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  Abstract 

In this paper, three studies of Min-Nan speech processing are presented. The first 
study concerns the implementation of a high-performance Min-Nan TTS system. 
On the basis of the waveform templates of 877 base-syllables used as basic 
synthesis units and through the application of the RNN-based prosody generation 
method and the PSOLA algorithm for prosody modification, this Min-Nan TTS 
system can convert texts, represented in both Han-Luo (漢羅 ) and Chinese 
logographic writing systems, into natural Min-Nan speech. An informal, subjective 
listening test confirms that the system performs well and the synthetic speech 
sounds natural for well-tokenized Min-Nan texts and for automatically tokenized 
Chinese logographic texts. The second investigation concerns the realization of a 
Min-Nan speech recognizer. It adopts the initial-final-based HMM approach with a 
simple base-syllable bigram language model. A base-syllable recognition rate of 
65.1% has been achieved. Finally, a model-based tone labeling method is presented. 
This method adopts a statistical model to eliminate the affections of all factors 
other than tone on the syllable pitch contour for automatic tone labeling. 
Experimental results confirm that this method outperforms the conventional 
VQ-based approach. 

Keywords: Min-Nan Text-to-Speech System, Speech Recognition, Model-Based 
Tone Labeling 

1. Introduction 

Min-Nan is one of the subcategories of the Min dialect, which is one of the seven Chinese 
dialect families [Yuan et al. 1989]. Aside from some pockets of speakers scattered over 
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Southeast Asia, varieties of Min-Nan are spoken in southern Fujian, eastern and southeastern 
Guangdong, and are spread over much of the islands of Hainan and Taiwan, where it is spoken 
by approximately 73.3 percent of the inhabitants [Huang 1995]; hence, it is often called 
Taiwanese. In recent years, even though Min-Nan has captured much attention in Taiwan’s 
academic community, research related to its speech processing still remains small due to (1) 
non-unified writing standards, (2) the various accents of Min-Nan used in Taiwan, and (3) 
lack of non-public Min-Nan speech and text corpora. These multiple factors may lead to 
hindering progress in Min-Nan speech processing technology. 

However, in spite of the aforementioned deficiencies, which add a degree of difficulty to 
the automatic processing of this language, three achievements in the technology of Min-Nan 
speech processing have been made in our study, including the implementation of a 
high-performance Min-Nan TTS system, the realization of a Min-Nan speech recognizer, and 
a model-based tone labeling method. 

The paper is organized as follows. Section 2 gives a brief introduction to the background 
of Min-Nan. Section 3 presents the proposed Min-Nan TTS system. Section 4 discusses the 
realization of a Min-Nan speech recognizer. Section 5 describes a new model-based tone 
labeling method for Min-Nan speech. Some conclusions are given in the last section. 

2. A Brief Description of Min-Nan 

Like Mandarin and most other Chinese dialects, Min-Nan is monosyllabic in nature, which 
means that, basically, every syllable is a free morpheme with a meaning value, and that 
syllable is the unit for pronunciation and every character in text reading is assigned one, but 
not the only, syllabic sound. The syllabic structures of both Min-Nan and Mandarin can be 
described in terms of traditional Chinese philology, where syllable is conventionally viewed to 
be formed by two constituents: the “initial”, a consonantal onset, and the “final”, made up 
from a prenucleus onglide, the nucleus – the only obligatory syllabic element, and a coda. 
Compared with Mandarin, which has 21 initials, 37 finals, and 408 base-syllables, which are 
legitimate syllables formed by rule-governed combinations of initials and finals, Min-Nan has 
18 initials, 82 finals, and 877 base-syllables. In addition to the differences in the numbers of 
the above-mentioned syllabic constituents and base-syllables, Min-Nan and Mandarin also 
show differences in the types of syllables, which are often classified by Chinese linguists into 
“checked” or “entering” syllables, namely syllables ending in a plosive coda (-p,t,k, and a 
glottal stop), and “smooth” or “slack” syllables, namely syllables ending in a non-plosive. Of 
the two dialects, only Min-Nan has checked/entering syllables, which leads to different 
prosodic features associated with syllable types from those of Mandarin. 

Min-Nan is a tonal language, where every syllable has an inherent tone, and tones of 
different pitch values function to distinguish different lexical meanings. [Yang 1999] Min-Nan 
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has 8 tones, including 7 lexical tones and one degenerated tone, each of which displays a 
distinct pitch contour. Moreover, based on the type of syllable, tones inherent in 
entering/checked syllables are termed entering/checked tones accordingly, and those in 
smooth/slack syllables are called non-entering/non-checked tones. If syllabic tones are under 
consideration, Min-Nan has approximately 2000 syllables. It is also worth a mention in 
passing that, despite the fact that in Min-Nan mono-syllable is held to be the basic 
pronunciation unit, in actual speech mono-syllabic morphemes are not uttered independently; 
instead, two or more mono-syllabic morphemes, to convey meaning relationship, are 
concatenated to form meaningful or syntactic poly-syllabic units, which generates changes in 
the inherent pitch contours of the concatenated syllables. This tonal variation is called “tone 
sandhi,” a very well-known term used to describe the tonal changes depending on the tonal 
environment in which poly-syllabic words occur. 

