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Abstract 

In a log-likelihood ratio (LLR)-based speaker verification system, the alternative 
hypothesis is usually difficult to characterize a priori, since the model should cover 
the space of all possible impostors. In this paper, we propose a new LLR measure 
in an attempt to characterize the alternative hypothesis in a more effective and 
robust way than conventional methods. This LLR measure can be further 
formulated as a non-linear discriminant classifier and solved by kernel-based 
techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector 
Machine (SVM). The results of experiments on two speaker verification tasks show 
that the proposed methods outperform classical LLR-based approaches. 

Keywords: Kernel Fisher Discriminant, Log-likelihood Ratio, Speaker 
Verification, Support Vector Machine. 

1. Introduction 

In essence, the speaker verification task is a hypothesis testing problem. Given an input 
utterance U, the goal is to determine whether U was spoken by the hypothesized speaker or 
not. The log-likelihood ratio (LLR)-based detector [Reynolds 1995] is one of the 
state-of-the-art approaches for speaker verification. Consider the following hypotheses: 

 

H0: U is from the hypothesized speaker,  

H1: U is not from the hypothesized speaker. 

 
The LLR test is expressed as: 
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where ( | ),   0,  1,ip U H i =  is the likelihood of hypothesis Hi given the utterance U, and θ  
is the threshold. H0 and H1 are, respectively, called the null hypothesis and the alternative 
hypothesis. Mathematically, H0 and H1 can be represented by parametric models denoted as 
λ  and λ , respectively; λ  is often called an anti-model. Though H0 can be modeled 
straightforwardly using speech utterances from the hypothesized speaker, H1 does not involve 
any specific speaker, thus lacks explicit data for modeling. Many approaches have been 
proposed to characterize H1, and various LLR measures have been developed. We can 
formulate these measures in the following general form [Reynolds 2000]: 
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where Ψ(⋅) is some function of the likelihood values from a set of so-called background 
models {λ1,λ2,...,λN}. For example, the background model set can be obtained from N 
representative speakers, called a cohort [Rosenberg 1992], which simulates potential 
impostors. If Ψ(⋅) is an average function [Reynolds 1995], the LLR can be written as: 
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Alternatively, the average function can be replaced by various functions, such as the 
maximum [Liu 1996], i.e.: 
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or the geometric mean [Liu 1996], i.e., 
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A special case arises when Ψ(⋅) is an identity function and N = 1. In this instance, a single 
background model is usually trained by pooling all the available data, which is generally 
irrelevant to the clients, from a large number of speakers. This is called the world model or the 
Universal Background Model (UBM) [Reynolds 2000]. The LLR in this case becomes: 

 

4 ( ) log ( | λ) log ( | ),L U p U p U= − Ω                                          (6) 

where Ω denotes the world model. 
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However, none of the LLR measures developed so far has proven to be absolutely 
superior to any other, since the selection of Ψ(⋅) is usually application and training data 
dependent. In particular, the use of a simple function, such as the average, maximum, or 
geometric mean, is a heuristic that does not include any optimization process. The issues of 
selection, size, and combination of background models motivate us to design a more 
comprehensive function, Ψ(⋅), to improve the characterization of the alternative hypothesis. In 
this paper, we first propose a new LLR measure in an attempt to characterize H1 by integrating 
all the background models in a more effective and robust way than conventional methods. 
Then, we formulate this new LLR measure as a non-linear discriminant classifier and apply 
kernel-based techniques, including the Kernel Fisher Discriminant (KFD) [Mika 1999] and 
Support Vector Machine (SVM) [Burges 1998], to optimally separate the LLR samples of the 
null hypothesis from those of the alternative hypothesis. 

SVM-based techniques have been successfully applied to many classification and 
regression tasks, including speaker verification. Unlike our work, existing approaches [Bengio 
2001; Wan 2005] only use a single background model, i.e., the world model, to represent the 
alternative hypothesis, instead of integrating multiple background models to characterize the 
alternative hypothesis. For example, Bengio et al. [Bengio 2001] proposed a decision 
function: 

5 1 2( ) log ( | λ) log ( | ) ,L U a p U a p U b= − Ω +                                   (7) 

where a1, a2, and b are adjustable parameters estimated using SVM. An extended version of 
Eq. (7) with the Fisher kernel and the LR score-space kernel for SVM was investigated in 
Wan [Wan 2005]. 

