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Abstract 

There are many methods to improve performance of statistical parsers. Resolving 
structural ambiguities is a major task of these methods. In the proposed approach, 
the parser produces a set of n-best trees based on a feature-extended PCFG 
grammar and then selects the best tree structure based on association strengths of 
dependency word-pairs. However, there is no sufficiently large Treebank 
producing reliable statistical distributions of all word-pairs. This paper aims to 
provide a self-learning method to resolve the problems. The word association 
strengths were automatically extracted and learned by parsing a giga-word corpus. 
Although the automatically learned word associations were not perfect, the 
constructed structure evaluation model improved the bracketed f-score from 
83.09% to 86.59%. We believe that the above iterative learning processes can 
improve parsing performances automatically by learning word-dependence 
information continuously from web. 

Keywords: Parsing, Word association, Knowledge Extraction, PCFG, PoS 
Tagging, Semantic. 

1. Introduction 

How to solve structural ambiguity is an important task in building a high-performance 
statistical parser, particularly for Chinese. Since Chinese is an analytic language, words can 
play different grammatical functions without inflection. A great deal of ambiguous structures 
would be produced by parsers if no structure evaluation were applied. There are three main 
steps in our approach that aim to disambiguate the structures. The first step is to have the 
parser produce n-best structures. Second, we extract word-to-word associations from large 
corpora and build semantic information. The last step is to build a structural evaluator to find 
the best tree structure from the n-best candidates. 

There have been some approaches proposed in the past to resolve structure ambiguities. 
For instance: 
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Adding on lexical dependencies. Collins [1999] solves structural ambiguity 
by extracting lexical dependencies from Penn WSJ Treebank and applying 
dependencies to the statistic model. Lexical dependency (or Word-to-word 
association, WA) is one type of semantic information. It is a current trend to add 
on semantic related information in traditional parsers. Some incorporate 
word-to-word association in their parsing models, such as the Dependency 
Parsing in Chen et al. [2004]. They take advantage of statistical information of 
word dependency in the parsing process to produce dependency structures. 
However, word association methods suffer low coverage when lacking very 
large tree-annotated training corpora while checking dependency relationships 
between word pairs. 

  

Adding on word semantic knowledge where CiLin and HowNet 
information are used in the statistic model in the experiment [Xiong et al. 2005]. 
Their results work to solve common parsing mistakes efficiently. 

 

Using a re-annotation method in grammar rules. Johnson [1998] thinks that 
re-annotating each node with the category of its parent category in Treebank is 
able to improve parsing performance. Klein et al. [2003] proposes internal, 
external, and tag-splitting annotation strategies to obtain better results. 

  

Building an evaluator. Some people re-rank the structure values and find 
the best parse [Collins 2000; Charniak et al. 2005]. At first, the parser produces a 
set of candidate parses for each sentence. Later, the re-ranker finds the best tree 
through relevance features. The performance is better than without the re-ranker. 

 

This paper is going to show a self-learning method to produce imperfect (due to errors 
produced by automatic parsing) but unlimited amount of word association data to evaluate the 
n-best trees produced by a feature-extended PCFG grammar. The parser with this WA 
evaluation is considerably superior to those without the evaluation. 

The organization of the paper is as follows: Section 2 describes how to generate n-best 
trees in a simple way. In Section 3, we account for building word-to-word association and a 
primitive semantic class as well. As to the design of the evaluating model, our probability 
model, coordination of rule probability, and word association probability are presented in 
Section 4. In Section 5, we discuss and explain the experimental data and results. Ambiguities 
of PoS are to be considered in a practical system. Section 6 deals with further experiments on 
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automatic tagging with PoS. Finally, we offer concluding remarks in Section 7. 

2. Feature Extension of PCFG Grammars for Producing the N-best Trees 

It is clear that Treebanks [Chen et al. 2003] provide not only instances of phrasal structures 
and word dependencies but also their statistical distributions. Recently, probabilistic 
preferences for grammar rules and feature dependencies were incorporated to resolve 
structure-ambiguities and had great improvement on parsing performance. However, the 
automatically extracted grammars and feature-dependence pairs suffer the problem of low 
coverage. We proposed different approaches to solve these two different types of low 
coverage problems. For the low coverage of extracted grammar, a linguistically-motivated 
grammar generalization method is proposed [Hsieh et al. 2005]. The low coverage of word 
association pairs is resolved by a self-learning method of automatic parsing and extracting 
word dependency pairs from very large corpora. 

The linguistically-motivated generalized grammars are derived from probabilistic 
context-free grammars (PCFG) by right-association binarization and feature embedding. The 
binarized grammars have better coverage than the original grammars directly extracted from 
Treebank. Features are embedded into the lexical and phrasal categories to improve the 
precision of generalized grammar. The important features adopted in our grammar are 
described in the following: 

 
Head (Head feature): The PoS of phrasal head will propagate all intermediate nodes 

within the constituent. 
Example: S(NP(Head:Nh:他)|S’-Head:VF(Head:VF:叫 |S’-Head:VF(NP(Head:Nb:

李四)| VP(Head:VC:撿| NP(Head:Na:皮球))))) 
Linguistic motivations: To constrain the sub-categorization frame. 