As for the writing system, although no consistent written forms have been standardized 
for Min-Nan, two sets of writing systems have been more widely accepted in Taiwan, namely 
“Romanization” or “Luo Ma Pin Yin” (羅馬拼音) and “Han Luo” system (漢羅系統). In the 
former, Roman letters are used to spell or transcribe Min-Nan speech, and numbers to specify 
its tones. This writing system has been widely used among churches to transcribe the Bible 
that has been translated into Min-Nan. With limited letters and numbers, Romanization 
provides an easy way to learn the pronunciation of Min-Nan. Therefore, it is not uncommon to 
see many functionally illiterate Min-Nan elderly churchgoers who cannot read Chinese 
characters but can recite in Min-Nan scriptures in the Bible written in Romanization. However, 
since most of the Min-Nan native speakers are literate, and possible ambiguity may be caused 
by homophones when Chinese characters are not shown, the other writing system, namely 
Han-Luo system (a hybrid from Chinese characters and Romanization) is used more often in 
written texts. Unfortunately, the problem still exits in the inconsistency of the Chinese 
characters selected to represent Min-Nan words or expressions. Except for some popular 
words, people often choose by preference a string of Chinese characters with similar 
pronunciations to Min-Nan to represent a Min-Nan word. This increases the degree of 
difficulty of text analysis for Min-Nan speech processing. 

Another linguistic phenomenon worth noting is that, for many Min-Nan syllables, two 
pronunciation styles co-exist. The first one is called Bai Hua (白話) – the vernacular reading – 
which is widely used in daily conversation. The other, referred to as Wen Yan (文言) – 
literary reading – is restrictedly used in reading poetry, some numbers, or in terms used for 
naming people, buildings, festivals, and so forth. 

 

 



 

 

394                                                        Wei-Chih Kuo et al. 

3. An Implementation of Min-Nan TTS System 

In this section, the implementation of a high-performance Min-Nan TTS system is presented. 
Figure 1 shows a block diagram of the proposed Min-Nan TTS system. It is worth noting that 
such an approach has been successfully applied to developing a high-performance Mandarin 
TTS system [Chen et al. 1998] [Chen et al. 2000] [Ho et al. 2000]. The system consists of 
four main functional blocks: a text analyzer, a recurrent neural network (RNN)-based prosody 
generator, an acoustic inventory, and a PSOLA speech synthesizer. Input text is first tokenized 
into word/syllable sequence by the text analyzer. The waveform sequence corresponding to 
the syllable sequence is then formed by the acoustic inventory. Meanwhile, some linguistic 
features are extracted from the syllable sequence and used in the RNN-based prosody 
generator to generate necessary prosodic parameters. Afterwards, the PSOLA speech 
synthesizer uses these prosodic parameters to modify the prosody of the waveform sequence 
and generate the output synthetic speech. In the following subsections, we will discuss these 
four main functional blocks in detail. 

input Min-Nan or Chinese text

Text Analyzer

Acoustic
Inventory

RNN-based
Prosody

Generator

PSOLA Speech Synthesizer

synthetic speech

base-syllable
sequence

linguistic
feature

waveform
sequence

prosodic
parameters

 

Figure 1. A schematic diagram of the proposed Min-Nan TTS system. 

3.1 The Text Analyzer 
The function of the text analyzer is first to tokenize the input text into word sequence and then 
extract relevant linguistic features from the sequence. Two kinds of input texts are processed. 
One kind is Min-Nan text represented in the hybrid written form of Han-Luo. Another kind of 
text is represented in Chinese characters only. Figure 2 displays the block diagram of the text 
analyzer. It first converts an input text into a Unicode sequence in preprocessing. Here, a 
look-up table is used to find all syllables represented in Romanized form. It then uses two 
lexica and a long-word-first criterion to convert the Unicode sequence into a word sequence. 
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The first lexicon is a Min-Nan lexicon. It contains about 120,000 entries represented in the 
Han-Luo system. Each entry is a word with a length in the range of 1-6 syllables. The second 
lexicon, with 110,000 entries, is a Chinese-to-Min-Nan lexicon. It is an extended version of 
our Chinese lexicon in which Chinese words are transferred to Min-Nan syllable sequence 
character by character. The use of the Chinese-to-Min-Nan lexicon helps us solve the 
out-of-vocabulary problem encountered in the text analysis. This also makes the system 
possess the capability of processing input Chinese text. 

input text in Big5 code

preprocessing

word tokenization

bracketing rules

base-syllable 
sequence tone sandhi rules

linguistic feature extraction

linguistic features

Romanization syllable table

syllable sequence in Unicode

Min-Nan lexicon
Chinese-to-Min-Nan lexcion

character-duplication rules
determiner-measure rules

  
Figure 2. A functional block diagram of the text analyzer. 

