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Abstract 

The performance of current automatic speech recognition (ASR) systems often 
deteriorates radically when the input speech is corrupted by various kinds of noise 
sources. Quite a few techniques have been proposed to improve ASR robustness 
over the past several years. Histogram equalization (HEQ) is one of the most 
efficient techniques that have been used to reduce the mismatch between training 
and test acoustic conditions. This paper presents a comparative study of various 
HEQ approaches for robust ASR. Two representative HEQ approaches, namely, the 
table-based histogram equalization (THEQ) and the quantile-based histogram 
equalization (QHEQ), were first investigated. Then, a polynomial-fit histogram 
equalization (PHEQ) approach, exploring the use of the data fitting scheme to 
efficiently approximate the inverse of the cumulative density function of training 
speech for HEQ, was proposed. Moreover, the temporal average (TA) operation 
was also performed on the feature vector components to alleviate the influence of 
sharp peaks and valleys caused by non-stationary noises. All the experiments were 
carried out on the Aurora 2 database and task. Very encouraging results were 
initially demonstrated. The best recognition performance was achieved by combing 
PHEQ with TA. Relative word error rate reductions of 68% and 40% over the 
MFCC-based baseline system, respectively, for clean- and multi- condition training, 
were obtained. 

Keywords: Automatic Speech Recognition, Robustness, Histogram Equalization, 
Data Fitting, Temporal Average 

1. INTRODUCTION 

With the successful development of much smaller electronic devices and the popularity of 
wireless communication and networking, it is widely believed that speech will play a more 
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active role and will serve as the major human machine interface (HMI) for the interaction 
between people and different kinds of smart devices in the near future [Lee and Chen 2005]. 
Therefore, automatic speech recognition (ASR) has long been one of the major preoccupations 
of research in the speech and language processing community. Nevertheless, varying 
environmental effects, such as ambient noise, noises caused by the recording equipment and 
transmission channels, etc., often lead to a severe mismatch between the acoustic conditions 
for training and test. Such a mismatch will no doubt cause substantial degradation in the 
performance of an ASR system. Substantial effort has been made and a large number of 
techniques have been presented in the last few decades to cope with this issue for improving 
ASR performance [Gong 1995; Junqua et al. 1996; Huang et al. 2001]. In general, they fall 
into three main categories [Gong 1995]: 

 Speech enhancement, which removes the noise from the observed speech signal. 

 Robust speech features extraction, which searches for noise resistant and robust features. 

 Acoustic model adaptation, which transforms acoustic models from the training (clean) 
space to the test (noisy) space. 

Techniques of each of the above three categories have their own reasons for superiority and 
their own limitations. In practical implementation, acoustic model adaptation often yields the 
best recognition performance, because it directly adjusts the acoustic models parameters (e.g., 
the mean vectors or covariance matrices of mixture Gaussian models) to accommodate the 
uncertainty caused by noisy environments. Representative techniques, include, but are not 
limited to, the maximum a posteriori (MAP) adaptation [Gauvain and Lee 1994; Huo et al. 
1995], the maximum likelihood linear regression (MLLR) [Leggeter and Woodland 1995; 
Gales 1998], etc. However, such techniques generally require a sufficient amount of extra 
adaptation data (either with or without reference transcripts) and a significant computational 
cost in comparison with the other two categories. Moreover, most of the speech enhancement 
techniques target enhancing the signal-to-noise ratio (SNR) but not necessarily at improving 
the speech recognition accuracy. On the other hand, robust speech feature extraction 
techniques can be further divided into two subcategories, i.e., model-based compensation and 
feature space normalization. Model-based compensation assumes the mismatch between clean 
and noisy acoustic conditions can be modeled by a stochastic process. The associated 
compensation models can be estimated in the training phase, and then exploited to restore the 
feature vectors in the test phase. Typical techniques of this subcategory, include, but are not 
limited to, the minimum mean square error log spectral amplitude estimator (MMSE-LSA) 
[Ephraim and Malah 1985], the vector Taylor series (VTS) [Moreno 1996], the stochastic 
vector mapping (SVM) [Wu and Huo 2006], the multi-environment model-based linear 
normalization (MEMLIN) [Buera et al. 2007], etc. 
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Feature space normalization is believed to be a simpler and more effective way to 
compensate for the mismatch caused by noise, and it has also demonstrated the capability to 
prevent the degradation of ASR performance under various noisy environments. Several 
attractive techniques have been successfully developed and integrated into the state-of-the-art 
ASR systems. As an example, the cepstral mean subtraction (CMS) [Furui 1981] is a simple 
but effective technique for removing the time-invariant distortion introduced by the 
transmission channel; while a natural extension of CMS, called the cepstral mean and variance 
normalization (CMVN) [Vikki and Laurila 1998], attempts to normalize not only the means of 
speech features but also their variances. Although these two techniques have already shown 
their capabilities in compensating for channel distortions and some side effects resulting from 
additive noises, their linear properties still make them inadequate in tackling the nonlinear 
distortions caused by various noisy environments [Torre et al. 2005]. Accordingly, a 
considerable amount of work on seeking more general solutions for feature space 
normalization has been done over the past several years. For example, not content with using 
either CMN or CMVN merely to normalize the first or the first two moments of the 
probability distributions of speech features, some researchers have extended the principal idea 
of CMN and CMVN to the normalization of the third [Suk et al. 1999] or even more higher 
order moments of the probability distributions of speech features [Hsu and Lee 2004, 2006]. 
On the other hand, the histogram equalization (HEQ) techniques also have gained much 
attention, and have been widely investigated in recent years [Dharanipragada and 
Padmanabhan 2000; Molau et al. 2005; Torre et al. 2005; Hilger and Ney 2006; Lin et al. 
2006]. HEQ seeks for a transformation mechanism that can map the distribution of the test 
speech onto a predefined (or reference) distribution utilizing the relationship between the 
cumulative distribution functions (CDFs) of the test speech and those of the training (or 
reference) speech. Therefore, HEQ not only attempts to match the means and variances of 
speech features but also completely match the distributions of speech features between 
training and test. More specifically, HEQ normalizes all moments of the probability 
distributions of test speech features to those of the reference ones. However, most of the 
current HEQ techniques still have some inherent drawbacks for practical usage. For example, 
they require either large storage consumption or considerable online computational overhead, 
which might make them infeasible when being applied to the ASR systems built on devices 
with limited resources, such as personal digital assistants (PDAs), smart phones and embedded 
systems, etc. 