The results of speaker verification experiments conducted on both the XM2VTS database 
[Messer 1999] and the ISCSLP2006-SRE database [Chinese Corpus Consortium 2006] show 
that the proposed methods outperform classical LLR-based approaches. The remainder of this 
paper is organized as follows. Section 2 describes the design of the new LLR measure in our 
approach. Sections 3 and 4 introduce the kernel discriminant analysis used in this work and 
the formation of the characteristic vector by background model selection, respectively. Section 
5 contains our experiment results. Finally, in Section 6, we present our conclusions. 

2. New LLR Measure Design 

2.1 Analysis of the Alternative Hypothesis 
First of all, we redesign the function Ψ(⋅) in Eq. (2) as: 
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where 1 2[ ( | ), ( | ),...,  ( | )]TNp U p U p Uλ λ λ=u  is an N×1 vector and iw  is the weight of the 
likelihood p(U | λi), i = 1,2,..., N. This function gives N background models different weights 
according to their individual contribution to the alternative hypothesis. It is clear that Eq. (8) 
is equivalent to a geometric mean function when 1iw = , i = 1,2,..., N. If some background 
model λi contrasts with an input utterance U, the likelihood p(U | λi) may be extremely small, 
thus causing the geometric mean to approximate zero. In contrast, by assigning a favorable 
weight to each background model, the function Ψ(⋅) defined in Eq. (8) may be less affected by 
any specific background model with an extremely small likelihood. Therefore, the resulting 
score for the alternative hypothesis obtained by Eq. (8) will be more robust and reliable than 
that obtained by a geometric mean function. It is also clear that Eq. (8) will reduce to a 
maximum function when * 1iw = , 1* arg max log ( | λ )i N ii p U≤ ≤= ; and 0iw = , *i i∀ ≠ . 

By substituting Eq. (8) into Eq. (2), we obtain: 
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where 1 2[ ,  ...,  ]TNw w w=w  is an N×1 weight vector, the new threshold 

1 2' ( ... )Nw w wθ θ= + + + , and x is an N × 1 vector in the space RN, expressed by 

1 2
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The implicit idea in Eq. (10) is that the speech utterance U can be represented by a 
characteristic vector x. 

If we replace the threshold 'θ  in Eq. (9) with a bias b, the equation can be rewritten as: 

( )  ( )TL U b f= + =w x x ,                                               (11) 
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where f(x) forms a so-called linear discriminant classifier. This classifier translates the goal of 
solving an LLR measure into the optimization of w and b, such that the utterances of clients 
and impostors can be separated. To realize this classifier, three distinct data sets are needed: 
one for generating each client’s model, one for generating the background models, and one for 
optimizing w and b. Since the bias b plays the same role as the decision threshold of the 
conventional LLR measure, which can be determined through a trade-off between false 
acceptance and false rejection, the main goal here is to find w. Existing linear discriminant 
analysis techniques, such as Fisher’s Linear Discriminant (FLD) [Duda 2001] or Linear SVM 
[Burges 1998], can be applied to implement Eq. (11). 

2.2 Linear Discriminant Analysis 
Fisher’s Linear Discriminant (FLD) is one of the popular linear discriminant classifiers [Duda 
2001]. Suppose the i-th class has ni data samples, 1{ ,.., }

i

i i
i n=X x x , i = 1, 2. The goal of FLD is 

to seek a direction w in the space RN such that the following Fisher’s criterion function J(w) is 
maximized: 

( ) ,
T

b
T

w
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w S w
w

w S w
                                                      (12) 

where Sb and Sw are, respectively, the between-class scatter matrix and the within-class scatter 
matrix defined as 

1 2 1 2( )( )T
b = − −S m m m m                                               (13) 
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where mi is the mean vector of the i-th class computed by 

1

1 .
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i
i s

sin =
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According to Duda [Duda 2001], the solution for w, which maximizes J(w) defined in Eq. (12), 
is the leading eigenvector of bw SS 1− . 