We then use two bracketing rules to construct two types of compound words which are 
not contained in the lexicon [Huang 2001]. One is for character-duplicated compound words 
and the other is for determiner-measured compound words. Here, we also decide whether to 
pronounce the number of a determiner-measured compound word in the style of vernacular 
reading or in literary reading. For instance, “1998” should be pronounced in the second style 
as “it kiu2 kiu2 bat”, while “兩萬一千八百” (twenty one thousand eight hundred) is 
pronounced in the first style as “lng7 ban7 chit chheng peh pah”. 

After obtaining the word sequence, a set of tone sandhi rules is then explicitly applied to 
change the lexical tones of all syllables into the ones to be pronounced [Huang 2001]. 
Basically, all syllables except the final one of a word chunk (or pronunciation group) have to 
change their tones. These rules [Cheng 1993] are listed below: 
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1 7
7 3
3 2
2 1

7     s o u t h
5

3     n o r t h
4  ( , , ) 8  ( , , )
4 2
8 3

p t k p t k
h
h

→
→
→
→

⎧
→ ⎨

⎩
↔

→
→

                   (1) 

Here, an arrow indicates the way a tone changes, e.g., Tone 2 will change to Tone 1; 
“north” and “south” mean the northern and southern parts of Taiwan; and “p”, “t”, “k”, and 
“h” represents entering tones. Besides, four additional rules [Cheng 1993] are used for special 
cases where a syllable preceding the special character “仔, a function word” (/a/) has been 
changed to Tone 2 or 3: 

7 3 7
8 3 7
3 2 1
4 2 1

h

h

→ →
→ →
→ →
→ →

                       (2) 

For instances, 鋸(ki3→ki1)仔(saw) and 葉(hioh8→hioh7)仔(leaf). An advantage of the 
approach of using explicit tone sandhi rules is that it results in obtaining an RNN-based 
prosody generator with high efficiency on learning phonological rules of human’s prosody 
generation. 

Two sets of linguistic features are then extracted from the word sequence. One is the 
syllable sequence, which is extracted directly from the word sequence by referring to the 
lexicon. This will be used in the acoustic inventory to form the basic waveform template 
sequence. Another consists of two subsets of syllable-level and word-level linguistic features 
and is used in the RNN-based prosody generator to synthesize proper prosodic parameters. 
The subset of syllable-level linguistic features contains four parameters: the initial type, final 
type, and tone of the current syllable, and the position of the current syllable in the current 
word. The subset of word-level linguistic features includes two sequences of word length and 
PM. 

3.2 The RNN-Based Prosody Generator 
The RNN-based prosody generator uses four RNNs to separately generate four types of 
prosodic parameters for the current syllable: 4 pitch-contour parameters [Chen et al. 1990], 
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initial and final durations, log-energy level, and the following pause duration. All four RNNs 
have the same architecture shown in Figure 3. Each RNN is a four-layer network with outputs 
of the two hidden layers and the output layer being fed back to their own inputs. An RNN of 
this architecture has been proven in previous studies to be effective in exploring the contextual 
information of the input linguistic features for the generation of proper output prosodic 
information [Chen et al. 1998]. Table 1 shows the input linguistic features used in these four 
RNNs. 

syllable-level
linguistic features

word-level
linguistic features

Hidden Layer I

Hidden Layer II

Output Layer

pitch contour/log-energy level/
initial & final durations/pause duration  

Figure 3. The architecture of the RNN used in the TTS system. 

Table 1. The input linguistic features used in the four RNNs for generating syllable 
pitch contour, initial and final durations, syllable energy level, and pause 
duration. Here “common” means features commonly used for all four 
RNNs. 

common 1. tone of current syllable 
2. position of current syllable in a word 

Pitch contour 1. tone of next syllable 
2. initial types of current and next syllables 

Initial and final 
durations 

1. initial and final types of current syllable 
2. light pronunciation of current syllable 

energy level 1. initial and final types of current syllable 
2. light pronunciation of current syllable 

syllable- 
level linguistic 

features 

pause duration 

1. initial and final types of current syllable 
2. light pronunciation of current and next syllables 
3. tone of next syllable 
4. existence a break following a long word? 

word-level 
linguistic 
features 

(common) 

1. lengths of current and next words 
2. existence of special PM following the next word whose length equals to 1? 
3. PM type following the current word 
4. POSs of the current and next words 
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These four RNNs can be trained using a large, single-speaker speech database following 
the back-propagation through time (BPTT) algorithm [Haykin 1994]. The BPTT algorithm is a 
supervised training algorithm used to learn the mapping from input linguistic features 
extracted from the input text to output prosodic parameters extracted from the associated 
utterance. For preparing those inputs and outputs, all texts of the database are manually 
processed to obtain the word and POS sequences, and the associated utterances are also 
manually segmented. A further processing of the database is also done for extracting some 
additional features to improve the efficiency of RNN training. The further processing includes: 
(1) all minor and major breaks occurring at inter-syllable locations without PMs are manually 
detected and labeled with special marks; (2) some special characters (referred to as “虛詞, 
function word”) which are consistently pronounced lightly and short are marked, e.g., “甲” in 
“互氣甲, be angered” and “仔” in “囝仔, child”; (3) all 5-syllable and 6-syllable words are 
classified respectively into {2-3, 3-2} and {2-2-2, 3-3} pronunciation patterns; and (4) pitch 
contours of all short syllables are manually refined. Finally, we modify the learning process of 
the RNN for inter-syllabic pause duration d. Instead of letting the RNN learn the real pause 
duration, we first classify the pause duration into four classes: short (d 75 ms≤ ), medium 
( 75 ms 175 msd≤ ≤ ), long (175 ms 475 msd≤ ≤ ), and very long ( 475 ms d≤ ). The pause 
duration of the “short” class was further normalized with respect to the mean and standard 
deviation of the final types (2 types: with and without entering tone) of the processing syllable 
and the initial types (4 types) of the preceding syllable. We then let the RNN learn (1) the 
class of the pause duration and (2) the pause duration when it belongs to the “short” class. 
This change can let the RNN take care of both the detail of short pause duration and rough 
classification of long pause duration. 