With these observations in mind, in this paper we present a comparative study of various 
HEQ approaches for robust speech recognition. Two representative HEQ approaches, namely, 
the table-based histogram equalization (THEQ) and the quantile-based histogram equalization 
(QHEQ), were first investigated. Then, a polynomial-fit histogram equalization (PHEQ) 
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approach, exploring the use of the data fitting scheme to efficiently approximate the inverse of 
the cumulative density function of training speech for HEQ, was proposed. Moreover, the 
temporal average (TA) operation was also performed on the feature vector components to 
alleviate the influence of sharp peaks and valleys that were caused by non-stationary noises. 

The remainder of this paper is organized as follows. Section 2 describes the basic 
concept of HEQ and reviews two representative HEQ approaches, namely, THEQ and QHEQ. 
Section 3 elucidates our proposed HEQ approach, namely, PHEQ, and also briefly introduces 
several standard temporal average operations. Section 4 gives an overview of the Aurora 2 
database as well as a description of the experimental setup, while the corresponding 
experimental results and discussions are also presented in this section. Finally, conclusions are 
drawn in Section 5. 

2. HISTOGRAM EQUALIZATION (HEQ) 

2.1 Theoretical Foundation of HEQ 
Histogram equalization is a popular feature compensation technique that has been well studied 
and practiced in the field of image processing for normalizing the visual features of digital 
images, such as the brightness, grey-level scale, contrast, and so forth. It has also been 
introduced to the field of speech processing for normalizing the speech features for robust 
ASR, and many good approaches have been continuously proposed and reported in the 
literature [Dharanipragada and Padmanabhan 2000; Molau et al. 2003; Torre et al. 2005; 
Hilger and Ney 2006; Lin et al. 2006]. Meanwhile, HEQ has shown its superiority over the 
conventional linear normalization techniques, such as CMN and CMVN, for robust ASR. One 
additional advantage of HEQ is that it can be easily incorporated with most feature 
representations and other robustness techniques without the need of any prior knowledge of 
the actual distortions caused by different kinds of noises. 

Theoretically, HEQ has its roots in the assumptions that the transformed speech feature 
distributions of the test (or noisy) data should be identical to that of the training (or reference) 
data and each feature vector dimension can be normalized independently of each other. The 
speech feature vectors can be estimated either from the Mel-frequency filter bank outputs 
[Molau 2003; Hilger and Ney 2006] or from the cepstral coefficients [Segura et al. 2004; 
Torre et al. 2005; Lin et al. 2006]. Since each feature vector dimension is considered 
independently, from now on, the dimension index of each feature vector component will be 
omitted from the discussion for the simplicity of notation unless otherwise stated. Under the 
above two assumptions, the aim of HEQ is to find a transformation that can convert the 
distribution of each feature vector component of the input (or test) speech into a predefined 
target distribution which corresponds to that of the training (or reference) speech. The basic 
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idea of HEQ is illustrated in Figure 1. 

Accordingly, HEQ attempts not only to match the means and variances of the speech 
features, but also to completely match the speech feature distributions of training and test data. 
Phrased another way, HEQ normalizes all the moments of the probability distributions of the 
speech features. The formulation of HEQ is described as follows [Torre et al. 2005]. For each 
feature space dimension, let x  be the feature vector component that follows the distribution 

( )Testp x . A transformation function ( )F x  converts x  to y  and follows a reference 
distribution ( )Trainp y , according to the following expression: 

( ) ( ) ( )( ) ( )1
1 ,Train Test Test

dF ydxp y p x p F y
dy dy

−
−= =         (1) 

where ( )1F y−  is the inverse function of ( )F x . Moreover, the relationship between the 
cumulative probability density functions (CDFs) associated with the test and training speech, 
respectively, is governed by: 
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Figure 1. The basic idea of HEQ. 
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where ( )TestC x  and ( )TrainC y  are the CDFs for the test and training speech, respectively; 
y′  is the corresponding output of the transformation function ( )F x′ ; and the transformation 

function ( )F x  has the following property: 

( ) ( )( )1 ,Train TestF x C C x−=              (3) 

where 1
Train

C−  is the inverse function of TrainC . 

It is worth noting that the reliability of CDF estimation will have a significant influence 
on the performance of HEQ. Due to the finite number of speech features being considered, the 
CDFs of speech features are usually approximated by the cumulative histograms of speech 
features for practical implementation. The CDFs of speech features can be accurately and 
reliably approximated when there is a large amount of data available. On the contrary, such 
approximation will probably not be accurate enough when the (test) speech utterance becomes 
much shorter. Several studies have shown that the order-statistics based method tends to be 
more accurate than the cumulative-histogram based when the amount of speech data is 
insufficient for reliable approximation of CDFs [Segura et al. 2004; Torre et al. 2005]. 

