syntactic, frequency, and
syntactic & statistical level features the performance was slightly worse than the original
result and without semantic level features the original performance was preserved. The
performance for multimedia data was affected greatly by semantic level features. A slight
improvement without morphological, and syntactic & statistical level features and similar
results were obtained when frequency and syntactic level features were omitted.

Table 3. The Performance of CRF Excepting Different Level Features for Imperfect Hits

T TEEEseaa Data Type All ~ Speech  Language = Multimedia
Testing Type - TT----..___ R P R P R P R
Inside -Frequency Features 92 92 94 97 95 97 - 98
Inside -Morphological Features 88 90 92 96 93 9% - 97
Inside -Syntactic Features 90 89 94 96 95 97 - 97
Inside -Semantic Features 92 92 96 98 97 98 | 95
Inside -Syntactic & Statistical Features 90 93 93 95 95 9% 96
Inside Testing 93 95 97 99 97 98 98
Outside -Frequency Features 74 73 71 73 76 74 i 60
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Outside -Morphological Features 71 71 59 69 70 68 - 58
Outside -Syntactic Features 67 69 60 71 71 71 - 59
Outside -Semantic Features 75 75 75 76 78 76 | 41 60
Outside -Syntactic &Statistical Features 71 73 67 71 70 70 - 55 65
Outside Testing 77 74 75 76 79 76 | 61 65

In Table 4, it can be noticed that the omission of any single level features results in a
deterioration in the performance of perfect hits. Removing the syntactic level features had the
most pronounced effect on performance for all, speech and language data, while removing the
semantic level features had the least effect on performance for all, speech and language data.
According to the experimental results, the use of the frequency features did not result in any
significant performance improvement for the multimedia data, and the use of the syntactic
and syntactic & statistical level features did not result in any performance improvement for
the multimedia data. Removing the semantic level features had the greatest effect on the
performance for the multimedia data.

Table 4. The Performance of CRF without Different Level Features for Perfect Hits

Data Type All Speech Language ~ Multimedia
Testing Type R P R P R P R P
Inside -Frequency Features 63 60 56 55 61 64 = 60 60
Inside -Morphological Features 61 61 57 54 61 64 70 68
Inside -Syntactic Features 60 60 55 57 63 65 | 68 67
Inside -Semantic Features 65 62 59 60 66 69 | 62
Inside -Syntactic &Statistical Features 62 61 57 52 62 64 71
Inside Testing 67 66 62 61 66 68 71
Outside -Frequency Features 36 38 34 35 37 0 34 40 40
Outside -Morphological Features 33 35 32 36 35 34 40 39
Outside -Syntactic Features 35 36 32 38 37 32 39 40 |
Outside -Semantic Features 38 40 36 40 41 36 29 31
Outside -Syntactic &Statistical Features 38 39 32 37 35 33 40 40
Outside Testing 40 42 37 42 42 37 42 42

Overall the five different level features were all somewhat effective for propositional
term extraction. This suggests that propositional terms are determined by different level
feature information which can be effectively used for propositional term extraction. The
frequency level features contributed little for propositional term extraction in all and speech
data. This may be due to the fact that speech data comprised the main portion of the training
data. In the multimedia case, the semantic level features were useful. Although semantic level
features may include some useful information, it was still a problem to correctly utilize such
information in the different domain data for propositional term extraction. Syntactic and
morphological level features obtained the best performance for all, speech and language data.
This may be due to the amount of training data in each domain and the various word forms of
propositional terms in the multimedia data. The syntactic and statistical level features
improved or retained the same performance, which indicates the combined effectiveness of
syntactic and statistical information.

3.3. Error Analysis

Table 5 shows the distribution of error types on propositional term extraction for each
domain data using outside testing. This study adopts the measure used in [24] to evaluate the
error type, where M indicates the condition when the boundary of the system and that of the
standard match, O denotes the condition when the boundary of the system is outside that of
the standard and I denotes the condition when the boundary of the system is inside that of the
standard. Therefore, the MI, IM, II, MO, OM, IO, OI and OO error types were used to
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evaluate error distribution. The relative error rate (RER) and the absolute error rate (AER)
were computed in error analysis, the relative error rate was compared with all error types, and
the absolute error rate was compared with the standard. In the overall error distribution, the
main error type was “/M” and “MI” and the CRF+CAM can significantly reduce those two
error types.

Table 5. Distribution of Error Types on Propositional Term Extraction

Error Type CRF CRF+CAM CRF CRF+CAM
RER AER RER AER RER AER RER AER
All Data _ Speech Data
MI 24.62 611 1800 290 2490 641 2030  3.03
M 36.48 872 2850 488 @ 3822 806 @ 3250  4.08
1 18.67 496 2340 388 1237 288 1480  2.05
MO, OM, 10, OI 749 | 308 1250 1.07 1050 246 @ 12.85 1.85
00 1274 291 17.60  2.08 1401 @ 455 1955 253
Language Data Multimedia Data
MI 2311 403 1850 2.67 19.18  6.58 1725  4.64
IM 3125 9.08 2850 356 2572 9.00 19.10  4.05
I 2648 750 31.00 4.07 @ 3634  10.63 3434 830
MO,0M,I0,0I 812 1.03 1245 189 642 500 10.09 1.3
00 L1104 | 206 955 120 | 1234 | 485 | 1922  3.85

4. Conclusion

This study has presented a conditional random field model and a combined association
measure approach to propositional term extraction from research abstracts. Unlike previous
approaches using POS patterns and statistics to extract NP-based multiword terms, this
research considers lexical cohesion and context information, integrating CRFs and CAM to
extract single or multiword propositional terms. Experiments demonstrated that in each
corpus, both CRF inside and outside tests showed an improved performance for imperfect
hits. The proposed approach further effectively enhanced the propositional term boundaries
by the combined association measure approach which calculates the cohesiveness of words.
The conditional random field model initially detects propositional terms based on their local
and global features, which includes statistical, syntactic, semantic, morphological, and
structural level information. Experimental results also showed that different multi-level
features played a key role in CRF propositional term detection model for different domain
data.
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Abstract
In this paper, we propose a POS tagging method using more than 60 thousand entries of
Taiwanese-Mandarin translation dictionary and 10 million words of Mandarin training data to
tag Taiwanese. The literary written Taiwanese corpora have both Romanization script and

Han-Romanization mixed script, the genre includes prose, fiction and drama. We follow

tagset drawn up by CKIP.

