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  Abstract 

In this paper, we present a non-parametric speaker identification method using 
Earth Mover’s Distance (EMD) designed for text-indepedent speaker identification 
and its evaluation results for CCC Speaker Recognition Evaluation 2006, organized 
by the Chinese Corpus Consortium (CCC) for the th International Symposium on 
Chinese Spoken Language Processing (ISCSLP 2006). EMD based speaker 
identification (EMD-IR) was originally designed to be applied to a distributed 
speaker identification system, in which the feature vectors are compressed by 
vector quantization at a terminal and sent to a server that executes a pattern 
matching process. In this structure, we had to train speaker models using quantized 
data, then we utilized a non-parametric speaker model and EMD. From the 
experimental results on a Japanese speech corpus, EMD-IR showed higher 
robustness to the quantized data than the conventional GMM technique. Moreover, 
it achieved higher accuracy than GMM even if the data was not quantized. Hence, 
we have taken the challenge of CCC Speaker Recognition Evaluation 2006 using 
EMD-IR. Since the identification tasks defined in the evaluation were on an 
open-set basis, we introduce a new speaker verification module. Evaluation results 
show that EMD-IR achieves 99.3 % Identification Correctness Rate in a 
closed-channel speaker identification task. 
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1. Introduction 

In recent years, the use of portable terminals, such as mobile phones and PDAs (Personal 
Digital Assistants), has become increasingly popular. Additionally, it is expected that almost 
all appliances will connect to the Internet in the future. As a result, it will become increasingly 
popular to control these appliances using mobile and hand-held devices. We believe that a 
speaker recognition system will be used as a convenient personal identification system in this 
case. 

In order to meet this demand, we have proposed some speaker recognition techniques 
[Fattah 2006A; Kuroiwa 2006; Fattah 2006B] that have focused on Distributed 
Speech/Speaker Recognition (DSR) systems [Pearce 2000; Broun 2001; Grassi 2002; Sit 2004; 
Fukuda 2004; ETSI 2000; ITU 2004]. DSR separates the structural and computational 
components of recognition into two components - the front-end processing on the terminal and 
the matching block of the speech/speaker recognition on the server. One advantage of DSR is 
that it can avoid the negative effects of a speech codec, because the terminal sends the server 
quantized feature parameters instead of a compressed speech signal. Therefore, DSR can lead 
to an improvement in recognition performance. DSR is widely deployed in Japanese cellular 
telephone networks for speech recognition services [KDDI 2006]. On the other hand, in 
speaker recognition, since a speaker model has to be trained with a small amount of voice 
registration samples, quantization poses a big problem, especially in the case of using a 
continuous probability density function, e.g. GMM [Sit 2004; Fukuda 2004]. 

To solve this problem, we proposed a non-parametric speaker recognition method that 
does not require previous assumption of any probability distribution function and estimation 
of statistical parameters such as mean and variance for the speaker model [Kuroiwa 2006]. We 
represented a speaker model using a histogram of speaker-dependent VQ codebooks (VQ 
histogram). To calculate the distance between the speaker model and the feature vectors for 
recognition, we applied the Earth Mover’s Distance (EMD) algorithm. The EMD algorithm 
has been applied to calculate the distance between two images represented by histograms1 of 
multidimensional features [Rubner 1997]. In Kuroiwa [2006], we conducted text-independent 
speaker identification experiments using the Japanese de facto standard speaker recognition 
corpus and obtained better performance than GMM for quantized data. After that, we extended 
the algorithm to calculate the distance between a VQ histogram and a data set. From the 
results, we observed it achieved higher accuracy than the GMM and VQ distortion methods 
even if the data was not quantized. We believe that the better results were obtained by the 
proposed method because it considers not only the centroid location, but also the weight. 

                                                 
1In Rubner [1997], EMD is defined as the distance between two signatures. The signatures are histograms 
that have different bins, to that effect we use the term “histogram” in this paper. 
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EMD can compare the distribution of the speaker model with the distribution of the testing 
feature vectors as is. 

To evaluate the proposed method using a larger database, we have taken the challenge of 
CCC Speaker Recognition Evaluation 2006 [Zheng 2006] organized by the Chinese Corpus 
Consortium (CCC) for the 5th International Symposium on Chinese Spoken Language 
Processing (ISCSLP 2006). In view of the characteristics of the proposed method, we have 
chosen the text-independent speaker recognition task from the five tasks in CCC Speaker 
Recognition Evaluation 2006. The method was originally designed for the classic speaker 
identification problem that does not require a function to reject out-of-set speaker voices. 
However, since the evaluation data includes out-of-set speaker voices, we introduce a new 
speaker verification module in this paper. We also introduce a voice activity detector that 
classifies each frame as either a valid speech frame or a nonvalid frame (background noise or 
unreliable speech) on a frame-by-frame basis, in order to avoid miss-identification caused by 
non-speech frame information. 

This paper will continue as follows. Section 2 explains the Earth Mover’s Distance and 
the originally proposed speaker identification method. Some modifications for CCC Speaker 
Recognition Evaluation 2006 and its evaluation results for the Japanese de facto standard 
speaker recognition corpus are also described. Section 3 presents speaker identification 
experiments using CCC Speaker Recognition Evaluation corpus. Finally, we summarize this 
paper in Section 4. 

2. Non-Parametric Speaker Recognition Method Using EMD 

In this section, we first provide a brief overview of Earth Mover’s Distance. Next, we describe 
the distributed speaker recognition method using a non-parametric speaker model and EMD 
measurement. Finally, we propose EMD speaker identification for non-quantized data and a 
speaker verification module for identifying out-of-set speaker voices. 

2.1 Earth Mover’s Distance 
EMD was proposed by Rubner [1997] as an efficient image retrieval method. In this section, 
we describe the EMD algorithm. 

EMD is defined as the minimum amount of work needed to transport goods from several 
suppliers to several consumers. The EMD computation has been formalized by the following 
linear programming problem: Let 1 1{( , ), , ( , )}p m pmw wP p p be the discrete distribution, 
such as a histogram, where ip  is the centroid of each cluster and 

ipw is the corresponding 
weight ( frequency) of the cluster; let 1 1{( , ), , ( , )}q n qnw wQ q q be the histogram of test 
feature vectors; and D  [ ijd ] be the ground distance matrix where ijd  is the ground 
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distance between centroids ip  and jq . 

We want to find a flow F [ ijf ], where ijf  is the flow between ip  and jq  (i.e. 
the number of goods sent from ip  to jq ), that minimizes the overall cost: 

1 1
( , , )

m n
ij ij

i j
WORK d fP Q F ,                                            (1) 

subject to the following constraints 
0      (1 ,1 )ijf i m j n ,                                             (2) 
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Constraint (2) allows moving goods from P  to Q  and not vice-versa. Constraint (3) limits 
the amount of goods that can be sent by the cluster in P  to their weights. Constraint (4) 
limits the amount of goods that can be received by the clusters in Q  to their weights. 
Constraint (5) forces movement of the maximum amount of goods possible. They call this 
amount the total flow. Once the transportation problem is solved, and we have found the 
optimal flow F , the EMD is defined as the work normalized by the total flow: 

1 1

1 1
( , )

m n
i ij ijj

m n
i ijj

d f
EMD

f
P Q                                             (6) 

The normalization factor is the total weight of a smaller distribution, due to of constraint (5). 
This factor is needed when the two distributions of suppliers have different total weight, in 
order to avoid favoring a smaller distribution. In order to find the optimal flow, we used 
“EMD.c”, which has been made by available by Rubner [1999], in the following experiments. 
This program uses the transportation-simplex method and its computational complexity 
increases exponentially with the number of histogram bins [Rubner 1997]. 

2.2 Recognition Flow of the Proposed Method 
In the previous section, we described the concept that EMD is calculated as the least amount 
of work which fills the requests of consumers with the goods of suppliers. 

If we define the speaker model as the suppliers and the testing feature vectors as the 
consumers, the EMD can be applied to speaker recognition. Hence, we propose a distributed 
speaker recognition method using a non-parametric speaker model and EMD measurement. 
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The proposed method represents the speaker model and testing feature vectors as histograms. 
The details of the proposed method are described as follows. 

  Figure 1. A block diagram of the feature extraction process and the proposed 
speaker recognition method [Kuroiwa 2006] 

Figure 1 illustrates the outline of the feature extraction process using the ETSI DSR 
standard [ETSI 2000] and the proposed method. In the figure, dotted ( ) elements indicate 
data quantized once and double dotted (  ) elements indicate data quantized twice. As shown 
in the upper part of the figure, both registered utterances and testing utterances are converted 
to quantized feature vector sequences, , ,A BV V , and XV , using the ETSI DSR front-end and 
back-end ( AN , BN , and XN  are the number of frames in each sequence). In this block, tc  
is a feature vector of time frame t  that consists of MFCC and logarithmic energy; tx  is a 
code vector that is sent to the back-end (server); tc  is a decompressed feature vector; and 

tv  is a feature vector for use in the subsequent speaker recognition process. Using 
, ,A BV V , and XV , the proposed method is executed as follows. 
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(a) Speaker Model Generation 

Using the registered feature vectors, the system generates each speaker’s VQ codebook, 

1{ , , }sp sp
mp p , using the LBG algorithm with Euclidean distance where sp  is the speaker 

name and m  is the codebook size. In order to make a histogram of VQ centroids, the number 
of registered vectors whose nearest centroid is sp

ip  is counted and the frequency is set 
to

i

sp
pw .2 

As a result, we get a histogram of the speaker, sp , that is used as the speaker model in 
the proposed method: 

11{( , ) , ( , )}
m

sp sp spsp sp
mp pw wP p p .                                          (7) 

This histogram is used as the suppliers’ discrete distribution, P , described in the previous 
section. 

(b) Testing data 

A histogram of the testing data is directly calculated from XV , which was quantized by the 
ETSI DSR standard. The quantized feature vectors consist of static cepstrum vectors that have 

664  possible combinations and their delta cepstrum vectors, creating a set of vectors, 

1{ , , }
x

X X
mq q , where xm  is the number of individual vectors. In order to create a histogram 

from the set of vectors, the occurrence frequency of the vector X
iq  is set to

i

X
qw . As a result, 

we get a histogram of the testing data: 

1
1{( , ) , ( , )}

x mx

X X X X X
q m qw wQ q q .                                          (8) 

This histogram is used as the consumers’ discrete distribution, Q , described in the previous 
section. 

(c) Identification 

Using the speaker models, spP , and the testing data, XQ , speaker recognition is executed as 
in the following equation: 

( , )sp X

sp
Speaker argmin EMD P Q .                                         (9) 

For the ground distance ijd , in EMD, we used the Euclidean distance between sp
ip  and X

jq . 
Since the frequencies of sp

ip  and X
jq  were used as 

i

sp
pw  and 

j

X
qw , ijf  is the number of 

matched vectors in sp
ip  and X

jq  (i.e. the number of goods sent from sp
ip  to X

jq ) that 
minimizes the overall cost by EMD. 

                                                 
2 Although EMD does not satisfy the “Commutative Property” without weight normalization, we used the 

raw frequency counts as the weight. This is because we assume that the registration speech is longer than 
the testing speech, that is, we expect a set of phoneme frames of the testing speech to be a subset of 
phoneme frames of the registration speech. 
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Figure 2. Block diagram of speaker model creation 

2.3 Modifications for Non-Quantized Data 
In order to apply the proposed method to non-quantized data, we have modified the 
recognition flow described in the previous section. 

First, the “Compression” and “Decompression” blocks in Figure 1 are skipped, and 
consequently, feature vector sequences ,,A BV V , and XV  become non-quantized feature 
vector sequences , ,A BV V , and XV . In “Speaker Model Generation”, the LBG algorithm can 
generate each speaker’s codebook from the non-quantized feature vector sequence without any 
modification of the algorithm. Figure 2 shows a block diagram of this speaker model creation 
process. 
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         Figure 3. Conceptual image of the difference of VQ and EMD 

In the identification process, we consider the test utterance’s set of the feature vectors to 
be a histogram in which the occurrence frequency of each vector is one. Figure 3 shows 
conceptual images of the speaker identification score calculation in the VQ distortion method 
and the proposed EMD method. The number written above each circle (centroid) in figure (b) 
is the weight or amount of data that each centroid can accept. The VQ distortion method does 
not care about the amount of data assigned to each centroid. This results in the VQ distortion 
becoming small when many vectors concentrate on a single centroid, which is caused by 
specific sounds, such as tone-like noises, the sound of breathing, etc. On the other hand, EMD 
takes into account the amount of data for each centroid. This means that the proposed method 
can compare the distribution of the speaker model with the distribution of the testing feature 
vectors. 
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Through above modification, we can calculate the EMD between the speaker model and 
the non-quantized testing data. To confirm the performance of this modification, we 
conducted text-independent speaker identification experiments using the Japanese de facto 
standard speaker recognition corpus. From the corpus, we used 21 male speakers’ utterances 
that were recorded in 7 sessions over 19 months. Each speaker spoke ten sentences, each of 
which had a length of about five seconds. For the registered data, i.e., the speaker model 
training data, we used five sentences which were uttered in the first session by each speaker. 
The utterances of the remaining six sessions were used for testing, in total there were 630 
utterances (21 speakers  5 sentences  6 sessions). The text of these utterances was not 
contained in the training data. 

These utterances, sampled at 16kHz, were segmented into overlapping frames of 25ms, 
producing a frame every 10ms. A Hamming window was applied to each frame. Mel-filtering 
was performed to extract 12-dimensional static MFCC, as well as a logarithmic energy 
measure in the DSR front-end. The 12-dimensional delta MFCC was extracted from the static 
MFCC to constitute a 25-dimensional feature vector (12 static MFCCs + 12 delta MFCC + 
delta log-energy). Cepstral Mean Subtraction (CMS) [Atal 1974] was applied on the static 
MFCC vectors. 

For comparison with the proposed method, we also conducted experiments with speaker 
recognition methods based on GMM [Reynolds 1995; Kuroiwa 2006] and VQ-distortion 
[Soong 1985; Kuroiwa 2006]. 

In the experiment, the number of centroids for each speaker’s codebook was set to 256 
for both the proposed method and the VQ-distortion based method. The GMM based method 
used a diagonal covariance with 64 components. These parameter settings obtained the best 
results [Kuroiwa 2006]. The LBG algorithm was used for training the VQ codebooks, and the 
Baum-Welch maximum likelihood algorithm was used for training the GMMs. HTK3.3 
[Young 2005] was utilized for both of the training sets. 

Table 1 shows the experimental results. We used the ETSI DSR standard for feature 
extraction, but we skipped the quantization process in the case of “non-quantized”. 

Table 1. Identification error rate for the Japanese database 
Method Non-quantized Quantized 

GMM 1.6 % (10/630) 4.0 % (25/630)

VQ-distortion 0.8 % ( 5/630) 1.0 % ( 6/630) 

EMD (proposed) 0.6 % ( 4/630) 0.6 % ( 4/630) 

These results show that the proposed method is an effective method for not only “Quantized” 
data but also “Non-quantized” data. 



 

 

˅ˇˋʳ ʳ ʳ ʳ ʳ                                                  Shingo Kuroiwa et al. 

 

2.4 Identification of Out-of-Set Data 
In order to identify out-of-set data, which is needed for the CCC Speaker Recognition 
Evaluation corpus, we introduce an out-of-set identification module after “Speaker 
identification using EMD” in Figure 1. The evaluation includes a candidate speaker list for 
each testing datum. However, we calculate the EMD between the testing datum and all 
speaker models. This results in an N -best ( N nearest) speaker list being obtained. Then, the 
N -best speaker list is compared with the provided candidate speaker list. If no common 
speaker exists between the lists, the testing datum is rejected. On the other hand, if several 
speakers appear in the common speaker list, then the nearest speaker is chosen. 

N  is a parameter that controls False Rejection Rate (FRR) and False Acceptance Rate 
(FAR) in the method. It is most likely dependent on the total number of speaker models. In the 
following experiments, we used 400 speaker models that were trained with all data for 
enrollment in the text-independent speaker recognition task of CCC Speaker Recognition 
Evaluation 2006. N was set to 4, which made the ratio of data for in-set and out-of-set about 
1:1. This matched the previous information provided with the testing data. We think this is 
reasonable because, in a real system, we can obtain the utterances each speaker used to access 
the system and from this we can know the ratio of in-set and out-of-set users in a field trial 
phase of the system. Actually, we have a good example of this technique, the threshold values 
in the Prank Call Rejection System [Kuroiwa 1996], deployed by KDDI international 
telephone service from 1996, were determined with this kind of process which still works 
effectively today. 

2.5 Voice Activity Detector 
In order to avoid any detrimental effects caused by non-speech sections and unreliable speech 
frames, we employed a voice activity detector (VAD) that classifies each frame as either 
speech or background noise on a frame-by-frame basis. The VAD uses a power threshold that 
was calculated from percentile levels based on each observed speech signal. We used the 
following threshold in the experiments. 

95 10 10( )%tile %tile %tileThreshold P P P                                (10) 

Only the frames with a higher power level than this threshold value were used for speaker 
identification. 

 is set to 0.2, which allowed the proposed method to obtain a good identification 
correctness rate for the development data in CCC Speaker Recognition Evaluation 2006. This 
process reduced the number of frames by 10 % to 50 %. This reduction greatly benefits the 
proposed method, since it is computationally expensive. 
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3. Experiments 

We conducted text-independent speaker identification experiments to evaluate the proposed 
method using the CCC Speaker Recognition Evaluation 2006 data developed by the Chinese 
Corpus Consortium (CCC). 

3.1 Task Definition 
In the 5th International Symposium on Chinese Spoken Language Processing (ISCSLP 2006), 
the CCC organized a special session on speaker recognition and provided speech data to 
evaluate speaker recognition algorithms using the same database. The CCC provided several 
kinds of tasks: text-independent speaker identification, text-dependent and text-independent 
speaker verification, text-independent cross-channel speaker identification, and text-dependent 
and text-independent cross-channel speaker verification. We chose the text-independent 
speaker recognition task in view of the characteristics of the proposed method. The data set of 
this task contained 400 speakers’ data for enrollment, and 2,395 utterances for testing. Each 
datum to enroll was longer than 30 seconds and recorded over a land-line (PSTN) or 
cellular-phone (GSM only) network. The channel each speaker used to speak the utterances 
was the same across enrollment and testing data. Each testing datum had a candidate speakers 
list, and about half of the testing data was uttered by out-of-set speakers who did not appear in 
the list. Therefore, the speaker identification algorithm had to decide whether each testing 
datum was in-set or out-of-set also. 

The CCC also provided development data that contained 300 speakers’ utterances with 
speaker labels and channel conditions. We were able to decide the various parameters of the 
algorithm using the development data. 

The performance of speaker identification was evaluated using the Identification 
Correctness Rate, defined as: 

100NumberOfCorrectlyIdentifiedData%CorrectIdentification %
TotalNumberOfTrialData

             (11) 

where “correctly identified data” means the data identified as the speaker models they should 
be by the top-candidate output if they were “in-set” or “non-match” if “out-of-set”. 

3.2 Experimental Conditions 
All data, sampled at 8kHz, was segmented into overlapping frames of 25ms, producing a 
frame every 10ms. A Hamming window was applied to each frame. Mel-filtering was 
performed to extract 12-dimensional static MFCC, as well as a logarithmic energy (log-energy) 
measure. The 12-dimensional delta MFCC and delta log-energy were extracted from the static 
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MFCC and the log-energy, respectively. After that, by omitting the log-energy, we constituted 
a 25-dimensional feature vector (12 static MFCCs + 12 delta MFCCs + delta log-energy). 
Cepstral Mean Subtraction (CMS) was applied on the static MFCC vectors. We used HTK3.3 
[Young 2005] for feature extraction. 

In the experiment, we set the number of centroids of each speaker’s codebook to 64, 
which gave the best accuracy in experiments using the development data. The parameter for 
detecting the out-of-set data was also set up using this data along with the previous 
information that the ratio of testing samples for in-set and out-of-set cases would be about 1:1. 

3.3 Experimental Results 
Table 2 shows the Identification Correctness Rate (ICR), False Acceptance Rate (FAR), False 
Rejection Rate (FRR), and Recognition Error Rate (RER). RER is the rate in which one 
speaker’s utterance was identified as another’s in the candidate list. The table shows the 
proposed method achieved extremely high performance in the task. This result is the best ICR 
in the “speaker identification task” under the closed-channel condition of CCC Speaker 
Recognition Evaluation 2006 in ISCSLP 2006. This means that the proposed method achieved 
higher performance than the GMM-based techniques [Zheng 2006; Lee 2006]. 

 Table 2. Evaluation results of the proposed method for CCC Speaker 
Recognition Evaluation 2006 

Identification Correctness Rate 99.33 % (2379/2395)

False Acceptance Rate 0.42 % (  10/2395)

False Rejection Rate 0.25 % (   6/2395)

Recognition Error Rate 0.00 % (   0/2395)

Table 3. Evaluation results using GMM and VQ-distortion for CCC Speaker 
Recognition Evaluation 2006 

Method GMM VQ-distortion 

Identification Correctness Rate 95.24 % (2281/2395) 96.20 % (2304/2395) 

False Acceptance Rate 3.97 % (  95/2395) 3.63 % (  87/2395) 

False Rejection Rate 0.67 % (  16/2395) 0.13 % (   3/2395) 

Recognition Error Rate 0.13 % (   3/2395) 0.04 % (   1/2395) 

For a fair comparison with the proposed method, we conducted experiments using GMM 
and VQ-distortion based methods using the same feature parameters. Table 3 shows the 
experimental results. We used diagonal covariance matrices for GMM with 32 mixture 
components, which obtained the best ICR for testing data with the optimal threshold, i.e., we 



 

 

            Speaker Identification Method Using Earth Mover’s Distance for        ˅ˈ˄ 

CCC Speaker Recognition Evaluation 2006 

 

set the optimal parameters for the GMM and the VQ-distortion based methods posteriorly. The 
codebook size for the VQ-distortion method was 128. 

These results also show the proposed method achieved higher accuracy than the GMM 
and VQ-distortion methods. Especially, the proposed method reduced the false acceptance of 
out-of-set speakers. 

We expect the reason for these results is the difference between distance measures (score 
calculation). The proposed method directly calculates the distance between data sets, while 
GMM-based methods calculate the score by totaling the likelihood of each frame. The 
proposed method can compare the distribution of the speaker model with the distribution of 
the testing feature vectors. Consequently, by considering the weight of each centroid, the 
proposed method can avoid the error that occurred with the VQ-distortion based method, i.e., 
the distortion becomes small because many frames concentrate on one centroid. Due to this, 
we believe the false acceptance rate of the proposed method was able to be much lower than 
the conventional methods. On the other hand, the proposed algorithm is computationally 
expensive. Actually, it took about nine minutes to identify one utterance with an Intel Pentium 
4 3.2GHz processor in the experiments. 

