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Abstract 

This paper describes a speaker identification system that uses complementary 
acoustic features derived from the vocal source excitation and the vocal tract 
system. Conventional speaker recognition systems typically adopt the cepstral 
coefficients, e.g., Mel-frequency cepstral coefficients (MFCC) and linear predictive 
cepstral coefficients (LPCC), as the representative features. The cepstral features 
aim at characterizing the formant structure of the vocal tract system. This study 
proposes a new feature set, named the wavelet octave coefficients of residues 
(WOCOR), to characterize the vocal source excitation signal. WOCOR is derived 
by wavelet transformation of the linear predictive (LP) residual signal and is 
capable of capturing the spectro-temporal properties of vocal source excitation. 
WOCOR and MFCC contain complementary information for speaker recognition 
since they characterize two physiologically distinct components of speech 
production. The complementary contributions of MFCC and WOCOR in speaker 
identification are investigated. A confidence measure based score-level fusion 
technique is proposed to take full advantage of these two complementary features 
for speaker identification. Experiments show that an identification system using 
both MFCC and WOCOR significantly outperforms one using MFCC only. In 
comparison with the identification error rate of 6.8% obtained with MFCC-based 
system, an error rate of 4.1% is obtained with the proposed confidence measure 
based integrating system. 

Keywords: Speaker Identification, Vocal Source Feature, Vocal Tract Feature, 
Information Fusion, Confidence Measure 

1. Introduction 

Speaker recognition is the process of determining a person's identity based on the intrinsic 
characteristics of his/her voice. In the source-filter model of human speech production, the 
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speech signal is modeled as the convolutional output of a vocal source excitation signal and 
the impulse response of a vocal tract filter system [Rabiner and Schafer 1978]. The most 
representative vocal tract related acoustic features are the cepstral coefficients, e.g., 
Mel-frequency cepstral coefficients (MFCC) [Davis and Mermelstein 1980] and linear 
predictive cepstral coefficients (LPCC) [Furui 1981], which aim at modeling the spectral 
envelope, or the formant structure of the vocal tract. With the primary goal being identifying 
different speech sounds, these features are believed to provide pertinent cues for phonetic 
classification and have been successfully applied to automatic speech recognition [Rabiner 
and Juang 1993]. At the same time, these features are also implemented in most existing 
speaker recognition systems [Campbell 1997; Reynolds 2002]. This indicates that MFCC and 
LPCC features do contain important speaker-specific information, in addition to the intended 
phonetic information. Ideally, if a large amount of phonetically balanced speech data is 
available for speaker modeling, the phonetic variability tends to be smoothed out so that 
speaker-specific aspects can be captured. 

 The vocal source related features, e.g., pitch and harmonics, on the other hand, 
characterize the vocal folds’ vibration style in speech production and are closely related to the 
speaker-specific laryngeal system. The spoken contents have less effect on the variation of the 
vocal source excitation than on that of the vocal tract system [Miller 1963; Childers 1991]. 
This makes the vocal source derived acoustic features useful for speaker recognition, 
especially for text-independent cases. However, the usefulness of vocal source information for 
speaker recognition, although having been investigated in some literature, has not been 
thoroughly studied, let alone the efficient information retrieving techniques. In this paper, a 
novel vocal source feature is presented and implemented to supplement the vocal tract features 
in speaker recognition. 

For voiced speech, the source excitation signal is a quasi-periodic glottal waveform, 
which is generated with quasi-periodic vocal fold vibration. The vibration frequency 
determines the pitch of voice. It has been shown that temporal pitch variation is useful for 
speaker recognition [Atal 1972; Sonmez 1998]. The amplitude of pitch harmonics has also 
been demonstrated to be an effective feature for speaker identification [Imperl et al. 1997]. To 
exploit detailed vocal source information, we need a method of automatically estimating the 
glottal waveform from the speech signal. This can be done by inverse filtering the speech 
signal with the vocal tract filter parameters estimated during the glottal closing phase (GCI). 
In Brookes and Chan [1994], a separately recorded laryngograph signal was used to detect the 
GCI. In Plumpe et al. [1999], a method of automatic GCI detection was proposed and the 
estimated glottal waveform was represented using the Liljencrants-Fant (LF) model. The 
model parameters were shown to be useful in speaker identification. However, this method 
worked well only for the typical voices in which the GCI clearly exists and the estimated 
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glottal waveform can be well explained by the LF model [Plumpe et al. 1999]. 