We develop word alignment checker to help the two scripts word alignment work, and then

lookup Taiwanese-Mandarin translation dictionary to find the corresponding Mandarin
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candidate words, select the most suitable Mandarin word using HMM probabilistic model

from the Mandarin training data, and finally tag the word using MEMM classifier.

We achieve an accuracy rate of 91.49% on Taiwanese POS tagging work, and analysis the

errors. We also get the preliminary Taiwanese training data.
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Chinese NP Chunking: Experiments with Supervised,and Semi-
supervised Learning
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7 AF]| M| Taku Kudo Frf "l iy SVM T £! Yamcha?”ﬁf[lﬂ/ C A PR JT“%(I’ A
0 F[T%.jl 7 [ i %500 Y TOB o ?;HVHJ: T [—f:)irﬁj F?;”@ A ﬁr”ﬁﬁl 5
HR" F”‘"’*@\T BFEA" #E;"F‘:“E‘E ﬂ?ifllﬁlﬂge??ﬁj =l FIP ﬁfﬁ'ﬁfﬁ*@:ﬁ'ﬂlﬁ*ﬂ
gFJI supervised-learning USR] o 45 RN G5 P superv1sed learning 35 ([ FRH! » 25 1
A s LF‘JE[H@ [75 PR T o 1, = Eé Pl TE—E‘@H%%F/\' ’
ﬁfkfﬂi&?ﬁﬂl'w ?{ﬁﬂﬁ”l?w =1 Eij:“ 7 743* fr ﬁ PEHRH JL*FE}

Abstract

This paper utilizes Yamcha, a SVM tool designed by Taku Kudo, to train an
NP-chunking model for Chinese. In addition to IOB and two words surrounding
the focused word, we experimented on new features and exploited unlabeled
data from web pages to enhance the previous model. Our experiments with
supervised learning indicate that our chosen feature sets outperform those
reported in previous studies. In addition, the proposed method of semi-
supervised learning is proved to be effective in distinguishing a noun phrase
from a verb phrase both consisting of V N combination, thus enhancing the
overall accuracy.

iR+ EFRCH - YamCha « BT S - 4 BTt

Keywords : NP-chunking ~ YamCha - supervised learning * semi-supervised
learning
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Abstract

The rapid development of speech processing techniques has made themselves
successfully applied in more and more applications, such as automatic dialing, voice-based
information retrieval, and identity authentication. However, some unexpected variations in
speech signals deteriorate the performance of a speech processing system, and thus relatively
limit its application range. Among these variations, the environmental mismatch caused by
the embedded noise in the speech signal is the major concern of this paper. In this paper, we
provide a more rigorous mathematical analysis for the effects of the additive noise on two
energy-related speech features, i.e. the logarithmic energy (logE) and the zeroth cepstral
coefficient (c0). Then based on these effects, we propose a new feature compensation scheme,
named silence feature normalization (SFN), in order to improve the noise robustness of the
above two features for speech recognition. It is shown that, regardless of its simplicity in
implementation, SFN brings about very significant improvement in noisy speech recognition,
and it behaves better than many well-known feature normalization approaches. Furthermore,

194



SFEN can be easily integrated with other noise robustness techniques to achieve an even better
recognition accuracy.
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AV B Ac, 1[I FV .
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Ac,n] = ¢ oyl g[ M(5>[k,n]]
= = (-
Z’“lg[ SNRkn] 7@9)
ZHISNR[E,n] EFEL 8T n |[ﬁﬂff [15Tk “@ﬁwﬂgiﬂ Sl |
(5)
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Mk, ]

=N Q-9 Ep ) Lt gR ﬁrf”ﬁglfjg%?eriSNR[k n ﬂi“ﬁr@*ﬁ AW Ac [n
FISp | - S R ‘*Eﬁiﬁ'ﬁf[ jg[ '/WE(SNR (e ISP RO (SR ] )p |
F[ ’c()’i?“jf%ﬁ;g’l & AT E Jf%ﬁu%
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}{:j;k(z-11)§?;h(2-2)rﬁk“~§it SR i R ANETH R s :@fBJFTJ [t & logk ==
cO Ry A 30T PNl 2 (2 4)=7 L(E 5)EH logE 1 &1 /U VF%‘@%?
FOFEEEL » 25T T ) 3 S SA 2 (et B R aﬁiﬁﬁ"ﬁ”ﬂmﬁ‘ﬂﬁﬁf {Mm [%, ”]} P ERTT
FLAKE LN [, ]} 4 IPRLFE (e i1} 8 {cl? ) Kyt | R [ﬂw K] logE
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E%W%@ﬁw%m’*WqﬂFmﬂ %W@WP*ﬁﬁ$%
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ISR A - R ) e e e
«?’F” B PRI G0 o FLWT il zylmﬁgﬁI;aﬁuaﬂlg;ﬁﬁ%ﬁ@%@@rw_g%
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R S5 R RS ] R 0 - AL ; BRI
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(SLEN) [519p0 s sl > fIpuhL ttﬁa:ﬂogEﬁf co [/ ZE{;FEIF!?%’ fgm@u;ﬁ ; [E" Fggéuy;ﬂ[[
i i (non- SPeech)f GIiNES r%ﬁJ T [ ’“ ;7 Bk R R 1A
% U;Iﬁ riﬁguﬂ G HFF :FEWE‘F‘%'#W%YFUWFA