2.2 Table-Based Histogram Equalization (THEQ) 
The table-based histogram equalization (THEQ) was first proposed by Dharanipragada and 
Padmanabhan [Dharanipragada and Padmanabhan 2000] and is a non-parametric method to let 
the distributions of the test speech match those of the training speech. THEQ uses a 
cumulative histogram to estimate the corresponding CDF value of each feature vector 
component y . During the training phase, the cumulative histogram of each feature vector 
component y  of the training data is constructed as follows. The range of values of each 
feature vector dimension over the entire training data is first determined by finding the feature 
vector components maxy  and miny  that have the maximum and minimum values, 
respectively. Let K  be the total number of histogram bins and the range min max,y y⎡ ⎤⎣ ⎦  is 
then divided into K  non-overlapped bins of equal size, { }0 1 1, , KB B B − . Next, the entire 
training data is scanned once and each individual feature vector component falls exactly into 
one bin. Thus, if we let N  be the total number of training feature vector components of one 
specific dimension and in  be the number of feature vector components of that dimension 
belonging to iB , the probability of feature vector components of that dimension being in iB  
is approximated by: 

( ) .i
Train i

n
p B

N
=               (4) 
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The mean 
iBy  of each bin i  is taken as one of the representative outputs of the 

transformation function ( )F x  and the approximate CDF value ( )TrainC y  of the feature 
vector component y  that belongs to iB  is calculated by: 

( ) ( )0 .i
Train Train jjC y p B== ∑             (5) 

Finally, a look-up table consisting of all possible distinct reference pairs ( )( ),
iTrain BC y y  is 

constructed, where ( )TrainC y  is taken as the key and 
iBy  is the corresponding restored 

value. During the test phase, the CDF estimation of the test utterance can be done in the same 
way by using the cumulative histograms of itself. The restored value of each feature vector 
component x  of the test utterance is obtained by taken its approximate CDF value ( )TestC x  
as the key to finding the corresponding transformed (restored) value in the look-up table. 

However, the normalization of the test data alone results in only a moderate gain of 
performance improvement. It has been suggested that one should normalize the training data 
in the same way to achieve good performance [Molau et al. 2003]. On the other hand, because 
a set of cumulative histograms of all speech feature vector dimensions of the training data has 
to be kept in memory for the table-lookup of restored feature values, THEQ needs large disk 
storage consumption and its associated table-lookup procedure is also time-consuming, which 
might make THEQ not very feasible for ASR systems that are built into devices with limited 
resources, such as PDAs, smart phones and embedded systems, etc. 

2.3 Quantile-Based Histogram Equalization (QHEQ) 
The quantile-based histogram equalization (QHEQ) is a parametric type of histogram 
equalization. QHEQ attempts to calibrate the CDF of each feature vector component of the 
test speech to that of the training speech in a quantile-corrective manner instead of a 
full-match of the cumulative histogram as done by THEQ, described earlier in Section 2.2. 
Normally, QHEQ only needs a small number of quantiles (usually the number is set to 4) for 
reliable estimation [Hilger and Ney 2001, 2006]. A transformation function ( )H x  is 
calculated by minimizing the mismatch between the quantiles of the test utterance and those of 
the training data. The transformation function ( )H x  is a power function applied to each 
feature vector component x , which attempts to make the CDF of the equalized feature vector 
component match that observed in training. Before the actual application of the transformation 
function ( )H x , each feature vector component x  is first scaled down into the interval 
[ ]0,1　　 by being divided by the maximum value KQ  over the entire utterance. Then, the 
transformation function ( )H x  is applied to x  and the transformed (or restored) value of x  
is scaled back to the original value range [Hilger and Ney 2006]: 
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( ) ( )1 ,K
K K

x xH x Q
Q Q

γ

α α
⎛ ⎞⎛ ⎞⎜ ⎟= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

           (6) 

where K  is the total number of quantiles; KQ  is the maximum value over the entire 
utterance; and α  and γ  are the transformation parameters. For each feature vector 
dimension, α  and γ  are chosen to minimize the squared distance between the quantiles 

( )kH Q  of the test utterance and the quantiles Train
kQ  of the training data by using the 

following equation: 

{ }
{ }

( )( )1 2

, 1
, arg min .

K Train
k k

k
H Q Q

α γ
α γ

−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑          (7) 

In summary, QHEQ allows the estimation of the transformation function ( )H x  to 
merely rely on a single test utterance (or extremely, a very short utterance), without the need 
of an additional set of adaptation data [Hilger and Ney 2006]. However, in order to find the 
optimum transformation parameters for each feature vector dimension, an exhaustive online 
grid search is required, which, in fact, is very time-consuming. 

3. IMPROVED APPROACHES 

3.1 Polynomial-Fit Histogram Equalization (PHEQ) 
In contrast to the above table-lookup or quantile based approaches, we propose a 
polynomial-fit histogram equalization (PHEQ) approach which explores the use of the data 
fitting scheme to efficiently approximate the inverse functions of the CDFs of the training 
speech for HEQ [Lin et al. 2006]. Data fitting is a mathematical optimization method which, 
when given a series of data points ( ),i iu v  with 1, ,i N= , attempts to find a function 
( )iG u  whose output iv  closely approximates iv . That is, it minimizes the sum of the 

squares error (or the squares of the ordinate differences) between the points ( ),i iu v  and their 
corresponding points ( ),i iu v  in the data. The function ( )iG u  to be estimated can be either 
linear or nonlinear in its coefficients. For example, if ( )iG u  is a linear M -order polynomial 
function: 

( ) 2
0 1 2 ,M

i i i i M iG u v a a u a u a u= = + + + +                (8) 

where 0 1, , , Ma a a  are the coefficients, then its corresponding squares error can be defined 
by 

( )
2

22

1 1 0
.

N N M m
i i i m i

i i m
E v v v a u

= = =

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ ∑ ∑                (9) 
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PHEQ makes use of such data fitting (or so-called least squares regression) scheme to 
estimate the inverse functions of the CDFs of the training speech. For each speech feature 
vector dimension of the training data, given the pair of the CDF value ( )Train iC y  of the 
vector component iy  and iy  itself, the linear polynomial function ( )( )Train iG C y  with 
output iy  can be expressed as: 

( )( ) ( )( )
0

,
M m

Train i i m Train i
m

G C y y a C y
=

= = ∑         (10) 

where the coefficients ma  can be estimated by minimizing the squares error expressed in the 
following equation: 

( ) ( )( )
2

22

1 1 0
' ,

N N M m
i i i m Train i

i i m
E y y y a C y

= = =

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ ∑ ∑        (11) 

where N  is the total number of training speech feature vectors. In implementation, we used 
the order-statistics based method instead of the cumulative-histogram based method to obtain 
the approximate CDF values. For the feature vector component sequence 

1, , , ,i NY y y y= ⎡ ⎤⎣ ⎦  of a specific dimension of a speech utterance, the corresponding CDF 
value of each feature component iy  can be approximated by the following two steps: 

 

Step1: The sequence 1, , , ,i NY y y y= ⎡ ⎤⎣ ⎦  is first sorted according to the values of the 
feature vector components in ascending order. 