3. Kernel Discriminant Analysis 

Intuitively, f(x) in Eq. (11) can be solved via linear discriminant training algorithms [Duda 
2001], such as FLD or Linear SVM. However, such methods are based on the assumption that 
the observed data of different classes is linearly separable, which is obviously not feasible in 
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most practical cases with nonlinearly separable data. To solve this problem more effectively, 
we propose using a kernel-based nonlinear discriminant classifier. It is hoped that data from 
different classes, which is not linearly separable in the original input space RN, can be 
separated linearly in a certain higher dimensional (maybe infinite) feature space F via a 
nonlinear mapping Φ. Let Φ(x) denote a vector obtained by mapping x from RN to F. Then, the 
objective function, based on Eq. (11), can be re-defined as: 

( ) ( )  ,T
Ff b= Φ +x w x                                                  (16) 

which constitutes a linear discriminant classifier in F, where Fw  is a weight vector in F. 

In practice, it is difficult to determine the kind of mapping that would be applicable; 
therefore, the computation of Φ(x) might be infeasible. To overcome this difficulty, a 
promising approach is to characterize the relationship between the data samples in F, instead 
of computing Φ(x) directly. This is achieved by introducing a kernel function k(x, 
y)=<Φ(x),Φ(y)>, which is the dot product of two vectors Φ(x) and Φ(y) in F. The kernel 
function k(⋅) must be symmetric, positive definite and conform to Mercer’s condition [Burges 
1998].  

A number of kernel functions exist, such as the simplest dot product kernel function k(x, 
y) = xTy, and the very popular Radial Basis Function (RBF) kernel k(x, y) = exp(− ||x − y||2 
/ 2σ2) in which σ is a tunable parameter. Existing techniques, such as KFD [Mika 1999] or 
SVM [Burges 1998], can be applied to implement Eq. (16). 

3.1 Kernel Fisher Discriminant (KFD) 
Suppose the i-th class has ni data samples, 1{ ,.., }

i

i i
i n=X x x , i = 1, 2. The goal of KFD is to seek 

a direction Fw  in the feature space F such that the following Fisher’s criterion function 
( )FJ w  is maximized: 
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T
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Φ
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where b
ΦS  and w

ΦS  are, respectively, the between-class scatter matrix and the within-class 
scatter matrix in F defined as: 
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where 1(1/ ) ( )in i
i i ssnΦ

== Φ∑m x , and i = 1, 2, is the mean vector of the i-th class in F. Let  
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lie in the span of all training data samples mapped in F [Mika 1999], Fw  can be expressed 
as: 

1
( ).

l
F j j

j
α

=
= Φ∑w x                                                      (20) 

Let αT = [α1, α2,..., αl]. Accordingly, Eq. (16) can be re-written as: 

1
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l
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j
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Our goal, therefore, changes from finding Fw  to finding α, which maximizes 
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T
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α Mαα
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                                                        (22) 

where M and N are computed by: 

1 2 1 2( )( )T= − −M η η η η                                                 (23) 

and 
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respectively, where iη  is an l×1 vector whose j-th element 1( ) (1/ ) ( , )in i
i j i j ssn k== ∑η x x , j = 

1,2,..., l; Ki is an l×ni matrix with ( ) ( , )i
i js j sk=K x x ; Ini

 is an ni×ni identity matrix; and 1ni
 is 

an ni×ni matrix with all entries equal to 1/ni. Following Mika [Mika 1999], the solution for α, 
which maximizes J(α) defined in Eq. (22), is the leading eigenvector of N-1M. 

3.2 Support Vector Machine (SVM) 
Alternatively, Eq. (16) can be solved with an SVM, the goal of which is to seek a separating 
hyperplane in the feature space F that maximizes the margin between classes. Following 
Burges [Burges 1998], Fw  is expressed as: 

1
( ),

l
F j j j

j
y α

=
= Φ∑w x                                                    (25) 

which yields 

1
( ) ( , ) ,

l
j j j

j
f y k bα

=
= +∑x x x                                                (26) 

where each training sample xj belongs to one of the two classes identified by the label 
yj∈{−1,1}, j=1, 2,..., l. We can find the coefficients αj by maximizing the objective function, 
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1 1 1
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subject to the constraints, 

1
0,

l
j j

j
y α

=
=∑  and 0 ,   ,j C jαα≤ ≤ ∀                                       (28) 

where Cα  is a penalty parameter [Burges 1998]. The problem can be solved using quadratic 
programming techniques [Vapnik 1998]. Note that most αj are equal to zero, and the training 
samples associated with non-zero αj are called support vectors. A few support vectors act as 
the key to deciding the optimal margin between classes in the SVM. An SVM with a dot 
product kernel function is known as a Linear SVM. 