“o IS MR {xn]} Bi— PR HF[IF‘] P\ logE ) EREY cO’Fﬁ U S B =0
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= o0 F B bR R J?ﬁ%@ i (5 g5 PRI et — ] R R RO o
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8 28075 (magnitude response)v[lﬁiﬂ“m{’?ﬁ» ) EIH%\IHIFI‘ FIEEF > IFRO%BS Hz.%ﬁl? Ji’sff*'j[iﬁ |5’:l—i«]
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J R RIS S R U R L /Fﬁ Bl ] S P TR
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7‘i¢ HI ’ i&lfq}{ﬁ/ﬁﬁ — FEfLR J?Jq'fﬁjfiﬁiﬂl RE R TN fifqﬂj i iy

i N
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— ) = (2-
wn] 1/(1+exp(—(y[n]—9)/ﬁ%)) if yin1 <6 #(2-19)
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g, 53 lﬁut 20dB ~ 15dB ~ 10dB ~ SdB - 0dB '} %-5dB » [{f I Hizi% (clean) 7] -
) A B

R Aurora 20 WIRH IWESER T) BT B
FlF,],. E‘e‘(mel fr?quency cepstral coefficients, M CC)B':EWFEIETJ f'%\r’ B -8 - = B
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kfﬁjﬁ PLE] S IR & 3 16 bR (states) » [ b SERLETT 20 fidf iy Sk e
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=T Fo(frame Shift) | 10ms, 80 i
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i) Ei,“{'%?“ T FE| I{i,[(Hammmg window)

EI T, 256 Féf
g 82 AUH{': £ ?)Ed@%l:lwrr ;
Ve 38 A (filters) 23 e ¢ Ji’FdELg

5y A 5T A
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(feature vector) {Azci N1<i< 12}, {AQQ N<i< 12},

log E,Alog E,A*log E | c0,Ac0,A%0
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T iSRRG R B4 [~ (mean and variance normalization, MVN)[9]~ T *da'ﬁ?@{%'%\f T
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1~ &% '”f%r fi- £ B4 (logE). ‘/g’n'ﬁﬁ“*‘ T AT
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5dB = 0dB T FEIFVEEES N AU T £5) > B[ AR = RR 57 ][ EL AT BLREH A 7et
f = {{x:¥< (absolute error rate reductlon)ﬂlﬁ'ﬂcjvﬁﬁ = [{R¥< (relative error rate reductlon)
ke O 5 T IR TR

DR e JPERIE] B0 MVN ~ MVA 22 HEQ 1 {13 (=257 logF &A1 -
EHEH pud &3Sl ) P ﬁ@#ﬂ@%%ﬁ% 2 H[J"*E 10.18% ~ 11.70%=
14.97%[OHER A o AP MVN i, » [ MVA %]~ (i ARMA (S
e 3’;?}1: [jF”[FIJF‘;' 75 > [0 HEQ %89 ]‘am#ﬂf[#jf%m Jﬁ [ifis>% (higher-order moments) =~
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QI | = AT S5 logE ﬁjf‘%ﬂ’ﬁ%ﬁ f#ff % #543% : LEDRN-I ~ LEDRN-II ~
LERN-I + LERN-II % SLEN - F A I3 %;Lig YU RESES Sk L) Pl gsL
LEDRN(LEDRN-I)[ & E+ 2 U+ LED{{lN(LEDRN ) o E T SR AT A5 4%
fFES 4 i LERN(LERN-I 22 LERN-IT) » 35Ul 5347 > & A @ LEDRN © 4
a/ﬁ;ﬁ il B Y SLEN 1 - AFISERS ELRSHT R Jrjgﬁ%}ln ?I ) EJ 15.19%[HEF] »
F'Fjﬂg [ [k " HrJF’ﬁE_J/ LEDRN = LERN = -

YtFATI/ AR RIS B B [ > SFN-T 2 SEN-IL > AEISAF Sy b
W F o T SO A 0 15.38% 57 16.11% - ﬁltﬁf AU (ST S0%1) o A
R VY S 78 1 > SEN-T'S® SFN- Hfﬂ EIR IR VAR PR i&lFEJF”T?F#' i
P }VBHZ? Tf%ﬁﬂ logk 4 . Y15y’ [_*9?@1%1*?1 BT S S R STl
# T logE R BT [T s 19t F5 [ R 5 > SEN-IL AT "/ ?%3<FLSFN LR
F=prg- F.L[ﬂf/D"/ Fir o ok SEN-IT 7 KF"[ [EH](voice activity detectlon)ﬂ JH\H*&&* [IE*
SFN-I TEWFI nf,f[ [ERRLd SHFEGE SEN-IL I ARSEFRYZSGE [ o 1 (8T A ISR SR |

« &%} logE Ej o 5{?1 ]@:h ’lﬁl == 2 pﬁﬁrf | (%)

Method Set A Set B average AR RR
(1) Baseline 71.98 67.79 69.89 — —
(2) MVN 79.04 81.08 80.06 10.18 33.79
3) MVA 80.53 82.64 81.59 11.70 38.85
4) HEQ 83.91 85.79 84.85 14.97 49.69
(5) LEDRN-I 82.01 79.70 80.86 10.97 36.43
(6) LEDRN-II 77.21 75.53 76.37 6.49 21.53
(7) LERN-I 83.64 83.35 83.50 13.61 45.19
(8) LERN-II 82.71 81.94 82.33 12.44 41.31
9) SLEN 84.87 85.27 85.07 15.19 50.42
(10) SFN-I 85.02 85.50 85.26 15.38 51.05
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*l H 1> LEDRN-I = LEDRN-II fius 2l F=El I’uj_{ji:ﬁ;}i{l;_} T ERL LEDRN-H’ FLE E| 3.57%
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BB 2 P OB B 3 R R LR Ty - T
Q= FERUR [BH FCTE FERER] B T 1 MVN » MVA 2 HEQ i » #1707 (=1 coqfﬁfz\r
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i (998 HEQ A+ » MVA JEV D > MVN SR o [EHR Pt S AL B A g
Fij e~ PR o 19 > LERN-I ~ LERN-II % SLEN FﬂTE 5y R s s e
SRR VRS Rl e s k'%mwﬁ; S3HEST > i) LERN-I P 895% SLEN -
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= N Eﬂf » SRR ﬁmi_ SFN-T f SFN-IT » [EH [T logE R r’%m HZ[|pPE '15"|‘p
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Abstract