 
Left (Leftmost feature): The PoS of the leftmost constitute will propagate one-level to its 

intermediate mother-node only. 
Example: S(NP(Head:Nh: 他 )|S’-Head:VF(Head:VF: 叫 |S’-NP(NP(Head:Nb: 李

四)| VP(Head:VC:撿| NP(Head:Na:皮球))))) 
Linguistic motivation: To constrain linear order of constituents. 

 
Head 0/1 (Existence of 

phrasal head): 
If phrasal head exists in intermediate node, the nodes will be 
marked with feature 1; otherwise 0. 

Example: S(NP(Head:Nh: 他 )|S’-1(Head:VF: 叫 |S’-0(NP(Head:Nb: 李

四)|VP(Head:VC:撿| NP(Head:Na:皮球))))) 
Linguistic motivation: To enforce unique phrasal head in each phrase. 
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There are two functions of applying the embedded features: one is to increase the 
precision of the grammar and the other is to produce more candidate parse structures. With 
features embedded in phrasal categories, PCFG parsers are forced to produce varieties of 
different possible structures1. In order to achieve a better n-best oracle performance (i.e. the 
ceiling performance achieved by picking the best structure from n bests), we designed some 
different feature-embedded grammars and try to find a grammar with the better n-best oracle 
performance. For instance, “S(NP(Head:Nh: 他 )|Head:VF: 叫 | NP(Head:Nb: 李 四 )| 
VP(Head:VC:撿| NP(Head:Na:皮球)))”. The explanations of feature sets are as follow. 

 

Rule type-1: 

Intermediate node: add on “Left and Head 1/0” features. 

Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 

Example: S(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫|S’-NP-0(NP-Head:Nb(Head:Nb:李
四)|VP(Head:VC:撿| NP-Head:Na(Head:Na:皮球))))) 

 

Rule type-2: 

Intermediate node: add on “Left and Head 1/0” features. 

Non-intermediate node: add on “Head and Left” features, if there is only one member in 
the NP, add on “Head” feature. 

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫
|S’-NP-0(NP-Head:Nb(Head:Nb:李四)|VP-Head:VC(Head:VC:撿| NP-Head:Na(Head:Na:皮球))))) 

 

Rule type-3: 

Intermediate node: add on “Left, and Head 1/0” features. 

Top-Level node: add on “Head and Left” features.   (see example of S-NP-Head:VF) 

Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫
|S’-NP-0(NP-Head:Nb(Head:Nb:李四)|VP(Head:VC:撿| NP-Head:Na(Head:Na:皮球))))) 

 

                                                 
1 The parser adopts an Earley's Algorithm. It is a top-down left-to-right algorithm. So, in parts that have 

the same non-terminals, we keep only the best structure after pruning, to reduce the load of calculation 
and thus fasten the parsing speed. Therefore, if we add different features in the Top-Level rules, we'll 
get more results. 
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Rules and their statistical probabilities are extracted from the transformed structures. The 
grammars are derived and trained from Sinica Treebank2. Sinica Treebank contains 38,944 
tree-structures and 230,979 words. Table 1 shows the number of rule types in each grammar 
and Table 2 shows their 50-best oracle bracketed f-scores on three sets of testing data. The 
three sets of testing data used in our experiments represent “moderate”, “difficult”, and “easy” 
scale of Chinese language respectively. Black [1991] proposed two structural evaluating 
systems in 1991; the more strictly based is named PARSEVAL, and the less strictly based is 
crossing. We adopt PARSEVAL measures to evaluate the bracketed f-score. The formula 
represents as follows: 

 

data  testingof parse sparser'in  tsconstituenbracket  #
data  testingof parse sparser'in  tsconstituencorrect brack  #(BP)precision  bracketed =  

data  testingof parse sk'in treeban tsconstituenbracket  #
data  testingof parse sparser'in  tsconstituencorrect brack  #(BR) recall bracketed =  

BRBP
BRBPf
+

=
2**(BF) score-  bracketed  

 

A bracket represents the phrasal scope. The reason we don't use a labeled f-score is that we 
aim to evaluate the phrasal scope, rather than the effect brought by the phrasal category. For 
example, the dependency information is much more related to the structure. 

Table 1. Numbers of rules for each grammar. 

Rule Type 
 

Rule-1 Rule-2 Rule-3 

Rule number 9,899 26,797 13,652

Table 2. The 50-best oracle performances from the different grammars. 