3.3 The Acoustic Inventory 
The function of the acoustic inventory is to generate a waveform template sequence for each 
base-syllable sequence given by the text analyzer. It is a look-up table containing waveforms 
templates of all 877 base-syllables which are the basic synthesis units used in our system. All 
of the waveform templates are obtained from isolated-syllable utterances pronounced clearly 
by a male speaker. All of the speech signals are directly recorded digitally, using a PC with a 
sound card. The sampling rate is 20 kHz. Each utterance is manually pre-processed to detect 
ending-points and to label pitch marks. 

3.4 The PSOLA Speech Synthesizer 
The function of the PSOLA speech synthesizer is to generate the output synthetic speech by 
modifying the waveform template sequence of the base-syllable sequence given by the 
acoustic inventory using the prosodic parameters given by the RNN-based prosody generator. 
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Modifications include changing the pitch contour for each syllable, adjusting initial and final 
durations for each syllable, scaling the energy level for each syllable, and setting the pause 
duration for each inter-syllable location. Finally, the output synthetic speech is generated by a 
16-bit Sound Blaster card. 

3.5 Experimental Results 
Performance of the proposed Min-Nan TTS system was examined by simulation, using a male 
speaker database. The database contains 255 utterances including 130 sentential utterances 
with lengths in the range of 5-30 syllables and 125 paragraphic utterances with lengths in the 
range of 85-320 syllables. The total number of syllables is 23,633. In addition, a set of 877 
isolated base-syllable utterances was recorded for constructing the acoustic inventory. Most of 
these 877 utterances are syllables with Tone 1. All speech signals were digitally recorded at a 
20 kHz rate. All utterances and associated texts were manually pre-processed in order to 
extract the acoustic features and the linguistic features required to train and test the system. 

We first examined the performance of the RNN-based prosody synthesizer. Table 2 lists 
the root mean square errors (RMSEs) of the synthesized prosodic parameters. RMSEs of 10.2 
(12.4) ms, 26.2 (32.4) ms, 15.1 (21) ms, 0.79 (0.80) ms/frame and 2.28 (3.12) dB were 
achieved in the inside (outside) test for initial duration, final duration, pause duration, pitch 
contour and log-energy level, respectively. Here, in the calculation of RMSE for pause 
duration, we set the target pause duration of the three classes of “medium”, “long” and “very 
long” to be 75ms. The classification errors for the four pause duration classes were 12.1% and 
13.8% for the inside and outside tests, respectively. Actually, over 80% of classification errors 
were associated with Class 2. Figure 4 shows a typical example of these synthesized prosodic 
parameters. It can be seen from the figure that the synthesized prosodic parameters of most 
syllables matched well with their original counterparts. 

Table 2. The experimental results of RNN prosody generation. 
 inside outside 

initial duration (ms) 10.2 12.4 

final duration (ms) 26.2 32.4 

pause duration (ms) 15.1 21.0 

pitch contour (ms/Frame) 0.79 0.80 

energy level (dB) 2.28 3.12 
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Figure 4. A typical example of synthesized prosodic parameters: (a) pitch mean, (b) 
initial duration, (c) final duration, and (d) log-energy level of syllable, 
and (e) inter-syllable pause duration. The text is“生活應該是鮮豔、開朗、
充實，自信滿滿 the 享受人生才著。 seng-oah8 eng2-kai-si7 sian-iam7、
khai-long2、chhiong-sit8，chu7-sin3-moa2-moa2 the hiang2-siu7 
lin5-seng chai5 tioh8。”. 

5 1 0 1 5 2 0

5 1 0 1 5 2 0

5 1 0 1 5 2 0

ms/frame 

ms 

100 ms 

dB 

ms 

9 

7 

5 

20 

60 

100 

1 

2 

3 

70 

60 

50 

0 

40 

80 

(a) 

(b) 

(c) 

(d) 

(e) 



 

 

Some Studies on Min-Nan Speech Processing                 401 

The whole system has been implemented in software on a PC with a 16-bit Sound Blaster 
card. An informal subjective listening test using various texts not covered in the database was 
finally derived to examine the performance of the system. Many participants confirmed that 
all of the synthesized speeches sounded natural for well-tokenized Min-Nan (Han-Luo) texts 
and for automatically tokenized Chinese texts. However, the sound quality was only fair for 
automatically tokenized Min-Nan texts because of the lack of a standardized written form. 