Speech and music discrimination is one of the most important issues for multimedia
information retrieval and efficient coding. While many features have been proposed, seldom
of which show robustness under noisy condition, especially in telecommunication
applications. In this paper two novel features based on real cepstrum are presented to
represent essential differences between music and speech: Average Pitch Density (APD),
Relative Tonal Power Density (RTPD). Separate histograms are used to prove the robustness
of the novel features. Results of discrimination experiments show that these features are more
robust than the commonly used features. The evaluation database consists of a reference
collection and a set of telephone speech and music recorded in real world.

Keywords: Speech/Music Discrimination, Multimedia Information Retrieval, Real Cepstrum.

1. Introduction

In applications of multimedia information retrieval and effective coding for
telecommunication, audio stream always needs to be diarized or labeled as speech, music or
noise or silence, so that different segments can be implemented in different ways. However,
speech signals often consist of many kinds of noise, and the styles of music such as
personalized ring-back tone may differ in thousands ways. Those make the discrimination
problem more difficult.

A variety of systems for audio segmentation or classification have been proposed in the past
and many features such as Root Mean Square (RMS) [1], Zero Crossing Rate (ZCR) [1,4,5],
low frequency modulation [2,4,5], entropy and dynamism features [2,3,6], Mel Frequency
Cepstral coefficients (MFCCs) have been used. Some features need high quality audio signal
or refined spectrum detail, and some cause long delay so as not fit for telecommunication
applications. While the classification frameworks including nearest neighbor, neural network,
Hidden Markov Model (HMM), Gaussian Mixture Modal (GMM) and Support Vector
Machine (SVM) have been adopted as the back end, features are still the crucial factor to the
final performance. As shown in the following part of this paper, the discrimination abilities of
some common features are poor with noisy speech. The main reason may explain as that they
do not represent the essential difference between speech and music.

In this paper, two novel features, called as Average Pitch Density (APD) and Relative Tonal
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Power Density (RTPD) are proposed, which are based on real cepstrum analysis and show
better robustness than the others. The evaluation database consists of two different data sets:
one comes from Scheirer and Slaney [5], the other is collected from real telecommunication
situation. The total lengths for music and speech are about 37 minutes and 28.7 minutes
respectively.

The rest of this paper is organized as follows: Section 2 introduces the novel features based
on real cepstrum analysis. Section 3 describes the evaluation database and the comparative
histograms of different features. The discrimination experiments and their results are given in
section 4. Section 5 concludes this paper.

2. Features Based on Real Cepstrum

There are tremendous types of music, and the signal components of which can be divided into
two classes: tonal-like and noise-like. The tonal-like class consists of tones played by all
kinds of musical instruments, and these tones are catenated to construct the melody of music.
The noise-like class is mainly played by percussion instruments such as drum, cymbal, gong,
maracas, etc. The former class corresponds to the musical system, which construct by a set of
predefined pitches according to phonology. The latter class can not play notes with certain
pitch and is often used to construct rhythm.

The biggest difference between speech and music lies on the pitch. Because of the restriction
of musical system, the pitch of music usually can only jump between discrete frequencies,
except for vibratos or glissandi. But pitch of speech can change continuously and will not
keep on a fixed frequency for a long time. Besides the difference of pitch character, the noise
part of music, which is often played by percussion instrument, also has different features
from speech. That part of music does not have pitch, but it usually has stronger power. This
phenomenon seldom exists in speech signal, because generally the stronger part of speech is
voiced signal, which does have pitch.

In order to describe the differences of pitch between speech and music, we use real cepstrum
instead of spectrogram. Cepstrum analysis is a more powerful tool to analysis the detail of
spectrum, which can separate pitch information from spectral envelop. The real cepstrum is
defined as (Eq. (2) gives the Matlab expression)

x 1
RC = real(%j[zlog‘)((e jo Xe.iwnde (1)
RC, = real(ii(log{absl 77() @

Where x is a frame of audio signal weighted by hamming window, of which the discrete
Fourier transform is X (ej “ ) real(-) denotes extracting the real part of the complex results.
RC_ are the coefficients of real cepstrum. The coefficients that near zero origin reflect the

big scale information of power spectrum such as the spectrum envelop, and those far from the
zero origin show the spectrum detail. Figure 1 uses the latter to demonstrate the differences of
pitch between speech and music. It is clear that the music pitches are jumped discretely while
speech pitches do not. Figure 2 uses spectrogram to show the noise-like feature of a rock
music segment, where most ictus have no pitch.
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Figure 1. Pitch different between music (a) and speech (b) by means of
real cepstrum. Only coefficients far from the zero origin are used.
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Figure 2. Waveform and spectrogram of a segment of rock music. It is
clear to find that most ictus have no pitch.

To parameterize the above conclusion, we propose two novel features: Average Pitch Density
(APD) and Relative Tonal Power Density (RTPD).

A. APD feature
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Because of the musical instruments and polyphony, the average pitch usually is higher than
speech. The APD feature is independent with signal power and reflects the details about
spectrum, which is defined as

K*N+N 1 I,
APD(K)= > —>'|RCx,(j)|, where L=1,-1 +1 3)
i=K*N+1 L j=],

where K means the K-th analysis segment, and N is the length of it. L is number of RC;
coefficients that far from zero origin, whose range is /; to /». This feature is relative simple,
but it does prove to be robust for discrimination between speech and music. The histogram in
figure 3 (e) demonstrate this conclusion.