 In linear predictive (LP) modeling of speech signals, the vocal tract system is 
represented by an all-pole filter. The prediction error, which is named the LP residual signal, 
contains useful information about the source excitation [Rabiner and Schafer 1978]. In 
Thevenaz and Hugli [1995], it is shown that the cepstrum of LP residual signal could be used 
to improve the performance of a text-independent speaker verification system. In He et al. 
[1995] and Chen and Wang [2004], the standard procedures for extracting MFCC and LPCC 
features were applied to LP residual signals, resulting in a set of residual features for speaker 
recognition. In Yegnanarayana et al. [2005], the speaker information present in LP residual 
signals was captured using an auto-associative neural network model. Murty and 
Yegnanarayana [2006] proposed to extract residual phase information by applying Hilbert 
transform on LP residual signals. The phase features were used to supplement MFCC in 
speaker recognition. 

Figure 1. Examples of speech waveforms and LP residual signals of two male 
speakers. Left: Speaker A; Right: Speaker B; Top to bottom: speech 
waveforms, LP residual signals and Fourier spectra of LP residual 
signals 
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 Figure 1 shows the speech waveforms of the vowel /a/ uttered by two different male 
speakers and the corresponding LP residual signals. There are noticeable differences between 
the two segments of residual signals. In addition to the difference between their pitch periods, 
the residual signal of speaker A shows much stronger periodicity than that of speaker B. For 
speaker B, the magnitudes of the secondary pulses are relatively high. In frequency domain, 
the Fourier spectra of the two residual signal segments look similar in that they have nearly 
flat envelopes. Although the harmonic peaks carry speaker-related periodicity information, the 
useful temporal information, i.e., the amplitudes and the time locations of pitch pulses, are not 
represented in the Fourier spectra. To characterize the time-frequency characteristics of the 
pitch pulses, wavelet transform is more appropriate than the short-time Fourier transform. 

 This paper describes a novel feature extraction technique based on time-frequency 
analysis of the LP residual signal. The new feature parameters, called wavelet octave 
coefficients of residues (WOCOR), are generated by applying pitch-synchronous wavelet 
transform to the residual signal [Zheng et al. 2004]. The WOCOR features contain useful 
information for speaker characterization and recognition. More importantly, WOCOR and 
MFCC carry different speaker-specific information since they characterize two 
physiologically distinct components in speech production. As a result, combining these two 
complementary features will result in higher recognition performance than using only one set 
of features. 

 The performance of the information fusion system, however, is highly dependant on the 
effectiveness of the fusion technique implemented. In multi-modal biometric authentication 
systems, the reliability of authentication decisions from different classifiers may vary 
significantly in different tests. Therefore, it is very important to apply an efficient fusion 
technique to maximize the benefit through the information fusion. A number of information 
fusion techniques have been proposed for biometrics systems [Garcia-Romero et al. 2004; 
Ross et al. 2001; Toh and Tau 2005]. Generally, the information fusion can be done at: (i) 
feature level, (ii) score level, or (iii) decision level. This paper proposes a score level fusion 
technique for combining MFCC and WOCOR for speaker identification. Score level fusion is 
preferred because the matching scores are easily obtained and contain sufficient information 
for distinguishing different speakers. A confidence measure, which measures the confidence 
of MFCC in identification decision in comparison to that of WOCOR, is adopted as the fusion 
weight in each individual identification trial. The confidence measure provides an optimized 
fusion score by giving more weight to the feature of higher confidence in correct identification. 
The effectiveness of the proposed information fusion system is demonstrated by a set or 
speaker identification experiments. 

 The rest of this paper is organized as follows. Section 2 describes the feature extraction 
procedures for WOCOR and briefly reviews the MFCC feature extraction procedures. Section 
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3 demonstrates the usefulness of WOCOR in speaker identification and the complementary 
contributions of WOCOR and MFCC in speaker identification. Section 4 presents the 
confidence measure based score-level fusion technique for integrating MFCC and WOCOR 
for speaker identification. Some analysis of the identification results is presented in Section 5, 
which further elaborates the complementarity of MFCC and WOCOR in speaker recognition 
and the superiority of the proposed confidence measure based fusion technique over the 
fixed-weight fusion.  Conclusions are given in Section 6. 