4. A Min-Nan Speech Recognizer 

As can be expected, complicated linguistic properties would affect the performance of speech 
recognition. Compared with Mandarin, Min-Nan has an inventory of base-syllables double 
that of Mandarin, and contains syllables ending in a plosive coda, which are not found in 
Mandarin. These linguistic properties lead to a syllable recognition rate for Min-Nan 
significantly lower than for that of Mandarin. In [Lyu et al. 2000] [Lyu et al. 2003] , 825 basic 
syllables were used for Min-Nan speech recognition system, and a 58% syllable recognition 
rate was achieved when tri-phone HMM models were used. A Min-Nan speech recognizer is 
also implemented in this paper. Following the idea of using syllable initial and final as basic 
recognition units in Mandarin automatic speech recognition (ASR), the Min-Nan speech 
recognizer adopts 101 right-final-dependent initials and 84 context-independent finals as basic 
acoustic modeling units. Each initial is modeled by a 3-state HMM and each final is modeled 
by a 5-state HMM. All 877 base-syllables, including 28 base-syllables with entering tone, can 
be represented by using these 185 sub-syllable units. Additionally, a 3-state silence model and 
a one-state short pause model are used to represent the background long silences and 
inter-syllabic short pauses, respectively. The recognition features consist of 12 MFCCs, 12 
delta-MFCCs, 12 delta-delta-MFCCs, delta-log-energy and delta-delta-log-energy. They are 
extracted for each 30-ms frame with 10-ms frame shift. The cepstrum mean normalization 
(CMN) technique is also applied to remove the speaker bias. 

We first examined the performance of the baseline recognizer (Scheme 1) using only 
acoustic models by simulation on a large Min-Nan speech database. The database was 
recorded in 16-kHz sampling rate. It consisted of many sentential and paragraphic utterances 
generated by 197 speakers, including 91 males and 106 females. We divided the database into 
two parts, one for training and the other for testing. The training set contained 105,687 
syllables while the test set contained 12,211 syllables. The number of syllables in the database 
is only one-third of the TCC database, which is the most commonly used database for 
Mandarin ASR in Taiwan. The experimental result is displayed in the 2nd row of Table 3. A 
base-syllable recognition rate of 46.1% was achieved. The recognition result is relatively low 
as compared with a typical Mandarin base-syllable recognizer whose base-syllable recognition 
rate is usually over 60%. This could result, in part, from the fact that the number of 
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base-syllables in Min-Nan speech is almost twice as many as found in Mandarin speech, and 
in part from the high confusion of base-syllables of entering tone and their non-entering-tone 
counterparts. An error analysis showed that base-syllables of the same phonemic constituent 
with and without entering-tone are highly confusing pairs. 

Table 3. The base-syllable recognition rates of the Min-Nan speech recognizer. 
 Inclusion rate deletion error insertion error recognition rate 

Scheme 1 48.87% 2.90% 2.80% 46.1% 
Scheme 2 52.73% 2.91% 2.56% 50.2% 
Scheme 3 66.50% 3.14% 1.36% 65.1% 

We then improved the baseline Min-Nan speech recognizer by considering the effect of 
tone sandhi rules. As shown in Equations (1) and (2), base-syllables with /h/ entering tone 
may change to their counterparts of non-entering tone. This tone sandhi will cause serious 
errors in both HMM model training and recognition test. The total number of finals with /h/ 
entering tone is 17 (out of 28 finals with entering tone). We, therefore, relabeled all syllables 
with /h/ entering tone in both the training and test data sets. Except when located before a long 
pause, 10-frame silence in our study, all syllables with /h/ entering tone were changed to their 
non-entering-tone counterparts. The performance of the modified recognizer (Scheme 2) is 
displayed in the 3rd row of Table 3. A base-syllable recognition rate of 50.2%, or a 4.1% 
improvement, was obtained. 

The recognizer was further improved by incorporating it with a language model (LM). 
Due to the fact that it is very difficult to collect a large text database with proper tagging or 
parsing, we considered a simple base-syllable bigram LM instead of the conventional word 
bigram LM. A text database containing 325,267 syllables was used to train the LM. Texts in 
the database are news, articles, and stories. The performance of the improved recognizer 
(Scheme 3) is displayed in the 4th row of Table 3. A base-syllable recognition rate of 65.1%, 
which corresponded to a 30% error reduction rate, was achieved. 

Last, the Min-Nan speech recognizer was applied to a domain-specific task, an in-car 
speaking assistant prototype for an intelligent transportation system (ITS). An in-car speaking 
assistant is a user-friendly spoken dialogue human-machine interface acting as an agent to 
allow the driver to easily control a variety of in-car equipment while keeping his hands and 
eyes on the road. To add the new module to the existing Mandarin-based in-car speaking 
assistant system, a Min-Nan grammar for ITS dialog management was needed. In this study, 
we simply implemented it by directly translated the Chinese grammar into a Min-Nan version. 
With some simple modifications, the Min-Nan speech recognizer with the ITS grammar was 
invoked in the ATK [Young 2007] as a real-time Min-Nan ASR module. It successfully 
expanded the function of the in-car speaking assistant to process Min-Nan input speech. Some 
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examples of on-line recognition results of the system are shown in Table 4. 