When we investigated the data of FAR and FRR, the word sequences of several testing 
data were included in the training data of the other speaker and was not included in the 
training data of the correct speaker. The use of automatic speech recognition for 
phoneme-dependent identification methods will improve the speaker identification 
performance for these data [Fattah 2006A; Park 2002], although it will turn into a language 
dependent system. 

4. Summary 

In this paper, we have presented a non-parametric speaker identification method using Earth 
Mover’s Distance (EMD) designed for text-indepedent speaker identification and its 
evaluation results for CCC Speaker Recognition Evaluation 2006, organized by the Chinese 
Corpus Consortium (CCC) for the th International Symposium on Chinese Spoken Language 
Processing (ISCSLP 2006). The proposed method was originally designed to apply to a 
distributed speaker recognition system. We have improved the method to be able to handle 
non-quantized data and reject out-of-set speakers in this paper. 

Experimental results, on the text-independent speaker identification task with a closed 
channel condition, showed the proposed method achieved an identification correctness rate of 
99.33 %, which was the best for the task at ISCSLP 2006. This result suggests that the 
proposed method would also be effective in speaker verification. On the other hand, the 
proposed method is computationally expensive. We also confirmed that the errors of the 
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proposed method depended on the content of the utterances. 

In future work, we will accelerate the distance calculation process in the proposed 
algorithm and apply the method to speaker verification. Furthermore, we will consider use of 
speech recognition to improve the speaker identification accuracy. We will also study other 
distance measures between discrete distributions that are appropriate for speaker recognition. 
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A Novel Characterization of the Alternative Hypothesis 

Using Kernel Discriminant Analysis for 

LLR-Based Speaker Verification 

Yi-Hsiang Chao  , Hsin-Min Wang  and Ruei-Chuan Chang  

Abstract 

In a log-likelihood ratio (LLR)-based speaker verification system, the alternative 
hypothesis is usually difficult to characterize a priori, since the model should cover 
the space of all possible impostors. In this paper, we propose a new LLR measure 
in an attempt to characterize the alternative hypothesis in a more effective and 
robust way than conventional methods. This LLR measure can be further 
formulated as a non-linear discriminant classifier and solved by kernel-based 
techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector 
Machine (SVM). The results of experiments on two speaker verification tasks show 
that the proposed methods outperform classical LLR-based approaches. 

Keywords: Kernel Fisher Discriminant, Log-likelihood Ratio, Speaker 
Verification, Support Vector Machine. 

1. Introduction 

In essence, the speaker verification task is a hypothesis testing problem. Given an input 
utterance U, the goal is to determine whether U was spoken by the hypothesized speaker or 
not. The log-likelihood ratio (LLR)-based detector [Reynolds 1995] is one of the 
state-of-the-art approaches for speaker verification. Consider the following hypotheses: 

 

H0: U is from the hypothesized speaker,  

H1: U is not from the hypothesized speaker. 

 
The LLR test is expressed as: 
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                      (1) 

where ( | ),   0,  1,ip U H i  is the likelihood of hypothesis Hi given the utterance U, and  
is the threshold. H0 and H1 are, respectively, called the null hypothesis and the alternative 
hypothesis. Mathematically, H0 and H1 can be represented by parametric models denoted as 

 and , respectively;  is often called an anti-model. Though H0 can be modeled 
straightforwardly using speech utterances from the hypothesized speaker, H1 does not involve 
any specific speaker, thus lacks explicit data for modeling. Many approaches have been 
proposed to characterize H1, and various LLR measures have been developed. We can 
formulate these measures in the following general form [Reynolds 2000]: 

1 2

( | ) ( | )( ) log log ,
( ( | ), ( | ),...,  ( | ))( | ) N

p U p UL U
p U p U p Up U

                 (2) 

where ( ) is some function of the likelihood values from a set of so-called background 
models { 1, 2,..., N}. For example, the background model set can be obtained from N 
representative speakers, called a cohort [Rosenberg 1992], which simulates potential 
impostors. If ( ) is an average function [Reynolds 1995], the LLR can be written as: 

1
1

1( ) log ( | ) log ( | ) .
N

i
i

L U p U p U
N

                                  (3) 

Alternatively, the average function can be replaced by various functions, such as the 
maximum [Liu 1996], i.e.: 

 

2
1

( ) log ( | ) max log ( | ),i
i N

L U p U p U                                   (4) 

or the geometric mean [Liu 1996], i.e., 

3
1

1( ) log ( | ) log ( | ).
N

i
i

L U p U p U
N

                                    (5) 

A special case arises when ( ) is an identity function and N = 1. In this instance, a single 
background model is usually trained by pooling all the available data, which is generally 
irrelevant to the clients, from a large number of speakers. This is called the world model or the 
Universal Background Model (UBM) [Reynolds 2000]. The LLR in this case becomes: 

 

4 ( ) log ( | ) log ( | ),L U p U p U                                          (6) 

where  denotes the world model. 



 

 

            A Novel Characterization of the Alternative Hypothesis Using          ˅ˈˊ 

Kernel Discriminant Analysis for LLR-Based Speaker Verification 

 

However, none of the LLR measures developed so far has proven to be absolutely 
superior to any other, since the selection of ( ) is usually application and training data 
dependent. In particular, the use of a simple function, such as the average, maximum, or 
geometric mean, is a heuristic that does not include any optimization process. The issues of 
selection, size, and combination of background models motivate us to design a more 
comprehensive function, ( ), to improve the characterization of the alternative hypothesis. In 
this paper, we first propose a new LLR measure in an attempt to characterize H1 by integrating 
all the background models in a more effective and robust way than conventional methods. 
Then, we formulate this new LLR measure as a non-linear discriminant classifier and apply 
kernel-based techniques, including the Kernel Fisher Discriminant (KFD) [Mika 1999] and 
Support Vector Machine (SVM) [Burges 1998], to optimally separate the LLR samples of the 
null hypothesis from those of the alternative hypothesis. 

SVM-based techniques have been successfully applied to many classification and 
regression tasks, including speaker verification. Unlike our work, existing approaches [Bengio 
2001; Wan 2005] only use a single background model, i.e., the world model, to represent the 
alternative hypothesis, instead of integrating multiple background models to characterize the 
alternative hypothesis. For example, Bengio et al. [Bengio 2001] proposed a decision 
function: 

5 1 2( ) log ( | ) log ( | ) ,L U a p U a p U b                                   (7) 

where a1, a2, and b are adjustable parameters estimated using SVM. An extended version of 
Eq. (7) with the Fisher kernel and the LR score-space kernel for SVM was investigated in 
Wan [Wan 2005]. 

The results of speaker verification experiments conducted on both the XM2VTS database 
[Messer 1999] and the ISCSLP2006-SRE database [Chinese Corpus Consortium 2006] show 
that the proposed methods outperform classical LLR-based approaches. The remainder of this 
paper is organized as follows. Section 2 describes the design of the new LLR measure in our 
approach. Sections 3 and 4 introduce the kernel discriminant analysis used in this work and 
the formation of the characteristic vector by background model selection, respectively. Section 
5 contains our experiment results. Finally, in Section 6, we present our conclusions. 

2. New LLR Measure Design 

2.1 Analysis of the Alternative Hypothesis 
First of all, we redesign the function ( ) in Eq. (2) as: 

1 21 2 1/( ... )
1 2( | ) ( ) ( ( | ) ( | ) ... ( | ) ) ,N Nw w w ww w

Np U p U p U p Uu        (8) 
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where 1 2[ ( | ), ( | ),...,  ( | )]TNp U p U p Uu  is an N×1 vector and iw  is the weight of the 
likelihood p(U | i), i = 1,2,..., N. This function gives N background models different weights 
according to their individual contribution to the alternative hypothesis. It is clear that Eq. (8) 
is equivalent to a geometric mean function when 1iw , i = 1,2,..., N. If some background 
model i contrasts with an input utterance U, the likelihood p(U | i) may be extremely small, 
thus causing the geometric mean to approximate zero. In contrast, by assigning a favorable 
weight to each background model, the function ( ) defined in Eq. (8) may be less affected by 
any specific background model with an extremely small likelihood. Therefore, the resulting 
score for the alternative hypothesis obtained by Eq. (8) will be more robust and reliable than 
that obtained by a geometric mean function. It is also clear that Eq. (8) will reduce to a 
maximum function when * 1iw , 1* arg max log ( | )i N ii p U ; and 0iw , *i i . 

By substituting Eq. (8) into Eq. (2), we obtain: 

1 21 2
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   (9) 

where 1 2[ ,  ...,  ]TNw w ww  is an N×1 weight vector, the new threshold 

1 2' ( ... )Nw w w , and x is an N × 1 vector in the space RN, expressed by 

1 2

( | ) ( | ) ( | )[log , log ,..., log ] .
( | ) ( | ) ( | )

T

N

p U p U p U
p U p U p U

x                          (10) 

The implicit idea in Eq. (10) is that the speech utterance U can be represented by a 
characteristic vector x. 

If we replace the threshold '  in Eq. (9) with a bias b, the equation can be rewritten as: 

( )  ( )TL U b fw x x ,                                               (11) 
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where f(x) forms a so-called linear discriminant classifier. This classifier translates the goal of 
solving an LLR measure into the optimization of w and b, such that the utterances of clients 
and impostors can be separated. To realize this classifier, three distinct data sets are needed: 
one for generating each client�’s model, one for generating the background models, and one for 
optimizing w and b. Since the bias b plays the same role as the decision threshold of the 
conventional LLR measure, which can be determined through a trade-off between false 
acceptance and false rejection, the main goal here is to find w. Existing linear discriminant 
analysis techniques, such as Fisher�’s Linear Discriminant (FLD) [Duda 2001] or Linear SVM 
[Burges 1998], can be applied to implement Eq. (11). 

2.2 Linear Discriminant Analysis 
Fisher�’s Linear Discriminant (FLD) is one of the popular linear discriminant classifiers [Duda 
2001]. Suppose the i-th class has ni data samples, 1{ ,.., }

i

i i
i nX x x , i = 1, 2. The goal of FLD is 

to seek a direction w in the space RN such that the following Fisher�’s criterion function J(w) is 
maximized: 

( ) ,
T

b
T

w
J

w S w
w

w S w
                                                      (12) 

where Sb and Sw are, respectively, the between-class scatter matrix and the within-class scatter 
matrix defined as 

1 2 1 2( )( )T
bS m m m m                                               (13) 

and 

1,2  
( )( ) ,

i

T
w i i

i x X
S x m x m                                          (14) 

where mi is the mean vector of the i-th class computed by 

1

1 .
in

i
i s

sin
m x                                                         (15) 

According to Duda [Duda 2001], the solution for w, which maximizes J(w) defined in Eq. (12), 
is the leading eigenvector of bw SS 1 . 

3. Kernel Discriminant Analysis 

Intuitively, f(x) in Eq. (11) can be solved via linear discriminant training algorithms [Duda 
2001], such as FLD or Linear SVM. However, such methods are based on the assumption that 
the observed data of different classes is linearly separable, which is obviously not feasible in 
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most practical cases with nonlinearly separable data. To solve this problem more effectively, 
we propose using a kernel-based nonlinear discriminant classifier. It is hoped that data from 
different classes, which is not linearly separable in the original input space RN, can be 
separated linearly in a certain higher dimensional (maybe infinite) feature space F via a 
nonlinear mapping . Let (x) denote a vector obtained by mapping x from RN to F. Then, the 
objective function, based on Eq. (11), can be re-defined as: 

( ) ( )  ,T
Ff bx w x                                                  (16) 

which constitutes a linear discriminant classifier in F, where Fw  is a weight vector in F. 

In practice, it is difficult to determine the kind of mapping that would be applicable; 
therefore, the computation of (x) might be infeasible. To overcome this difficulty, a 
promising approach is to characterize the relationship between the data samples in F, instead 
of computing (x) directly. This is achieved by introducing a kernel function k(x, 
y)=< (x), (y)>, which is the dot product of two vectors (x) and (y) in F. The kernel 
function k( ) must be symmetric, positive definite and conform to Mercer�’s condition [Burges 
1998].  

A number of kernel functions exist, such as the simplest dot product kernel function k(x, 
y) = xTy, and the very popular Radial Basis Function (RBF) kernel k(x, y) = exp(  ||x  y||2 
/ 2 2) in which  is a tunable parameter. Existing techniques, such as KFD [Mika 1999] or 
SVM [Burges 1998], can be applied to implement Eq. (16). 

3.1 Kernel Fisher Discriminant (KFD) 
Suppose the i-th class has ni data samples, 1{ ,.., }

i

i i
i nX x x , i = 1, 2. The goal of KFD is to seek 

a direction Fw  in the feature space F such that the following Fisher�’s criterion function 
( )FJ w  is maximized: 

( ) ,
T

F b F
F T

F w F
J

w S w
w

w S w
                                                  (17) 

where bS  and wS  are, respectively, the between-class scatter matrix and the within-class 
scatter matrix in F defined as: 

1 2 1 2( )( )T
bS m m m m                                            (18) 

and 

1,2  
( ( ) )( ( ) ) ,

i

T
w i i

i x X
S x m x m                                  (19) 

where 1(1/ ) ( )in i
i i ssnm x , and i = 1, 2, is the mean vector of the i-th class in F. Let  

1 2

1 1 2 2
1 2 1 1 1{ ,.., } { ,.., } { ,.., }ln nX X x x x x x x  and 21 nnl . Since the solution of Fw  must 
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lie in the span of all training data samples mapped in F [Mika 1999], Fw  can be expressed 
as: 

1
( ).

l
F j j

j
w x                                                      (20) 

Let T = [ 1, 2,..., l]. Accordingly, Eq. (16) can be re-written as: 

1
( ) ( , ) .

l
j j

j
f k bx x x                                                 (21) 

Our goal, therefore, changes from finding Fw  to finding , which maximizes 

( ) ,
T

TJ M
N

                                                        (22) 

where M and N are computed by: 

1 2 1 2( )( )TM                                                 (23) 

and 

1,2
( ) ,

i i

T
i n n i

i
N K I 1 K                                                (24) 

respectively, where i  is an l×1 vector whose j-th element 1( ) (1/ ) ( , )in i
i j i j ssn k x x , j = 

1,2,..., l; Ki is an l×ni matrix with ( ) ( , )i
i js j skK x x ; Ini

 is an ni×ni identity matrix; and 1ni
 is 

an ni×ni matrix with all entries equal to 1/ni. Following Mika [Mika 1999], the solution for , 
which maximizes J( ) defined in Eq. (22), is the leading eigenvector of N-1M. 

3.2 Support Vector Machine (SVM) 
Alternatively, Eq. (16) can be solved with an SVM, the goal of which is to seek a separating 
hyperplane in the feature space F that maximizes the margin between classes. Following 
Burges [Burges 1998], Fw  is expressed as: 

1
( ),

l
F j j j

j
yw x                                                    (25) 

which yields 

1
( ) ( , ) ,

l
j j j

j
f y k bx x x                                                (26) 

where each training sample xj belongs to one of the two classes identified by the label 
yj { 1,1}, j=1, 2,..., l. We can find the coefficients j by maximizing the objective function, 
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1 1 1

1( ) ( , ),
2

l l l
j i j i j i j

j i j
Q y y k x x                                   (27) 

subject to the constraints, 

1
0,

l
j j

j
y  and 0 ,   ,j C j                                       (28) 

where C  is a penalty parameter [Burges 1998]. The problem can be solved using quadratic 
programming techniques [Vapnik 1998]. Note that most j are equal to zero, and the training 
samples associated with non-zero j are called support vectors. A few support vectors act as 
the key to deciding the optimal margin between classes in the SVM. An SVM with a dot 
product kernel function is known as a Linear SVM. 

4. Formation of the Characteristic Vector 

In our experiments, we use B+1 background models, consisting of B cohort set models and 
one world model, to form the characteristic vector x in Eq. (10); and B cohort set models for 
L1(U) in Eq. (3), L2(U) in Eq. (4), and L3(U) in Eq. (5). Two cohort selection methods 
[Reynolds 1995] are used in the experiments. One selects the B closest speakers to each client; 
and the other selects the B/2 closest speakers to, plus the B/2 farthest speakers from, each 
client. The selection is based on the speaker distance measure [Reynolds 1995], computed by: 

( | )( | )
( , ) log log ,

( | ) ( | )
j ji i

i j
i j j i

p Up U
d

p U p U
                                 (29) 

where i  and j  are speaker models trained using the i-th speaker�’s utterances Ui and the 
j-th speaker�’s utterances Uj, respectively. Two cohort selection methods yield the following 
two (B+1)×1 characteristic vectors: 

cst  1 cst  

( | ) ( | ) ( | )log   log  ...  log
( | ) ( | ) ( | )

T

B

p U p U p U
p U p U p U

x                     (30) 

and 

cst1 cst / 2 fst1 fst / 2

( | ) ( | ) ( | ) ( | ) ( | )
( | ) ( | ) ( | ) ( | ) ( | )= [log log log log log ]

B B

p U p U p U p U p U T
p U p U p U p U p Ux ,        (31) 

where cst  i  and fst  i  are the i-th closest model and the i-th farthest model of the client 
model , respectively. 
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5. Experiments 

We evaluate the proposed approaches on two databases: the XM2VTS database [Messer 1999] 
and the ISCSLP2006 speaker recognition evaluation (ISCSLP2006-SRE) database [Chinese 
Corpus Consortium 2006]. 

For the performance evaluation, we adopt the Detection Error Tradeoff (DET) curve 
[Martin 1997]. In addition, the NIST Detection Cost Function (DCF), which reflects the 
performance at a single operating point on the DET curve, is also used. The DCF is defined as: 

 

arg arg(1 )DET Miss Miss T et FalseAlarm FalseAlarm T etC C P P C P P ,          (32) 

where MissP  and FalseAlarmP  are the miss probability and the false-alarm probability, 
respectively, MissC  and FalseAlarmC  are the respective relative costs of detection errors, and 

argT etP  is the a priori probability of the specific target speaker. A special case of the DCF is 
known as the Half Total Error Rate (HTER), where MissC  and FalseAlarmC  are both equal to 
1, and argT etP = 0.5, i.e., HTER ( ) / 2Miss FalseAlarmP P . 

5.1 Evaluation on the XM2VTS Database 
The first set of speaker verification experiments was conducted on speech data extracted from 
the XM2VTS database [Messer 1999], which is a multimodal database consisting of face 
images, video sequences, and speech recordings taken on 295 subjects. The raw database 
contained approximately 30 hours of digital video recordings, which was then manually 
annotated. Each subject participated in four recording sessions at approximately one-month 
intervals, and each recording session consisted of two shots. In a shot, every subject was 
prompted to read three sentences �“0 1 2 3 4 5 6 7 8 9�”, �“5 0 6 9 2 8 1 3 7 4�”, and �“Joe took 
father�’s green shoe bench out�” at his/her normal pace. The speech was recorded by a 
microphone clipped to the subject�’s shirt. 

In accordance with Configuration II of the evaluation protocol described in Luettin 
[Luettin 1998], the XM2VTS database was divided into three subsets: �“Training�”, 
�“Evaluation�”, and �“Test�”. In our speaker verification experiments, we used the �“Training�” 
subset to build the individual client�’s model and the world model1, and the �“Evaluation�” 
subset to estimate the decision threshold  in Eq. (1) and the parameters w, Fw , and b in 

                                                 
1 Currently, we do not have an external resource to train the world model and the background models. 

We follow the evaluation protocol in [Luettin 1998], which suggests �“If a world model is needed, as 
in speaker verification, a client-dependent world model can be trained from all other clients but the 
actual client. Although not optimal, it is a valid method.�” We will train the world model and the 
background models using an external resource in our future work. 
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Eq. (11) or Eq. (16). The performance of speaker verification was then evaluated on the �“Test�” 
subset. As shown in Table 1, a total of 293 speakers2 in the database were divided into 199 
clients, 25 �“evaluation impostors�”, and 69 �“test impostors�”. 

Table 1. Configuration II of the XM2VTS database. 
Session Shot 199 clients 25 evaluation impostors 69 test impostors 

1 
1 

2 

1 
2 

2 

Training 

1 
3 

2 
Evaluation 

1 
4 

2 
Test 

Evaluation Test 

We used 12 (2 2 3) utterances/speaker from sessions 1 and 2 to train the individual 
client�’s model, represented by a Gaussian Mixture Model (GMM) [Reynolds 1995] with 64 
mixture components. For each client, the other 198 clients�’ utterances from sessions 1 and 2 
were used to generate the world model, represented by a GMM with 256 mixture components; 
20 or 40 speakers were chosen from these 198 clients as the cohort. Then, we used 6 
utterances/client from session 3, and 24 (4 2 3) utterances/evaluation-impostor over the four 
sessions, which yielded 1,194 (6 199) client samples and 119,400 (24 25 199) impostor 
samples, to estimate , w, Fw , and b. However, as a kernel-based classifier can be 
intractable when a large number of training samples is involved, we reduced the number of 
impostor samples from 119,400 to 2,250 using a uniform random selection method. In the 
performance evaluation, we tested 6 utterances/client in session 4 and 24 
utterances/test-impostor over the four sessions, which produced 1,194 (6 199) client trials and 
329,544 (24 69 199) impostor trials. Table 2 summarizes all the parametric models used in 
each system. 

Using a 32-ms Hamming-windowed frame with 10-ms shifts, each speech utterance 
(sampled at 32 kHz) was converted into a stream of 24-order feature vectors, each consisting 
of 12 Mel-scale frequency cepstral coefficients [Huang 2001] and their first time derivatives. 

 

                                                 
2 We discarded 2 speakers (ID numbers 313 and 342) because of partial data corruption. 
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Table 2. A summary of the parametric models used in each system for the XM2VTS 
task. 