2. Vocal Source and Vocal Tract Features 

2.1 Vocal Source Features: WOCOR 
As illustrated in Figure 1, Fourier spectrum is not good at characterizing the time-frequency 
properties of the pitch pulses in the residual signal. Wavelet transform has been well known to 
be an effective method for transient signal representation. Therefore, the proposed WOCOR 
feature extraction is based on wavelet transform, rather than Fourier transform, of the residual 
signal. The process of extracting the WOCOR features is formulated in the following steps: 

1) Voicing decision and pitch extraction. Voicing status decision and pitch extraction are done 
with Talkin's Robust Algorithm for Pitch Tracking [Talkin 1995]. Only voiced speech is 
retained for subsequent processing. In the source-filter model, the excitation signal for 
unvoiced speech can be approximated as random noise [Rabiner and Schafer 1978]. We 
believe that such noise-like signals carry relatively little speaker-specific information. 

2) LP inverse filtering. The voiced speech is divided into non-overlapping frames of 30 ms 
long. The LP residual signal ( )e n  is obtained from each frame by inverse filtering the speech 
signal ( )s n , i.e., 

12

1
( ) ( ) ( )k

k
e n s n a s n k

=
= − −∑                                        (1) 

where the LP filter coefficients ka  are computed using the autocorrelation method [Rabiner 
and Schafer 1978]. To reduce intra-speaker variation, the amplitude of the residual signal 
within each voiced segment is normalized to the range [-1, 1]. 

3) Pitch-synchronous windowing. Based on the pitch periods estimated in Step 1, pitch pulses 
in the residual signal are located by detecting the maximum amplitude within each pitch 
period. For each pitch pulse, pitch-synchronous wavelet analysis is applied with a Hamming 
window of two pitch periods long. Let 1−it , it  and 1+it denote the locations of three 
successive pitch pulses. The analysis window for the pitch pulse at it  spans from 1−it  to 

1+it , as illustrated in Figure 2. The windowed residual signal is denoted as ( )he n . 
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4) Wavelet transform of residual signal. The wavelet transform of ( )he n  is computed as: 

*1( , ) ( )h
n

n bw a b e n
aa
−⎛ ⎞= Ψ ⎜ ⎟

⎝ ⎠
∑                                           (2) 

where {2 1,2, , }ka k K= = and 1,2, ,b N= , and N is the window length. *( )nΨ  is the 
conjugate of the 4th-order Daubechies wavelet basis function ( )nΨ . a and b are the scaling 
parameter and the translation parameter, respectively [Daubechies 1992]. In this case, the LP 
residual signal is analyzed in K octave sub-bands. For a specific sub-band, the time-varying 
characteristics within the analysis window are measured as b changes. 

5) Generation of WOCOR feature parameters. We have K octave groups of wavelet 
coefficients, i.e., 

( ){ }2 ,   1,2, , ,   1, 2, ,k
kW w b b N k K= = =                     (3) 

To retain the temporal information, each octave group of coefficients is divided evenly into M 
sub-groups, i.e., 

( ) ( 1)( ) 2 ,   , ,   1, 2, ,M k
k

m N mNW m w b b m M
M M

⎧ ⎫−⎛ ⎤⎪ ⎪= ∈ =⎨ ⎬⎜ ⎥⎝ ⎦⎪ ⎪⎩ ⎭
                    (4) 

where M is the number of sub-groups. The 2-norm of each sub-group of coefficients is 
computed to be one of the feature parameters. As a result, the complete feature vector is 
composed of K M⋅ parameters as follows, 

( )  1, 2, ,
WOCOR  

 1, 2, ,
M

k
m M

W m
k K

⎧ ⎫=⎪ ⎪= ⎨ ⎬=⎪ ⎪⎩ ⎭
                     (5) 

where • denotes the 2-norm operation. 