Step2: The order-statistics based approximation of the CDF value of a feature vector 
component iy  is then given as: 

( ) ( ) 0.5pos i
i

S y
C y

N
−

≈           (12) 

where ( )pos iS y  is a function that returns the rank of iy  in ascending order of the values of 
the feature vector components of the sequence 1, , , ,i NY y y y= ⎡ ⎤⎣ ⎦ . Therefore, for each 
utterance, Equation (12) can be used to approximate the CDF values of the feature vector 
components of all dimensions. During the training phase, the polynomial functions of all 
dimensions are obtained by minimizing the squares error expressed in Equation (11). During 
the test phase, for each feature vector dimension, the feature vector components of the test 
utterance are simply sorted in ascending order of their values to obtain the approximate CDF 
values, which can be then taken as the inputs to the inverse function to obtain the 
corresponding restored component values. 

The reason we choose the polynomial function here as the inverse function is mainly 
because it has a simple form, without the need of a complicated computational procedure, and 
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has moderate flexibility in controlling the shape of the function. Though the polynomial 
function is efficient in delineating the transformation function, it is worth mentioning that the 
polynomial function to some extent has its inherent limitations. For example, high order 
polynomial functions might lead to over-fitting of the training data. Moreover, the polynomial 
function provides good fits for input data points that are located within the range of values of 
the training data, but would also probably have rapid deterioration when the input data points 
are located outside the range of values of the training data. 

3.2 Temporal Average (TA) 

Though the above HEQ approaches are very effective in matching the global feature statistics 
of the test (or noisy) speech to that of the training (or reference) set, we found that some 
undesired sharp peaks or valleys of the feature vector component sequence caused by the 
non-stationary noises often occurring during the equalization process. This phenomenon is 
illustrated in the upper and middle parts of Figure 2. Therefore, we believe that a rigorous 
smoothing operation further performed on the time trajectory of the HEQ restored feature 
vector component sequence will be helpful for suppressing the extraordinary changes of 
component values. From the other perspective, temporal average can be treated as a low-pass 
filter. The basic idea of TA is quite similar to RelAtive SpecTrA (RASTA) [Hermansky and 
Morgan 1994] which aims to filter out the slow-varying or fast-varying artifacts (or noises) 
based on the evidence of human auditory perception. The main differences between TA and 
RASTA are the target (or feature domain) where the smoothing operation is performed and the 

 
Figure 2. The 2th cepstral feature component sequence of an utterance 
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design of the temporal filters. The smoothing (or temporal average) operation can be defined 
as one of the following forms [Chen and Bilmes 2007]: 

 Non-Causal Moving Average 

   ,ˆ   2 1
                             

L
t ii L

t

t

y
if L t T Ly L

y otherwise

+=−
⎧
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⎪
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 Causal Moving Average 
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 Non-Causal Auto Regression Moving Average 
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 Causal Auto Regression Moving Average 
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where ty  denotes the HEQ restored feature vector component at speech frame t ; L  is the 
span order of temporal average operation; and ˆty  is the corresponding one after the temporal 
average operation. The feature vector component sequence obtained by Equation (13) is also 
shown in the lower part of Figure 2. 

4. EXPERIEMENTAL RESULTS 

4.1 Experimental Setup 
The speech recognition experiments were conducted under various noise conditions using the 
Aurora-2 database and task [Hirsch and Pearce 2002]. The Aurora-2 database is a subset of the 
TI-DIGITS, which contains a set of connected digit utterances spoken in English; while the 
task consists of the recognition of the connected digit utterances interfered with various noise 
sources at different signal-to-noise ratios (SNRs), in which Test Sets A and B are artificially 
contaminated with eight different types of real-world noises (e.g., subway noise, street noise, 
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babble noise, etc.) in a wide range of SNRs (-5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and 
Clean) and Test Set C additionally includes channel distortions. For the baseline system, the 
training and recognition tests used the HTK recognition toolkit [Young et al. 2005], following 
the original setup defined for the ETSI AURORA evaluations [Hirsch and Pearce 2002]. 

More specifically, each digit was modeled as a left-to-right continuous density hidden 
Markov model (CDHMM) with 16 states and three diagonal Gaussian mixtures per state. Two 
additional CDHMMs were defined for the silence. The first one had three states with six 
diagonal Gaussian mixtures per state for modeling the silence at the beginning and at the end 
of each utterance. The other one had one state with 6 diagonal Gaussian mixtures for modeling 
the inter-word short pause. In the front-end speech analysis, the frame length is 25 ms and the 
corresponding frame shift is 10 ms. Speech frames are pre-emphasized using a factor of 0.97, 
and the Hamming window is then applied. From a set of 23 Mel-scaled log filter banks outputs 
a 39-dimensional feature vector, consisting of 12 Mel-frequency cepstral coefficients 
(MFCCs), the 0-th cepstral coefficient, and the corresponding delta and acceleration 
coefficients, is extracted at each speech frame. The average word error rate (WER) results 
obtained by the MFCC-based baseline system are 45.44% and 14.65%, respectively, for clean- 
and multi-condition training, each of which is an average of the WER results of the test 
utterances respectively contaminated with eight types of noises under different SNR levels (0 
dB to 20 dB) for the three sets (Sets A, B and C). 

4.2 Experiments on HEQ Approached 
Table 1. Average WER results (%) of THEQ for clean-condition training, with respect 

to different numbers of histogram bins and different sizes of table. 