H0 H1 System 
a 64-mixture client GMM a 256-mixture world model B 64-mixture cohort GMMs 

L1    
L2    
L3    
L4    
L5    
L6    

5.1.1 Experiment Results 

First, B was set to 20 in the experiments. We implemented the proposed LLR system based on 
linear-based classifiers (FLD and Linear SVM) and kernel-based classifiers (KFD and SVM) 
in eight ways: 1) FLD with Eq. (30) (�“FLD_w_20c�”), 2) FLD with Eq. (31) 
(�“FLD_w_10c_10f�”), 3) Linear SVM with Eq. (30) (�“LSVM_w_20c�”), 4) Linear SVM with 
Eq. (31) (�“LSVM_w_10c_10f�”), 5) KFD with Eq. (30) (�“KFD_w_20c�”), 6) KFD with Eq. (31) 
(�“KFD_w_10c_10f�”), 7) SVM with Eq. (30) (�“SVM_w_20c�”), and 8) SVM with Eq. (31) 
(�“SVM_w_10c_10f�”). Both SVM and KFD used an RBF kernel function with = 5. For 
performance comparison, we used six systems as our baselines: 1) L1(U) with the 20 closest 
cohort models (�“L1_20c�”), 2) L1(U) with the 10 closest cohort models plus the 10 farthest 
cohort models (�“L1_10c_10f�”), 3) L2(U) with the 20 closest cohort models (�“L2_20c�”), 4) 
L3(U) with the 20 closest cohort models (�“L3_20c�”), 5) L4(U) (�“L4�”), and 6) L5(U) using an 
RBF kernel function with = 10 (�“L5�”). 

Figure 1 shows the results of the baseline systems evaluated on the �“Test�” subset in DET 
curves. We observe that the curves �“L1_10c_10f�”, �“L4�” and �“L5�” are better than the others. 
Thus, in the subsequent experiments, we focused on the performance improvements of our 
proposed LLR systems over these three baselines. 



 

 

˅ˉˉʳ ʳ ʳ ʳ ʳ ʳ ʳ                                                Yi-Hsiang Chao et al. 

 

Figure 1. Baselines: DET curves for the XM2VTS “Test” subset (B = 20). 

The results of our proposed LLR systems, based on linear-based classifiers and 
kernel-based classifiers, versus the baseline systems evaluated on the �“Test�” subset are shown 
in Figs. 2 and 3, respectively. It is clear that the proposed LLR systems based on either 
linear-based classifiers or kernel-based classifiers outperform the baseline systems, while 
KFD perform better than SVM. 

Figure 2. Best baselines vs. our proposed LLR systems based on linear-based 
classifiers: DET curves for the XM2VTS “Test” subset (B = 20). 
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Figure 3. Best baselines vs. our proposed LLR systems based on kernel-based 
classifiers: DET curves for the XM2VTS “Test” subset (B = 20). 

An analysis of the results based on HTER is given in Table 3. For each approach, the 
decision threshold,  or b, was used to minimize HTER on the �“Evaluation�” subset and then 
applied to the �“Test�” subset. From Table 3, we observe that all the proposed LLR systems 
outperform the baseline systems and, for the �“Test�” subset, a 29.72% relative improvement 
was achieved by �“KFD_w_20c�”, compared to �“L5�” �– the best baseline system. The advantage 
of integrating multiple background models in our methods could be the reason why the 
proposed LLR systems based on the linear SVM (�“LSVM_w_20c�” and �“LSVM_w_10c_10f�”) 
outperform �“L5�”, which applied the kernel-based SVM in L5(U). We also observe that, in the 
proposed LLR systems, all of the kernel-based methods outperform the linear-based methods. 

To analyze the effect of the number of background models, we implemented several 
proposed LLR systems and baseline systems with B = 40. An analysis of the results based on 
the HTER is given in Table 4. Compared to Table 3, the performance of each system with B = 
40 is, in general, better than that of its counterpart with B = 20, but not always. For instance, 
�“KFD_w_20c_20f�” in Table 4 achieved a lower HTER for �“Evaluation�” but a higher HTER 
for �“Test�”, compared to �“KFD_w_10c_10f�” in Table 3. This may be the result of overtraining. 
However, from Table 4, it is clear that the superiority of the proposed LLR systems over the 
baseline systems is again demonstrated. 
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Table 3. HTERs for the XM2VTS “Evaluation” and “Test” subsets (B = 20). 
 min HTER for �“Evaluation�” HTER for �“Test�” 

L1_20c 0.0676 0.0535 
L1_10c_10f 0.0589 0.0515 

L2_20c 0.0776 0.0635 
L3_20c 0.0734 0.0583 

L4 0.0633 0.0519 
L5 0.0590 0.0508 

FLD_w_20c 0.0459 0.0433 
LSVM_w_20c 0.0472 0.0495 

FLD_w_10c_10f 0.0468 0.0455 
LSVM_w_10c_10f 0.0453 0.0434 

KFD_w_20c 0.0247 0.0357 
SVM_w_20c 0.0320 0.0414 

KFD_w_10c_10f 0.0232 0.0389 
SVM_w_10c_10f 0.0310 0.0417 

Table 4. HTERs for the XM2VTS “Evaluation” and “Test” subsets (B = 40). 
 min HTER for �“Evaluation�” HTER for �“Test�” 

L1_40c 0.0675 0.0493 
L1_20c_20f 0.0589 0.0506 

L2_40c 0.0765 0.0597 
L3_40c 0.0722 0.0554 

KFD_w_40c 0.0074 0.0345 
SVM_w_40c 0.0189 0.0386 

KFD_w_20c_20f 0.0050 0.0416 
SVM_w_20c_20f 0.0192 0.0403 

5.2 Evaluation on the ISCSLP2006-SRE Database 
We participated in the text-independent speaker verification task of the ISCSLP2006 Speaker 
Recognition Evaluation (ISCSLP2006-SRE) plan [Chinese Corpus Consortium 2006]. The 
database contained 800 clients. Each client has one long training utterance, ranging in duration 
from 21 to 85 seconds, with an average length of 37.06 seconds. In addition, there are 5,933 
utterances in the �“Test�” subset, each of which ranges in duration from 5 seconds to 54 seconds, 
with an average length of 15.66 seconds. Each test utterance is associated with the client 
claimed by the speaker, and the task is to judge whether it is true or false. The ratio of true 
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clients to imposters is approximately 1:20. The answer sheet was released after the evaluation 
finished. 

To form the �“Evaluation�” subset for estimating , w, Fw , and b, we extracted some 
speech from each client�’s training utterance in the following way. First, we sorted the 800 
clients in descending order according to the length of their training utterances. Then, for the 
first 100 clients, we cut two 4-second segments from the end of each client�’s training utterance; 
however, for the remaining 700 clients, we only cut one 4-second segment from the end of 
each client�’s training utterance. This yielded 900 (2 100+700) �“Evaluation�” utterances. In 
estimating , w, Fw , and b, each �“Evaluation�” utterance served as a client sample for its 
associated client, but acted as an imposter sample for each of the remaining 799 clients. This 
yielded 900 client samples and 719,100 (900 799) impostor samples. We used all the client 
samples and 2,400 randomly-selected impostor samples to estimate Fw  of the kernel-based 
classifiers. To determine  or b, we used the 900 client samples and 18,000 randomly-selected 
impostor samples. This follows the suggestion in the ISCSLP2006-SRE Plan that the ratio of 
true clients to imposters in the �“Test�” subset should be approximately 1:20. 

The remaining portion of each client�’s training utterance was used as �“Training�” to train 
that client�’s model through UBM-MAP adaptation [Reynolds 2000]. This was done by first 
pooling all the speech in �“Training�” to train a UBM [Reynolds 2000] with 1,024 mixture 
Gaussian components, and then adapting the mean vectors of the UBM to each client�’s GMM 
according to his/her �“Training�” utterance. 

The signal processing front-end was same as that applied in the XM2VTS task. 

5.2.1 Experiment Results 

The GMM-UBM [Reynolds 2000] system is the current state-of-the-art approach for the 
text-independent speaker verification task. Thus, in this part, we focus on the performance 
improvements of our methods over the baseline GMM-UBM system. 

As with the GMM-UBM system, we used the fast scoring method [Reynolds 2000] for 
likelihood ratio computation in the proposed methods. Both the client model  and the B 
cohort models were adapted from the UBM . Since the mixture indices were retained after 
UBM-MAP adaptation, each element of the characteristic vector x was computed 
approximately by only considering the C mixture components corresponding to the top C 
scoring mixtures in the UBM [Reynolds 2000]. In our experiments, the value of C was set to 
5. 

B was set to 100 in the experiments. We implemented the proposed LLR system in four 
ways: 1) KFD with Eq. (30) (�“KFD_w_100c�”), 2) KFD with Eq. (31) (�“KFD_w_50c_50f�”), 3) 
SVM with Eq. (30) (�“SVM_w_100c�”), and 4) SVM with Eq. (31) (�“SVM_w_50c_50f�”). We 
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compared the proposed systems with the baseline GMM-UBM system and Bengio et al.�’s 
system (L5). Figure 4 shows the results of experiments conducted on 5,933 �“Test�” utterances 
in DET curves. The proposed LLR systems clearly outperform the baseline GMM-UBM 
system and Bengio et al.�’s system (L5). According to the ISCSLP2006 SRE plan, the 
performance is measured by the NIST DCF with 10MissC , 1FalseAlarmC , and 

arg 0.05T etP . In each system, the decision threshold,  or b, was selected to minimize the 
DCF on the �“Evaluation�” subset, and then applied to the �“Test�” subset. The minimum DCFs 
for the �“Evaluation�” subset and the associated DCFs for the �“Test�” subset are given in Table 5. 
We observe that �“KFD_w_50c_50f�” achieved a 34.08% relative improvement over 
�“GMM-UBM�”, and a 19.73% relative improvement over �“L5�”. 

 

Figure 4. DET curves for the ISCSLP2006-SRE “Test” subset. 
Table 5. DCFs for the ISCSLP2006-SRE “Evaluation” and “Test” subsets. 

 min DCF for �“Evaluation�” DCF for �“Test�” 
GMM-UBM 0.0129 0.0179 

L5 0.0120 0.0147 
KFD_w_50c_50f 0.0067 0.0118 
SVM_w_50c_50f 0.0067 0.0123 

KFD_w_100c 0.0063 0.0145 
SVM_w_100c 0.0076 0.0142 
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6. Conclusions 

We have presented a new LLR measure for speaker verification that improves the 
characterization of the alternative hypothesis by integrating multiple background models in a 
more effective and robust way than conventional methods. This new LLR measure is 
formulated as a non-linear classification problem and solved by using kernel-based classifiers, 
namely, the Kernel Fisher Discriminant and Support Vector Machine, to optimally separate 
the LLR samples of the null hypothesis from those of the alternative hypothesis. Experiments, 
in which the proposed methods were applied to two speaker verification tasks, showed notable 
improvements in performance over classical LLR-based approaches. Finally, it is worth noting 
that the proposed methods can be applied to other types of data and hypothesis testing 
problems. 
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Integrating Complementary Features from Vocal Source 

and Vocal Tract for Speaker Identification 

Nengheng Zheng , Tan Lee , Ning Wang  and P. C. Ching  

Abstract 

This paper describes a speaker identification system that uses complementary 
acoustic features derived from the vocal source excitation and the vocal tract 
system. Conventional speaker recognition systems typically adopt the cepstral 
coefficients, e.g., Mel-frequency cepstral coefficients (MFCC) and linear predictive 
cepstral coefficients (LPCC), as the representative features. The cepstral features 
aim at characterizing the formant structure of the vocal tract system. This study 
proposes a new feature set, named the wavelet octave coefficients of residues 
(WOCOR), to characterize the vocal source excitation signal. WOCOR is derived 
by wavelet transformation of the linear predictive (LP) residual signal and is 
capable of capturing the spectro-temporal properties of vocal source excitation. 
WOCOR and MFCC contain complementary information for speaker recognition 
since they characterize two physiologically distinct components of speech 
production. The complementary contributions of MFCC and WOCOR in speaker 
identification are investigated. A confidence measure based score-level fusion 
technique is proposed to take full advantage of these two complementary features 
for speaker identification. Experiments show that an identification system using 
both MFCC and WOCOR significantly outperforms one using MFCC only. In 
comparison with the identification error rate of 6.8% obtained with MFCC-based 
system, an error rate of 4.1% is obtained with the proposed confidence measure 
based integrating system. 

Keywords: Speaker Identification, Vocal Source Feature, Vocal Tract Feature, 
Information Fusion, Confidence Measure 

1. Introduction 

Speaker recognition is the process of determining a person's identity based on the intrinsic 
characteristics of his/her voice. In the source-filter model of human speech production, the 
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speech signal is modeled as the convolutional output of a vocal source excitation signal and 
the impulse response of a vocal tract filter system [Rabiner and Schafer 1978]. The most 
representative vocal tract related acoustic features are the cepstral coefficients, e.g., 
Mel-frequency cepstral coefficients (MFCC) [Davis and Mermelstein 1980] and linear 
predictive cepstral coefficients (LPCC) [Furui 1981], which aim at modeling the spectral 
envelope, or the formant structure of the vocal tract. With the primary goal being identifying 
different speech sounds, these features are believed to provide pertinent cues for phonetic 
classification and have been successfully applied to automatic speech recognition [Rabiner 
and Juang 1993]. At the same time, these features are also implemented in most existing 
speaker recognition systems [Campbell 1997; Reynolds 2002]. This indicates that MFCC and 
LPCC features do contain important speaker-specific information, in addition to the intended 
phonetic information. Ideally, if a large amount of phonetically balanced speech data is 
available for speaker modeling, the phonetic variability tends to be smoothed out so that 
speaker-specific aspects can be captured. 

 The vocal source related features, e.g., pitch and harmonics, on the other hand, 
characterize the vocal folds’ vibration style in speech production and are closely related to the 
speaker-specific laryngeal system. The spoken contents have less effect on the variation of the 
vocal source excitation than on that of the vocal tract system [Miller 1963; Childers 1991]. 
This makes the vocal source derived acoustic features useful for speaker recognition, 
especially for text-independent cases. However, the usefulness of vocal source information for 
speaker recognition, although having been investigated in some literature, has not been 
thoroughly studied, let alone the efficient information retrieving techniques. In this paper, a 
novel vocal source feature is presented and implemented to supplement the vocal tract features 
in speaker recognition. 

For voiced speech, the source excitation signal is a quasi-periodic glottal waveform, 
which is generated with quasi-periodic vocal fold vibration. The vibration frequency 
determines the pitch of voice. It has been shown that temporal pitch variation is useful for 
speaker recognition [Atal 1972; Sonmez 1998]. The amplitude of pitch harmonics has also 
been demonstrated to be an effective feature for speaker identification [Imperl et al. 1997]. To 
exploit detailed vocal source information, we need a method of automatically estimating the 
glottal waveform from the speech signal. This can be done by inverse filtering the speech 
signal with the vocal tract filter parameters estimated during the glottal closing phase (GCI). 
In Brookes and Chan [1994], a separately recorded laryngograph signal was used to detect the 
GCI. In Plumpe et al. [1999], a method of automatic GCI detection was proposed and the 
estimated glottal waveform was represented using the Liljencrants-Fant (LF) model. The 
model parameters were shown to be useful in speaker identification. However, this method 
worked well only for the typical voices in which the GCI clearly exists and the estimated 
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glottal waveform can be well explained by the LF model [Plumpe et al. 1999]. 

 In linear predictive (LP) modeling of speech signals, the vocal tract system is 
represented by an all-pole filter. The prediction error, which is named the LP residual signal, 
contains useful information about the source excitation [Rabiner and Schafer 1978]. In 
Thevenaz and Hugli [1995], it is shown that the cepstrum of LP residual signal could be used 
to improve the performance of a text-independent speaker verification system. In He et al. 
[1995] and Chen and Wang [2004], the standard procedures for extracting MFCC and LPCC 
features were applied to LP residual signals, resulting in a set of residual features for speaker 
recognition. In Yegnanarayana et al. [2005], the speaker information present in LP residual 
signals was captured using an auto-associative neural network model. Murty and 
Yegnanarayana [2006] proposed to extract residual phase information by applying Hilbert 
transform on LP residual signals. The phase features were used to supplement MFCC in 
speaker recognition. 

Figure 1. Examples of speech waveforms and LP residual signals of two male 
speakers. Left: Speaker A; Right: Speaker B; Top to bottom: speech 
waveforms, LP residual signals and Fourier spectra of LP residual 
signals 
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 Figure 1 shows the speech waveforms of the vowel /a/ uttered by two different male 
speakers and the corresponding LP residual signals. There are noticeable differences between 
the two segments of residual signals. In addition to the difference between their pitch periods, 
the residual signal of speaker A shows much stronger periodicity than that of speaker B. For 
speaker B, the magnitudes of the secondary pulses are relatively high. In frequency domain, 
the Fourier spectra of the two residual signal segments look similar in that they have nearly 
flat envelopes. Although the harmonic peaks carry speaker-related periodicity information, the 
useful temporal information, i.e., the amplitudes and the time locations of pitch pulses, are not 
represented in the Fourier spectra. To characterize the time-frequency characteristics of the 
pitch pulses, wavelet transform is more appropriate than the short-time Fourier transform. 

 This paper describes a novel feature extraction technique based on time-frequency 
analysis of the LP residual signal. The new feature parameters, called wavelet octave 
coefficients of residues (WOCOR), are generated by applying pitch-synchronous wavelet 
transform to the residual signal [Zheng et al. 2004]. The WOCOR features contain useful 
information for speaker characterization and recognition. More importantly, WOCOR and 
MFCC carry different speaker-specific information since they characterize two 
physiologically distinct components in speech production. As a result, combining these two 
complementary features will result in higher recognition performance than using only one set 
of features. 

 The performance of the information fusion system, however, is highly dependant on the 
effectiveness of the fusion technique implemented. In multi-modal biometric authentication 
systems, the reliability of authentication decisions from different classifiers may vary 
significantly in different tests. Therefore, it is very important to apply an efficient fusion 
technique to maximize the benefit through the information fusion. A number of information 
fusion techniques have been proposed for biometrics systems [Garcia-Romero et al. 2004; 
Ross et al. 2001; Toh and Tau 2005]. Generally, the information fusion can be done at: (i) 
feature level, (ii) score level, or (iii) decision level. This paper proposes a score level fusion 
technique for combining MFCC and WOCOR for speaker identification. Score level fusion is 
preferred because the matching scores are easily obtained and contain sufficient information 
for distinguishing different speakers. A confidence measure, which measures the confidence 
of MFCC in identification decision in comparison to that of WOCOR, is adopted as the fusion 
weight in each individual identification trial. The confidence measure provides an optimized 
fusion score by giving more weight to the feature of higher confidence in correct identification. 
The effectiveness of the proposed information fusion system is demonstrated by a set or 
speaker identification experiments. 

 The rest of this paper is organized as follows. Section 2 describes the feature extraction 
procedures for WOCOR and briefly reviews the MFCC feature extraction procedures. Section 
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3 demonstrates the usefulness of WOCOR in speaker identification and the complementary 
contributions of WOCOR and MFCC in speaker identification. Section 4 presents the 
confidence measure based score-level fusion technique for integrating MFCC and WOCOR 
for speaker identification. Some analysis of the identification results is presented in Section 5, 
which further elaborates the complementarity of MFCC and WOCOR in speaker recognition 
and the superiority of the proposed confidence measure based fusion technique over the 
fixed-weight fusion.  Conclusions are given in Section 6. 

2. Vocal Source and Vocal Tract Features 

2.1 Vocal Source Features: WOCOR 
As illustrated in Figure 1, Fourier spectrum is not good at characterizing the time-frequency 
properties of the pitch pulses in the residual signal. Wavelet transform has been well known to 
be an effective method for transient signal representation. Therefore, the proposed WOCOR 
feature extraction is based on wavelet transform, rather than Fourier transform, of the residual 
signal. The process of extracting the WOCOR features is formulated in the following steps: 

1) Voicing decision and pitch extraction. Voicing status decision and pitch extraction are done 
with Talkin's Robust Algorithm for Pitch Tracking [Talkin 1995]. Only voiced speech is 
retained for subsequent processing. In the source-filter model, the excitation signal for 
unvoiced speech can be approximated as random noise [Rabiner and Schafer 1978]. We 
believe that such noise-like signals carry relatively little speaker-specific information. 

2) LP inverse filtering. The voiced speech is divided into non-overlapping frames of 30 ms 
long. The LP residual signal ( )e n  is obtained from each frame by inverse filtering the speech 
signal ( )s n , i.e., 

12

1
( ) ( ) ( )k

k
e n s n a s n k                                        (1) 

where the LP filter coefficients ka  are computed using the autocorrelation method [Rabiner 
and Schafer 1978]. To reduce intra-speaker variation, the amplitude of the residual signal 
within each voiced segment is normalized to the range [-1, 1]. 

3) Pitch-synchronous windowing. Based on the pitch periods estimated in Step 1, pitch pulses 
in the residual signal are located by detecting the maximum amplitude within each pitch 
period. For each pitch pulse, pitch-synchronous wavelet analysis is applied with a Hamming 
window of two pitch periods long. Let 1it , it  and 1it denote the locations of three 
successive pitch pulses. The analysis window for the pitch pulse at it  spans from 1it  to 

1it , as illustrated in Figure 2. The windowed residual signal is denoted as ( )he n . 
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4) Wavelet transform of residual signal. The wavelet transform of ( )he n  is computed as: 

*1( , ) ( )h
n

n bw a b e n
aa

                                          (2) 

where {2 1,2, , }ka k K and 1,2, ,b N , and N is the window length. *( )n  is the 
conjugate of the 4th-order Daubechies wavelet basis function ( )n . a and b are the scaling 
parameter and the translation parameter, respectively [Daubechies 1992]. In this case, the LP 
residual signal is analyzed in K octave sub-bands. For a specific sub-band, the time-varying 
characteristics within the analysis window are measured as b changes. 

5) Generation of WOCOR feature parameters. We have K octave groups of wavelet 
coefficients, i.e., 

2 ,   1, 2, , ,   1, 2, ,k
kW w b b N k K                     (3) 

To retain the temporal information, each octave group of coefficients is divided evenly into M 
sub-groups, i.e., 

( 1)( ) 2 ,   , ,   1, 2, ,M k
k

m N mNW m w b b m M
M M

                    (4) 

where M is the number of sub-groups. The 2-norm of each sub-group of coefficients is 
computed to be one of the feature parameters. As a result, the complete feature vector is 
composed of K M parameters as follows, 

 1, 2, ,
WOCOR  

 1, 2, ,
M

k
m M

W m
k K

                     (5) 

where denotes the 2-norm operation. 