B. RTPD feature

While the detail information about spectrum can be used to discriminate tonal or song from
speech, the variation of energy combined with pitch information may be used to separate
percussive music from noisy speech. In clean or noisy speech signal, the segments that show
clear pitch usually are voiced speech, which are likely to have bigger energy. So if all
segments with pitch are labeled as tonal parts and the others are label as non-tonal parts, we
can probably say that if the energy of tonal parts is smaller than that of non-tonal parts, then
the segment may not be speech, otherwise the segment can be speech or music.

In order to label tonal and non-tonal parts, we still use real cepstrum. Since if clear pitch does
exist, a distinct stripe will appear in real cepstrum, even if in noise condition. We use the peak
value of RCx that far from zero origin to judge tonal or non-tonal. The threshold we choose is
0.2. Frames whose peak value is bigger than 0.2 are labeled as tonal, or else are labeled as
non-tonal. Thus the RTPD can be defined as

RTPD(K) = m‘egn(RMSl. ) /megn(RMSj) @

where © consists of all tonal frames of K-th analysis segment, and ¥ is the entire set of
frames of the segment. RMS; is the root mean square of the i-th frame.

3. Discrimination Ability

Due to the lack of a standard database for evaluation, the comparisons between different
features are not easily. Our evaluation database consists of two parts: one comes from
collection of Scheirer and Slaney[5], the other comes from the real records from
telecommunication application. The former includes speech sets and music sets. Each set
contains 80 15-second long audio samples. The samples were collected by digitally sampling
an FM tuner (16-bit monophonic samples at a 22.05 kHz sampling rate), using a variety of
stations, content styles, and noise levels. They made a strong attempt to collect as much of
the breadth of available input signals as possible (See [5] for details). The latter set is
recorded by us based on telecommunication application, which has 25 music files and 174
noisy speech files, 17 and 11.7 minutes in length respectively. Especially, the speech signals
of the latter set consist of many kinds of live noises, which are non-stationary with different
SNR.

Based on the two data sets above, we build an evaluation corpus by concatenating those files
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randomly into two columns: CLN-Mix and ZX-Mix. CLN-Mix contains 20 mixed files, each
concatenates 2 speech samples and 2 music samples which are all extracted from Scheirer’s
database. ZX-Mix uses the same way except that all samples are chosen from our records.
With these databases, we compared 4 commonly used features with our prompted ones. They
are (1) RMS; (2)zero crossing rate; (3)variation of spectral flux; (4)percentage of
“low-energy” frames. Figure 3 shows the discrimination abilities of each feature with
Scheirer’s and our database. It is clear that those 4 features show poor performance in noise
situation, while APD and RTPD show more robust
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Figure 3. Histograms of different features for speech/music discrimination. (a)-(f) are RMS,
ZCR, variation of spectral flux, percentage of “low-energy” frames, APD, RTPD.

4. Discrimination Experiments

In many speech and music discrimination system, GMM is commonly used for classification.
A GMM models each class of data as the union of several Gaussian clusters in the feature
space. This clustering can be iteratively derived with the well-known EM algorithm. Usually
the individual clusters are not represented with full covariance matrices, but only the diagonal
approximation. GMM uses a likelihood estimate for each model, which measurers how well
the new data point is modeled by the entrained Gaussian clusters.

We use 64 components GMM to modal speech and music signal separately. The feature
vector consists of: (1) APD; (2) RTPD; (3) log of variance of RMS; (4) log of variance of
spectral centroid; (5) log of variance of spectral flux; (6) 4Hz modulation energy; (7)
dynamic range. Training data consists of the training part of Scheirer’s database and 8
minutes of noisy speech recorded. CLN-Mix and ZX-Mix are used for evaluation.

The frame length is 10ms, and the analysis windows for proposed features extraction is 1
second (100 frames) with 10 new input frames each time. For comparison, MFCC + delta +
acceleration (MFCC_D_A) feature for each frame is also examined. GMM with 64 mixtures
is used for speech and music respectively. For classification, every proposed feature vector is
used to calculate the log likelihood score, and correspondingly, 10 frames MFCC D A
features are used. The experimental results are list in Table 1. Furthermore, we also use the
adjacent 10 proposed feature vectors for one decision and 100 frames of MFCC D A
features are used as well. The results are shown in Table 2.

It is clear that MFCC D A features have good ability for discrimination with CLN-Mix data,
but drop distinctly with ZX-mix, especially for music signals. But on both data sets, our
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proposed features work well and express robustness in noise condition.

Table 1. Speech/Music Discrimination Accuracies in Every 100ms

Accuracy MFCC D A . Proposed _
Speech Music Speech Music
CLN-Mix 91.56% 89.81% 93.78% 91.48%
ZX-Mix 99.91% 64.41% 94.19% 93.13%
Table 2. Speech/Music Discrimination Accuracies in Every Second
Accuracy MFCC D A Proposed
Speech Music Speech Music
CLN-Mix 93.98% 95.11% 95% 92.86%
ZX-Mix 100% 67.39% 100% 94.45%

5. Conclusion

Two novel features have been presented in this paper for robust discrimination between
speech and music, named Average Pitch Density (APD) and Relative Tonal Power Density
(RTPD). As shown in separate histograms, many other commonly used features do not work
in noisy condition, but the novels show more robustness. When combined with the other 5
robust features, the accuracies of discrimination are higher than 90%. The results mean that
the novel features may represent some essential differences between speech and music.