Table 4. Some examples of on-line recognition results for Min-Nan input speec 
User input Recognition result (in Mandarin) 

系統你好 系統你好 

即馬我欲挃交大, 該按怎走? 然後我過去交大, 那會怎麼走 

等下我要走科技路還是寶山路? 等一下我要走科技路還是寶山路 

繼續直直走對不對? 繼續在馬路之後哪一個到 

5. A Model-based Tone Labeling Method for Min-Nan Speech 

The task of tone labeling is to determine the tone sequence pronounced in each utterance of a 
speech database [Li 2002] [Kuo et al. 2004]. A database with proper tone labeling should be 
good to be used in either TTS or ASR. Several approaches can be employed to tackle the task. 
First, a direct approach is to do the job manually by listening to and/or observing the pitch 
contour. However, as mentioned above, this approach will suffer from the difficulties of 
inconsistency and heavy workload. Another approach is to determine the tone sequence by 
applying the above tone sandhi rules to the associated text. As shown in [Liang et al. 2004], 
the tone sandhi rules have been applied to all syllables except for the ones word/sentence final. 
The results indicated that the tone labeling accuracy for the tonal variations was about 62-65%. 
The main problem of this approach is that it is not known exactly how to automatically form 
word chunks from the word sequence. Besides, determining tones only from texts may suffer 
from errors. The third approach is to regard it as a classification problem by classifying the 
pitch contours of all syllables with the same lexical tone using an unsupervised clustering 
technique such as vector quantization (VQ). A drawback of the third approach is that errors 
may occur because the pitch contour of a syllable in a continuous speech is influenced by 
many factors other than just the tone itself. The fourth approach is to tackle the task by an 
efficient pitch contour model which can separate all major affecting factors that control the 
variation of the pitch contour. 

5.1 The Proposed Tone Labeling Method 
In this study, we adopt the last approach by using a statistical pitch contour model [Wang et al. 
2000] [Chen et al. 2005] [Yang 1999]. We first represent the pitch contour of each syllable by 
using a 3-rd order orthogonal polynomial expansion [Chen et al. 1990]. The basis polynomials 
used are normalized, in length, to [0,1] and can be expressed as: 
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for 0 i M≤ ≤ , where M+1 is the length of the current syllable log-pitch contour and 3M ≥ . 
They are, in fact, discrete Legendre polynomials. A syllable pitch contour ( )i

Mf  can then be 
approximated by: 
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The four coefficients are then divided into two parts: 0α  representing the mean and 

1 2 3α α α⎡ ⎤⎣ ⎦  representing the shape. They are separately modeled. The pitch mean model 
used can be expressed by: 

n n n nn n pt t ft pY F β β β β= + + + +                        (6) 

where nY  is the observed pitch mean 0α  of the nth syllable; nF  is the normalized pitch 
mean and is modeled as a normal distribution with mean μ  and varianceν ; rβ  is the 
compressing-expanding factor (CF) for affecting factor r; nt , npt  and nft  represent, 
respectively, the lexical tones of the current, previous and following syllables; and np  
represents the prosodic state of the current syllable. Here, prosodic state roughly represents the 
state of the syllable in a prosodic phrase and is treated as hidden. Note that nt  ranges from 1 
to 22 including 7 standard patterns of lexical tones and all their sandhi tones, while both npt  
and nft  ranges from 0 to 22 with 0 denoting the cases of major punctuation marks 
{，,。,！,；,？,、,：} or the non-existence of the previous or following syllable. The CFs for 

0npt =  and 0nft =  are set to zero because we do not want to count the effect of tone 
across a punctuation mark. 
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The pitch shape model used can be expressed by: 

n n n nn n pt t ft p= + + + +Z X b b b b                        (7) 

where nZ  is the observed shape vector [ 1 2 3
Tα α α ⎤⎦  of the nth syllable’s pitch contour; 

nX  is the normalized pitch shape vector and is modeled as a multivariate normal distribution 
with mean vector μ  and covariance matrix R. 

To estimate the parameters of these two models, an expectation-maximization (EM) 
algorithm is adopted. The EM algorithm is derived based on the maximum likelihood (ML) 
estimation from incomplete data with prosodic state and pronounced tone pattern being treated 
as hidden or unknown. To illustrate the EM algorithm, an auxiliary function is firstly defined 
in the expectation step (E-step) as: 

1 1 1 2 2 2( , ) ( , ) ( , )Q Q Qλ λ λ λ λ λ= +                           (8) 

where 
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N is the total number of training syllables, P is the total number of prosodic states, 