Figure 2 illustrates the extraction of WOCOR features from a pitch-synchronous segment 
of residual signal. It can be seen that, with different values of k, the signal is analyzed with 
different time-frequency resolutions. The time-frequency properties of the signal in each 
sub-band are characterized by the wavelet coefficients. In this research, we are interested in 
telephone speech with the frequency band of 300 - 3400 Hz. To cover this range, we set K = 4 
and the four frequency sub-bands at different octave levels are defined accordingly: 2000 - 
4000 Hz (W1), 1000 – 2000 Hz (W2), 500 - 1000 Hz (W3), and 250 - 500 Hz (W4). The 
parameter M determines the temporal resolution attained by the WOCOR parameters. If M = 1, 
all the coefficients of a sub-band are combined into a single feature parameter, and no 
temporal information is retained. On the other hand, if a large M is used, such that each 
coefficient acts as an individual feature parameter, a lot of unnecessary temporal details are 
included and the feature vector tends to be noisy and less discriminative. A low feature 
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dimension is also desirable for effective statistical modeling. In Section 3.3, the effect of M on 
recognition performance will be investigated experimentally. 

To summarize, given a speech utterance, a sequence of WOCOR feature vectors is 
obtained by pitch-synchronous wavelet transform of the LP residual signal. The WOCOR 
features are expected to capture spectro-temporal characteristics of the residual signal, which 
is useful for speaker characterization and recognition. 

2.2 Vocal Tract Features: MFCC 
The MFCC features have been widely used for speech and speaker recognition. In this study, 
we use the standard procedures of extracting MFCC on a short-time frame basis as described 
below [Davis and Mermelstein 1980]: 

1) Short-time Fourier transform is applied every 10 ms with 30-ms Hamming window. 

2) The magnitude spectrum is warped with a Mel-scale filter bank that consists of 26 filters, 

e(n) 
 

eh(n) 
 
 

k=1 
 
 

k=2 
 
 

k=3 

 
k=4 

W1
4(1)  W1

4(2)        W1
4(4) 

 
 
W2

4(1) 
 
 
 
 
W4

4(1)       W4
4(4)

 
m=1 m=2   m=3    m=4 

Figure 2. Extraction of WOCOR features from a pitch-synchronous 
segment of LP residual signal. Here K = 4 and M = 4 
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which emulates the frequency resolution of human auditory system. 

3) The log-energy of each filter output is computed. 

4) Discrete cosine transform (DCT) is applied to the filter-bank output to produce the cepstral 
coefficients. 

The MFCC feature vector has 39 components, including the first 12 cepstral coefficients, the 
log energy, as well as their first and second order time derivatives. 

Aiming at characterizing two physiologically distinct components in speech production, 
WOCOR and MFCC contain complementary information for speaker discrimination. The 
effectiveness of WOCOR and its complementarity to MFCC for speaker recognition will be 
investigated in the following sections. 

3. Experiments 

3.1 Speaker Identification System 
Figure 3 gives the block diagram of the speaker identification system using MFCC and 
WOCOR. In the pre-processing stage, the speech signal is first pre-emphasized with a first 
order filter 1( ) 1 0.97H z z . Then energy-based voice activity detection (VAD) technique 
is applied to remove the silent portion. The speech signal is passed through for MFCC and 
WOCOR generation, respectively. For each feature set, speaker models are trained with the 
UBM-GMM technique [Reynolds et al. 2000] in the training stage. A universal background 
model (UBM) is first trained using the training data from all speakers. Then a Gaussian 
mixture model (GMM) is adapted from the UBM for each speaker using the respective 
training data. In the test stage, for each identification trial, likelihoods scores of the two 
feature sets are first computed and then a score-level fusion is implemented, i.e., 

Figure 3. Block diagram of the speaker identification system using 
 MFCC and WOCOR 
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,1 ,2LLR (LLR , LLR ),  1, 2, ,i i i i Nf                               (6) 

where ,1LLRi  and ,2LLRi  are likelihood scores obtained from MFCC and WOCOR, 
respectively, f is the combination function and N is the number of speakers. Although in real 
application, the test utterances could come from the unregistered impostors. In this study, we 
only deal with the closed-set speaker identification. That is, all the test utterances must come 
from one of the 50 male speakers. The one whose models give the highest matching score is 
marked as the identified speaker. 

3.2 Speech Databases: CU2C 
CU2C is a continuous speech database of Cantonese developed at the Chinese University of 
Hong Kong [Zheng et al. 2005]. Cantonese is one of the most popular Chinese dialects and is 
spoken by tens of millions of people in southern China. CU2C was designed to facilitate 
general speaker recognition research. It contains parallel utterances collected over fixed-line 
telephone channel and desktop computer microphones. The spoken contents include Hong 
Kong personal identity numbers, randomly generated digit strings, and phonetically balanced 
sentences. In this study, the speaker identification experiments are conducted on the sentence 
subset of the male speakers. There are 50 male speakers, each having 18 sessions of speech 
data with 10 utterances in each session. The first 4 sessions are used for training the speaker 
models. Sessions 5 to 8 are used as development data for training the weighting parameters for 
the score level fusion of MFCC and WOCOR. The last 10 sessions are used as the evaluation 
data, and there are totally 5000 identification trials (50 speakers, 100 trials per speaker). All 
the utterances are text-independent telephone speech with matched training and testing 
conditions (the same handset and fixed line telephone network). The speech data were 
sampled at 8 KHz and encoded by 8-bit µ-law encoding. The speech data of each speaker are 
collected over 4 to 9 months with the minimum inter-session interval of 1 week. Therefore, the 
challenge of the long-term intra-speaker variation for speaker recognition can be addressed by 
the database. 

3.3 Determining the Parameter M for WOCOR 
As discussed earlier, the value of M controls the size of the WOCOR feature vector and how 
much temporal detail can be captured. First, we compare the performance of WOCOR with 
different values of M. Figure 4 shows the identification error rate (IDER) of WOCOR in 
which M varies from 1 to 6. The identification error rate is defined as: 

Number of incorrect identification trialsIDER 100%
Number of identification trials

                   (7) 
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It is clear that WOCOR in general provide a certain degree of speaker discrimination power. 
For 1M , i.e., no temporal detail is captured and the feature vector has only 4 components, 
an IDER of 45.1% is achieved. With M increasing from 1 to 4, the IDER is significantly 
reduced to only 27.0%. For 4M , the improvement becomes less noticeable. Therefore, in 
the following experiments, we will use WOCOR with 4M , which consists of 16 feature 
components. 

3.4 Wavelet vs. Fourier Transform of LP Residual Signal 
To demonstrate the superiority of wavelet transform over Fourier transform for feature 
extraction from the LP residual signal, we compare the speaker identification performances of 
WOCOR and the Fourier spectrum-based vocal source features. To do so, we apply the MFCC 
feature extraction process on the LP residual signal to generate another set of vocal source 
features, noted as MFCCres. Speaker identification experiments with WOCOR and MFCCres 
result in IDERs of 27.0% and 52.0%, respectively. That is, WOCOR significantly outperforms 
MFCCres. This is reasonable because MFCC focuses on extracting the spectral 
envelope-related features, and, as given in Fig. 1, spectral envelopes of LP residual signals are 
almost the same for different speakers. On the other hand, WOCOR tries to capture the 
spectro-temporal information in the residual signals, which is quite different between 
speakers. 

3.5 Speaker Identification Results 
We evaluate the speaker identification performances of MFCC and WOCOR individually.  In 
addition, we evaluate the system with both MFCC and WOCOR, using the same evaluation 
data described in Section 3.2 for all three performance evaluations. In this case, information 

Figure 4. The speaker identification results of WOCOR for different values of M 
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fusion is performed as a score-level linear fusion, i.e., 

,1 ,2LLR LLR (1 )LLRi t i t iw w                            (8) 

The fusion weight tw  is experimentally determined using the development data set. That is, 

tw  is varied from 0 to 1, and the value giving the smallest IDER is selected for the evaluation 
trials. Figure 5 shows IDER vs. tw curve with the development data. As illustrated, the best 
performance is achieved at around 0.80tw . Actually, the identification performance is not 
very sensitive to tw  at around 0.80tw . The performances of MFCC- and WOCOR-based 
systems and the information fusion system with 0.80tw  are evaluated over the evaluation 
data and the results are as given in Table 1. As shown, the MFCC-based speaker identification 
system significantly outperforms the WOCOR system. It is noted that, despite the 
performance difference, the two approaches make complementary decisions in many cases, 
which will be further elaborated in Section 5, and the combining system has superior 
performance over that using MFCC only. The IDER is reduced from 6.8% to 4.7%, a relative 
improvement of about 30%. 

Table 1. Speaker identification performances 

Systems IDER (in %) 

WOCOR 27.0 

MFCC  6.8 

MFCC+WOCOR 4.7 
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Figure 5. Speaker identification performance with various wt  
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4. Information Fusion with Confidence Measure 

While information fusion with a pre-defined fusion weight as given in (8) can improve 
identification performance, it does not necessarily provide the best result. Fixed weight is 
unable to cover explicitly the different performance levels of MFCC and WOCOR for 
individual identification trials. As a result, for some cases, although one of the features gives 
the correct decision, the fused score may not necessarily result in correct decision. For 
example, consider four types of identification trials as given in Table 2, in which MFCC and 
WOCOR give different contributions to speaker identification, and the info-fusion as (8) 
results in different decisions as well. In Type I and II trials, MFCC gives incorrect decisions 
while WOCOR gives correct decisions. The combined system makes correct decisions in Type 
I trials while making incorrect decisions in Type II trials. In Type III and IV trials, MFCC 
gives correct decisions while WOCOR gives incorrect decisions, and the combined system 
makes correct decisions in Type III trials while producing incorrect decisions in Type IV trials. 
To avoid the undesired outputs in Type II and IV trials, an ideal solution should be capable of 
distinguishing these four types of trials and give null weight to MFCC in Type I and II trials 
and null weight to WOCOR in Type III and IV trials. Although such an ideal solution is not 
available in real-world applications, we propose to apply a confidence measure based fusion 
method, which adopts varying weight in individual trials and avoids most of the identification 
errors introduced by information fusion. 

Table 2. Different contributions of MFCC and WOCOR in four types of identification 
trials 

 Type I Type II Type III Type IV 

MFCC incorrect incorrect correct correct 

WOCOR correct correct incorrect incorrect 

MFCC+WOCOR correct incorrect correct incorrect 

4.1 Speaker Discrimination Power 
Analysis of the matching scores shows that, generally, in a correct identification, the 
difference of the scores between the identified speaker and the closest competitor is relatively 
larger than that in an incorrect identification. The score difference can therefore be adopted for 
measuring the speaker discrimination power, i.e., 

max{LLR } sec max{LLR }

max{LLR }

i i
i i

i
i

ond
D                            (9) 
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where LLRi  is the likelihood score of the i-th speaker. The normalization of the difference 
over max{LLR }i

i
 aims to equalize the dynamic ranges of D for different features. 

Figure 6 shows the histograms of D for MFCC and WOCOR. It is clear that, for both 
features, a correct identification is generally associated with a larger D than an incorrect 
identification. Therefore, a larger D implies that the corresponding feature has higher 
confidence for speaker identification. Obviously, it is desirable to take into account D for 
score fusion in each identification trial instead of using the fixed weight. 

4.2 Confidence Measure Based Score Fusion 
Although the optimal method of combining the scores from MFCC and WOCOR with the 
knowledge of the discrimination power is not known, the relative discrimination power of 
MFCC and WOCOR can be considered as a confidence measure, with which a better fusion 
weight can be derived to improve the identification performance. In each identification trial, 
the confidence measure is defined the discrimination ratio of the two features, i.e., 

1 2CM D D                                       (10) 

Figure 6. Histogram of speaker discrimination power D of MFCC and WOCOR 
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where D1 and D2 are the speaker discrimination power of MFCC and WOCOR, respectively. 
A larger CM implies that the MFCC-based system has a higher confidence in giving correct 
identification result than the WOCOR-based one. Then, the fusion weight for the specific 
identification trial is derived as: 

(CM )
1log

1
CMw

e
                                      (11) 

where  and  control the slope of the mapping contour from CM to CMw , as illustrated 
in Figure 7. The solid line curve in Figure 7 is used in this study. The corresponding 
parameters 0.2, 3 are trained using the development data. 

Score-level fusion based on CM is then carried out according to: 

,1 ,2LLR LLR LLRi i CM iw                                (12) 

With CMw , the fused score combines better weighted likelihoods obtained from MFCC and 
WOCOR in each individual trial based on the contributions of the respective features in that 
trial. 

As illustrated in Figure 7, when CM increases, CMw  becomes very small, and the 
decision will not be heavily affected by WOCOR. On the other hand, a small CM corresponds 
to a large CMw , which means more impact from WOCOR. 
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As shown in Table 3, the CM-based score level fusion leads to a further performance 
improvement over the fixed-weight fusion. In summary, the IDERs attained with WOCOR 
and MFCC, in conjunction with the two methods of score fusion are 27.0%, 6.8%, 4.7%, and 
4.1%, respectively. 

Table 3. Speaker identification performances 

Systems IDER (in %) 

WOCOR 27.0 

MFCC 6.8 

Fixed-weight fusion 4.7 

Fusion with CM 4.1 

5. Analysis of the Identification Results 

Table 4 elaborates how the integration of the two complementary features affects the 
identification performances. The identification trials are divided into 4 subsets according to 
the performances of MFCC and WOCOR: (i) correct identification with both MFCC and 
WOCOR (McWc), (ii) incorrect identification with both MFCC and WOCOR (MiWi), (iii) 
incorrect identification with MFCC while correct identification with WOCOR (MiWc), and 
(iv) correct identification with MFCC while incorrect identification with WOCOR (McWi). 
Among the 5000 identification trials, there are 3328, 244, 95 and 1333 trials for these 4 
subsets, respectively. The number of identification errors with MFCC, WOCOR and the 
integrated systems within each subset are given in the table. 

Table 4. Number of errors of 4 identification subsets by different systems 

Subsets McWc  MiWi  MiWc  McWi 

Number of trials 3328 244 95 1333 

MFCC 0 244 95 0 

WOCOR 0 244 0 1333 

Fixed weight fusion 0 163 7 65 

Fusion with CM 0 167 19 19 

We are only interested in the last 3 subsets, which have errors with at least one kind of 
features. For the MiWi subset, although both MFCC and WOCOR give incorrect identification 
results, the combined system gives correct results for some trials. For example, the number of 
identification errors is reduced from 244 to 163 with the fixed weight fusion and to 167 with 
the CM-based fusion. That is, about one third of the errors have been corrected. 
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Table 5 gives an example demonstrating how the score fusion can give correct result 
even though both MFCC and WOCOR give error results. In this example, the true speaker is 
S5. It is shown that although S5 only ranks at the 6th and the 2nd with MFCC and WOCOR, 
respectively, in both integrating systems, it ranks at the first and therefore is correct identified. 

The results of the two one-error identification subsets McWi and MiWc in Table 4 
demonstrate the superiority of the CM-based score fusion over the fixed-weight fusion. For 
the fixed-weight fusion system, although the number of errors in the MiWc subset is 
significantly reduced from 95 to 7, there are 65 errors introduced to the McWi subset, which 
have been correctly identified with MFCC only. For the CM-based system, the number of this 
kind of newly introduced errors is significantly reduced to 19, with only a slight increase in 
errors in MiWi and MiWc subsets. As a whole, the number of total identification errors is 
reduced from 339 with MFCC only to 235 with fixed-weight fusion, and further reduced to 
205 with CM-based fusion. 

Table 5. Ranking the speaker scores in an identification trial. 

Rank MFCC WOCOR Fixed weight 
fusion 

Fusion with 
CM 

1 S7: -1.7718  S34:1.5732  S5:-0.4364 S5:-1.0903 

2 S27:-1.7718  S5:1.5730 S27:-0.4445 S27:-1.0977 

3 S10:-1.7722  S48:1.5640  S34:-0.4446 S7: -1.0984 

4 S42:-1.7743  S35:1.5620 S41:-0.4448 S10:-1.1000 

5 S1: -1.7756  S39:1.5619 S46:-0.4448 S41:-1.1005 

6 S5:-1.7760  S46:1.5510 S7: -0.4452 S46:-1.1015 

7 S41:-1.7788  S41:1.5561 S10:-0.4465 S42:-1.1027 

6. Conclusions 

This paper presents a novel feature extraction technique to generate the vocal source related 
acoustic features from the LP residual signal. We have shown that the proposed WOCOR 
features contain speaker-specific information for speaker recognition applications. The 
WOCOR features provide additional information to the conventional MFCC features in 
speaker recognition. This complementarity is exploited by applying a novel confidence 
measure based score fusion technique which gives a much improved overall speaker 
identification accuracy. In comparison with the identification error rate of 6.8% obtained with 
MFCC only, an error rate of 4.1% is obtained with the proposed information fusion system. 
That is a relative improvement of 40%. 
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Performance of Discriminative HMM Training in Noise 
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Abstract 

In this study, discriminative HMM training and its performance are investigated in 
both clean and noisy environments. Recognition error is defined at string, word, 
phone, and acoustic levels and treated in a unified framework in discriminative 
training. With an acoustic level, high-resolution error measurement, a 
discriminative criterion of minimum divergence (MD) is proposed. Using 
speaker-independent, continuous digit databases, Aurora2, the recognition 
performance of recognizers, which are trained in terms of different error measures 
and different training modes, is evaluated under various noise and SNR conditions. 
Experimental results show that discriminatively trained models perform better than 
the maximum likelihood baseline systems. Specifically, in MWE and MD training, 
relative error reductions of 13.71% and 17.62% are obtained with multi-training on 
Aurora2, respectively. Moreover, compared with ML training, MD training 
becomes more effective as the SNR increases. 

Keywords: Noise Robustness, Minimum Divergence, Minimum Word Error, 
Discriminative Training 

1. Introduction 

With the progress of Automatic Speech Recognition (ASR), noise robustness of speech 
recognizers attracts more and more attention for practical recognition systems. Various noise 
robust technologies can be grouped into three classes: 1. Feature domain approaches, which 
aim at noise resistant features, e.g., speech enhancement, feature compensation or 
transformation methods [Gong 1995]; 2. Model domain approaches, e.g., Hidden Markov 
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Model (HMM) decompensation [Varga et al. 1990], Parallel Model Combination (PMC) 
[Gales et al. 1994], which aim at modeling the distortion of features in noisy environments 
directly; 3. Hybrid approaches. 

In the past decade, discriminative training has been shown quite effective in reducing 
word error rates of HMM based ASR systems in a clean environment. In the first stage, 
sentence level discriminative training criteria, including Maximum Mutual Information (MMI) 
[Schluter 2000; Valtchev et al. 1997] and Minimum Classification Error (MCE) [Juang et al. 
1997], were proposed and proven effective. Recently, new criteria such as Minimum Word 
Error (MWE) and Minimum Phone Error (MPE) [Povey 2004], which are based on fine error 
analysis at word or phone level, have achieved further improvement in recognition 
performance. 

In [Ohkura et al. 1993; Meyer et al. 2001; Laurila et al. 1998], noise robustness 
investigation on sentence level discriminative criteria such as MCE, Corrective Training (CT) 
is reported. Hence, we give a more complete investigation of noise robustness for general 
minimum error training. 

From a unified view of error minimization, the major difference between MCE, MWE 
and MPE is the error definition. String based MCE is based upon minimizing sentence error 
rate, while MWE is based on word error rate, which is more consistent with the popular metric 
used in evaluating ASR systems. Hence, the latter yields a better word error rate, at least on 
the training set [Povey 2004]. However, MPE performs slightly but universally better than 
MWE on the testing set [Povey 2004]. The success of MPE might be explained as follows: 
when refining acoustic models in discriminative training, it makes more sense to define errors 
in a more granular form of acoustic similarity. However, error definition at phone label level 
is only a rough approximation of acoustic similarity. 

Based on the analysis above, we have proposed using acoustic dissimilarity to measure 
errors [Du et al. 2006]. As acoustic behavior of speech units is characterized by HMMs, by 
measuring Kullback-Leibler Divergence (KLD) [Kullback et al. 1951] between two given 
HMMs, we can obtain a physically more meaningful assessment of their acoustic similarity. 

Adopting KLD for defining dissimilarity, the corresponding training criterion is referred 
as Minimum Divergence (MD) [Du et al. 2006; Du et al. 2007]. The criterion possesses the 
following potential advantages: 1) It employs acoustic similarity for high-resolution error 
definition, which is directly related to acoustic model refinement; 2) Label comparison is no 
longer used, which alleviates the influence of the chosen language model and phone set and 
the resultant hard binary decisions caused by label matching. Due to these advantages, MD is 
expected to be more flexible and robust. 

In our work, MWE, which matches the evaluation metric, and MD, which focuses on 
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refining acoustic dissimilarity, are compared. Other issues related to robust discriminative 
training, including how to design the maximum likelihood baseline and how to treat with the 
silence model is also discussed. 

Experiments were performed on Aurora2 [Hirsch et al. 2000], which is a widely adopted 
database for research on noise robustness. For completeness, we tested the effectiveness of 
discriminative training on different ML baselines and different noise environments. 

The rest of paper is organized as follows. In Section 2, issues on noise robustness of 
minimum error training will be discussed. In Section 3, MD training will be introduced. 
Experimental results are shown and discussed in Section 4. Finally, in Section 5, we give our 
conclusions. 

2. Noise Robustness Analysis of Minimum Error Training 

In this section, we will give a brief discussion of the major issues we are facing in robust 
discriminative training. 

2.1 Error Resolution of Minimum Error Training 
In [Povey 2004] and [Du et al. 2006], various discriminative training approaches are unified 
under the framework of minimum error training, where the objective function is an average of 
the recognition accuracies r( , )W W  of all hypotheses weighted by the posterior 
probabilities. For conciseness, we consider the single training utterance case: 

r( ) ( | ) ( , )P
W

W O W W                                          (1) 

where  represents the set of the model parameters; O is a sequence of acoustic observation 
vectors; rW is the reference word sequence; is the hypotheses space; ( | )P W O is the 
posterior probability of the hypothesis W given O, which can be formulated as: 

'

( | ) ( )
( | )

( | ') ( ')W

P P
P

P P
O W W

W O
O W W

                                    (2) 

whereʳ Ӳ is the acoustic scaling factor. 

The gain function ( , )rW W  is an accuracy measure of W given its reference rW . In 
Table �, comparison of several minimum error criteria are listed. In MWE training, 

( , )rW W is word accuracy, which matches the commonly used evaluation metric of speech 
recognition. However, MPE has been shown to be more effective in reducing recognition 
errors because it provides a more precise measurement of word errors at the phone level. We 
can argue this point by advocating the final goal of discriminative training. In refining 
acoustic models to obtain better performance, it makes more sense to measure acoustic 
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similarity between hypotheses instead of word accuracy. The symbol matching does not relate 
acoustic similarity with recognition. The measured errors can also be strongly affected by the 
phone set definition and language model selection. Therefore, acoustic similarity is proposed 
as a finer and more direct error definition in MD training. 