There are many interesting directions in which to continue pursuing this work. Since the real
cepstrum can show many differences between speech and music, there will be other novel
features which represent the holding and changing characters of pitches. What’s more, more
researches are needed for better classification and feature combinations.
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Abstract

This paper mainly addresses the problem of determining voice activity in presence of noise,
especially in a dynamically varying background noise. The proposed voice activity detection
algorithm is based on structure of three-layer wavelet decomposition. Appling
auto-correlation function into each subband exploits the fact that intensity of periodicity is
more significant in sub-band domain than that in full-band domain. In addition, Teager
energy operator (TEO) is used to eliminate the noise components from the wavelet
coefficients on each subband. Experimental results show that the proposed wavelet-based

algorithm is prior to others and can work in a dynamically varying background noise.

Keywords: voice activity detection, auto-correlation function, wavelet transform, Teager

energy operator

1. Introduction

Voice activity detection (VAD) refers to the ability of distinguishing speech from noise and is
an integral part of a variety of speech communication systems, such as speech coding, speech
recognition, hand-free telephony, and echo cancellation. Although the existed VAD
algorithms performed reliably, their feature parameters are almost depended on the energy
level and sensitive to noisy environments [1-4]. So far, a wavelet-based VAD is rather less
discussed although wavelet analysis is much suitable for speech property. S.H. Chen et al. [5]
shown that the proposed VAD is based on wavelet transform and has an excellent
performance. In fact, their approach is not suitable for practical application such as
variable-level of noise conditions. Besides, a great computing time is needed for

accomplishing wavelet reconstruction to decide whether is speech-active or not.
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Compared with Chen's VAD approach, the proposed decision of VAD only depends on
three-layer wavelet decomposition. This approach does not need any computing time to waste
the wavelet reconstruction. In addition, the four non-uniform subbands are generated from the
wavelet-based approach and the well-known "auto-correlaction function (ACF)" is adopted to
detect the periodicity of subband. We refer the ACF defined in subband domain as subband
auto-correlation function (SACF). Due to that periodic property is mainly focused on low
frequency bands, so we let the low frequency bands have high resolution to enhance the
periodic property by decomposing only low band on each layer. In addition to the SACF,
enclosed herein the Teager energy operator (TEO) is regarded as a pre-processor for SACF.
The TEO is a powerful nonlinear operator and has been successfully used in various speech
processing applications [6-7]. F. Jabloun et al. [8] displayed that TEO can suppress the car
engine noise and be easily implemented through time domain in Mel-scale subband. The later
experimental result will prove that the TEO can further enhance the detection of subband

periodicity.

To accurately count the intensity of periodicity from the envelope of the SACF, the
Mean-Delta (MD) method [9] is utilized on each subband. The MD-based feature parameter
has been presented for the robust development of VAD, but is not performed well in the
non-stationary noise shown in the followings. Eventually, summing up the four values of
MDSACF (Mean-Delta of Subband Auto-Correlation Function, a new feature parameter
called "speech activity envelope (SAE)" is further proposed. Experimental results show that
the envelope of the new SAE parameter can point out the boundary of speech activity under

the poor SNR conditions and it is also insensitive to variable-level of noise.

This paper is organized as follows. Section 2 describes the concept of discrete wavelet
transform (DWT) and shows the used structure of three-layer wavelet decomposition. Section
3 introductions the derivation of Teager energy operator (TEO) and displays the efficiency of
subband noise suppression. Section 4 describes the proposed feature parameter, and the block
diagram of proposed wavelet-based VAD algorithm is outlined in Section 5. Section 6
evaluates the performance of the algorithm and compare to other two wavelet-based VAD
algorithm and ITU-T G729B VAD. Finally, Section 7 discusses the conclusions of

experimental results.
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2. Wavelet transform

The wavelet transform (WT) is based on a time-frequency signal analysis. The wavelet
analysis represents a windowing technique with variable-sized regions. It allows the use of
long time intervals where we want more precise low-frequency information, and shorter
regions where we want high-frequency information. It is well known that speech signals
contain many transient components and non-stationary property. Making use of the
multi-resolution analysis (MRA) property of the WT, better time-resolution is needed a high
frequency range to detect the rapid changing transient component of the signal, while better
frequency resolution is needed at low frequency range to track the slowly time-varying
formants more precisely [10]. Figure 1 displays the structure of three-layer wavelet
decomposition utilized in this paper. We decompose an entire signal into four non-uniform
subbands including three detailed scales such as D1, D2 and D3 and one appropriated scale

such A3.

—= D1 (2000~4000Hz)

Noisy Speech ——» —» D2 {1000~2000Hz)
(0~4000Hz)

—p Al —— — D3 {500~1000Hz)

—— A3 (0~500Hz)

1-layer 2-layer 3-layer

| | -
Decomposition Layer

Figure 1. Structure of three-layer wavelet decomposition

3. Mean-delta method for subband auto-correlation function

The well-known definition of the term "Auto-Correlation Function (ACF)" is usually used for

measuring the self-periodic intensity of signal sequences shown as below:

p—k

R(k)=> s(n)s(n+k), k=0,1,....p, (1)

n=
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where p isthe length of ACF. k£ denotes as the shift of sample.

In order to increase the efficiency of ACF about making use of periodicity detection to detect
speech, the ACF is defined in subband domain, which called "subband auto-correlation
function (SACF)". Figure 2 clearly illustrates the normalized SACFs for each subband when
input speech is contaminated by white noise. In addition, a normalization factor is applied to
the computation of SACF. This major reason is to provide an offset for insensitivity on
variable energy level. From this figure, it is observed that the SACF of voiced speech has
more obviously peaks than that of unvoiced speech and white noise. Similarly, for unvoiced
speech the ACF has greater periodic intensity than white noise especially in the

approximation A3.