Figure 2 illustrates the extraction of WOCOR features from a pitch-synchronous segment 
of residual signal. It can be seen that, with different values of k, the signal is analyzed with 
different time-frequency resolutions. The time-frequency properties of the signal in each 
sub-band are characterized by the wavelet coefficients. In this research, we are interested in 
telephone speech with the frequency band of 300 - 3400 Hz. To cover this range, we set K = 4 
and the four frequency sub-bands at different octave levels are defined accordingly: 2000 - 
4000 Hz (W1), 1000 – 2000 Hz (W2), 500 - 1000 Hz (W3), and 250 - 500 Hz (W4). The 
parameter M determines the temporal resolution attained by the WOCOR parameters. If M = 1, 
all the coefficients of a sub-band are combined into a single feature parameter, and no 
temporal information is retained. On the other hand, if a large M is used, such that each 
coefficient acts as an individual feature parameter, a lot of unnecessary temporal details are 
included and the feature vector tends to be noisy and less discriminative. A low feature 
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dimension is also desirable for effective statistical modeling. In Section 3.3, the effect of M on 
recognition performance will be investigated experimentally. 

To summarize, given a speech utterance, a sequence of WOCOR feature vectors is 
obtained by pitch-synchronous wavelet transform of the LP residual signal. The WOCOR 
features are expected to capture spectro-temporal characteristics of the residual signal, which 
is useful for speaker characterization and recognition. 

2.2 Vocal Tract Features: MFCC 
The MFCC features have been widely used for speech and speaker recognition. In this study, 
we use the standard procedures of extracting MFCC on a short-time frame basis as described 
below [Davis and Mermelstein 1980]: 

1) Short-time Fourier transform is applied every 10 ms with 30-ms Hamming window. 

2) The magnitude spectrum is warped with a Mel-scale filter bank that consists of 26 filters, 
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Figure 2. Extraction of WOCOR features from a pitch-synchronous 
segment of LP residual signal. Here K = 4 and M = 4 
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which emulates the frequency resolution of human auditory system. 

3) The log-energy of each filter output is computed. 

4) Discrete cosine transform (DCT) is applied to the filter-bank output to produce the cepstral 
coefficients. 

The MFCC feature vector has 39 components, including the first 12 cepstral coefficients, the 
log energy, as well as their first and second order time derivatives. 

Aiming at characterizing two physiologically distinct components in speech production, 
WOCOR and MFCC contain complementary information for speaker discrimination. The 
effectiveness of WOCOR and its complementarity to MFCC for speaker recognition will be 
investigated in the following sections. 

3. Experiments 

3.1 Speaker Identification System 
Figure 3 gives the block diagram of the speaker identification system using MFCC and 
WOCOR. In the pre-processing stage, the speech signal is first pre-emphasized with a first 
order filter 1( ) 1 0.97H z z−= − . Then energy-based voice activity detection (VAD) technique 
is applied to remove the silent portion. The speech signal is passed through for MFCC and 
WOCOR generation, respectively. For each feature set, speaker models are trained with the 
UBM-GMM technique [Reynolds et al. 2000] in the training stage. A universal background 
model (UBM) is first trained using the training data from all speakers. Then a Gaussian 
mixture model (GMM) is adapted from the UBM for each speaker using the respective 
training data. In the test stage, for each identification trial, likelihoods scores of the two 
feature sets are first computed and then a score-level fusion is implemented, i.e., 

Figure 3. Block diagram of the speaker identification system using 
 MFCC and WOCOR 



 

 

            Integrating Complementary Features from Vocal Source and           281 

Vocal Tract for Speaker Identification 

,1 ,2LLR (LLR , LLR ),  1, 2, ,i i i i N= =f                               (6) 

where ,1LLRi  and ,2LLRi  are likelihood scores obtained from MFCC and WOCOR, 
respectively, f is the combination function and N is the number of speakers. Although in real 
application, the test utterances could come from the unregistered impostors. In this study, we 
only deal with the closed-set speaker identification. That is, all the test utterances must come 
from one of the 50 male speakers. The one whose models give the highest matching score is 
marked as the identified speaker. 