4. Formation of the Characteristic Vector 

In our experiments, we use B+1 background models, consisting of B cohort set models and 
one world model, to form the characteristic vector x in Eq. (10); and B cohort set models for 
L1(U) in Eq. (3), L2(U) in Eq. (4), and L3(U) in Eq. (5). Two cohort selection methods 
[Reynolds 1995] are used in the experiments. One selects the B closest speakers to each client; 
and the other selects the B/2 closest speakers to, plus the B/2 farthest speakers from, each 
client. The selection is based on the speaker distance measure [Reynolds 1995], computed by: 

( | λ )( | λ )
(λ ,λ ) log log ,

( | λ ) ( | λ )
j ji i

i j
i j j i

p Up U
d

p U p U
= +                                  (29) 

where iλ  and jλ  are speaker models trained using the i-th speaker’s utterances Ui and the 
j-th speaker’s utterances Uj, respectively. Two cohort selection methods yield the following 
two (B+1)×1 characteristic vectors: 

cst  1 cst  

( | λ) ( | λ) ( | λ)log   log  ...  log
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T
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p U p U p U
p U p U p U
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and 
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B B

p U p U p U p U p U T
p U p U p U p U p UΩx ,        (31) 

where cst  iλ  and fst  iλ  are the i-th closest model and the i-th farthest model of the client 
model λ , respectively. 
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5. Experiments 

We evaluate the proposed approaches on two databases: the XM2VTS database [Messer 1999] 
and the ISCSLP2006 speaker recognition evaluation (ISCSLP2006-SRE) database [Chinese 
Corpus Consortium 2006]. 

For the performance evaluation, we adopt the Detection Error Tradeoff (DET) curve 
[Martin 1997]. In addition, the NIST Detection Cost Function (DCF), which reflects the 
performance at a single operating point on the DET curve, is also used. The DCF is defined as: 

 

arg arg(1 )DET Miss Miss T et FalseAlarm FalseAlarm T etC C P P C P P= × × + × × − ,          (32) 

where MissP  and FalseAlarmP  are the miss probability and the false-alarm probability, 
respectively, MissC  and FalseAlarmC  are the respective relative costs of detection errors, and 

argT etP  is the a priori probability of the specific target speaker. A special case of the DCF is 
known as the Half Total Error Rate (HTER), where MissC  and FalseAlarmC  are both equal to 
1, and argT etP = 0.5, i.e., HTER ( ) / 2Miss FalseAlarmP P= + . 

5.1 Evaluation on the XM2VTS Database 
The first set of speaker verification experiments was conducted on speech data extracted from 
the XM2VTS database [Messer 1999], which is a multimodal database consisting of face 
images, video sequences, and speech recordings taken on 295 subjects. The raw database 
contained approximately 30 hours of digital video recordings, which was then manually 
annotated. Each subject participated in four recording sessions at approximately one-month 
intervals, and each recording session consisted of two shots. In a shot, every subject was 
prompted to read three sentences “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and “Joe took 
father’s green shoe bench out” at his/her normal pace. The speech was recorded by a 
microphone clipped to the subject’s shirt. 

In accordance with Configuration II of the evaluation protocol described in Luettin 
[Luettin 1998], the XM2VTS database was divided into three subsets: “Training”, 
“Evaluation”, and “Test”. In our speaker verification experiments, we used the “Training” 
subset to build the individual client’s model and the world model1, and the “Evaluation” 
subset to estimate the decision threshold θ  in Eq. (1) and the parameters w, Fw , and b in 

                                                 
1 Currently, we do not have an external resource to train the world model and the background models. 

We follow the evaluation protocol in [Luettin 1998], which suggests “If a world model is needed, as 
in speaker verification, a client-dependent world model can be trained from all other clients but the 
actual client. Although not optimal, it is a valid method.” We will train the world model and the 
background models using an external resource in our future work. 
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Eq. (11) or Eq. (16). The performance of speaker verification was then evaluated on the “Test” 
subset. As shown in Table 1, a total of 293 speakers2 in the database were divided into 199 
clients, 25 “evaluation impostors”, and 69 “test impostors”. 