Furthermore, a Mean-Delta (MD) method [9] over the envelope of each SACF is utilized
herein to evaluate the corresponding intensity of periodicity on each subband. First, a
measure which similar to delta cepstrum evaluation is mimicked to estimate the periodic
intensity of SACF, namely "Delta Subband Auto-Correlation Function (DSACF)", shown

below:

u m(R(k+m)]
Ry (=7 KO

M

2
2 m
m=—M

N

; 2)

where R,, is DSACF over an M -sample neighborhood (M =3 in this study).

It is observed that the DSACF measure is almost like the local variation over the SACF.
Second, averaging the delta of SACF over a M -sample neighborhood R,,, a mean of the
absolute values of the DSACF (MDSACEF) is given by

_ 1 M1
R, = ﬁ;\RM (k). (3)

Observing the above formulations, the Mean-Delta method can be used to value the number
and amplitude of peak-to-valley from the envelope of SACF. So, we just only sum up the four
values of MDSACFs derived from the wavelet coefficients of three detailed scales and one
appropriated scale, a robust feature parameter called "speech activity envelope (SAE)" is

further proposed.
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Figure 3 displays that the MRA property is important to the development of SAE feature
parameter. The proposed SAE feature parameter is respectively developed with/without
band-decomposition. In Figure 3(b), the SAE without band-decomposition only provides
obscure periodicity and confuses the word boundaries. Figure 3(c)~Figure 3(f) respectively
show each value of MDSACF from D1 subband to A3 subband. It implies that the value of
MDSACEF can provide the corresponding periodic intensity for each subband. Summing up
the four values of MDSACFs, we can form a robust SAE parameter. In Figure 3(g), the SAE

with band-decomposition can point out the word boundaries accurately from its envelope.
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Figure 2. SACF on voiced, unvoiced signals and white noise
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Figure 3. SAE with/without band-decomposition

4. Teager energy operator

The Teager energy operator (TEO) is a powerful nonlinear operator, and can track the

modulation energy and identify the instantaneous amplitude and frequency [7-10].

In discrete-time, the TEO can be approximate by
V¥, [s(n)]=s(n)’ —s(n+1)s(n-1), 4)
where W ,[s(n)] is called the TEO coefficient of discrete-time signal s(n) .

Figure 4 indicates that the TEO coefficients not only suppress noise but also enhance the
detection of subband periodicity. TEO coefficients are useful for SACF to discriminate the

difference between speech and noise in detail.
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Figure 4. Illustration of TEO processing for the discrimination between speech and noise by

using periodicity detection

5. Proposed voice activity detection algorithm

In this section, the proposed VAD algorithm based on DWT and TEO is presented. Fig. 8
displays the block diagram of the proposed wavelet-based VAD algorithm in detail. For a

given layer j, the wavelet transform decomposed the noisy speech signal into j+1
subbands corresponding to wavelet coefficients sets wy/,. In this case, three-layer wavelet

decomposition is used to decompose noisy speech signal into four non-uniform subbands

including three detailed scales and one appropriated scale. Let layer j=3,
w; , =DWT{s(n),3}, n=1..N, k=1..4, (5)

where w;, defines the m" coefficient of the k" subband. N denotes as window length.

The decomposed length of each subband is N/2* in turn.

For each subband signal, the TEO processing [8] is then used to suppress the noise
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component, and also enhance the periodicity detection. In TEO processing,
t,f’m = g//d[w,f’m], k=1..4. (6)

Next, the SACF measures the ACF defined in subband domain, and it can sufficiently
discriminate the dissimilarity among of voiced, unvoiced speech sounds and background
noises from wavelet coefficients. The SACF derived from the Teager energy of noisy speech

is given by
R, =Rl ], k=1.4. (7)

To count the intensity of periodicity from the envelope of the SACF accurately, the
Mean-Delta (MD) method [9] is utilized on each subband.

The DSACEF is given by

R, =A[R 1, k=1.4. (®)
where A[-] denotes the operator of delta.
Then, the MDSACEF is obtained by

R} =E[R],]. ©)
where E[-] denotes the operator of mean.

Finally, we sum up the values of MDSACFs derived from the wavelet coefficients of three

detailed scales and one appropriated scale and denote as SAE feature parameter given by

4
SAE=Y"R}. (10)
k=1

6. Experimental results

In our first experiment, the results of speech activity detection are tested in three kinds of
background noise under various values of the SNR. In the second experiment, we adjust the

variable noise-level of background noise and mix it into the testing speech signal.

6.1. Test environment and noisy speech database
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The proposed wavelet-based VAD algorithm is based on frame-by-frame basis (frame size =
1024 samples/frame, overlapping size = 256 samples). Three noise types, including white
noise, car noise and factory noise, are taken from the Noisex-92 database in turn [11]. The
speech database contains 60 speech phrases (in Mandarin and in English) spoken by 32 native
speakers (22 males and 10 females), sampled at 8000 Hz and linearly quantized at 16 bits per
sample. To vary the testing conditions, noise is added to the clean speech signal to create

noisy signals at specific SNR of 30, 10, -5 dB.
6.2. Evaluation in stationary noise

In this experiment we only consider stationary noise environment. The proposed
wavelet-based VAD is tested under three types of noise sources and three specific SNR
values mentioned above. Table 1 shows the comparison between the proposed wavelet-based
VAD and other two wavelet-based VAD proposed by Chen et al. [5] and J. Stegmann [12] and
ITU standard VAD such as G.729B VAD [4], respectively. The results from all the cases
involving various noise types and SNR levels are averaged and summarized in the bottom
row of this table. We can find that the proposed wavelet-based VAD and Chen's VAD
algorithms are all superior to Stegmann's VAD and G.729B over all SNRs under various types
of noise. In terms of the average correct and false speech detection probabilities, the proposed
wavelet-based VAD is comparable to Chen's VAD algorithm. Both the algorithms are based
on the DWT and TEO processing. However, Chen et al. decomposed the input speech signal
into 17 critical-subbands by using perceptual wavelet packet transform (PWPT). To obtain a
robust feature parameter, called as "VAS" parameter, each critical subband after their
processing is synthesized individually while other 16 subband signals are set to zero values.
Next, the VAS parameter is developed by merging the values of 17 synthesized bands.
Compare to the analysis/synthesis of wavelet from S. H. Chen et al., we only consider
analysis of wavelet. The structure of three-layer decomposition leads into four non-uniform
bands as front-end processing. For the development of feature parameter, we do not again
waste extra computing power to synthesize each band. Besides, Chen's VAD algorithm must
be performed in entire speech signal. The algorithm is not appropriate for real-time issue
since it does not work on frame-based processing. Conversely, in our method the decisions of
voice activity can be accomplished by frame-by-frame processing. Table 2 indicates that the
computing time for the listed VAD algorithms running Matlab programming in Celeron 2.0G
CPU for processing 118 frames of an entire recording. It is found that the computing time of