3.2 Speech Databases: CU2C 
CU2C is a continuous speech database of Cantonese developed at the Chinese University of 
Hong Kong [Zheng et al. 2005]. Cantonese is one of the most popular Chinese dialects and is 
spoken by tens of millions of people in southern China. CU2C was designed to facilitate 
general speaker recognition research. It contains parallel utterances collected over fixed-line 
telephone channel and desktop computer microphones. The spoken contents include Hong 
Kong personal identity numbers, randomly generated digit strings, and phonetically balanced 
sentences. In this study, the speaker identification experiments are conducted on the sentence 
subset of the male speakers. There are 50 male speakers, each having 18 sessions of speech 
data with 10 utterances in each session. The first 4 sessions are used for training the speaker 
models. Sessions 5 to 8 are used as development data for training the weighting parameters for 
the score level fusion of MFCC and WOCOR. The last 10 sessions are used as the evaluation 
data, and there are totally 5000 identification trials (50 speakers, 100 trials per speaker). All 
the utterances are text-independent telephone speech with matched training and testing 
conditions (the same handset and fixed line telephone network). The speech data were 
sampled at 8 KHz and encoded by 8-bit µ-law encoding. The speech data of each speaker are 
collected over 4 to 9 months with the minimum inter-session interval of 1 week. Therefore, the 
challenge of the long-term intra-speaker variation for speaker recognition can be addressed by 
the database. 

3.3 Determining the Parameter M for WOCOR 
As discussed earlier, the value of M controls the size of the WOCOR feature vector and how 
much temporal detail can be captured. First, we compare the performance of WOCOR with 
different values of M. Figure 4 shows the identification error rate (IDER) of WOCOR in 
which M varies from 1 to 6. The identification error rate is defined as: 

Number of incorrect identification trialsIDER 100%
Number of identification trials

= ×                    (7) 
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It is clear that WOCOR in general provide a certain degree of speaker discrimination power. 
For 1M = , i.e., no temporal detail is captured and the feature vector has only 4 components, 
an IDER of 45.1% is achieved. With M increasing from 1 to 4, the IDER is significantly 
reduced to only 27.0%. For 4M > , the improvement becomes less noticeable. Therefore, in 
the following experiments, we will use WOCOR with 4M = , which consists of 16 feature 
components. 

3.4 Wavelet vs. Fourier Transform of LP Residual Signal 
To demonstrate the superiority of wavelet transform over Fourier transform for feature 
extraction from the LP residual signal, we compare the speaker identification performances of 
WOCOR and the Fourier spectrum-based vocal source features. To do so, we apply the MFCC 
feature extraction process on the LP residual signal to generate another set of vocal source 
features, noted as MFCCres. Speaker identification experiments with WOCOR and MFCCres 
result in IDERs of 27.0% and 52.0%, respectively. That is, WOCOR significantly outperforms 
MFCCres. This is reasonable because MFCC focuses on extracting the spectral 
envelope-related features, and, as given in Fig. 1, spectral envelopes of LP residual signals are 
almost the same for different speakers. On the other hand, WOCOR tries to capture the 
spectro-temporal information in the residual signals, which is quite different between 
speakers. 

3.5 Speaker Identification Results 
We evaluate the speaker identification performances of MFCC and WOCOR individually.  In 
addition, we evaluate the system with both MFCC and WOCOR, using the same evaluation 
data described in Section 3.2 for all three performance evaluations. In this case, information 

Figure 4. The speaker identification results of WOCOR for different values of M 

1 2 3 4 5 6
20

25

30

35

40

45

50

M

ID
E

R
 (i

n 
%

)



 

 

            Integrating Complementary Features from Vocal Source and           283 

Vocal Tract for Speaker Identification 

fusion is performed as a score-level linear fusion, i.e., 

,1 ,2LLR LLR (1 )LLRi t i t iw w= + −                            (8) 

The fusion weight tw  is experimentally determined using the development data set. That is, 

tw  is varied from 0 to 1, and the value giving the smallest IDER is selected for the evaluation 
trials. Figure 5 shows IDER vs. tw curve with the development data. As illustrated, the best 
performance is achieved at around 0.80tw = . Actually, the identification performance is not 
very sensitive to tw  at around 0.80tw = . The performances of MFCC- and WOCOR-based 
systems and the information fusion system with 0.80tw =  are evaluated over the evaluation 
data and the results are as given in Table 1. As shown, the MFCC-based speaker identification 
system significantly outperforms the WOCOR system. It is noted that, despite the 
performance difference, the two approaches make complementary decisions in many cases, 
which will be further elaborated in Section 5, and the combining system has superior 
performance over that using MFCC only. The IDER is reduced from 6.8% to 4.7%, a relative 
improvement of about 30%. 