Table 1. Comparison of criteria of minimum error training. ( WP : Phone sequence 
corresponding to word sequence W; LEV(,): Levenshtein distance between 
two symbol strings;|  |: Number of symbols in a string.) 

Criterion ( , )rW W  Objective 
 

String based MCE ( )r=W W  Sentence accuracy 

MWE rLEV( , )rW W W  Word accuracy 

MPE 
r r

LEV( , )P P PW W W Phone accuracy 

MD r( || )D W W  Acoustic similarity 

Here, we aim at seeking how criteria with different error resolution performs in noisy 
environments. In our experiments, the whole-word model, which is commonly used in digit 
tasks, is adopted. For the noisy robustness analysis, MWE, which matches with the evaluation 
metric of speech recognition, will compared with MD, which possesses the highest error 
resolution as shown in Table 1. 

2.2 Training Modes 
In noisy environments, various ML trained baselines can be designed. So, the effectiveness of 
minimum error training with different training modes will be explored. In [Hirsch et al. 2000], 
two different sets of training, clean-training and multi-training, are used. In clean-training 
mode, only clean speech is used for training. Hence, there will be a mismatch when the model 
is tested in noisy environments. To alleviate the mismatch, multi-training, in which training 
set is composed of noisy speech with different SNRs, can be applied. Actually, multi-training 
can only achieve a “global SNR” match. To achieve a “local SNR” match, we adopt a 
SNR-based training mode. In the training phase, we train a series of models at different SNR 
levels, while in testing, all these models are paralleled as multi pronunciations of a HMM. 
Ideally, the model that matched the local SNR best will be automatically selected in decoding. 
SNR-based training can be considered as a high resolution acoustic modeling of multi-training. 
An illustration of the three training modes is shown in Figure 1. 

 An important issue in discriminative training is how to update silence or background 
models, which is even more critical in a noisy environment. In our research, we pay special 
attention to this issue for appropriate guidelines. 
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Figure 1. Illustration of three training modes 

3. Word Graph based Minimum Divergence Training 

3.1 Defining Errors by Acoustic Similarity 
A word sequence is acoustically characterized by a sequence of HMMs. For automatically 
measuring acoustic similarity between W and rW , we adopt KLD between the corresponding 
HMMs: 

r r( , ) ( || )DW W W W                                                 (3) 

The HMMs, when they are reasonably well trained in ML sense, can serve as succinct 
descriptions of data. 

3.2 KLD between Two Word Sequences 
Our goal is to measure the KLD for word sequences in Eq. 3. Given two word sequences rW  
and W without their state segmentations, we should use a state matching algorithm to measure 
the KLD between the corresponding HMMs [Liu et al. 2005]. With state segmentations, the 
calculation can be further decomposed down to the state level: 

1: 1:
r
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r r
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T T
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where T  is the number of frames; 1:To  and 1:
r

Ts  are the observation sequence and hidden 
state sequence, respectively. 

By assuming all observations are independent, we obtain: 

1: 1 r
r r r

1 1

( | )
( ) ( ) ( | ) log

( | )

t tT TT :T t t t t t
t tt t

p
D D s s p d

p
o s

s s o s o
o s

                    (5) 

which means we can calculate KLD state by state, and sum them up. 

Now, our problem is how to measure the KLD between two states. Conventionally, each 
state s  is characterized by a Gaussian Mixture Model (GMM): 

( )p | so 1 ( ; , )sM
smm w sm smo , so the comparison is reduced to measuring KLD 

between two GMMs. Since there is no closed-form solution, we need to resort to the 
computationally intensive Monte-Carlo simulations. The unscented transform mechanism 
[Goldberger et al. 2003] has been proposed to approximate the KLD measurement of the two 
GMMs. 

Let ( ; , )o  be a N -dimensional Gaussian distribution and h  be an arbitrary 
IR IRN function, the unscented transform mechanism suggests approximating the 
expectation of h  by: 

2

1

1( ; , ) ( ) ( )
2

N
k

k
h d h

N
o o o o                                         (6) 

where (1 2 )k k No are the artificially chosen “sigma” points: 
,k k kNo u (1 )k N k kN k No u , where kk u  are the thk  eigenvalue 

and eigenvector of , respectively. Geometrically, all these “sigma” points are on the 
principal axes of . Equation 6 is precise if h  is quadratic. 

For our case, the Gaussian distribution in Eq. 6 is replaced by a GMM, and the function  

h  corresponds to the term r( | )
( | )

log
t t

t t
p
p

o s
o s

 in Eq. 5. Then, KLD between two states (GMMs) can 

be approximated by: 

r
r

r

2 ( | )1
r 2 ( | )1 1

( ) log
t ts

mk
t t

mk

M N p st t
s mN p sm k

D s s w o
o

                                      (7) 

where mko  is the thk  “sigma” point in the thm  Gaussian kernel of state r
ts . By plugging 

this into Eq. 4, we obtain the KLD between two word sequences given their state 
segmentations. 
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3.3 Gain Function Calculation 
Usually, a word graph is a compact representation of large hypotheses space in speech 
recognition. As the KLD between a hypothesised word sequence and the reference can be 
decomposed down to the frame level, we have the following word graph based representation 
of (1): 

:
( ) ( | ) ( )

w w
P w

W W
W O                                     (8) 

where ( )w  is the gain function of word arc w . Denoting ,w wb e , the start frame index 
and end frame index of w , we have: 

r( ) ( )
w

w

e
t t
w

t b
w D s s                                                  (9) 

where the t
ws  and r

ts  represent the certain state at time t  on arc w  and the reference, 
respectively. 

From the objective function defined in Eq. 1, the gain function r( , )W W  is dependent 
on the model parameters, which should be updated in optimization process. In [Du et al. 2007], 
we conclude that the optimization of the gain function term has little impact on the 
performance. So here, r( , )W W is considered a constant term and not optimized. The KLDs 
related to gain function are precomputed using the ML trained model parameters. Then our 
optimization of objective function is the same as that mentioned in [Povey 2004]. We use the 
Forward-Backward algorithm to update the word graph and the Extended Baum-Welch 
algorithm to update the model parameters in the training iterations. 

4. Experiments 

4.1 Experimental Setup 
Experiments on TIDigits and Aurora2, both English continuous digit tasks, were performed. 
The English vocabulary is made of the 11 digits, from ’one(1)’ to ’nine(9)’, plus ’oh(0)’ 
and ’zero(0)’. The baseline configuration for two databases is listed in Table 2. 

Table 2. Baseline configuration 

System Feature 
Model 
Type 

# State 
/Digit

# Gauss 
/State

# string of 
training set 

# string of 
testing set 

 

TIDigits 10 6  12549  12547  

Aurora2 
MFCC_E_D_A left-to-right 

whole-word model 16 3  8440*2  1001*70  

The Aurora2 task consists of English digits in the presence of additive noise and linear 
convolutional channel distortion. These distortions have been synthetically introduced to clean 
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TIDigits data. Three testing sets measure performance against noise types similar to those seen 
in the training data (set A), different from those seen in the training data (set B), and with an 
additional convolutional channel (set C). The baseline performance and other details can be 
found in [Hirsch et al. 2000]. 

For minimum error training, the acoustic scaling factor  was set to 1
33 .  All  KLDs 

between any two states were precomputed to make the MD training more efficient. For 
Aurora2, we select the best results after 20 iterations for each sub set of testing. 

4.2 Experiments on TIDigits Database 
As a preliminary result of noise robustness analysis, we first give the results of MD on the 
clean TIDigits database compared with MWE. As shown in Figure 2, performance of MD 
achieves 57.8% relative error reduction compared with the ML baseline and also outperforms 
MWE in all iterations. 

 
Figure 2. Performance comparison on TIDigits 

4.3 Experiments on Aurora2 Database 
Table 3. Word Accuracy (%) of MWE with or without silence model update in 

different training modes on Aurora2. 
Training Mode Update Silence Model Set A Set B Set C Overall 

 

Clean YES 61.85 56.94 66.26 60.77 

Clean NO 64.74 61.69 67.95 64.16 

Multi YES 89.15 89.16 84.66 88.26 

Multi NO 88.91 88.55 84.43 87.87 
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Silence Model Update.  As shown in Table 3, we explore whether to update the silence 
model in minimum error training using different training modes. Since it is unrelated to the 
criteria, here we adopt MWE. When applying clean-training, the performances of all test sets 
without updating silence model are consistently better. However, in multi-training, the 
conclusion is the opposite. From the results, we can conclude that increasing the 
discrimination of the silence model will lead to performance degradation in mismatched cases 
(clean-training) and performance improvement in matched cases (multi-training). This can be 
explained as follows: For the clean-training case, if we increase the discrimination of the 
silence model, the noise segments are more easily recognized as digits when testing on noisy 
data. Then, insertion errors will increase. However, for the multi-training case, the silence 
model represents both silence and noise segments, which is matched with that when testing on 
noisy data. So, by updating the silence model, the global performance will be improved. 
Obviously, our SNR-based training belongs to the latter. In all our experiments, the treatment 
of silence model will obey this conclusion. 

Table 4. Performance comparison on Aurora2 (MD vs. MWE) 
Multi-Training – Results (Minimum Divergence)  

 A B C  Rel

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Average Impr

Clean 99.14 99.12 98.9 99.2 99.09 99.14 99.12 98.9 99.2 99.09 98.89 98.85 98.87 99.05 35.32%

20dB 98.71 98.55 98.81 98.61 98.67 98.43 98.37 98.57 98.89 98.57 98.65 97.64 98.15 98.52 43.92%

15dB 98.5 98 98.33 97.93 98.19 98 97.76 97.79 97.93 97.87 97.88 96.74 97.31 97.89 42.04%

10dB 97.18 96.55 97.2 96.08 96.75 96.41 95.8 96.06 95.31 95.90 95.15 94.04 94.60 95.98 34.81%

5dB 92.39 89.81 90.49 90.25 90.74 89.28 87.06 90.52 87.23 88.52 84.68 82.56 83.62 88.43 20.78%

0dB 72.8 64.63 58.93 70.32 66.67 65.24 64 69.19 62.48 65.23 49.25 54.44 51.85 63.13 10.51%

-5dB 31.04 29.56 22.7 28.57 27.97 30.06 28.96 33.58 25.46 29.52 22.01 24.24 23.13 27.62 4.15%

Average 91.92 89.51 88.75 90.64 90.20 89.47 88.60 90.43 88.37 89.22 85.12 85.08 85.10 88.79  

Rel 
Impr 28.10% 12.93% 16.53% 21.79% 19.60% 27.93% 12.04% 22.53% 22.40% 21.45% 11.21% 4.93% 8.17%  17.62%

 

Multi-Training – Results (Minimum Word Error)  
 A B C  Rel

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Average Impr

Clean 99.14 99.18 99.02 99.29 99.16 99.14 99.18 99.02 99.29 99.16 98.99 99.06 99.03 99.13 40.96%

20dB 98.86 98.67 98.78 98.7 98.75 98.74 98.43 98.72 98.95 98.71 98.34 97.4 97.87 98.56 45.45%

15dB 98.74 98.13 98.33 97.69 98.22 98.5 97.82 98.03 98.06 98.10 97.33 96.25 96.79 97.89 41.97%

10dB 96.87 95.95 96.87 95.43 96.28 96.22 95.53 96.42 95.74 95.98 94.63 93.5 94.07 95.72 30.03%

5dB 92.32 88.85 88.25 88.83 89.56 88.36 87.3 89.53 86.61 87.95 84.49 82.62 83.56 87.72 15.40%

0dB 70.31 63.33 53.44 64.7 62.95 64.6 68.18 68.27 59.12 65.04 47.62 54.44 51.03 61.40 6.25%

-5dB 29.66 29.72 21.8 25.27 26.61 30.21 27.84 33.49 23.97 28.88 21.31 24.24 22.78 26.75 3.01%

Average 91.42 88.99 87.13 89.07 89.15 89.28 89.45 90.19 87.70 89.16 84.48 84.84 84.66 88.26  

Rel 
Impr 23.69% 8.60% 4.53% 8.69% 10.98% 26.64% 18.62% 20.65% 17.92% 21.02% 7.39% 3.39% 5.46%  13.71%



 

 

ˆ˃˃                                                             Jun Du et al. 

Error Resolution of Minimum Error Training.  As shown in Table 4, the performances of 
MD and MWE are compared. Here, multi-training is adopted because it is believed that 
matching between training and testing can tap the potential of minimum error training. For the 
overall performance on three test sets, MD consistently outperforms MWE. From the 
viewpoint of SNRs, MD outperforms MWE in most cases when SNR is below 15dB. Hence, 
we can conclude that, although MWE matches with the model type and evaluation metric of 
speech recognition, MD, which possesses the highest error resolution, outperforms it in low 
SNR. In other words, the performance can be improved in low SNR by increasing the error 
resolution of criterion in minimum error training. This conclusion can be also drawn in 
clean-training and SNR-based training cases. 

 
Figure 3. Relative Improvement over ML baseline on Aurora2 using different 

training modes in MD training 

Table 5. Summary of performance on Aurora2 using different training modes in 
MD training. 

 Word Accuracy (%) Relative Improvement 

Training Mode Set A Set B Set C Overall Set A Set B Set C Overall 

Clean-Training 63.49 58.94 68.96 62.76 5.56% 7.21% 8.32% 6.76% 

Multi-Training 90.20 89.22 85.10 88.79 19.60% 21.45% 8.17% 17.62% 

SNR-based Training 91.27 89.27 86.70 89.56 10.00% 26.21% 1.14% 15.68% 

Different Training Modes.  Figure 3 shows relative improvement over ML baseline using 
MD training with different training modes. From this figure, some conclusions can be 
obtained. First, set B, whose noise scenarios are different from training, achieves the most 
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obvious relative improvement in most cases. The relative improvement of set A is comparable 
with set B in the clean-training and multi-training, but worse than set B in SNR-based training. 
The relative improvement of set C, due to the mismatch of noise scenario and channel, was 
almost the worst in all training modes. Second, the relative improvement performance declines 
for decreasing SNR in clean-training. However, in multi-training and SNR-based training, the 
peak performance is in the range of 20dB to 15dB. Also, in the low SNRs, the performance of 
cleaning-training is worse than the other two training modes on set A and set B. 

The summary of performance is listed in Table 5. Word accuracy of our SNR-based 
training outperforms multi-training on all test sets, especially set A and set C. For the overall 
relative improvement, the best result of 17.62% is achieved in multi-training. 

5. Conclusions 

In this paper, the noise robustness of discriminatively trained HMMs is investigated. 
Discriminatively trained models are tested on English continuous digit databases, and MD and 
MWE criteria are experimentally compared to test the affection of error resolution. We 
observe: 1. Minimum error training is effective not only in clean environments, but also in 
noisy environments, which can be concluded in various training modes. Minimum error 
training is more effective as the SNR increases. Even when testing on mismatched noise 
scenarios, minimum error training also achieves better performance than ML training. 2. In 
minimum error training, higher resolution error analysis is more helpful at low SNRs. 3. 
Silence models should be carefully updated when the training and testing data are not 
well-matched. 
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Multilingual Spoken Language Corpus Development for 

Communication Research 
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Abstract 

Multilingual spoken language corpora are indispensable for research on areas of 
spoken language communication, such as speech-to-speech translation. The speech 
and natural language processing essential to multilingual spoken language research 
requires unified structure and annotation, such as tagging. In this study, we 
describe an experience with multilingual spoken language corpus development at 
our research institution, focusing in particular on speech recognition and natural 
language processing for speech translation of travel conversations. An integrated 
speech and language database, Spoken Language DataBase (SLDB) was planned 
and constructed. Basic Travel Expression Corpus (BTEC) was planned and 
constructed to cover a variety of situations and expressions. BTEC and SLDB are 
designed to be complementary. BTEC is a collection of Japanese sentences and 
their translations, and SLDB is a collection of transcriptions of bilingual spoken 
dialogs. Whereas BTEC covers a wide variety of travel domains, SLDB covers a 
limited domain, i.e., hotel situations. BTEC contains approximately 588k 
utterance-style expressions, while SLDB contains about 16k utterances. 
Machine-aided Dialogs (MAD) was developed as a development corpus, and both 
BTEC and SLDB can be used to handle MAD-type tasks. Field Experiment Data 
(FED) was developed as the evaluation corpus. We conducted an experiment, and 
based on analysis of our follow-up questionnaire, roughly half the subjects of the 
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experiment felt they could understand and make themselves understood by their 
partners. 

Keywords: Multilingual Corpus, Spoken Language, Speech Translation, Dialog, 
Communication. 

1. Introduction 

Various kinds of corpora developed for analysis of linguistic phenomena and statistical 
information gathering are now accessible via electronic media and can be utilized for the study 
of natural language processing. Since these include written-language and monolingual corpora, 
however, they are not necessarily useful for research and development of multilingual spoken 
language processing. A multilingual spoken language corpus is indispensable for research on 
areas of spoken language communication such as speech-to-speech translation. 

Research on speech translation began in the 1980s. NEC demonstrated a prototype 
speech translation system at the Telecom ’83 exhibition. ATR Interpreting Telephony 
Research Laboratories was established in 1986 for the research of basic speech translation 
technologies and produced ASURA [Morimoto et al. 1993]. This system can recognize 
well-formed Japanese utterances in a limited domain, translate them into both English and 
German, and output synthesized speech. The ASURA system was used for the International 
Joint Experiment of Interpreting Telephony with participants from Kyoto, Japan (ATR), 
Pittsburgh, USA (Carnegie Mellon University [Lavie et al. 1997]) and Munich, Germany 
(Siemens and University of Karlsruhe) in January 1993 [Morimoto et al. 1993]. 

Many projects on speech-to-speech translation began at that time [Rayner et al. 1993; 
Roe et al. 1992; Wahlster et al. 2000]. SRI International and Swedish Telecom developed a 
prototype speech translation system that could translate queries from spoken English to 
spoken Swedish in the domain of air travel information systems [Rayner et al. 1993]. AT&T 
Bell Laboratories and Telefónica Investigación y Desarrollo developed a restricted domain 
spoken language translation system called Voice English/Spanish Translator (VEST) [Roe et 
al. 1992]. In Germany, Verbmobil [Wahlster 2000], was created as a major speech-to-speech 
translation research project. The Verbmobil scenario assumes native speakers of German and 
of Japanese who both possess at least a basic knowledge of English. The Verbmobil system 
supports them by translating from their mother tongue, i.e. Japanese or German, into English. 

In the 1990s, speech recognition and synthesis research shifted from a rule-based to a 
corpus-based approach such as HMM and N -gram. However, machine translation research 
still depended mainly on a rule-based or knowledge-based approach. In the 2000s, wholly 
corpus-based projects such as European TC-STAR [Höge 2002; Lazzari 2006] and DARPA 
GALE [Roukos 2006] began to deal with monologue speeches such as broadcast news and 
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European Parliament plenary speeches. In this paper, we report corpus construction activities 
for translation of spoken dialogs of travel conversations. 

There are a variety of requirements for every component technology, such as speech 
recognition and language processing. A variety of speakers and pronunciations may be 
important for speech recognition, and a variety of expressions and information on parts of 
speech may be important for natural language processing. The speech and natural language 
processing essential to multilingual spoken language research requires unified structure and 
annotation, such as tagging. 

In this paper, we introduce an interpreter-aided spoken dialog corpus and discuss corpus 
configuration. Next, we introduce the basic travel expression corpus developed to train 
machine translation of spoken language among Japanese, English, and Chinese speakers. 
Finally, we discuss the Japanese, English, and Chinese multilingual spoken dialog corpus that 
we created using speech-to-speech translation systems. 

2. Overview of Approach 

We first planned and constructed an integrated speech and language database called Spoken 
Language DataBase (SLDB) [Morimoto et al. 1994; Takezawa et al. 1998]. The task involved 
travel conversations between a foreign tourist and a front desk clerk at a hotel; this task was 
selected because people are familiar with it and because we expect it to be included in future 
speech translation systems. All of the conversations for this database take place in English and 
Japanese through interpreters because the research at that time concentrated on Japanese and 
English. The interpreters serve as the speech translation system. One remarkable characteristic 
of the database is its integration of speech and linguistic data. Each conversation includes data 
on recorded speech, transcribed utterances, and their correspondences. This kind of data is 
very useful because it contains transcriptions of spoken dialogs between speakers who speak 
different mother tongues. However, the cost of collecting spoken languages is too high to 
expand the size. 

There are three important points to consider in designing and constructing a corpus for 
dialog-style speech communication such as speech-to-speech translation. The first is to have a 
variety of speech samples with a wide range of pronunciations, speaking styles, and speakers. 
The second point is to have data for a variety of situations. A “situation” means one of various 
limited circumstances in which the system’s user finds him- or herself, such as an airport, a 
hotel, a restaurant, a shop, or in transit during travel; it also involves various speakers’ roles, 
such as communication with a middle-aged stranger, a stranger wearing jeans, a waiter or 
waitress, or a hotel clerk. The third point is to have a variety of expressions. 
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According to our previous study [Takezawa et al. 2000], human-to-machine 
conversational speech data shared characteristics with human-to-human indirect 
communication speech data such as spoken dialogs between Japanese and English speakers 
through human interpreters. Moreover, human-to-human indirect communication data had an 
intermediate characteristic, i.e., it was positioned somewhere between direct communication 
data, that is, Japanese monolingual conversations, and speech data from conversational text. If 
we assume that a speaker would accept a machine-friendly speaking style, we could take a 
great step forward: a clear separation of speech data collection and multilingual data collection. 
In the following, we focus on multilingual data collection. In order, Basic Travel Expression 
Corpus (BTEC) [Takezawa et al. 2002; Kikui et al. 2003] was planned to cover the varieties 
of situations and expressions. 

Machine-aided Dialogs (MAD) was planned as a development corpus to handle the 
differences between the target utterance with which speech translation systems must deal and 
the following two corpora. 

SLDB contains no recognition/translation errors because the translations between people 
speaking different languages are done by professional human interpreters. However, even 
a state-of-the-art speech translation system cannot avoid recognition/translation errors. 

BTEC contains edited colloquial travel expressions, which are not transcriptions, so some 
people might not express things in the same way, and the frequency distribution of 
expressions might be different from actual dialogs. 