1( , | , )n n np p t Y λ , 1( , , | )n n np Y p t λ , 2( , | , )n n np p t λZ  and 2( , , | )n n np p t λZ  are conditional 
probabilities, 1 2λ λ λ= ∪ , 1 { , , , , , }t pt ft pλ μ ν β β β β=  and 2 { , , , , , }pt t ft pλ = μ R b b b b  are 
the sets of parameters to be estimated, and λ  and λ  are respectively the new and old 
parameter sets. Based on the assumption that the normalized pitch mean nF  and shape nX  
are both normally distributed, 1( , , | )n n np Y p t λ and 2( , , | )n n np p t λZ can be derived from the 
assumed model given in Eqs.(6) and (7) and expressed by: 

1( , , | ) ( ; , )
n n n nn n n n pt t ft pp Y p t N Yλ μ β β β β ν= + + + + ,         (11) 

and 

2( , , | ) ( ; , )n n n n pt t ft pp p t Nλ = + + + +Z Z μ b b b b R            (12) 

Similarly, 1( , | , )n n np p t Y λ and 2( , | , )n n np p t λZ  can be expressed by: 
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and 
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Then, sequential optimizations of these parameters can be performed in the maximization 
step (M-step). At the end of each iteration, the pronounced tone pattern for each syllable is 
re-assigned to one of its possible patterns by: 

*
1 2arg max ( | , ) ( | , )

n
n n n n n

t
t p t Y p tλ λ= Z                    (15) 

To execute the EM algorithm, initialization of the parameter set λ  is needed. This can 
be done by estimating each individual parameter independently. Specifically, the initial CF for 
a specific value of an affecting factor is assigned to be the difference of the mean (mean vector) 
of ( )n nY Z  with the affecting factor equaling the value of the mean of all ( )n nY Z . Notice 
that, in the initialization of CFs for prosodic states, each syllable is pre-assigned a prosodic 
state by vector quantization. After initialization, all parameters are sequentially updated in 
each iteration. The iterative procedure is continued until a convergence is reached. 

5.2 Experimental Results 
Performance of the proposed model-based Min-Nan tone labeling method was examined by 
simulation on the same single-male speaker database used in the Min-Nan TTS system to train 
and test the RNN prosody generator. Four tone labeling methods were then realized and 
compared. The first one was the manual approach, which determined the tone sequence to be 
pronounced by examining the text. Although the results might contain some errors, we still 
took them as the reference target because of the lack of anything superior. It is referred to as 
MANUAL. Another two systems were the VQ-based methods which used 4 (mean + shape) 
and 3 (shape) orthogonal expansion coefficients of syllable pitch contour as classification 
features, respectively. They are referred to as VQ-4 and VQ-3. The last one was the proposed 
model-based method and referred to as MODEL. The RMSEs of the reconstructed pitch 
contour are 0.815 and 0.286 ms/frame for VQ-4 and MODEL, respectively. The superior 
results of MODEL show the effectiveness of the pitch mean and shape models. Table 5 shows 
the correct rates of tone labeling for the latter three methods by taking the results of 
MANUAL as reference target. Correct rates of 50.9, 52.4, and 61.9% were obtained by VQ-4, 
VQ-3, and MODEL, respectively. Obviously, MODEL outperformed both VQ-4 and VQ-3. It 
can also be found in Table 5 that Tone 1 and Tone 2, which share a single sandhi tone pattern, 
have better labeling results. 
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Table 5. The correct rates of the three tone labeling methods of VQ-4, VQ-3, and 
MODEL. (unit: %) 

Tone 
(sandhi tones) 

1 
(7) 

2 
(1) 

3 
(2,1) 

4 
(2,1,8) 

5 
(7,3,7) 

7 
(3,7) 

8 
(3,7,4) 

Ave. 

VQ-4 61.9 82.9 55.4 40.9 28.1 34.0 33.9 50.9 

VQ-3 58.7 84.8 44.1 28.7 43.7 47.2 35.8 52.4 

MODEL 72.4 89.3 51.7 55.7 50.6 51.1 41.9 61.9 

By examining all 22 tone patterns obtained in the pitch mean and shape models, we 
found that most sandhi tone patterns matched with those tone patterns suggested by the 
above-mentioned sandhi rules. Figure 5 displays the standard and sandhi tone patterns for 
lexical Tone 1 and Tone 2. Can be seen from Fig. 5(a) (Fig. 5(b)) that the shape of the sandhi 
tone pattern of Tone 1 (2) resembles the standard pattern of Tone 7 (1). Figure 6 displays pitch 
contour patterns of standard and sandhi tones for Tone 3 and Tone 2. It can be seen from Fig. 
6(a) (Fig. 6(b)) that all three (two) sandhi Tone 3 (2) patterns resemble to the standard Tone 3 
(2) pattern. 

Figure 5. Comparison of standard and sandhi tone patterns for lexical  
(a) Tone 1 and (b) Tone2. 
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Figure 6. Comparison of pitch contour patterns of standard tone & sandhi tones for 
(a) Tone 3 and (b) Tone 2. 

6. Conclusions 

In this paper, three studies of Min-Nan speech processing have been discussed. They included 
the implementation of a high-performance Min-Nan TTS system, the realization of a Min-Nan 
speech recognizer, and a model-based tone labeling method. Experimental results confirmed 
that all proposed methods are promising. 