Table 1. Configuration II of the XM2VTS database. 
Session Shot 199 clients 25 evaluation impostors 69 test impostors 

1 
1 

2 

1 
2 

2 

Training 

1 
3 

2 
Evaluation 

1 
4 

2 
Test 

Evaluation Test 

We used 12 (2×2×3) utterances/speaker from sessions 1 and 2 to train the individual 
client’s model, represented by a Gaussian Mixture Model (GMM) [Reynolds 1995] with 64 
mixture components. For each client, the other 198 clients’ utterances from sessions 1 and 2 
were used to generate the world model, represented by a GMM with 256 mixture components; 
20 or 40 speakers were chosen from these 198 clients as the cohort. Then, we used 6 
utterances/client from session 3, and 24 (4×2×3) utterances/evaluation-impostor over the four 
sessions, which yielded 1,194 (6×199) client samples and 119,400 (24×25×199) impostor 
samples, to estimate θ , w, Fw , and b. However, as a kernel-based classifier can be 
intractable when a large number of training samples is involved, we reduced the number of 
impostor samples from 119,400 to 2,250 using a uniform random selection method. In the 
performance evaluation, we tested 6 utterances/client in session 4 and 24 
utterances/test-impostor over the four sessions, which produced 1,194 (6×199) client trials and 
329,544 (24×69×199) impostor trials. Table 2 summarizes all the parametric models used in 
each system. 

Using a 32-ms Hamming-windowed frame with 10-ms shifts, each speech utterance 
(sampled at 32 kHz) was converted into a stream of 24-order feature vectors, each consisting 
of 12 Mel-scale frequency cepstral coefficients [Huang 2001] and their first time derivatives. 

 

                                                 
2 We discarded 2 speakers (ID numbers 313 and 342) because of partial data corruption. 
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Table 2. A summary of the parametric models used in each system for the XM2VTS 
task. 

H0 H1 System 
a 64-mixture client GMM a 256-mixture world model B 64-mixture cohort GMMs 

L1 √  √ 
L2 √  √ 
L3 √  √ 
L4 √ √  
L5 √ √  
L6 √ √ √ 

5.1.1 Experiment Results 
First, B was set to 20 in the experiments. We implemented the proposed LLR system based on 
linear-based classifiers (FLD and Linear SVM) and kernel-based classifiers (KFD and SVM) 
in eight ways: 1) FLD with Eq. (30) (“FLD_w_20c”), 2) FLD with Eq. (31) 
(“FLD_w_10c_10f”), 3) Linear SVM with Eq. (30) (“LSVM_w_20c”), 4) Linear SVM with 
Eq. (31) (“LSVM_w_10c_10f”), 5) KFD with Eq. (30) (“KFD_w_20c”), 6) KFD with Eq. (31) 
(“KFD_w_10c_10f”), 7) SVM with Eq. (30) (“SVM_w_20c”), and 8) SVM with Eq. (31) 
(“SVM_w_10c_10f”). Both SVM and KFD used an RBF kernel function with σ= 5. For 
performance comparison, we used six systems as our baselines: 1) L1(U) with the 20 closest 
cohort models (“L1_20c”), 2) L1(U) with the 10 closest cohort models plus the 10 farthest 
cohort models (“L1_10c_10f”), 3) L2(U) with the 20 closest cohort models (“L2_20c”), 4) 
L3(U) with the 20 closest cohort models (“L3_20c”), 5) L4(U) (“L4”), and 6) L5(U) using an 
RBF kernel function with σ= 10 (“L5”). 

Figure 1 shows the results of the baseline systems evaluated on the “Test” subset in DET 
curves. We observe that the curves “L1_10c_10f”, “L4” and “L5” are better than the others. 
Thus, in the subsequent experiments, we focused on the performance improvements of our 
proposed LLR systems over these three baselines. 
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Figure 1. Baselines: DET curves for the XM2VTS “Test” subset (B = 20). 

The results of our proposed LLR systems, based on linear-based classifiers and 
kernel-based classifiers, versus the baseline systems evaluated on the “Test” subset are shown 
in Figs. 2 and 3, respectively. It is clear that the proposed LLR systems based on either 
linear-based classifiers or kernel-based classifiers outperform the baseline systems, while 
KFD perform better than SVM. 