Field Experiment Data (FED) was planned as the evaluation corpus. Table 1 shows an 
overview of the corpora. In the table, S2ST stands for speech-to-speech translation, MT stands 
for machine translation, J, E, and C stand for Japanese, English, and Chinese, respectively. 

Table 1. Overview of corpora 
SLDB BTEC MAD FED 

Name Spoken Language 
DataBase 

Basic Travel 
Expression 

Corpus 

Machine- 
Aided 

 Dialogs 

Field 
Experiment 

Data 

Purpose Developing S2ST Training MT Developing S2ST Evaluation of S2ST 

Domain Hotel Travel Travel Travel 

Languages J E (C) J E C J E (C) J E C 

Speaker 
Participants 

71 
(+23 Interpreters) Not spoken 45 84 

Size 16k 588k 13k 2k 
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3. Interpreter-Aided Spoken Dialog Corpus (SLDB) 

SLDB contains data from dialog spoken between English and Japanese speakers through 
human interpreters [Morimoto et al. 1994; Takezawa et al. 1998]. All utterances in SLDB 
have been translated into Chinese. The content is entirely travel conversations between a 
foreign tourist and a front desk clerk at a hotel. Human interpreters serve as the speech 
translation system. 

Table 2 is an overview of the corpus, and Table 3 shows its basic characteristics. 

Table 2. Overview of SLDB 

Number of collected dialogs 618 

Speaker participants 71 

Interpreter participants 23 

Table 3. Basic characteristics of SLDB 

 Japanese English 

Number of utterances 16,084 16,084 

Number of sentences 21,769 22,928 

Number of word tokens 236,066 181,263 

Number of word types 5,298 4,320 

Average number of words per sentence 10.84 7.91 

One remarkable characteristic of SLDB is its integration of speech and linguistic data. 
Each conversation includes recorded speech data, transcribed utterances, and the 
correspondences between them. 

The transcribed Japanese and English utterances are tagged with morphological 
information. This kind of tagged information is crucial for natural language processing as well 
as for speech recognition language modeling. The recorded speech signals and transcribed 
utterances in the database provide both examples of various phenomena in bilingual 
conversations, and input data for speech recognition and machine translation evaluation 
purposes. 

Data can be classified into the following three major categories. 

1. Transcribed data 

2. Tagged data 

3. Speech data 
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Transcribed data consists of the following. 

(a) Bilingual text 

(b) Japanese text 

(c) English text 

The recorded bilingual conversations are transcribed into a text file. The bilingual text 
contains descriptions of the situations in which a speech translation system is used. 

 

J: Arigatou gozaimasu. Kyoto Kankou Hotel de gozaimasu. 

JE: Thank you for calling Kyoto Kanko Hotel. |How may I help you? 
 

E: Good evening. |I’d like to make a reservation, please. 

EJ: Konbanwa. |Yoyaku wo shi tai n desu keredomo. 
 

J: Hai,[e-]go yoyaku no hou wa itsu desho u ka? 

JE: Yes, when do you plan to stay? 
 

E: I’d like to stay from August tenth through the twelfth, for two nights.|  
If possible, I’d like a single room, please. 

EJ: Hachigatsu no tooka kara juuni-nichi made, ni-haku shi tai n desu.|  
Dekire ba, single room de onegaishimasu. 

 

J: Kashikomarimashita. |Shoushou o-machi kudasai mase. 

JE: All right, please wait a moment. 

J: O-mata se itashimashita.| 

Osoreiri masu ga, single room wa manshitsu to nat te orimasu. 

JE: I am very sorry our single rooms are all booked. 

J: [e]Washitsu ka twin room no o-hitori sama shiyou deshi tara o-tori dekimasu ga. 

JE: But, Japanese style rooms and twin rooms for single use are available. 
 

E: [Oh] what are the rates on those types of rooms? 

EJ: Sono o-heya no ryoukin wo oshie te kudasai. 

 
Figure 1. Conversation between an American tourist and a Japanese front 

desk clerk. 
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Figure 1 shows an example of transcribed conversations. The Japanese text in Figure 1 
has been transcribed into Romanized Japanese for the convenience of readers who do not 
understand Japanese hiragana, katakana, and kanji (Chinese characters). The original text was 
transcribed in Japanese characters hiragana, katakana, and kanji. Interjections are bracketed. J, 
E, JE, or EJ at the beginning of a line denotes a Japanese speaker, an English speaker, a 
Japanese-to-English interpreter, or an English-to-Japanese interpreter, respectively. “ ” 
denotes a sentence boundary. A blank line between utterances shows that the utterance’s right 
was transferred. 

The Japanese text is produced by extracting the utterances of a Japanese speaker and an 
English-to-Japanese interpreter, while the English text is produced by extracting the utterances 
of an English speaker and a Japanese-to-English interpreter. These two kinds of data are 
utilized for such monolingual investigations as morphological analysis. 

The tagged data consists of the following. 

(d)  Japanese morphological data 

(e)  English morphological data 

SLDB is available to outside research institutions and can be accessed at the following 
URL: http://www.atr.jp. 

4. Basic Travel Expression Corpus (BTEC) 

The Basic Travel Expression Corpus (BTEC) [Takezawa et al. 2002; Kikui et al. 2003] was 
designed to cover utterances for possible travel conversations topic and their translations. 
Since it is practically impossible to collect them by transcribing actual conversations or 
simulated dialogs, we decided to use sentences provided by bilingual travel experts based on 
their experience. We started by looking at phrasebooks that contain bilingual sentence pairs 
(in this case Japanese/English) that the editors consider useful for tourists traveling abroad. 
Such sentence pairs were collected and rewritten to make translation as context-independent 
as possible and to comply with the speech transcription style of our research institution. 
Sentences that were outside of the travel domain or have very special meanings were removed. 

Table 4 lists the basic statistics of the BTEC collections, called BTEC1, 2, 3, 4, and 5. 
Each collection was created using the same procedure in a different time period or using a 
different translation direction from the source language to target languages. Strictly speaking, 
morphemes are used as the basic linguistic unit for Japanese (instead of words), since 
morpheme units are more stable than word units. 
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Table 4. Overview of BTEC 
 BTEC1 BTEC2 BTEC3 BTEC4 BTEC5 

 

Number of utterance-style expressions 172k 46k 198k 74k 98k 

Number of Japanese word tokens 1,174k 341k 1,434k 548k 1,046k 

Number of Japanese word types 28k 20k 43k 22k 28k 

Languages (Source:Targets) J:EC J:EC J:EC E:JC E:JC 

The aims of the BTEC corpus are for translation and language modeling for automatic 
speech recognition. For translation, one of the key points to cover is the translation direction 
from the source language to target languages. For automatic speech recognition in the travel 
domain, one of the key points to cover is multiple sub-domains such as airport-related dialogs, 
hotel-related dialogs, and so on. 

For translation, the BTEC collections cover both translation directions. BTEC1, BTEC2, 
and BTEC3 contain expressions for Japanese tourists visiting the USA, UK, or Australia. The 
translation direction is from Japanese to English and Chinese. BTEC4 mainly contains 
expressions for American tourists who visit Japan. The translation direction is from English to 
Japanese and Chinese. BTEC5 contains various expressions, such as those for American 
tourists who go to Korea. The translation direction is from English to Japanese and Chinese. 

For automatic speech recognition, BTEC covers multiple domains. Domain information 
is given for BTEC1, BTEC2, and BTEC3. Table 5 shows an overview. 

BTEC sentences, as described above, did not come from actual conversations but were 
generated by experts as reference materials. This approach enabled us to efficiently create a 
broad corpus; however, it may have two problems. First, this corpus may lack utterances that 
occur in real conversation. For example, when people ask the way to a bus stop, they often use 
a sentence like (1). However, in BTEC this is expressed more directly, as in (2). 

(1)  I’d like to go downtown. Where can I catch a bus?  

(2)  Where is a bus stop (to go downtown)?  

We will discuss this issue in the section on MAD. 

The second problem is that the frequency distribution of this corpus may be different 
from the actual distribution. In this corpus, the frequency of an utterance most likely reflects 
the best trade-off between usefulness in real situations and compactness of the collection. 
Therefore, it is possible to think of this frequency distribution as a first approximation of 
reality, but this is an open question. 

A part of BTEC was distributed to the participants in the International Workshop on 
Spoken Language Translation (IWSLT) [IWSLT 2006]. 
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Table 5. Domain information of BTEC 

Domain Frequency

Communication 20.4% 

Basic 19.1% 

Trouble 8.7% 

Shopping 7.9% 

Stay 6.9% 

Sightseeing 6.6% 

Transfer 6.6% 

Restaurant 5.9% 

Business 3.8% 

Airport 3.6% 

Contact 3.3% 

Airplane 2.3% 

Drink 1.0% 

Home stay 1.0% 

Exchange 0.8% 

Snack 0.8% 

Beauty 0.5% 

Study overseas 0.5% 

Go home 0.3% 

Total 100.0% 

5. Machine Translation-Aided Spoken Dialog Corpus (MAD) 

The approach exemplified by BTEC focuses on maximizing the coverage of the corpus rather 
than creating an accurate sample of reality. Users may use different wording when they speak 
to the system. In addition, there may be differences between the target utterance with which 
speech translation systems must deal and the following two corpora. 

SLDB contains no recognition/translation errors because the translations between people 
speaking different languages are done by professional human interpreters. However, even 
a state-of-the-art speech translation system cannot avoid recognition/translation errors. 

BTEC contains edited colloquial travel expressions, which are not transcriptions, so some 
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people might not express things in the same way and the frequency distribution of 
expressions might be different from actual dialogs. 

Therefore, MAD is intended to collect representative utterances that people will input 
into S2ST systems. For this purpose, simulated dialogs (i.e., role play) were carried out 
between two native speakers of different mother tongues with a Japanese/English 
bi-directional S2ST system, instead of using human interpreters. 

During the first half of the research program, human typists were used instead of speech 
recognizers to ensure that we collected good quality data. During the second half of the 
research program, the S2ST system between English and Japanese was used. 

5.1 Collecting Spoken Dialog Data Using Typists 
Figure 2 is an overview of the data collection environment. An English typist transcribes an 
English utterance and inputs it into a machine translation system from English to Japanese. 
The translated Japanese text and its synthesized speech are sent to a Japanese speaker. 
Likewise, a Japanese typist transcribes a Japanese utterance and inputs it into a machine 
translation system from Japanese to English. The translated English text and its synthesized 
speech are sent to an English speaker. By repeating this process, an MT-aided bilingual dialog 
continues. Speech waves, transcriptions, and translated texts are stored in log files. 

Five sets of simulated dialogs (MAD1 through MAD5) have so far been developed, 
changing parameters such as system configurations, complexity of dialog tasks, instructions to 
speakers, and so on. Table 6 shows a summary of the five experiments, MAD1-MAD5. In this 
table, the number of utterances includes both Japanese and English. 

The first set of dialogs (MAD1) was collected to see whether conversation through a 
machine translation system is feasible. The second set (MAD2) focused on task achievement 
by assigning complex tasks to participants. The third set (MAD3) contains carefully recorded 
speech data of medium complexity. MAD4 and MAD5 aim to investigate how utterances 
change based on a change in setting. 

It is very likely that people would speak differently to a spoken language system based 
on the instructions given to them. Instructions were conveyed to subjects for all sets other than 
MAD1 using instructional movies to ensure that the same instructions were given to each 
subject. Before starting the experiments, subjects were asked to watch these movies and then 
try the system with test dialogs. Instructions and practice took about 30 minutes. We gave 
different types of instructions for the fourth set (MAD4). 
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Figure 2. Data collection environment of MAD 

Table 6. Statistics of MAD corpora 

Subset ID MAD1 MAD2 MAD3 MAD4 MAD5 

Reference [Takezawa and Kikui 2003] [Takezawa and Kikui 2003] [Takezawa et al. 2003] [Takezawa and Kikui 2004] [Mizushima et al. 2004] 
 

Number of 
utterances 3,022 1,696 2,180 1,872 1,437 

Number of 
words per 
utterance 

10.0 12.6 11.1 9.82 8.47 

Number of 
utterances 
per dialog 

7.8 49.3 18.8 22.0 27.0 

Task 
complexity Simple Complex Medium Medium Medium 

 

Average numbers depend on experimental conditions. 

S2ST presupposes that each user understands the translated utterances of the other. 
However, the dialog environment described so far allows the user to access other information, 
such as translated text displayed on a PDA. We tried to control the extra information in MAD5 
to see how utterances would be affected. 

Part of the MAD corpus has been translated into Chinese. 
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5.2 Collecting Spoken Dialog Data Using Speech Translation Systems 
Spoken dialog data was collected using the S2ST system for English and Japanese. This data 
collection experiment is called MAD6 because five data collection experiments were carried 
out using typists. The system was configured as follows. 

 Acoustic model for Japanese speech recognition: Speaker-adapted models. 

 Language model for Japanese speech recognition: Vocabulary size 52,000 words. 

 Acoustic model for English speech recognition: Speaker-adapted models. 

 Language model for English speech recognition: Vocabulary size 15,000 words. 

Table 7 is an overview of MAD6. Data collected by typists (MAD1 through MAD5) 
contains some translation errors but very few recognition errors. However, MAD6 data 
contains both recognition errors and translation errors. We found that translation errors caused 
by recognition errors sometimes caused great confusion. That is, users need many more turns 
to recover from translation errors caused by recognition errors than to recover from mere 
translation errors. Moreover, we found that the user’s speaking style changed similar to read 
speech when using speech recognizers. This was because users could confirm their recognition 
results using a PC display. Experienced users soon understood that they were confused by 
translation errors caused by recognition errors and adopted strategies to avoid recognition 
errors. As a result, their speaking style seemed to change from a natural dialog style to a read 
speech style. 

Table 7. Overview of MAD6 

 MAD6 
 

Purpose Spoken dialog data collection using S2ST system 

Task Simple as in MAD1 

Number of utterances 2,507 

Number of dialogs 139 

5.3 Comparative Analysis and Discussion 
BTEC and SLDB are designed to be complementary. BTEC is a collection of Japanese 
sentences and their translations, and SLDB is a collection of transcriptions of bilingual spoken 
dialogs. Whereas BTEC covers a wide variety of travel domains, SLDB covers a limited 
domain, i.e., hotel situations. BTEC contains approximately 588k utterance-style expressions, 
while SLDB contains about 16k utterances. Thus, we can hypothesize that BTEC and SLDB 
together cover the same content as MAD. This hypothesis is partly validated by the 
cross-perplexity shown in Table 8. In this table, BTEC1 SLDB combines two language 
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models trained on BTEC1 and SLDB with linear interpolation. Similarly, BTEC1 Extra 
combines BTEC1 and a corpus called Extra, which is a sample of a BTEC-type extra corpus of 
about the same size as SLDB. This clearly shows that both BTEC1 and SLDB are required for 
handling MAD-type tasks. Further discussion is available in [Kikui et al. 2006]. 

Table 8. Cross-perplexity for MAD (Japanese) 

 Training corpus 

 BTEC1 SLDB BTEC1 SLDB BTEC1 Extra 

Size (Number of utterances) 162k 12k 174k 174k 

Cross-perplexity 38.2 94.9 30.7 35.7 

6. Field Experiment Data (FED) 

An ideal approach to applying a system to real utterances is to let people use the system in real 
world settings to achieve real conversational goals (e.g., booking a package tour). This 
approach, however, has at least two problems. First, it is difficult to back up the system when 
it makes errors because current technology is not perfect. Second, it is difficult to control tasks 
and conditions to do meaningful analysis of the collected data. 

The new experiment reported here was still in the role-play style but its dialog situations 
were designed to be more natural. The S2ST system for travel conversation was set up at 
tourist information centers in an airport and a train station, and non-Japanese-speaking people 
were asked to talk with the Japanese staff at information centers using the S2ST system. 

6.1 Experimental System for Data Collection 
Figure 3 is a diagram of the overall experimental system. The system includes two PDAs, one 
for each language, and several PC servers. The PC servers are controlled by a special 
controller called the gateway for component engines, consisting of automatic speech 
recognition (ASR) [Itoh et al. 2004], machine translation (MT) [Sumita et al. 2004], and 
speech synthesis (SS) [Kawai et al. 2004] PCs for each language and each language-pair. The 
gateway is responsible for controlling information flow between PDAs and engines. It is also 
responsible for mediating messages from the ASR and MT engines to PDAs. Each PDA is 
connected to the gateway with a wireless LAN. The gateway and component engines are wired. 
Headset microphones were used in the FED experiment. 
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Figure 3. Overview of experimental system 

An utterance spoken into a PDA is sent to the gateway server, which calls the ASR, MT, 
and SS engines in this order to have the utterance translated. Finally, the gateway sends the 
translated utterance to the other PDA. 

Speaker-adapted acoustic models were used for Japanese speech recognition because 
only a few Japanese staff at the tourist office agreed to participate in the FED experiment. A 
few proper names that were deemed necessary to carry out the planned conversations were 
added to the lexicon. These included names such as those of stations near the locations of the 
experiment. 

6.2 Locations 
Data collection was conducted near two tourist information centers. One was in Kansai 
International Airport (hereafter, KIX), and the other was at Osaka City Air Terminal (hereafter, 
OCAT) in the center of Osaka. The former is in the main arrival lobby of the airport, which 
many tourists pass as they emerge from customs. The latter is a semi-enclosed area of about 
40 2m  enclosed by glass walls (but with two open doors). 
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Environmental noise was 60-65 dBA in both places but rose to 70 dBA when the public 
address system was in use. 

The language pairs were English-Japanese/Japanese-English and 
Chinese-Japanese/Japanese-Chinese. 

6.3 Scenario 
A good method of collecting real utterances is to just let subjects talk freely without using 
predetermined scenarios. Analyzing uncontrolled dialog, however, is very difficult. In the 
FED experiment, eight dialog scenarios were prepared. These scenarios, listed below, are 
categorized by expected number of turns for each speaker into three levels of complexity. 

 

Level-1 : Requires one or two turns per speaker plus greetings. 
E.g., “Please ask where the bus stop for Kyoto station is.” 

Level-2 : Requires three or four turns per speaker plus greetings. 
E.g., “Please ask the way to Kyoto station.” 

Level-3 : Free discussion. 
E.g., “Please ask anything related to traveling in the Osaka area.” 

 

Real dialogs included many clarification sub-dialogs necessitated by incomprehensible 
output from the system. This means that the number of turns was actually larger than we 
expected or planned. 

6.4 Speakers 

6.4.1 Japanese Speakers 
We asked staff at the tourist information centers to participate in the experiments, and six 
people at KIX and three at OCAT agreed to take part. 

6.4.2 Chinese Speakers 
Since the Chinese speech recognizer was trained on Mandarin speech, we needed to recruit 
subjects from the Beijing region of China. It was, however, difficult to find tourists from 
China who had time to participate in the experiment because most of them came to Osaka as 
members of tightly scheduled group tours. Therefore, we relied on 36 subjects gathered by the 
Osaka prefectural government. These subjects are college students from China majoring in 
non-technical areas such as foreign studies and tourism. 



 

 

ˆ˄ˋ                                                   Toshiyuki Takezawa et al. 

 

6.4.3 English Speakers 
The English speech recognizer was trained on North American English. Again, however, it 
was difficult to find volunteer subjects who speak North American English. We expected to 
recruit many individual tourists, and most of the English-speaking volunteer subjects were 
indeed tourists arriving at or leaving the airport during the experiment. In addition to these 
volunteers, Osaka prefecture provided nine subjects who were working in Japan as English 
teachers. The resulting 39 subjects were not all North Americans, as shown in Table 9. 

Table 9. Origin of English-speaking subjects 

Origin Number of subjects 

USA      15 

UK       6 

Australia       5 

Canada       4 

New Zealand       2 

Denmark       2 

Other       5 

6.5 Collecting Data 
First, we set up the S2ST system and asked the Japanese subjects (i.e., service personnel at the 
tourist information centers) to stand by at the experimental sites. 

When an English or Chinese speaking subject visited a center, he or she was asked to fill 
out the registration form. Then, the staff explained for 2-3 minutes how to use the S2ST 
system and asked the subject to try very simple utterances like “hello” or “thank you.” After 
the trial utterances, we had the subject try two dialogs: one dialog for practice using a level 1 
scenario, and the other for the “main” dialog, which was a scenario chosen randomly from 
level 1 through level 3. Finally, the subject was asked to answer a questionnaire. 

The average time from registration to filling out the questionnaire was 15-20 minutes. 
Since we conducted 4-5 hours of experiments each day, excluding system setup, we were able 
to obtain dialog data for 15 subjects per day. 

Table 10 is an overview of FED data. 
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Table 10. Overview of FED 

 J (to E) E (to J) J (to C) C (to J) 
 

Number of utterances 608 660 344 484 

Number of speakers 7 39 6 36 

Number of word tokens 3,851 4,306 2,017 422 

Number of word types 727 668 436 382 

6.6 Performance Evaluation 
We collected questionnaires from all subjects. As mentioned above, all of the 
Chinese-speaking subjects were college students. Therefore, they had at least a basic 
understanding of Japanese because they attend lectures given in Japanese. Therefore, in the 
following, we will focus on the English side. 

First, overall performance is measured in terms of subjective scores from A to D, defined 
as follows. 

(A)  Perfect: no problems in either information or grammar. 

(B)  Good: easy to understand, with either some unimportant information missing or flawed 
grammar. 

(C)  Fair: broken but understandable with effort. 

(D)  Nonsense or no-output: (including ASR errors). 

Table 11 shows results of English-Japanese translation. About 50% of the utterances 
were translated into the target language with their original meaning preserved (e.g., at rank B 
or above). 

Table 11. Results of English-Japanese translation 

Rank J to E (%) E to J (%) 

A 37.1 36.2 

B 10.2 18.2 

C 10.9 5.7 

D 41.4 24.5 

The ultimate goal of speech translation systems is to help users achieve their 
conversational goals. Instead of evaluating “goal achievement,” we asked them to subjectively 
evaluate during the course of conversations to what extent 1) they could understand their 
partner’s utterances, and 2) they felt that their utterances were correctly understood. Table 12 
shows the questionnaire results on these issues. 
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 Table 12. Results of questionnaires on understanding a partner’s utterances 
(English side) 

 Make the hearer understood (%) Understood what the partner said (%) 

Complete 8.3 22.2 

Almost 41.6 50.0 

Half 33.3 22.2 

Little 16.7 5.6 

Note that, although the number of subjects (i.e., samples) is limited, the table does show 
that roughly half the subjects felt they could almost understand and make themselves 
understood by their partners. The result seems to coincide with the overall performance shown 
in Table 11. 