Table 1. Speaker identification performances 

Systems IDER (in %) 

WOCOR 27.0 

MFCC  6.8 

MFCC+WOCOR 4.7 
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4. Information Fusion with Confidence Measure 

While information fusion with a pre-defined fusion weight as given in (8) can improve 
identification performance, it does not necessarily provide the best result. Fixed weight is 
unable to cover explicitly the different performance levels of MFCC and WOCOR for 
individual identification trials. As a result, for some cases, although one of the features gives 
the correct decision, the fused score may not necessarily result in correct decision. For 
example, consider four types of identification trials as given in Table 2, in which MFCC and 
WOCOR give different contributions to speaker identification, and the info-fusion as (8) 
results in different decisions as well. In Type I and II trials, MFCC gives incorrect decisions 
while WOCOR gives correct decisions. The combined system makes correct decisions in Type 
I trials while making incorrect decisions in Type II trials. In Type III and IV trials, MFCC 
gives correct decisions while WOCOR gives incorrect decisions, and the combined system 
makes correct decisions in Type III trials while producing incorrect decisions in Type IV trials. 
To avoid the undesired outputs in Type II and IV trials, an ideal solution should be capable of 
distinguishing these four types of trials and give null weight to MFCC in Type I and II trials 
and null weight to WOCOR in Type III and IV trials. Although such an ideal solution is not 
available in real-world applications, we propose to apply a confidence measure based fusion 
method, which adopts varying weight in individual trials and avoids most of the identification 
errors introduced by information fusion. 

Table 2. Different contributions of MFCC and WOCOR in four types of identification 
trials 

 Type I Type II Type III Type IV 

MFCC incorrect incorrect correct correct 

WOCOR correct correct incorrect incorrect 

MFCC+WOCOR correct incorrect correct incorrect 

4.1 Speaker Discrimination Power 
Analysis of the matching scores shows that, generally, in a correct identification, the 
difference of the scores between the identified speaker and the closest competitor is relatively 
larger than that in an incorrect identification. The score difference can therefore be adopted for 
measuring the speaker discrimination power, i.e., 

max{LLR } sec max{LLR }

max{LLR }

i i
i i

i
i

ond
D

−
=                            (9) 
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where LLRi  is the likelihood score of the i-th speaker. The normalization of the difference 
over max{LLR }i

i
 aims to equalize the dynamic ranges of D for different features. 

Figure 6 shows the histograms of D for MFCC and WOCOR. It is clear that, for both 
features, a correct identification is generally associated with a larger D than an incorrect 
identification. Therefore, a larger D implies that the corresponding feature has higher 
confidence for speaker identification. Obviously, it is desirable to take into account D for 
score fusion in each identification trial instead of using the fixed weight. 

4.2 Confidence Measure Based Score Fusion 
Although the optimal method of combining the scores from MFCC and WOCOR with the 
knowledge of the discrimination power is not known, the relative discrimination power of 
MFCC and WOCOR can be considered as a confidence measure, with which a better fusion 
weight can be derived to improve the identification performance. In each identification trial, 
the confidence measure is defined the discrimination ratio of the two features, i.e., 

1 2CM D D=                                       (10) 

Figure 6. Histogram of speaker discrimination power D of MFCC and WOCOR 
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where D1 and D2 are the speaker discrimination power of MFCC and WOCOR, respectively. 
A larger CM implies that the MFCC-based system has a higher confidence in giving correct 
identification result than the WOCOR-based one. Then, the fusion weight for the specific 
identification trial is derived as: 

(CM )
1log

1
CMw

e α β− ⋅ −
= −

+
                                      (11) 

where α  and β  control the slope of the mapping contour from CM to CMw , as illustrated 
in Figure 7. The solid line curve in Figure 7 is used in this study. The corresponding 
parameters 0.2, 3α β= = − are trained using the development data. 

Score-level fusion based on CM is then carried out according to: 

,1 ,2LLR LLR LLRi i CM iw= +                                (12) 

With CMw , the fused score combines better weighted likelihoods obtained from MFCC and 
WOCOR in each individual trial based on the contributions of the respective features in that 
trial. 

As illustrated in Figure 7, when CM increases, CMw  becomes very small, and the 
decision will not be heavily affected by WOCOR. On the other hand, a small CM corresponds 
to a large CMw , which means more impact from WOCOR. 
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As shown in Table 3, the CM-based score level fusion leads to a further performance 
improvement over the fixed-weight fusion. In summary, the IDERs attained with WOCOR 
and MFCC, in conjunction with the two methods of score fusion are 27.0%, 6.8%, 4.7%, and 
4.1%, respectively. 