Table Size 
 

10 50 100 500 1000 5000 10000 50000 

100 41.32 45.65 46.39 44.59 44.55 44.65 44.67 44.65 
500 33.21 28.60 25.44 22.42 22.42 22.41 22.45 22.41 

1000 29.63 24.19 22.12 19.19 19.04 19.46 19.88 19.87 
5000 28.13 23.72 20.68 18.22 18.02 18.18 18.19 18.10 

10000 27.64 23.50 20.50 18.33 18.10 18.13 18.30 18.32 
50000 27.46 23.30 20.29 18.58 18.41 18.46 18.47 18.45 

H
is

to
gr

am
 B

in
 N

um
be

r 

Order-Statistics 27.26 23.30 20.65 18.62 18.32 18.51 18.53 18.58 
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Table 2. Average WER results (%) of THEQ for multi-condition training, with respect 
to different numbers of histogram bins and different sizes of table. 

Table Size 
 

10 50 100 500 1000 5000 10000 50000 

100 19.46 22.27 23.81 23.85 23.96 24.05 24.06 24.07 
500 18.54 20.71 19.06 14.94 14.58 14.57 14.52 14.59 
1000 18.94 19.46 17.04 13.63 13.30 13.36 13.35 13.33 
5000 19.24 18.98 15.91 12.52 12.30 12.31 12.29 12.27 

10000 19.27 18.79 15.75 12.26 12.26 12.23 12.22 12.23 
50000 19.42 18.79 15.69 12.76 12.14 12.16 12.15 12.16 

H
is

to
gr

am
 B

in
 N

um
be

r 

Order-Statistics 19.43 18.91 15.73 12.79 12.18 12.17 12.17 12.17 

In the first set of experiments, we compare the recognition performance when different 
numbers of the histogram bins and different sizes of the look-up table are applied for THEQ. 
Notice that the equalization was conducted on all dimensions of the feature vectors for the 
training and test data, and the approximation of the CDFs of the test speech was conducted in 
an utterance-by-utterance manner. The results are summarized in Tables 1 and 2 for clean- and 
multi-condition training, respectively. As can been seen, the recognition performance is very 
sensitive to the number of the histogram bins and the size of the look-up table. The WER is 
improved when either the number of the histogram bins or the size of the look-up table is 
increased. As compared to the MFCC-based baseline system, the best results of HEQ yield 
about 60% and 16% relative WER improvements for clean- and multi-condition training, 
respectively. These results suggest that a larger histogram bin number or table size can 
improve the recognition performance, however, at the cost of huge consumption of the 
memory storage. Moreover, THEQ is also time-consuming, because a huge set of cumulative 
histograms of all speech feature vector dimensions of the training data have to be kept in 
memory for the table-lookup of restored feature values. Furthermore, the CDF value of a 
feature vector component approximated by the cumulative-histogram based method is 
equivalent to that done by the order-statistics based method when the number of histogram 
bins is taken to be infinite. 

In the next set of experiments, we investigate the use of different quantile numbers for 
QHEQ to see if the quantile number has any apparent effect on the recognition performance. 
The corresponding average WER results are shown in Table 3. As indicated by the results, it 
can be found the recognition performance is closely dependent on the quantile number. The 
transformation function ( )H x  would tend to be too coarse to model the relationship between 
the test utterance and the training data when only few quantiles are being considered. On the 
contrary, the use of too many quantiles for the estimation of the transformation function 
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( )H x  might instead degrade the recognition performance [Hilger and Ney 2001]. However, 
the optimum number of quantiles is found to be four for the Aurora 2 task studied here, and 
the corresponding relative WER improvements over the MFCC-based baseline system are 
50% and 30% for clean- and multi-condition training, respectively. 

In the third set of experiments, we evaluate the performance of PHEQ with respect to 
different polynomial orders and the associated results are presented in Table 4. Due to the end 
behavior property of polynomial functions, even order polynomials are either “up” on both 
ends or “down” on both ends which is not appropriate to characterize the behavior of a 
cumulative distribution [Lial et al. 2006]. Therefore, only odd-order polynomials are utilized 
in this paper for PHEQ. As evidenced by the results shown in Table 4, the average WER 
results of PHEQ are slightly improved when the order of the polynomial function becomes 
higher. However, as the order increases, the polynomial function might sometimes tend to 
over-fit of the training data. The improvement of PHEQ seems to saturate when the order is 
set to seven. As is indicated, PHEQ yields about a relative WER improvement of 65% for 
clean-condition training, and 35% for multi-conditions training, as compared to the 
MFCC-based baseline system. 

To go a step further, the average WER results under different SNR levels for the MFCC 
baseline, THEQ, QHEQ and PHEQ are shown in Tables 5 and 6, for clean- and 
multi-condition training, respectively. In the case of clean-condition training, these three HEQ 
approaches all yield significant improvement over the MFCC-based baseline, especially when 
the SNR level becomes much lower (e.g., 10 dB, 5 dB or 0 dB). The average WERs for 

Table 3. Average WER results (%) of QHEQ, with respect to different quantile 
numbers. 

Quantile Number 
 

2 3 4 5 8 16 32 

Clean-Condition 
Training 24.02 23.67 22.86 23.00 24.93 24.83 24.95 

Multi-Condition Training 11.63 11.25 10.23 10.24 12.36 12.32 12.36 

Table 4. Average WER results (%) of PHEQ, with respect to different orders of the 
polynomial transformation functions. 

Polynomial Order 
 

1-th 3-th 5-th 7-th 9-th 11-th 13-th 

Clean-Condition 
Training 18.54 17.1 16.05 15.71 15.72 15.72 16.68 

Multi-Condition Training 12.17 9.44 9.26 9.50 9.45 9.46 11.45 
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clean-condition training are 18.02%, 15.71% and 22.86% for THEQ, PHEQ and QHEQ, 
respectively. In the case of multi-condition training, the average WER results for these three 
HEQ approaches are slightly better than that of the MFCC-based baseline system (average 
WERs of 12.30%, 9.5% and 10.23% for THEQ, PHEQ and QHEQ, respectively) which might 
mainly be due to the fact that with multi-condition training, the mismatch between the training 
and test conditions can be reduced to a great extent. 