Figure 2. Best baselines vs. our proposed LLR systems based on linear-based 
classifiers: DET curves for the XM2VTS “Test” subset (B = 20). 
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Figure 3. Best baselines vs. our proposed LLR systems based on kernel-based 
classifiers: DET curves for the XM2VTS “Test” subset (B = 20). 

An analysis of the results based on HTER is given in Table 3. For each approach, the 
decision threshold, θ  or b, was used to minimize HTER on the “Evaluation” subset and then 
applied to the “Test” subset. From Table 3, we observe that all the proposed LLR systems 
outperform the baseline systems and, for the “Test” subset, a 29.72% relative improvement 
was achieved by “KFD_w_20c”, compared to “L5” – the best baseline system. The advantage 
of integrating multiple background models in our methods could be the reason why the 
proposed LLR systems based on the linear SVM (“LSVM_w_20c” and “LSVM_w_10c_10f”) 
outperform “L5”, which applied the kernel-based SVM in L5(U). We also observe that, in the 
proposed LLR systems, all of the kernel-based methods outperform the linear-based methods. 

To analyze the effect of the number of background models, we implemented several 
proposed LLR systems and baseline systems with B = 40. An analysis of the results based on 
the HTER is given in Table 4. Compared to Table 3, the performance of each system with B = 
40 is, in general, better than that of its counterpart with B = 20, but not always. For instance, 
“KFD_w_20c_20f” in Table 4 achieved a lower HTER for “Evaluation” but a higher HTER 
for “Test”, compared to “KFD_w_10c_10f” in Table 3. This may be the result of overtraining. 
However, from Table 4, it is clear that the superiority of the proposed LLR systems over the 
baseline systems is again demonstrated. 
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Table 3. HTERs for the XM2VTS “Evaluation” and “Test” subsets (B = 20). 

 min HTER for “Evaluation” HTER for “Test” 
L1_20c 0.0676 0.0535 

L1_10c_10f 0.0589 0.0515 
L2_20c 0.0776 0.0635 
L3_20c 0.0734 0.0583 

L4 0.0633 0.0519 
L5 0.0590 0.0508 

FLD_w_20c 0.0459 0.0433 
LSVM_w_20c 0.0472 0.0495 

FLD_w_10c_10f 0.0468 0.0455 
LSVM_w_10c_10f 0.0453 0.0434 

KFD_w_20c 0.0247 0.0357 
SVM_w_20c 0.0320 0.0414 

KFD_w_10c_10f 0.0232 0.0389 
SVM_w_10c_10f 0.0310 0.0417 

Table 4. HTERs for the XM2VTS “Evaluation” and “Test” subsets (B = 40). 

 min HTER for “Evaluation” HTER for “Test” 
L1_40c 0.0675 0.0493 

L1_20c_20f 0.0589 0.0506 
L2_40c 0.0765 0.0597 
L3_40c 0.0722 0.0554 

KFD_w_40c 0.0074 0.0345 
SVM_w_40c 0.0189 0.0386 

KFD_w_20c_20f 0.0050 0.0416 
SVM_w_20c_20f 0.0192 0.0403 

5.2 Evaluation on the ISCSLP2006-SRE Database 
We participated in the text-independent speaker verification task of the ISCSLP2006 Speaker 
Recognition Evaluation (ISCSLP2006-SRE) plan [Chinese Corpus Consortium 2006]. The 
database contained 800 clients. Each client has one long training utterance, ranging in duration 
from 21 to 85 seconds, with an average length of 37.06 seconds. In addition, there are 5,933 
utterances in the “Test” subset, each of which ranges in duration from 5 seconds to 54 seconds, 
with an average length of 15.66 seconds. Each test utterance is associated with the client 
claimed by the speaker, and the task is to judge whether it is true or false. The ratio of true 
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clients to imposters is approximately 1:20. The answer sheet was released after the evaluation 
finished. 