From these studies, we find that the most important factor to affect the research results is 
the database. Basically, a large, phonetically-rich, high-quality speech database with text 
being properly annotated is needed. The two databases used in current three studies are still 
not perfect on their size and text annotation. To improve the quality of these two databases for 
achieving a good progress on our future Min-Nan speech processing studies are therefore 
worth doing. 

(a) 

(b) 



 

 

Some Studies on Min-Nan Speech Processing                 409 

ACKNOWLEDGEMENT 
This work was supported in part by MOE under contract EX-94-E-FA06-4-4. The authors 
thank Prof. R. L. Cheng and Prof. Y. C. Chiang for supplying the lexicon and the text corpus. 

REFERENCES 
Chen, S. H., and C. C. Ho, “An Implementation of Taiwanese Text-to-Speech System,” In 

Proceedings of ISCSLP'2000, 2000, Beijing, vol.1, pp. 613-616. 
Chen, S. H., S. H. Hwang, and Y. R. Wang, “An RNN-Based Prosodic Information 

Synthesizer for Mandarin Text-to-Speech,” IEEE Trans. Speech and Audio Processing, 
6(3), 1998, pp. 226-239. 

Chen, S. H., W.-H. Lai, and Y.-R. Wang, “A statistics-based pitch contour model for 
Mandarin speech,” J. Acoust. Soc. Am., 117(2), 2005, pp. 908-925. 

Chen, S. H., and Y. R. Wang, “Vector Quantization of Pitch Information in Mandarin 
Speech,” IEEE Tarns. Communications, 38(9), 1990, pp. 1317-1320. 

Cheng, R. L., Taiwanese pronunciation and Romanization – with rules and examples for 
teachers and students, Wang Wen Publishing Company, Taipei, 1993. 

Haykin, S., Neural networks – A comprehensive foundation, Macmillan College Publishing 
Company, 1994. 

Ho, C. C., and S. H. Chen, “A Hybrid Statistical/RNN Approach to Prosody synthesis for 
Taiwanese TTS,” In Proceedings of ICSLP'2000, 2000, Beijing. 

Ho, C. C., and S. H. Chen, “A Maximum Likelihood Estimation of Duration Models for 
Taiwanese Speech,” In Proceedings of ISAS-SCI 2000, Orlando, USA, vol. VI, pp. 
395-399. 

Huang, S.-F., Language, Society and Ethnicity, 2nd ed.. Crane, Taipei, 1995 
Huang, J. Y., “Implementation of Tone Sandhi Rules and Tagger for Taiwanese TTS,” Master 

Thesis, Communication Eng. Dept., National Chiao Tung University, 2001. 
Kuo, W.-C., Y.-R. Wang, and S.-H. Chen, “A Model-Based Tone Labeling Method for 

Min-Nan/Taiwanese Speech,” In Proceedings of ICASSP2004, 2004, Montreal, Canada, 
Vol. 1, pp. 505-508. 

Kuo, W.-C., X.-R. Zhong, Y.-R. Wang, and S.-H. Chen, “A High-Performance 
Min-Nan/Taiwanese TTS System,” In Proceedings of ICASSP2003, 2003, Hong Kong, 
Vol. 1, pp. 512-515. 

Li, A., “Chinese Prosody and Prosodic Labeling of Spontaneous Speech,” In Proceedings of 
Speech Prosody 2002, Aix-en-Provence, France, 2002. 

Liang, M.-S., R.-C. Yang, Y.-C. Chiang, D.-C. Lyu, and R.-Y. Lyu, “A Taiwanese 
text-to-speech system with applications to language learning,” In Proceedings of 2004 
IEEE International Conference on Advanced Learning Technologies, 2004, pp. 91-95. 



 

 

410                                                        Wei-Chih Kuo et al. 

Lyu, R.-Y., Y.-C. Chiang, W.-P. Hsieh, and R.-Z. Fang, “A Large-Vocabulary Speech 
Recognition System for Taiwanese (Min-nan),” Journal of the Chinese Institute of 
Electrical Engineering, 7(2), 2000, pp. 123-136. 

Lyu , D.-C., B.-H. Yang, M.-S. Liang, R.-Y. Lyu, and C.-N. Hsu, “Speaker independent 
acoustic modeling for large vocabulary bi-lingual aiwanese/Mandarin continuous speech 
recognition,” In Proceedings of the ninth Australian international conference on Speech 
science and technology, 2002, Melbourne, pp. 28-33. 

Wang, W. J., Y. F. Liao, and S. H. Chen, “RNN-based Prosodic Modeling for Mandarin 
Speech and Its Application to Speech-to-Text Conversion,” Speech Communication, 36, 
2002, pp. 247-265. 

Yang, Y. C., “An Implementation of Taiwanese Text-to-Speech System,” Master Thesis, 
Communication Eng. Dept., National Chiao Tung University, Hsinchu, 1999. 

Young, S., ATK: A Application Tool for HTK, http://mi.eng.cam.ac.uk/~sjy/software.htm, 
2007. 

Yuan, J. H., Hanyu Fangyan Gaiyao, Outline of Chinese Dialects, 2nd ed., Wenzi Gaige 
Chubanshe, Beijing, 1989. 