Table 3. Speaker identification performances 

Systems IDER (in %) 

WOCOR 27.0 

MFCC 6.8 

Fixed-weight fusion 4.7 

Fusion with CM 4.1 

5. Analysis of the Identification Results 

Table 4 elaborates how the integration of the two complementary features affects the 
identification performances. The identification trials are divided into 4 subsets according to 
the performances of MFCC and WOCOR: (i) correct identification with both MFCC and 
WOCOR (McWc), (ii) incorrect identification with both MFCC and WOCOR (MiWi), (iii) 
incorrect identification with MFCC while correct identification with WOCOR (MiWc), and 
(iv) correct identification with MFCC while incorrect identification with WOCOR (McWi). 
Among the 5000 identification trials, there are 3328, 244, 95 and 1333 trials for these 4 
subsets, respectively. The number of identification errors with MFCC, WOCOR and the 
integrated systems within each subset are given in the table. 

Table 4. Number of errors of 4 identification subsets by different systems 

Subsets McWc  MiWi  MiWc  McWi 

Number of trials 3328 244 95 1333 

MFCC 0 244 95 0 

WOCOR 0 244 0 1333 

Fixed weight fusion 0 163 7 65 

Fusion with CM 0 167 19 19 

We are only interested in the last 3 subsets, which have errors with at least one kind of 
features. For the MiWi subset, although both MFCC and WOCOR give incorrect identification 
results, the combined system gives correct results for some trials. For example, the number of 
identification errors is reduced from 244 to 163 with the fixed weight fusion and to 167 with 
the CM-based fusion. That is, about one third of the errors have been corrected. 



 

 

288                                                      Nengheng Zheng et al. 

Table 5 gives an example demonstrating how the score fusion can give correct result 
even though both MFCC and WOCOR give error results. In this example, the true speaker is 
S5. It is shown that although S5 only ranks at the 6th and the 2nd with MFCC and WOCOR, 
respectively, in both integrating systems, it ranks at the first and therefore is correct identified. 

The results of the two one-error identification subsets McWi and MiWc in Table 4 
demonstrate the superiority of the CM-based score fusion over the fixed-weight fusion. For 
the fixed-weight fusion system, although the number of errors in the MiWc subset is 
significantly reduced from 95 to 7, there are 65 errors introduced to the McWi subset, which 
have been correctly identified with MFCC only. For the CM-based system, the number of this 
kind of newly introduced errors is significantly reduced to 19, with only a slight increase in 
errors in MiWi and MiWc subsets. As a whole, the number of total identification errors is 
reduced from 339 with MFCC only to 235 with fixed-weight fusion, and further reduced to 
205 with CM-based fusion. 

Table 5. Ranking the speaker scores in an identification trial. 

Rank MFCC WOCOR Fixed weight 
fusion 

Fusion with 
CM 

1 S7: -1.7718  S34:1.5732  S5:-0.4364 S5:-1.0903 

2 S27:-1.7718  S5:1.5730 S27:-0.4445 S27:-1.0977 

3 S10:-1.7722  S48:1.5640  S34:-0.4446 S7: -1.0984 

4 S42:-1.7743  S35:1.5620 S41:-0.4448 S10:-1.1000 

5 S1: -1.7756  S39:1.5619 S46:-0.4448 S41:-1.1005 

6 S5:-1.7760  S46:1.5510 S7: -0.4452 S46:-1.1015 

7 S41:-1.7788  S41:1.5561 S10:-0.4465 S42:-1.1027 

6. Conclusions 

This paper presents a novel feature extraction technique to generate the vocal source related 
acoustic features from the LP residual signal. We have shown that the proposed WOCOR 
features contain speaker-specific information for speaker recognition applications. The 
WOCOR features provide additional information to the conventional MFCC features in 
speaker recognition. This complementarity is exploited by applying a novel confidence 
measure based score fusion technique which gives a much improved overall speaker 
identification accuracy. In comparison with the identification error rate of 6.8% obtained with 
MFCC only, an error rate of 4.1% is obtained with the proposed information fusion system. 
That is a relative improvement of 40%. 
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