On the other hand, Table 7 shows the average WER results obtained by combining 
PHEQ with different temporal average (TA) operations of different span orders. When the 
span order is set to 0, it denotes that only PHEQ was applied to the feature vector components. 
The results in Table 7 demonstrate that combining PHEQ with anyone of the TA operations 
can further provide an additional relative WER reduction of about 5% to 8%. In a word, the 
TA operations conducted after HEQ indeed provide a good compensation for non-stationary 
noises. Nevertheless, TA operations with much higher span orders may instead result in the 
degradation of the recognition performance. 

 

 

 

Table 5. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ   
and PHEQ for clean-condition training, with respect to different SNR levels. 

SNR Level 
 

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB 

MFCC 0.89 7.55 20.41 43.17 70.80 90.21 96.37 

THEQ 1.73 3.61 5.69 10.22 21.66 47.41 77.91 

QHEQ 0.82 2.05 4.14 10.84 30.90 66.11 86.72 

PHEQ 0.92 1.83 3.45 7.52 18.84 45.78 76.77 

Table 6. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ   
and PHEQ for multi-condition training, with respect to different SNR levels. 

SNR Level 
 

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB 

MFCC 1.15 2.16 3.22 5.97 15.45 44.06 79.24 

THEQ 1.10 2.24 3.53 6.52 15.63 40.60 73.39 

QHEQ 2.15 2.02 2.74 5.10 10.32 29.46 57.96 

PHEQ 1.34 1.65 2.43 4.19 10.14 27.96 62.13 
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4.3 Comparison with Other Normalization Approaches 

Finally, we compare the above HEQ approaches with the conventional normalization 
approaches. The average WER results for the MFCC-based baseline system, as well as for 
CMS and CMVN, for both clean- and multi-condition training, are shown in Table 8 and 
presented graphically in Figures 3 and 4, respectively. Notice that the results for THEQ, 
PHEQ and PHEQ-TA were obtained with the best settings from the above experiments. 
GHEQ is the recognition results obtained using a Gaussian probability distribution with zero 
mean and unity variance as the reference distribution rather than using the probability 
distributions of the entire training data as the reference distributions [Torre et al. 2005]. In 
other words, each feature space dimension is normalized to a standard normal distribution. It 
can be found that all the HEQ approaches provide significant performance boosts over the 
MFCC-based baseline system, and they are also better than CMS and CMVN for both clean- 
and multi-condition training. If TA is further applied after CMVN (i.e., MVA) or PHEQ (i.e., 
PHEQ-TA), the recognition results of MVA or PHEQ-TA will be considerably better than 
those obtained by using CMVN or PHEQ alone. 

The experimental results shown in this and the previous sections suggest the following 
observations: 

 The estimation of CDF can have a significant influence on the performance of HEQ. 
The cumulative-histogram method can give a reliable estimation if there is a large 
amount of speech feature vectors available; otherwise, the order-statistics based 
method is recommended. 

Table 7. Average WER results (%) obtained by combining PHEQ with different TA 
operations of different span orders. 

Span Order     
0 1 2 3 4 5 

Non-Causal MA 15.71 14.57 14.53 15.78 16.61 16.87 
Causal MA 15.71 15.20 14.88 14.66 14.61 15.06 
Non-Causal ARMA 15.71 14.55 14.41 14.94 15.11 15.21 

Clean- 
Condition 
Training 

Causal ARMA 15.71 14.52 14.49 14.86 15.00 16.72 

Non-Causal MA 9.5 8.96 8.98 9.66 10.18 10.75 
Causal MA 9.5 9.35 9.22 8.98 8.95 9.08 
Non-Causal ARMA 9.5 8.92 8.86 9.04 9.13 9.18 

Multi- 
Condition 
Training 

Causal ARMA 9.5 9.22 8.87 8.87 9.25 9.34 



 

 

             A Comparative Study of Histogram Equalization (HEQ) for           233 

Robust Speech Recognition 

 The full cumulative distribution function matching approach, such as THEQ, GHEQ, 
or PHEQ, gives better recognition performance than the quantile-corrective 
approach, such as QHEQ. 

 In contrast, assuming that the probability distributions of speech feature vectors will 
follow Gaussian distributions (e.g., GHEQ), the transformation functions used in 
PHEQ are directly learned from the observed distributions of speech feature vectors. 
As the results show in Table 8, PHEQ outperforms all the other equalization 
approaches in most cases for clean-condition training. 

 The performance of GHEQ appears slightly better than PHEQ for multi-condition 
training. This result is probably explained by the fact that multi-condition training 
can substantially reduce environmental mismatch. Consequently, normalizing the 
speech feature vectors into a standard normal distribution or normalizing a 
distribution learned from the training speech seems to make no significant difference 
in multi-condition training. 

 Performing TA after HEQ is necessary, because TA can alleviate the influence of 
sharp peaks and valleys that were caused by some non-stationary noises or occurred 
during the equalization process. 

 

     Table 8. Comparison of the average WER results (%) obtained by the MFCC-based  
baseline system and various normalization approaches for clean- and 
multi-condition training. 

Clean-Condition Training Multi-Condition Training 
 

Test A Test B Test C Average Test A Test B Test C Average 

MFCC 47.37 48.42 40.55 45.45 13.56 13.34 17.06 14.65 

CMS 26.17 22.06 27.72 25.32 13.27 12.99 13.77 13.34 

CMVN 20.21 19.84 21.13 20.39 12.18 11.23 13.21 12.21 

MVA 16.63 14.92 17.90 16.48 8.86 8.82 9.69 9.12 

THEQ 18.13 16.41 19.51 18.02 11.97 11.47 13.44 12.30 

GHEQ 17.69 15.59 18.70 17.32 9.00 8.73 9.60 9.11 

PHEQ 15.91 14.43 16.80 15.71 9.23 8.89 10.38 9.50 

QHEQ 23.74 21.73 23.11 22.86 8.91 10.03 11.75 10.23 

PHEQ-TA 14.29 13.75 15.20 14.41 8.72 8.64 9.21 8.86 
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Figure 3. Average WER results (%) obtained by the MFCC-based baseline 
system and various normalization approaches for clean-condition 
training. 