To form the “Evaluation” subset for estimating θ, w, Fw , and b, we extracted some 
speech from each client’s training utterance in the following way. First, we sorted the 800 
clients in descending order according to the length of their training utterances. Then, for the 
first 100 clients, we cut two 4-second segments from the end of each client’s training utterance; 
however, for the remaining 700 clients, we only cut one 4-second segment from the end of 
each client’s training utterance. This yielded 900 (2×100+700) “Evaluation” utterances. In 
estimating θ, w, Fw , and b, each “Evaluation” utterance served as a client sample for its 
associated client, but acted as an imposter sample for each of the remaining 799 clients. This 
yielded 900 client samples and 719,100 (900×799) impostor samples. We used all the client 
samples and 2,400 randomly-selected impostor samples to estimate Fw  of the kernel-based 
classifiers. To determine θ or b, we used the 900 client samples and 18,000 randomly-selected 
impostor samples. This follows the suggestion in the ISCSLP2006-SRE Plan that the ratio of 
true clients to imposters in the “Test” subset should be approximately 1:20. 

The remaining portion of each client’s training utterance was used as “Training” to train 
that client’s model through UBM-MAP adaptation [Reynolds 2000]. This was done by first 
pooling all the speech in “Training” to train a UBM [Reynolds 2000] with 1,024 mixture 
Gaussian components, and then adapting the mean vectors of the UBM to each client’s GMM 
according to his/her “Training” utterance. 

The signal processing front-end was same as that applied in the XM2VTS task. 

5.2.1 Experiment Results 
The GMM-UBM [Reynolds 2000] system is the current state-of-the-art approach for the 
text-independent speaker verification task. Thus, in this part, we focus on the performance 
improvements of our methods over the baseline GMM-UBM system. 

As with the GMM-UBM system, we used the fast scoring method [Reynolds 2000] for 
likelihood ratio computation in the proposed methods. Both the client model λ and the B 
cohort models were adapted from the UBM Ω. Since the mixture indices were retained after 
UBM-MAP adaptation, each element of the characteristic vector x was computed 
approximately by only considering the C mixture components corresponding to the top C 
scoring mixtures in the UBM [Reynolds 2000]. In our experiments, the value of C was set to 
5. 

B was set to 100 in the experiments. We implemented the proposed LLR system in four 
ways: 1) KFD with Eq. (30) (“KFD_w_100c”), 2) KFD with Eq. (31) (“KFD_w_50c_50f”), 3) 
SVM with Eq. (30) (“SVM_w_100c”), and 4) SVM with Eq. (31) (“SVM_w_50c_50f”). We 
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compared the proposed systems with the baseline GMM-UBM system and Bengio et al.’s 
system (L5). Figure 4 shows the results of experiments conducted on 5,933 “Test” utterances 
in DET curves. The proposed LLR systems clearly outperform the baseline GMM-UBM 
system and Bengio et al.’s system (L5). According to the ISCSLP2006 SRE plan, the 
performance is measured by the NIST DCF with 10MissC = , 1FalseAlarmC = , and 

arg 0.05T etP = . In each system, the decision threshold, θ  or b, was selected to minimize the 
DCF on the “Evaluation” subset, and then applied to the “Test” subset. The minimum DCFs 
for the “Evaluation” subset and the associated DCFs for the “Test” subset are given in Table 5. 
We observe that “KFD_w_50c_50f” achieved a 34.08% relative improvement over 
“GMM-UBM”, and a 19.73% relative improvement over “L5”. 

 

Figure 4. DET curves for the ISCSLP2006-SRE “Test” subset. 

Table 5. DCFs for the ISCSLP2006-SRE “Evaluation” and “Test” subsets. 

 min DCF for “Evaluation” DCF for “Test” 
GMM-UBM 0.0129 0.0179 

L5 0.0120 0.0147 
KFD_w_50c_50f 0.0067 0.0118 
SVM_w_50c_50f 0.0067 0.0123 

KFD_w_100c 0.0063 0.0145 
SVM_w_100c 0.0076 0.0142 
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6. Conclusions 

We have presented a new LLR measure for speaker verification that improves the 
characterization of the alternative hypothesis by integrating multiple background models in a 
more effective and robust way than conventional methods. This new LLR measure is 
formulated as a non-linear classification problem and solved by using kernel-based classifiers, 
namely, the Kernel Fisher Discriminant and Support Vector Machine, to optimally separate 
the LLR samples of the null hypothesis from those of the alternative hypothesis. Experiments, 
in which the proposed methods were applied to two speaker verification tasks, showed notable 
improvements in performance over classical LLR-based approaches. Finally, it is worth noting 
that the proposed methods can be applied to other types of data and hypothesis testing 
problems. 
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