Chen's VAD is nearly four times greater than that of other three VADs. Besides, the
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computing time of Chen's VAD is closely relative to the entire length of recording.

Table 1. Comparison performance.

The probability of correctly detecting | The probability of falszly detecting
Noise Conditions
speech frames (%) gpeech frames (%)
Proposed Chen’s Segrmans G.7298 FProposed Chen's Segmnaris 7298
Type SNR(AB)
VAD VAD AD VAD VAD VAD AD VAD
30 5993 973 502 945 6.1 69 23 63
Car 18 978 96.1 853 903 84 93 135 123
MNoise
5 928 933 79.1 827 103 109 166 17.5
] 97 4 972 945 972 73 103 112 7.1
Factory 14 532 541 231 234 23 132 144 134
Noise
5 78 836 753 =07 107 154 173 193
30 594 972 953 983 12 19 45 23
White
18 UR 6 931 501 863 13 12 67 29
Noise
5 934 928 858 843 1.5 23 10.1 37
Average 955 947 865 892 62 8 114 94

Table 2. Illustrations of subjective listening evaluation and the computing time

VAD types Computing time (sec)
Proposed VAD 0.089
Chen’s VAD [5] 0.436
Stegmann’s VAD [12] 0.077
G.729B VAD [4] 0.091

6.3. Evaluation in non-stationary noise

In practice, the additive noise is non-stationary in real-world, since its statistical property
change over time. We add the decreasing and increasing level of background noise on a clean
speech sentence in English and the SNR is set 0 dB. Figure 6 exhibits the comparisons among
proposed wavelet-based VAD, other one wavelet-based VAD respectively proposed by S. H.
Chen et al. [5] and MD-based VAD proposed by A. Ouzounov [9]. Regarding to this figure,
the mixed noisy sentence "May I help you?" is shown in Fig. 9(a). The increasing noise-level
and decreasing noise-level are added into the front and the back of clean speech signal.
Additionally, an abrupt change of noise is also added in the middle of clean sentence. The

three envelopes of VAS, MD and SAE feature parameters are showed in Figure 6(b)~Figure
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6(d), respectively. It is found that the performance of Chen's VAD algorithm seems not good
in this case. The envelope of VAS parameter closely depends on the variable level of noise.
Similarly, the envelope of MD parameter fails in variable level of noise. Conversely, the
envelope of proposed SAE parameter is insensitive to variable-level of noise. So, the

proposed wavelet-based VAD algorithm is performed well in non-stationary noise.

Wavetorm of mixed noisy sentence May | Help You?'
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Figure 6. Comparisons among VAS, MD and proposed SAE feature parameters

7. Conclusions

The proposed VAD is an efficient and simple approach and mainly contains three-layer DWT
(discrete wavelet transform) decomposition, Teager energy operation (TEO) and
auto-correlation function (ACF). TEO and ACF are respectively used herein in each
decomposed subband. In this approach, a new feature parameter is based on the sum of the
values of MDSACFs derived from the wavelet coefficients of three detailed scales and one
appropriated scale, and it has been shown that the SAE parameter can point out the boundary
of speech activity and its envelope is insensitive to variable noise-level environment. By
means of the MRA property of DWT, the ACF defined in subband domain sufficiently

discriminates the dissimilarity among of voiced, unvoiced speech sounds and background
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noises from wavelet coefficients. For the problem about noise suppression on wavelet
coefficients, a nonlinear TEO is then utilized into each subband signals to enhance
discrimination among speech and noise. Experimental results have been shown that the
SACF with TEO processing can provide robust classification of speech due to that TEO can

provide a better representation of formants resulting distinct periodicity.
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Abstract

The noise robustness property for an automatic speech recognition system is one of the most
important factors to determine its recognition accuracy under a noise-corrupted environment.
Among the various approaches, normalizing the statistical quantities of speech features is a
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very promising direction to create more noise-robust features. The related feature
normalization approaches include cepsral mean subtraction (CMS), cepstral mean and
variance normalization (CMVN), histogram equalization (HEQ), etc. In addition, the
statistical quantities used in these techniques can be obtained in an utterance-wise manner or
a codebook-wise manner. It has been shown that in most cases, the latter behaves better than
the former.

In this paper, we mainly focus on two issues. First, we develop a new procedure for
developing the pseudo-stereo codebook, which is used in the codebook-based feature
normalization approaches. The resulting new codebook is shown to provide a better estimate
for the features statistics in order to enhance the performance of the codebook-based
approaches. Second, we propose a series of new feature normalization approaches, including
associative CMS (A-CMS), associative CMVN (A-CMVN) and associative HEQ (A-HEQ).
In these approaches, two sources of statistic information for the features, the one from the
utterance and the other from the codebook, are properly integrated. Experimental results
show that these new feature normalization approaches perform significantly better than the
conventional utterance-based and codebook-based ones. As the result, the proposed methods
in this paper effectively improve the noise robustness of speech features.
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Keywords: automatic speech recognition, codebook, robust speech feature
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