Figure 4. Average WER results (%) obtained by the MFCC-based baseline system 
and various normalization approaches for multi-condition training. 
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4.4 Storage Requirement and Computational Complexity 

As mentioned in the previous sections, the HEQ approaches have some drawbacks for 
practical implementation issues, such as requiring large storage consumption and high 
computational cost, which might make them infeasible when being applied to ASR systems 
with limited storage and computation resources. Therefore, in this subsection, we analyze 
these HEQ approaches from two perspectives: the storage requirement and the computational 
complexity. 

In general, the number of reference pairs ( )( ),
iTrain BC y y  kept in the look-up table for 

THEQ cannot be too small. As indicated in Table 1, the recognition performance for the 
Aurora 2 task will not saturate until the table size is large than 1,000. If 1,000 reference pairs 
are kept with double precision for THEQ, it requires a memory space of about 1M bytes to 
store the transformation table for the equalization of all dimensions of the feature vectors. 
However, for other complicated recognition tasks, such as large vocabulary continuous speech 
recognition (LVCSR) of broadcast news, it normally requires a much larger size of look-up 
table to keep the feature transformation/equalization information for better recognition 
performance, which also implies the need of much larger storage consumption. However, for 
QHEQ, a small number of quantiles (usually the number is set to 4) is enough for the efficient 
transformation of speech feature vectors. The storage requirement of QHEQ is very small 
when compared to THEQ. Similarly, the storage requirement of PHEQ depends mainly on the 
order of the polynomial functions. In the case of using the polynomial functions with the order 
set to seven, it roughly requires a memory space of 2.5K bytes to store the coefficients of the 
polynomial functions. 

On the other hand, the computational complexity of THEQ is mainly determined by the 
size of the look-up table. As the reference pairs ( )( ),

iTrain BC y y  stored in the look-up table 
increase, the complexity for searching the corresponding restored value 

iBy  for the input 
( )TrainC y  would become much higher even though the table-lookup procedure can be 

implemented with the hash table or other efficient data structures. When QHEQ is being used 

Table 9. A summary of storage requirement and computational complexity with  
respect to different HEQ approaches. 

Method Storage Requirement Computational Complexity 

THEQ Large - depending on the number of 
reference pairs kept in the look-up table 

Medium - depending on the look-up table size 
for searching the corresponding restored value 

QHEQ Small - depending on the number of 
quantiles for quantile-correction 

High - depending on the value ranges and 
resolutions of parameters for online grid search. 

PHEQ Small - depending on the order of the 
polynomial functions 

Low - depending on the order of the polynomial 
function 
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in the test phase, its computational complexity is the highest when compared to the other two 
HEQ approaches (THEQ and PHEQ), which is due to the fact that an exhaustive online grid 
search is required for finding the optimum transformation parameters α  and γ . The search 
process is completely dominated by the value ranges of α  and γ , and the resolutions, i.e., 
the step sizes for updating the values, of α  and γ . In contrast to the above two approaches, 
the computational complexity of PHEQ is almost negligible. It requires only a few 
mathematical operations, which will result in a tremendous saving in the computational cost. 
A summary of storage requirement and computational complexity is shown in Table 9. 

5. CONCLUSIONS 

In this paper, we have given a detailed review of various histogram equalization (HEQ) 
approaches for improving ASR robustness. Three approaches, namely, the table-based 
histogram equalization (THEQ), the quantile-based histogram equalization (QHEQ) and the 
polynomial-fit histogram equalization (PHEQ), were extensively compared and analyzed, in 
terms of the recognition performance, storage requirement and computational complexity. 
Moreover, the usage of temporal average (TA) operations also has been investigated for 
alleviating the influence of sharp peaks and valleys caused by some non-stationary noises or 
noises occurring during equalization. It has been found that PHEQ outperforms the other 
equalization approaches and it only requires a small amount of storage consumption and 
computational cost. The best results were obtained by combing PHEQ with TA that was in the 
form of non-causal auto-regression moving average. Relative word error rate reductions of 
68% and 40% over the MFCC-based baseline system have been obtained for clean- and 
multi-condition training, respectively. 

Acknowledgements 
This work was supported in part by the National Science Council, Taiwan, under Grants: NSC 
96-2628-E-003-015-MY3 and NSC95-2221-E-003-014-MY3. 

REFERENCES 
Acharya T. and A. K. Ray, “ Image Processing: Principles and Applications, ＂

Wiley-Interscience, 2005. 
Buera, L., E. Lleida, A. Miguel, A. Ortega and O. Saz,“Cepstral Vector Normalization Based 

on Stereo Data for Robust Speech Recognition,＂IEEE Transaction on Audio, Speech 
and Language Processing, 15(3), 2007, pp. 1098-1113. 

Chen, C.-P. and J. Bilmes,“MVA Processing of Speech Features,＂IEEE Trans. on Audio, 
Speech and Language Processing, 15(1), 2007, pp. 257-270. 



 

 

             A Comparative Study of Histogram Equalization (HEQ) for           237 

Robust Speech Recognition 

Dharanipragada, S. and M. Padmanabhan,“A Nonlinear Unsupervised Adaptation Technique 
for Speech Recognition,＂In Proceedings of the 6th International Conference on Spoken 
Language Processing(ICSLP 2000), Beijing, China, 2000. 

Ephraim, Y. and D. Malah, “ Speech Enhancement Using a Minimum Mean-Square 
Log-Spectral Amplitude Estimator,＂IEEE Transaction on Acoustic, Speech and Signal 
Processing, 33(2), 1985, pp. 443-445. 

Furui, S., “ Cepstral Analysis Techniques for Automatic Speaker Verification, ＂ IEEE 
Transaction on Acoustic, Speech and Signal Processing, 29(2), 1981, pp. 254-272. 

Gales, M. J. F.,“Maximum Likelihood Linear Transformations for HMM-based Speech 
Recognition,＂Computer Speech and Language, 12(2), 1998, pp. 75-98. 