7. Conclusion 

This paper described our experience with multilingual spoken language corpus development at 
our research institution, focusing in particular on speech recognition and natural language 
processing for speech translation of travel conversations. 

First, we introduced an interpreter-aided spoken dialog corpus called SLDB, and 
mentioned corpus configuration. Next, we introduced BTEC, which was built to train machine 
translation of spoken language among Japanese, English, and Chinese speakers. BTEC and 
SLDB are designed to be complementary. BTEC is a collection of Japanese sentences and 
their translations, and SLDB is a collection of transcriptions of bilingual spoken dialogs. 
Whereas BTEC covers a wide variety of travel domains, SLDB covers a limited domain, i.e., 
hotel situations. BTEC contains approximately 588k utterance-style expressions, and SLDB 
contains about 16k utterances. 

Finally, we discussed a multilingual spoken dialog corpus between Japanese, English, 
and Chinese created using speech-to-speech translation systems. MAD was developed as a 
development corpus and we presented both BTEC and SLDB can be used to handle with 
MAD-type tasks. FED was planned as the evaluation corpus. According to analysis of the 
questionnaire, roughly half the subjects felt they could understand and make themselves 
understood by their partners. 

In the future, we plan to expand our activities to multilingual spoken language 
communication research and development involving both verbal and nonverbal 
communication. Information is available at the following URL: http://www.atr.jp. 
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Exploiting Pinyin Constraints in Pinyin-to-Character 

Conversion Task: a Class-Based Maximum Entropy 

Markov Model Approach 

Jinghui Xiao*, Bingquan Liu*, and Xiaolong Wang* 

Abstract 

The Pinyin-to-Character Conversion task is the core process of the Chinese 
pinyin-based input method. Statistical language model techniques, especially 
ngram-based models, are mostly adopted to solve that task. However, the ngram 
model only focuses on the constraints between characters, ignoring the pinyin 
constraints in the input pinyin sequence. This paper improves the performance of 
the Pinyin-to-Character Conversion system through exploitation of the pinyin 
constraints. The MEMM framework is used to describe the pinyin constraints and 
the character constraints. A Class-based MEMM (C-MEMM) model is proposed to 
address the MEMM efficiency problem in the Pinyin-to-Character Conversion task. 
The C-MEMM probability functions are strictly deduced and well formulized 
according to the Bayes rule and the Markov property. Both the cases of hard class 
and soft class are well discussed. In the experiments, C-MEMM outperforms the 
traditional ngram model significantly by exploitation of the pinyin constraints in 
the Pinyin-to-Character Conversion task. In addition, C-MEMM can well utilize 
the syntax and semantic information in word class and further improve the system 
performance. 

Keywords: Pinyin-to-Character Conversion, MEMM, Class-Based  

1. Introduction 

The standard keyboard was initially designed for native English speakers. In Asia, such as 
China, Japan and Thailand, people cannot input their language through the standard keyboard 
directly. Asian text input becomes one of the challenges for computer users in Asia. Therefore, 
an Asian language input method is one of the most difficult problems in Asian language 
processing. 
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For Chinese, the input methods can be roughly divided into two types: one is the 
structure-based or shape-based input method, which was developed based on the structure of 
Chinese characters, such as the Wubi method [Wang 2005], Cangjie method, Boshiamy 
method, among others. These methods can reach a high input speed by a skilled user. However, 
a lot of effort is required to master them. The other is the pronunciation-based input method, 
such as the Insun input method [Wang 1993], Microsoft input method, Bopomofo, among 
others. These methods are easy to learn. The user can input the Chinese character with 
scarcely any training, on the condition that they can pronounce it correctly. Hybrid input 
methods have also been proposed, i.e. Renzhi and Tze-loi input method. However, they only 
possess a limited share of the market. 

The Pinyin-based input method is one of the most important pronunciation-based input 
methods. Pinyin is a system of Romanization for standard Mandarin. It uses Roman letters to 
represent the sound of Chinese characters. Hanyu Pinyin is the most common variant of pinyin 
in use. It was approved in 1958, and the government of the People ’s Republic of China has 
adopted Hanyu pinyin as the phonetic instruction in the mainland of China. In 1979, Hanyu 
pinyin was adopted by the International Organization for Standardization (ISO) as the 
standard Romanization for modern Chinese [ISO 7098: 1991]. The Pinyin-based input method 
dominates the market of Chinese input methods. It is said that over 97% of Chinese computer 
users are using pinyin to input Chinese [Chen 1997]. 

According to the scale of input unit, the pinyin-based input method can be divided into 
three types: the character-level input method, the word-level or phrase-level input method, and 
the sentence-level input method, respectively. The sentence-level input method usually 
achieves higher accuracy by exploitation of more context information than the other two. It 
has become the most prevalent pinyin-based input method. The Pinyin-to-Character 
Conversion task aims to convert a sequence of pinyin strings into one Chinese sentence. It is 
the core process of the sentence-level pinyin-based input method. Therefore, improving the 
performance of the Pinyin-to-Character Conversion system is well worth studying. In addition, 
the Pinyin-to-Character Conversion task can be taken as a simplified task of automatic speech 
recognition, both of which aim to convert phonetic information into character sequence. 
However, the Pinyin-to-Character Conversion task doesn ’t have to deal with acoustic 
ambiguity because the pinyin strings are directly input through the keyboard. Therefore, the 
technique is also illuminative in the task of automatic speech recognition. 

The linguist approach [Wang 1993; Hsu and Chen 1993; Kuo 1995] and the statistical 
approach [Zhang et al. 1998; Xu et al. 2000; Wu 2000; Gao et al. 2002; Gao et al. 2005; Xiao 
et al. 2005a] are two technical approaches to the Pinyin-to-Character Conversion task. The 
statistical approach is mainly based on the technique of statistical language models, especially 
the ngram model and its variant forms. In recent years, it has drawn great interest due to its 
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efficiency and robustness. However, several drawbacks have also been found in the traditional 
ngram model. First, according to Zipf ’s law [Zipf 1935], there are a lot of words which rarely 
or never occur in the training corpus. The data sparseness problem is severe [Brown et al. 
1992] in the ngram model. Second, long distance constraints are difficult to capture since the 
ngram model only focuses on local lexical constraints. Third, it ’s hard to utilize the linguistic 
knowledge of the ngram model. 

Many techniques have been proposed to address the drawbacks of the traditional ngram 
model. To solve the data sparseness problem, various kinds of smoothing techniques have 
been proposed, such as additive smoothing [Jeffreys 1948], Katz smoothing [Katz 1987], 
linear interpolation smoothing [Jelinek and Mercer 1980], semantic based smoothing [Xiao et 
al. 2005b; Xiao et al. 2006]. To utilize the linguistic knowledge, a set of linguistic rules are 
generated automatically and they are incorporated into the traditional ngram model by a 
hybrid ngram model [Wang et al. 2005]. Hsu [Hsu 1995] proposes the context sensitive model 
(CSM) in which the semantic patterns are captured by the templates. As much as 96% 
accuracy, which is the best result of the traditional Chinese input methods as far as we know, 
is reported for CSM on the Phoneme-to-Character Conversion task. Trigger techniques have 
been proposed [Zhou and Lua 1998] and word-pair techniques have been proposed [Tsai and 
Hsu 2002; Tsai et al. 2004; Tsai 2005; Tsai 2006]. The linguist knowledge can be effectively 
described by triggers and pairs; meanwhile, the long distance constraints can be well captured. 
Compared with the commercial input system (MS-IME 2003), effective improvements have 
been achieved by these techniques [Tsai 2006]. Wang [Wang et al. 2004] utilizes the theory of 
rough set so as to discover the linguistic knowledge and incorporate it into the 
Pinyin-to-Character Conversion system. Compared with the traditional ngram model, Wang ’s 
system achieves a higher accuracy with a smaller storage requirement. Xiao [Xiao et al. 2005a] 
incorporates the word positional information into the Pinyin-to-Character Conversion system 
and achieves encouraging results in experiments. Gao [Gao et al. 2005] proposes the 
Minimum Sample Risk (MSR) principle to estimate the parameters of the ngram model. 
Success has been achieved with this principle for a Japanese input method.  

What’s more, some techniques have been proposed especially for Chinese text input 
method. A Pinyin-to-Character Conversion system with spelling-error correction was 
developed by Zhang [Zhang et al. 1997]. In the system, a rule-based model is designed to 
correct typing errors when the user inputs pinyin strings. Not only can the system accept the 
correct pinyin input, but it can also tolerate common typing errors. Similar work has been 
done by Chen [Chen and Lee 2000]. Chen constructs a statistical model to correct user typing 
errors. Moreover, Chen proposes a modeless input technique in which the user can input 
English using a Chinese input method, not requiring language mode switch. 

However, there is another drawback of the ngram model in the Pinyin-to-Character 
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Conversion task, which has been ignored by most researchers. It takes no account of pinyin 
constraints on the input pinyin sequence while actually in the process of Pinyin-to-Character 
Conversion. This paper regards that the pinyin information from the pinyin sequence is helpful 
for selecting the correct character sequence in the Pinyin-to-Character Conversion task. First, 
the current input pinyin string is helpful for selecting the correct character which corresponds 
to that pinyin. For example, the input pinyin sequence is “ta1 shi4 di2 shi4 you3?” which 
should be converted into “ !"!#?” (“Is he an enemy or friend?”). Let’s focus on the 
third pinyin string of “di2”. There are two homonyms which correspond to it: “"” and “$”. 
(There are actually many homonyms, but let ’s only focus on “"” and “$” for simplification). 
“$” is one of the most frequent Chinese characters and its frequency is usually much higher 
than “"”. According to the ngram model, the above pinyin sequence should be converted into 
“ !$!#?” which is a wrong conversion. However, “$” is a polyphone which 
corresponds to both “di2” and “de5”. In Chinese, “$” is usually pronounced as “de5” instead 
of “di2”. (“$” is pronounced as “di2” only in the word “$%” (certainly)). The frequency of 
“$” mainly comes with its pronunciation “de5”. If the pinyin information is considered in the 
above conversion, the co-occurrences of “$” and “di2” are usually lower than that of “"” 
and “di2”. Then, the above pinyin sequence is correctly converted into “ !"!#?”. 
Second, the contextual information, especially the future information, can be well exploited in 
the pinyin constraints. For example, there are two pinyin sequences. The first one is “yi4 zhi1 
ke3 ai4 de5 xiao3 hua1” which should be converted into “&'()$*+” (This is a lovely 
flower). The second pinyin “zhi1” should be converted into “'” which is determined by its 
future character “+” (flower). The second pinyin sequence is “yi4 zhi1 ke3 ai4 de5 xiao3 
hua1 mao1” which should be converted into “&,()$*+-” (This is a lovely cat). The 
second pinyin “zhi1” should be converted into “,” which is determined by its future 
character “-” (cat). However, according to the ngram model, the conversion of “zhi1” is only 
determined by its history information which is the character “&” in the above two cases. The 
characters of “+” and “-” are both the further information that the ngram model can not 
exploit. Therefore, the same probabilities are assigned to both the characters of “,” and “'”. 
They can not be distinguished by the ngram model. In the above two conversions, at least one 
of them would be converted incorrectly. However, if the pinyin constraints are considered, the 
constraints of “hua1” and “mao1”, which correspond to the characters of “+” and “-”, are 
exploited and imposed on the conversion of “zhi1”. Then, the above two cases can be 
distinguished and the correct conversions can be obtained. Third, the long distance constraints 
can be exploited from the pinyin sequence. As for the ngram model, it has to construct a 
high-order model to capture the long distance constraints. However, high-order ngram models 
suffer from the curse of dimensionality which usually leads to a severe data sparseness 
problem. The current model order is usually 2 or 3. In the above example, in order to exploit 
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the constraints of “+” and “-” on the conversion of “zhi1”, it has to build up at least a 
7-order ngram model which suffers from a great data sparseness problem and cannot work 
well in reality. However, the pinyin constraints are collected as features and exploited under 
the Maximum Entropy (ME) framework in this paper. The context window size can be 
relatively large (i.e. 5 pinyin strings or 7 pinyin strings) without the curse of dimensionality. 
Then the constraints of “+” and “-” can be imposed on the conversion of “zhi1” by 
exploitation of their pinyin information. 

This paper aims to improve the performance of the Pinyin-to-Character Conversion 
system by exploitation of the pinyin constraints from pinyin sequence. The pinyin constraints 
are described under the ME framework [Berge et al. 1996], and the character constraints are 
modeled by the traditional ngram model. Combining these two models into a unified 
framework, the paper builds the Pinyin-to-Character Conversion system on a MEMM model 
[McCallum et al. 2000]. However, the label set on the Pinyin-to-Character Conversion task is 
the Chinese lexicon. The scale of Chinese lexicon is usually in the range of 4 610 10: , which 
is too large for the current training algorithms of MEMM. Therefore MEMM cannot be 
directly applied to the Pinyin-to-Character Conversion task. This paper involves the addition 
of the class of target label into traditional MEMM and proposes a Class-based Maximum 
Entropy Markov Model (C-MEMM) so as to solve the MEMM efficiency problem in the 
Pinyin-to-Character Conversion task. In C-MEMM, the pinyin constraints are first imposed on 
the class sequence instead of the target label sequence as MEMM does. The classes of target 
label can be obtained by some automatic algorithms [Li 1998; Chen and Huang 1999; Gao et 
al. 2001] or from some pre-defined thesauri [Mei et al. 1983]. The scale of class set is usually 
much smaller than that of target label, which makes it feasible to train C-MEMM under the 
Maximum Entropy principle. Then, these constraints are conveyed from the class sequence to 
the target label sequence. So, C-MEMM can efficiently exploit the pinyin constraints from 
pinyin sequence and get effective improvement in the Pinyin-to-Character Conversion task. 

The paper is organized as follows: the MEMM model is briefly reviewed in Section 2. In 
Section 3, the C-MEMM model is proposed and its probability functions are deduced 
according to the Bayes rule and the Markov property. Both the cases of hard class and soft 
class are discussed in detail. Experimental results and discussions are provided in Section 4. 
The related works are described in Section 5, and the conclusions are drawn in Section 6. 

2. Brief Review of MEMM 

MEMM is a powerful tool used to perform the sequence labeling task, which is to determine a 
state sequence according to the observation sequence. Different from the ngram model, 
MEMM not only makes use of the constraints between states but also utilizes the constraints 
from observations. MEMM integrates these two kinds of constraints into a uniform 
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conditional probability function. More formally, given the observation sequence of 

1 2, ... nO o o o=  and the state sequence of 1 2, ... nS s s s= , MEMM estimates the conditional 
probability of ( | )P S O . The probability function of MEMM can be deduced in the following 
way: 

1 2 1 2

1 1 2 2 3 1 2 1

1 1 2 3 1 2 1

1 1 2 1 2 1 3 1 2 1

( | ) ( , ... | , ... )

( | , ... ) ( , ... | , ... , )

( | ) ( , ... | , ... , )

( | ) ( | , ... , ) ( ... | , ... ,

n n
Bayesian Rule

n n n
Markov Property

n n
Bayesian Rule

n n n
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p s o o o p s s s o o o s
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p s o p s o o o s p s s o o o s

=

=

=

= 2

1 1 2 1 2 3 1 2 1 2
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2
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n n

n
i i i

i

s
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p s o p s s o-
=

=

= ’

…………

            (1) 

MEMM estimates the probability of 1( | , )i ip s s o-  under the ME principle so as to utilize 
the overlapping features. The ME principle assumes that the trained model should be 
consistent with certain constraints derived from the training data; meanwhile the model should 
make the fewest assumptions about the data. To predicate the current state s, the contextual 
information of s is extracted from the training data and represented as the feature function: 

* *1( , )
0

if h h and s sf h s
otherwise

Ï = =Ô= Ì
ÔÓ

                                         (2) 

where h is the contextual information of state s and h* (or s*) is the concrete instance of h (or 
s). The following constraints are imposed so that the expectation of each feature in the learned 
model should be consistent with its empirical value in the training corpus. More formally, the 
constraints can be expressed as: 

~( ) ( )p p
E f E f=                                                      (3) 

where ( )pE f  is the model expectation and is defined as: 
~

,
( ) ( ) ( | ) ( , )p

h s
E f p h p s h f h s= Â                                           (4) 

and ~ ( )
p

E f  is the empirical expectation and is defined as: 

~

~

,
( ) ( , ) ( , )

p h s
E f p h s f h s= Â                                               (5) 
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Under these constraints, ME principle guarantees a learned model as uniform as possible, and 
the model can be obtained by maximizing the conditional entropy of the training data: 

~

,
( ) ( ) ( | ) log ( | )

h s
H p p h p s h p s h= -Â                                        (6) 

It results in the probability function of exponential form: 

'
'

1( | , ) exp( ( , ))
( , )

i i
i

p s s o f h s
Z h s

l= Â                                      (7) 

where l is the weight of the feature fi, and Z is the normalization factor. 

In the above formula, '( | , )p s s o  associates observation with state transition, which 
makes data sparseness a serious problem. Therefore, a variant form of MEMM is proposed. It 
makes observations associated with state instead of state transition. Then, MEMM is 
decomposed into two sub-models: the ngram model and the ME model. The probability 
function is reformulated as: 

' '( | , ) ( | ) ( | )MEp s s o p s s p s h=                                       (8) 

where ( | )MEp s h  is the conditional probability which is estimated under the ME principle 
and has the exponential form. Since the data sparseness problem is prone to occur in the 
Pinyin-to-Character Conversion task, our work is based on Formula (8). 

Accordingly, the training process of MEMM can be decomposed into two separate 
processes for the ngram model and the ME model. The ngram model can be effectively trained 
by the Maximum Likelihood Estimation (MLE) principle [Myung 2003]. For the ME model, 
there is no easy solution to get the optimal value of l directly. Some iterative algorithms, i.e. 
the Generalized Iterative Scaling (GIS) algorithm [Darroch and Ratcliff 1972] and the 
Improved Iterative Scaling (IIS) algorithm [Pietra et al. 1997], are usually adopted. However, 
the time complexity of the iterative algorithm is far beyond the complexity of the MLE 
method, and it becomes the bottleneck of the training process of MEMM. When the scale is 
large, it is infeasible to use the iterative algorithm to train the MEMM model because of the 
high complexity. 

3. Principle of Class-Based MEMM 

This paper involves the class of state in traditional MEMM so as to address its efficiency 
problem on a large scale of state set. A Class-based MEMM model is proposed and its 
probability functions are strictly deduced and well formulized both in the case of hard class 
and soft class. The section is structured as follows. First, it presents C-MEMM in the case of 
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hard class. Second, it describes C-MEMM in the case of soft class. Third, it provides ways to 
get the class of the state. 

3.1 C-MEMM on Hard Class  

The simplest way to construct C-MEMM is to substitute state with class of state in the 
probability of ( | )MEp s h  in Formula (8). Then, ( | )MEp c h  is used to simulate ( | )MEp s h  in 
which c is the class of s. However, the predicative capability of ( | )MEp c h  is much lower 
than that of ( | )MEp s h , which decreases the overall performance of C-MEMM. This paper 
begins the work from calculating the conditional probability of sequential data, and re-deduces 
the probability functions for C-MEMM according to the Bayes rule and the Markov property. 
More formally, the following notations are defined: 

l 1 2, ... nO o o o= : the observation sequence 

l 1 2, ... nS s s s= : the state sequence 

l 1 2 ... nC c c c= : the class sequence which corresponds to S. It is unique in the case of hard 
class. 

In the case of hard class, where the class sequence is completely determined by the state 
sequence, the following equation can be made: 

( | ) ( , | )P S O P S C O= .                                                (9) 

Then, the probability function of C-MEMM can be deduced through the following process: 

( | ) ( , | ) ( | ) ( | , )
Bayesian Rule

P S O P S C O P C O P S C O= = ¥ . (10) 

According to the Bayes rule, the conditional probability of sequential data is decomposed into 
two conditional probabilities. The probability of ( | )P C O  can be further decomposed by the 
Bayes rule and the Markov property, exactly as the process of Formula (1). The ultimate 
formula is directly presented as below: 

1 1 1 1 1 1
2 2

( | ) ( | ) ( | , ) ( | ) ( | ) ( | )
n n

i i i i i ME i i
i i

P C O p c o p c c o p c o p c c p c h- -
= =

= =’ ’  (11) 

In the above formula, 1( | , )i i ip c c o-  is further decomposed by Formula (8). 

For the probability of ( | , )P S C O , the decomposing process is a little more complex and 
an additional independent assumption should be made. 
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                                                                     (12) 

The fore part of the above deduction is exactly the same as the process in Formula (1). In the 
following part, such an assumption is made that the state transition probability is independent 
of the emission probability. The local conditional probability of 1( | , , )i i i ip s c o s -  is then 
decomposed into two probabilities: 1( | )i ip s s -  and ( | , )i i ip s c o , in which 1( | )i ip s s -  is the 
state transition probability and ( | , )i i ip s c o  is the class-based emission probability. To gain 
more insight, ( | , )i i ip s c o  can be rewritten as ( | , )i i ip s o c  which is the emission probability 
that is conditioned on the class of ci. Together with the decompositions of Formulas (10) and 
(11), the ultimate form of the probability function of C-MEMM can be obtained, presented as 
below: 

1 1 1 1 1 1 1
2

( | ) ( | ) ( | , ) ( | ) ( | ) ( | , ) ( | )
n

i i ME i i i i i i i
i

P S O p c o p s c o p c c p c h p s c o p s s- -
=

= ’  (13) 

Until now, the conditional probability of sequential data has been decomposed into four kinds 
of local conditional probabilities. The probability of ( | )ME i ip c h  is estimated under the ME 
principle and it has the exponential form: 

1( | ) exp( ( , ))
( )ME i i

i
p c h f h c

Z h
l= Â .                                     (14) 

As the scale of c is much smaller than that of s, it needs shorter time for C-MEMM to estimate 
( | )ME i ip c h  than ( | )ME i ip s h , which makes it feasible to apply C-MEMM in the tasks with 

large scale of state set, i.e. the Pinyin-to-Character Conversion task. The other three 
probabilities are estimated by the Maximum Likelihood Estimation (MLE) principle, 
presented as below: 
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1
1

1

( , )
( | )

( )
i i

i i
i

C c c
p c c

C c
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-
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=                                                (15) 

where ( )C x is the occurrence times of x in the training corpus. 