Gauvain, J.-L. and C.-H. Lee,“Maximum a Posteriori Estimation for Multivariate Gaussian 
Mixture Observations of Markov Chains,＂IEEE Transaction on Speech and Audio 
Processing, 2(2), 1994, pp. 291-297. 

Gong, Y.,“Speech Recognition in Noisy Environments: A Survey,＂Speech Communication,  
16(3), 1995, pp. 261-291. 

Hermansky, H and N. Morgan,“RASTA Processing of Speech, ＂ IEEE Transaction on 
Speech and Audio Processing, 2(4), 1994, pp. 578-589. 

Hilger, F. and H. Ney,“Quantile Based Histogram Equalization for Noise Robust Speech 
Recognition, ＂ In Proceedings of the 7th European Conference on Speech 
Communication and Technology (Eurospeech 2001), Aalborg, Denmark, 2001. 

Hilger, F. and H. Ney,“Quantile Based Histogram Equalization for Noise Robust Large 
Vocabulary Speech Recognition,＂IEEE Transactions on Audio, Speech and Language 
Processing, 14(3), 2006, pp. 845-854. 

Hirsch, H. G. and D. Pearce,“The AURORA Experimental Framework for the Performance 
Evaluations of Speech Recognition Systems under Noisy Conditions,＂In Proceedings 
of the 6th International Conference on Spoken Language Processing(ICSLP 2002), 
Beijing, China, 2002. 

Hsu, C.-W. and L.-S. Lee,“Higher Order Cepstral Moment Normalization (HOCMN) for 
Robust Speech Recognition,＂In Proceedings of the IEEE International Conference on 
Acoustic, Speech and Signal Processing (ICASSP 2004), Quebec, Canada, 2004. 

Hsu, C.-W. and L.-S. Lee,“Extension and Further Analysis of Higher Order Cepstral 
Moment Normalization (HOCMN) for Robust Features in Speech Recognition,＂In 
Proceedings of the 9th International Conference on Spoken Language Processing 
(ICSLP 2006), Pittsburgh, Pennsylvania, 2006. 

Huang X., A. Acero, H. Hon,“Spoken Language Processing: A Guide to Theory, Algorithm 
and System Development,＂Prentice Hall, 2001 

Huo, Q., C. Chany and C.-H. Lee,“Bayesian Adaptive Learning of the Parameters of Hidden 
Markov Model for Speech Recognition,＂IEEE Transaction on Speech and Audio 
Processing, 3(4), 1995, pp. 334-345. 



 

 

238                                                      Shih-Hsiang Lin et al. 

Junqua, J. C., J. P. Haton and H. Wakita,“Robustness in Automatic Speech Recognition,＂ 
Kluwer, 1996. 

Lee, L.-S. and B. Chen,“Spoken Document Understanding and Organization,＂IEEE Signal 
Processing Magazine, 22(5), 2005, pp. 42-60. 

Leggeter, C. J. and P. C. Woodland,“Maximum Likelihood Linear Regression for Speaker 
Adaptation of Continuous Density Hidden Markov Models,＂Computer Speech and 
Language, 9, 1995, pp. 171-185. 

Lial M., R. N. Greenwell and N. P. Ritchey,“Calculus with Applications,＂ Addison Wesley, 
2005. 

Lin, S.-H., Y.-M. Yeh and B. Chen,“Exploiting Polynomial-Fit Histogram Equalization and 
Temporal Average for Robust Speech Recognition, ＂ In Proceedings of the 9th 
International Conference on Spoken Language Processing (ICSLP 2006), Pittsburgh, 
Pennsylvania, 2006. 

Molau, S., D. Keysers and H. Ney,“Matching Training and Test Data Distributions for 
Robust Speech Recognition,＂Speech Communication, 41(4), 2003, pp. 579-601. 

Molau, S., “ Normalization in the Acoustic Feature Space for Improved Speech 
Recognition, ＂ Ph.D. Dissertation, Computer Science Department, RWTH Aachen 
University, Aachen, Germany, 2003. 

Molau, S., F. Hilger and H. Ney,“Feature Space Normalization in Adverse Acoustic 
Conditions,＂In Proceedings of IEEE International Conference on Acoustics, Speech, 
and Signal Processing (ICASSP 2003), Hong Kong, 2003. 

Moreno, P., “ Speech Recognition in Noisy Environment, ＂ Ph.D. Dissertation, ECE 
Department, Carnegie Mellon University, Pittsburgh, PA, 1996. 

Segura, J. C., C. Benitez, A. Torre, A. J. Rubio and J. Ramirez,“Cepstral Domain Segmental 
Nonlinear Feature Transformations for Robust Speech Recognition,＂ IEEE Signal 
Processing Letters, 11(5), 2004, pp. 517-520. 

Suk, Y. H., S. H. Choi and H. S. Lee,“Cepstrum Third-Order Normalisation Method for 
Noisy Speech Recognition,＂Electronics Letters, 35(7), 1999, pp. 527-528. 

Torre, A., A. M. Peinado, J. C. Segura, J. L. Perez-Cordoba, M. C. Bentez and A. J. Rubio,
“Histogram Equalization of Speech Representation for Robust Speech Recognition,＂
IEEE Transactions on Speech and Audio Processing, 13(3), 2005, pp. 355-366. 

Vikki, A. and K. Laurila,“Segmental Feature Vector Normalization for Noise Robust Speech 
Recognition,＂Speech Communication, 25, 1998, pp. 133-147. 

Wu, J. and Q. Huo,“An Environment-Compensated Minimum Classification Error Training 
Approach Based on Stochastic Vector Mapping,＂IEEE Transactions on Audio, Speech 
and Language Processing, 14(6), 2006, pp. 2147-2155. 

Young, S., G. Evermann, M. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. 
Povey, V. Valtchev, and P. Woodland,“The HTK Book (for HTK Verson 3.3),＂ 
Cambridge University Engineering Department, Cambridge, UK, 2005. 

 