1
1

1

( , )
( | )

( )
i i

i i
i

C s s
p s s

C s
-

-
-

=                                                  (16) 

( , , )
( | , )

( , )
i i i

i i i
i i

C c o s
p s c o

C c o
=                                              (17) 

When applying C-MEMM in the Pinyin-to-Character Conversion tasks, the four kinds of local 
conditional probabilities are first estimated from the training corpus. Then, according to the 
input pinyin sequence, the probability of a character sequence candidate is calculated by 
Formula (13). Finally, the most probable character sequence is selected as the conversion 
results for the input pinyin sequence. Some dynamic programming algorithms can be utilized 
in the above process, i.e. the Viterbi algorithm. 

In the remaining part of this section, the probability dependency graph in C-MEMM is 
presented and an intuitional description is provided on the functions of the four local 
conditional probabilities. 

 

 

Figure 1. Probability Dependency Graphs for MEMM and C-MEMM 
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Presented as the above graphs, the constraints from the observation sequence are 
imposed directly on the state sequence in MEMM. The scale of the state set becomes a 
bottleneck in the training process of MEMM. However, in C-MEMM, there is a class 
sequence between the state sequence and the observation sequence. All the constraints from 
the observation sequence are imposed on the class sequence in C-MEMM, rather than directly 
on the state sequence as in MEMM. Since the scale of the class set is much smaller than that 
of the state set, the conditional probability of ( | )ME i ip c h , which connects the observation 
sequence with the class sequence, can be efficiently estimated under the ME principle. The 
constraints from the observation sequence are also well exploited by the probabilities of the 
class sequence. Furthermore, all the constraints from the observation sequence are conveyed 
from the class sequence into the state sequence by the conditional probabilities between these 
two sequences. 

Concretely speaking, in Formula (13), the conditional probability of ( | )ME i ip c h  and the 
class transition probability of 1( | )i ip c c -  aim to model the constraints from the observation 
sequence and conserve them in the probability of the class sequence. The conditional 
probability of ( | , )i i ip s c o  conveys these constraints from the class sequence to the state 
sequence. The three conditional probabilities, together with the state transition probability of 

1( | )i ip s s - , form the probability function of C-MEMM. 

Moreover, since there is rich syntactic and semantic information in word class [Brown et 
al. 1992], C-MEMM used in the Pinyin-to-Character Conversion task can well utilize this 
additional information to realize further improvement. 

3.2 C-MEMM on Soft Class 
In the above section, the probability function of C-MEMM is deduced in the case of a hard 
class in which the state is restricted to only one class. However, in natural language processing 
tasks, i.e. the Pinyin-to-Character Conversion task, the state of C-MEMM is usually defined as 
word in the lexicon which usually belongs to multiple classes in nature. For example, 
part-of-speech (POS) can be taken as a natural hierarchy of word class. Most words possess 
more than one kind of POS tag. Each POS tag represents a certain syntactic and semantic 
property of the word. It is beneficial for C-MEMM to exploit all the properties of the word in 
natural language processing. The section studies C-MEMM in the case of soft class in which 
the state belongs to multiple classes. The probability function is re-deduced for C-MEMM. 

In the case of a soft class, there are many class sequences corresponding to one state 
sequence. In order to calculate the probability of the state sequence, the conditional 
probabilities of all the class sequences should be summarized. Therefore, it is more complex 
to deduce the probability function of C-MEMM in the case of soft class than hard class. 
Similar to the case of the hard class, this section begins the work from calculating the 
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conditional probability of sequential data, presented as below: 

( | ) ( , | ) ( | ) ( | , )
Bayesian Rule

C C
P S O P S C O P C O P S C O= = ¥Â Â . (18) 

The decompositions of ( | )P C O  and ( | , )P S C O  are exactly the same as those in the case 
of the hard class, which were presented in the above section. Then, the probability function in 
the case of soft class can be directly described as below: 

1

1 1 1 1 1 1 1
... 2

( | ) { ( | , ) ( | ) ( | ) ( | ) ( | , ) ( | )}
n

n
i i ME i i i i i i i

c c i
P S O p s c o p c o p c c p c h p s c o p s s- -

=
= Â ’ .(19) 

( | )ME i ip c h , 1( | )i ip c c - , ( | , )i i ip s c o  and 1( | )i ip s s -  are estimated exactly in the same way 
as in the hard class. The probability dependency graph in the case of soft class is presented as 
below: 

 
Figure 2. Probability Dependency Graph for C-MEMM on Soft Class 

Differing from the case of a hard class, there are multiple class sequences between the 
observation sequence and the state sequence in the case of a soft class. In order to calculate the 
probability of ( | )P S O , it is necessary to summarize all the conditional probabilities in these 
class sequences. The time complexity increases at an exponential rate with the length of 
sequence. Some dynamic algorithms, i.e. the forward algorithm and the backward algorithm, 
can calculate ( | )P S O  efficiently at the polynomial time complexity. However, in the 
Pinyin-to-Character Conversion task, it is to find the optimal state sequence of S which 
maximizes the probability of ( | )P S O . This is the decoding problem of C-MEMM. In a 
straightforward way, it’s necessary to enumerate all the possible sequences of S and calculate 
the value of ( | )P S O  for each sequence. The optimal sequence with the highest ( | )P S O  is 



 

 

        Exploiting Pinyin Constraints in Pinyin-to-Character Conversion Task:       337 

a Class-Based Maximum Entropy Markov Model Approach 

then selected from them. In reality, it is infeasible because of the high time complexity. The 
dynamic algorithm, i.e. the Viterbi algorithm, is expected to solve the decoding problem. 
However, Formula (19) makes a global summarization in the class sequences in which the 
Viterbi algorithm can not be applied. A simplification is then made in this paper. The global 
summarization, which is based on the whole sequence of class, is decomposed into the local 
summarization which is only based on the class at certain position. The probability function is 
simplified as below: 

1

1 1 1 1 1 1 1
2

( | ) ( | , ) ( | ) ( | ) ( | ) ( | , ) ( | )
i

n
i i ME i i i i i i i

c ci
P S O p s c o p c o p c c p c h p s c o p s s- -

=
ª ¥Â Â’ .(20) 

The Viterbi algorithm can be applied to Formula (20) and can find the optimal state sequence 
of S in a polynomial time complexity. The dependency relationship graph is then described as 
below: 

 
Figure 3. Probability Dependency Graph for the Simplified C-MEMM on Soft Class 

3.3 Hierarchy of State Class 
There are two ways to get the class of state. One is the statistical method, by which the state 
class is obtained by the clustering algorithm from the training corpus. However, according to 
Zip’s law, there are always low-frequency or zero-frequency states in the training corpus. 
Their frequencies are not statistically significant, and they can not be properly clustered by the 
statistical methods. The other method is getting the class from the pre-defined thesaurus. The 
hierarchy of class is defined by linguists according to the syntax and semantic information of 
each state. It can be taken as the well-defined hierarchy of state class. This paper attains the 
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hierarchy of state class in the second way. TongyiciCilin is adopted as the hierarchy of state 
class in the case of hard class and the set of POS tag is adopted in the case of soft class. The 
detailed information is presented in Section 4.1. 

4. EXPERIMENTS AND DISCUSSIONS 

This section evaluates C-MEMM in the Pinyin-to-Character Conversion task. First, the data 
set is described. Second, the experimental results are presented. The performances of 
C-MEMM are evaluated both in the case of hard class and soft class. Third, the conclusion is 
drawn. 

4.1 Data Set Description 
This section describes the data set used in the experiments. First, information about the text 
corpus is presented. Then, the way to get pinyin corpus is described. Finally, the hierarchies of 
word class are presented. 

Text Corpus 

This paper chooses six months of the People’s Daily corpus in 1998 as the text corpus in the 
experiments. The corpus has been annotated by Peking University with the POS tags and the 
name entities [Yu et al. 2003]. It has become the standard corpus in Chinese language 
processing in recent years [Emerson 2005]. There are 46 kinds of POS tag in the POS set. 
They are listed in Table 1: 

Table 1. POS Set of Peking University 
POS Set of Peking University 

Ag a ad an Bg b c Dg 
d e f g h i j k 
l Mg m Ng n nr ns nt 

nx nz o p Qg q Rg r 
s Tg t Ug u Vg v vd 

vn w x Yg y z   

The text corpus is divided into two parts: the training corpus which consists of the first five 
months’ corpora, and the testing corpus which is the sixth month ’s corpus. The detailed 
information is presented in Table 2: 

Table 2. Description of the Text Corpus 
 Training Corpus Testing Corpus 

Number of months 1-5 months 6th month 
Number of characters 9.09¥106 1.88¥106 
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Pinyin Corpus 

The pinyin corpus is necessary for evaluating C-MEMM in the Pinyin-to-Character 
Conversion task. When C-MEMM is evaluated, the pinyin corpus is first converted into the 
character corpus by C-MEMM. Then, the conversion results are compared with the standard 
text corpus and the error rate is calculated. The pinyin corpus is obtained from the text corpus 
by a conversion toolkit1 which achieves 99.7% accuracy on a golden pinyin corpus. In the 
experiments, the errors in the pinyin corpus could lead to the conversion error of C-MEMM. 
Therefore, the actual error rate of C-MEMM is a little lower than the reported results in this 
paper. However, there are not many errors in the pinyin corpus because of the high precision 
of our conversion toolkit. Thereby, the experimental results can be regarded to be close 
enough to the actual performance of C-MEMM. 

Hierarchy of Word Class 

Moreover, word class is necessary for building up C-MEMM in the Pinyin-to-Character 
Conversion task. The paper gets the hierarchy of word class from the compiled thesaurus 
which contains the word class information. 

TongyiciCilin [Mei et al. 1983] is adopted as the hierarchy of word class in the 
experiments of hard class. TongyiciCilin was initially complied in 1982. There were initially 
5.38¥104 words which were organized into a tree structure according to their syntax and 
semantic information. The structure is shown in Figure 4. There are a total of four layers in the 
tree. The word is represented by the leaf node in the leaf layer. The word class is represented 
by the internal node in the internal layer. There is a road from each leaf node to the root node. 
On the road, there are several internal nodes of different layers which represent the classes of 
different scales that the leaf node belongs to. The node in the higher layer represents the class 
of bigger scale which usually corresponds to a more general concept of Chinese, and 
vice-versa. Each layer represents a pattern of word class, and the nodes in the same layer 
describe a way to cluster the words in TongyiciCilin. Moreover, the lower the layer is, the 
finer the word classes are, therefore the more syntactic and semantic information the layer 
contains. For example, the 3rd layer contains more syntactic and semantic information than the 
1st layer does in Figure 4. 

 

                                                 
1 http://www.insun.hit.edu.cn/product/viewproduct.asp?id=105 
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Figure 4. Hierarchy of Word Class in TongyiciCilin 

In recent years, an extended version [Liu et al. 2005] of the original TongyiciCilin has 
been complied. Some infrequent words have been deleted, while some new words have been 
added. The scale of the lexicon in the new version is up to 7.73¥104. The detailed information 
is described in Table 3: 

Table 3. Description of TongyiciCilin (new version) 
Description of TongyiciCilin 
Scale of lexicon 7.73¥104 

Number of Cluster in 1st layer 12 
Number of Cluster in 2nd layer 97 
Number of Cluster in 3rd layer 1428 

This paper adopts the new version of TongyiciCilin in the experiments of hard class. 

In the experiments of soft cluster, the POS set is a natural choice for the hierarchy of 
word class. The information of the POS set has been provided in the beginning of this section. 

4.2 Experiments on the Hard Class 
This section investigates C-MEMM in the case of hard class in the Pinyin-to-Character 
Conversion task. TongyiciCilin is adopted as the hierarchy of word class. All the words in 
TongyiciCilin are adopted as the lexicon. The bigram model is taken as the baseline model. 
The additive smoothing technique is utilized. One order of C-MEMM is evaluated. Ten 
feature types of the pinyin constraints are extracted and exploited in C-MEMM. They are 
listed in Table 4: 
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Table 4. Feature Types in C-MEMM 
 Feature Type Feature Description 

Yini The current pinyin 
Yini-1 The previous pinyin 
Yini-2 The previous but one pinyin 
Yini+1 The next pinyin 
Yini+2 The next but one pinyin 

Atomic 
Feature Type 

YinCombi 
The pinyin combination of the current word which 

usually consists of several pinyin strings. 
Yini Yini-1 The combination of Yini and Yini-1 
Yini Yini+1 The combination of Yini and Yini+1 
Yini-1 Yini-2 The combination of Yini-1 and Yini-2 

Combined 
Feature Type 

Yini+1 Yini+2 The combination of Yini+1 and Yini+2 

From the above feature types, two feature templates are constructed so as to investigate 
the effectiveness of different feature types in C-MEMM performances. In template one, the 
size of the context window is set to 3, based on which the model of C-MEMM-1 is constructed. 
In template two, the size of the context window is set to 5, based on which the model of 
C-MEMM-2 is constructed. The information is presented in Table 5: 

Table 5. Feature Templates in C-MEMM 
Feature Template Feature Types Model 

Template One 
Yini, Yini-1, Yini+1, YinCombi, 

Yini Yini-1, Yini Yini+1 
C-MEMM-1 

Template Two 
Yini, Yini-1, Yini-2,Yini+1, Yini+2, YinCombi, 

Yini Yini-1, Yini Yini+1, Yini-1 Yini-2, Yini+1 Yini+2 
C-MEMM-2 

As mentioned above, there are several ways to cluster a word in TongyiciCilin, each 
corresponding to an internal layer in the tree structure of TongyiciCilin. C-MEMM is built up 
based on each pattern of word class used separately for each internal layer in TongyiciCilin. 
The performance of C-MEMM is investigated and the error rates are presented in Table 6: 

Table 6. Error Rate of C-MEMM in the case of Hard Class 

 No cluster 
Clusters of 

1st layer 
Clusters of 
2nd layer 

Clusters of 
3rd layer 

Baseline 9.15% --- --- --- 
C-MEMM-1 --- 6.10% 5.84% 5.85% 
Reduction --- 33.33% 36.17% 36.07% 

C-MEMM-2 --- 5.73% 5.46% 5.28% 
Reduction --- 37.38% 40.33% 42.30% 
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The error rate of the baseline model is presented in the category of ‘No cluster’ from 
which the error rate reductions are calculated. According to the experimental results, 
C-MEMM outperforms the baseline model significantly with great error rate reduction. As 
much as 36.17% reduction has been achieved by C-MEMM-1 and 42.30% reduction has been 
yielded by C-MEMM-2. It proves that the predicative capability of C-MEMM is superior to 
that of the ngram model in the Pinyin-to-Character Conversion task. In addition, comparing 
the performance of C-MEMM-1 with C-MEMM-2, C-MEMM-2 outperforms C-MEMM-1 
slightly, due to modeling the richer feature types of the pinyin constraints. This fact proves 
that the improvements of C-MEMM in the Pinyin-to-Character Conversion task are due to the 
exploitation of the pinyin constraints from the input pinyin sequence. Finally, the section 
investigates the performance of C-MEMM based on different patterns of word class. As 
mentioned in the above section, there is an increase of syntactic and semantic information 
contained in the word classes from the 1 st internal layer to the 3rd internal layer of 
TongyiciCilin. From Table 6, it can be found that the error rates of C-MEMM generally 
decrease from the 1st layer to the 3rd layer, which proves that C-MEMM can make good use of 
the syntactic and semantic information from the word classes and attain further improvement. 

To draw a conclusion, C-MEMM achieves significant error rate reductions from the 
ngram model in the Pinyin-to-Character Conversion task by exploitation of pinyin constraints. 
In addition, C-MEMM makes good use of the syntactic and semantic information in word 
class and sees further improvement. 

4.3 Experiments on the Soft Class 
This section evaluates C-MEMM in the case of soft class. The POS set of Peking University is 
taken as the hierarchy of word class. A word list compatible with the POS set is adopted as the 
lexicon. Other settings are the same as those in the case of hard class. The experimental results 
are presented in Table 7: 

Table 7. Error Rate of C-MEMM in the case of Soft Class 
 Baseline C-MEMM-1 C-MEMM-2 

Error rate (%) 8.37% 6.00% 5.82% 
Reduction (%) ------ 28.15% 30.47% 

The experimental results are similar to the results in the case of hard class. First, 
C-MEMM outperforms the baseline model significantly. As much as 28.15% error rate 
reduction was achieved by C-MEMM-1 and a 30.47% error rate reduction was obtained by 
C-MEMM-2. This proves that C-MEMM is much more powerful than the ngram model. 
Second, C-MEMM-2 gets better performance than C-MEMM-1, due to modeling the richer 
feature types of the pinyin constraints. This indicates that the improvements of C-MEMM are 



 

 

        Exploiting Pinyin Constraints in Pinyin-to-Character Conversion Task:       343 

a Class-Based Maximum Entropy Markov Model Approach 

due to the exploitation of the input pinyin information. Therefore, the conclusion is drawn that 
C-MEMM (hard-class based or soft-class based) improves the performance of the 
Pinyin-to-Character Conversion system significantly by exploitation of the pinyin constraints 
from the pinyin sequence. 

In the remaining part of this section, the performance of the soft-class based MEMM is 
compared with the hard-class based MEMM. However, the experimental results in this section 
can not be compared directly with the results in Section 4.2, due to the fact that different 
lexica were used in the two sections. For fair comparison, a hierarchy of hard class is created 
from the hierarchy of soft class in this section. It restricts only one POS tag for each word in 
the lexicon. The most frequent POS tag of that word is adopted in the hierarchy of hard class. 
The experimental results are presented in Table 8: 

Table 8. Comparison between Soft-class based MEMM and Hard-class based MEMM 
 Baseline C-MEMM-1 C-MEMM-2 

No class 8.37% ------ ------ 
Hard class ------ 6.21% 6.17% 
Soft class ------ 6.00% 5.82% 

As shown in Table 8, the soft-class based MEMM performs better than the hard-class based 
MEMM to some extent, proving that the soft-class based MEMM can exploit the 
comprehensive properties of word to achieve better performance. 

4.4 Comparison with Class-based Ngram Model 
The class-based ngram model enhances the traditional ngram model by involving word class 
[Brown et al. 1992]. The data sparseness problem is alleviated, while the syntactic information 
is captured by word class. The motivation and the formulation of the class-based ngram model 
are similar to those of C-MEMM. Therefore, this section compares the performances of 
C-MEMM with those of the class-based ngram model. 

First, this section compares the performance of the hard-class based MEMM with that of 
the class-based ngram model. The traditional bigram model is taken as the baseline model. 
Several class-based ngram models are built up according to the word class pattern of each 
internal layer of TongyiciCilin. The experimental results are presented in Table 9: 
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Table 9. Comparison between Hard-class based MEMM and Class-based Ngram 
Model 

 No cluster 
Clusters of 

1st layer 
Clusters of 
2nd layer 

Clusters of 
3rd layer 

Baseline 9.15% --- --- --- 
C-Ngram --- 8.25% 7.74% 7.37% 

C-MEMM-1 --- 6.10% 5.84% 5.85% 
C-MEMM-2 --- 5.73% 5.46% 5.28% 

From Table 9, the class-based ngram models achieve lower error rates than the baseline 
model, showing a more powerful predicative capability. What ’s more, the error rates of the 
class-based ngram models decrease from the 1 st layer to the 3rd layer, proving that the 
improvement of the class-based ngram model is due to the exploitation of the increasing 
syntactic and semantic information of word class. However, the class-based ngram models 
underperformed the hard-class based MEMM models. The latter can not only make use of the 
syntactic and semantic information of word classes but also exploit the pinyin constraints from 
the input pinyin sequences.  

In the following, the performance of the soft-class based MEMM with that of the 
class-based ngram model is compared. The POS ngram is constructed and interpolated with 
the traditional word ngram model. The experimental results are presented in Table 10: 

Table 10. Comparison between Soft-class based MEMM and Class-based Ngram 
Model 
 Baseline C-Ngram C-MEMM-1 C-MEMM-2 

Error rate 8.37% 7.89% 6.00% 5.82% 

The experimental results are similar to those found in Table 9. The class-based ngram models 
outperform the traditional ngram model by exploitation of the syntactic and semantic 
information in word class. However, they underperformed the soft-class based MEMM 
models because the latter could also make use of the pinyin constraints from pinyin sequence. 

In conclusion, both the C-MEMM model and the class-based ngram model can make 
good use of the syntactic and semantic information of word class so as to improve the 
performance in the Pinyin-to-Character Conversion task; however, the former outperforms the 
latter by additionally exploiting the pinyin constraints from the pinyin sequence. 

5. Related Works 

To the best of our knowledge, there is no literature that proposes a class expansion to the 
MEMM model. John Lafferty [Lafferty and Suhm 1996] proposes a cluster expansion to the 
GIS algorithm so as to train the ME language model efficiently. However, as Lafferty admits, 
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the technique is of little use in computing the exact ME solution. Joshua Goodman [Goodman 
2001] proposes a speedup technique for the ME training process in language modeling. He 
decomposes the traditional ngram model into several class-based ngram models and applies 
the ME principle in each sub-model. There are significant differences between the Goodman ’s 
work and this paper’s. First of all, C-MEMM aims to solve the sequence label problem instead 
of the sequence ranking problem as language model does. Second, this paper deduces the 
probability function of C-MEMM based on the conditional probability of the whole sequence, 
whereas Goodman gets the probability function based on the decomposition of the local 
ngram probability. Third, this paper applies C-MEMM to the Pinyin-to-Character Conversion 
task in order to improve the application performance; however, Goodman is used to speed up 
the training process of the ME model. Moreover, both the case of hard class and soft class are 
discussed in this paper. In contrast, Goodman’s technique is built up only in the case of a hard 
class. 

6. Conclusions 

This paper aims to improve the performance of the Pinyin-to-Character Conversion system by 
exploitation of the pinyin constraints from the pinyin sequence. The MEMM framework is 
used to describe both the pinyin constraint and the character constraint. The Class-based 
Maximum Entropy Markov Model (C-MEMM) is proposed to solve the efficiency problem of 
MEMM in the Pinyin-to-Character Conversion task. The probability functions of C-MEMM 
are strictly deduced and well formulized by the Bayes rule and the Markov property. Both the 
case of hard class and soft class are well discussed. From the experimental results, the 
conclusions can be drawn as follows: 

ÿ Compared with the traditional ngram model, C-MEMM improves the performance of the 
Pinyin-to-Character Conversion system effectively by exploitation of the pinyin constraints 
from the input pinyin sequences. 

ÿ C-MEMM can make good use of the syntactic and semantic information in word class and 
attain further improvement. 

ÿ The soft-class based MEMM outperforms the hard-class based MEMM by exploitation of 
more comprehensive properties of word. 
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