Rule type 
Testing Data Sources Hardness

Rule type-1 Rule type-2 Rule type-3 

Sinica Balanced corpus Moderate 92.97 94.84 96.25 

Sinorama Magazine Difficult 90.01 91.65 93.91 

Textbook Elementary school Easy 93.65 95.64 96.81 

 
                                                 
2 http://treebank.sinica.edu.tw/ 
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From the above table, we can observe that the “Rule type-3” outperforms the “Rule 
type-1” and “Rule type-2”. We adopt the approach used in Charniak et al. [2005] to analyze 
the n-best parse. Table 3 shows the best bracketed f-score values of different n-best parse trees. 
From the results, we observe that the improvement after n=5 is slight. Thus, the number of 
ambiguous candidates can be dynamically adjusted according to the complexity of input 
sentences. For normal sentences, we may consider to take n=5 in order to minimize the 
complexity. For long sentences or sentences with auto PoS tagging should take as large as 
n=50 to raise the ceiling of the best f-score. 

Table 3. Oracle bracketed f-scores as a function of number n of n-best parses. 

n 
Testing Data 

1 2 5 10 25 50 

Sinica 91.88 94.39 95.91 96.17 96.25 96.25 

Sinorama 86.69 90.44 92.87 93.47 93.86 93.91 

Textbook 92.24 95.01 96.21 96.61 96.78 96.81 

For each candidate tree, its syntactic plausibility is obtained by rule probabilities 
produced by PCFG parser. In addition to this, we need semantic related information to help 
with finding the best tree structure among candidate trees. In the next section, we will look at 
some methods of attaining semantic related information. 

3. Auto-Extracting World Knowledge 

We could extract word knowledge from Treebanks, but the availability of a very large set of 
trees with rich linguistic annotations has long been a problem. A cheaper way to extract word 
knowledge is to automatically parse a large amount of data. We believe that with good parsing 
performance, we could get sufficient information. 

Therefore, in our experiments, we use a Gigaword Chinese corpus to extract word 
dependence pairs. The Gigaword corpus contains about 1.12 billion Chinese characters, 
including 735 million characters from Taiwan's Central News Agency (traditional characters), 
and 380 million characters from Xinhua News Agency (simplified characters) 3 . Word 
associations are extracted from the texts of Central News Agency (CNA). First we use 
Chinese Autotag System [Tsai et al. 2003], developed by Academia Sinica, to process the 
segmentation and PoS tagging of the texts. This system reaches a performance of 95% 
segmentation and 93% tagging accuracies. Then we parse each sentence4 in the corpus and 
assign semantic roles to each constituent. Based on the head word information, we extract 
                                                 
3 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T09 
4 An existing parser is used to produce 1-best tree of a sentence. 
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dependence word-pairs between head words and their arguments or modifiers. The following 
illustrates how the automatic knowledge extraction works. We input a Chinese sentence to the 
parser: 

 

他 叫  李四  撿 皮球   
Ta  jiao  Li-si   jian  qiu 
He  ask  Li-si   pick  ball 

"He asked Li-si to pick up the ball." 

 

Here is the sentence after segmentation and PoS tagging: 

 

他(Nh) 叫(VF) 李四(Nb) 撿(VC)  皮球(Na) 

 

The parser analyzes the sentence structure and assigns roles to each phrase as follows. Then, 
word-pair knowledge of heads and their modifiers are extracted as shown in Figure 1. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1. A sample for word association extraction. 

 

Role1 PoS1 Word1 Role2 PoS2 Word2

agent[NP] Nhaa 他 Head[S] VF2 叫 

Head[S] VF2 叫 goal[NP] Nba 李四 

Head[S] VF2 叫 theme[NP] VC2 撿 

Head[S] VC2 撿 goal[NP] Nab 皮球 

S

agent
NP

Head
Nhaa

他

Head
VF2

叫 李四 撿 皮球

Head
Nba

Head
VC2

Head
Nab

goal
NP

theme
VP

goal
NP
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Figure 1 shows the examples of extracted word associations. “Role1/PoS1/Word1 and 
Role2/Role2/Word2” represent the right- and left-part of the word-pairs. “Role”, “PoS”, and 
“Word” here mean semantic role, part-of-speech and word respectively. To reduce the number 
of word association types, we transform the original word-pairs into three simplified types of 
the word pairs: 

 

(a) head word on the left hand side: (H_W_C, X_W_C);  

(b) head word on the right hand side: (X_W_C, H_W_C);  

(c) coordinating structure: (H_W_C, H_W_C). 

 

In the word pairs, “H” denotes Head, “W” means word, and “C” refers to the simplified PoS 
tag5, “X” refers to any semantic role other than Head role. So, we get basic information of 
experimental data as follows: 

Role1 PoS1 Word1 Role2 PoS2 Word2

X Nh 他 H VF 叫 

H VF 叫 X Nb 李四

H VF 叫 X VC 撿 

H VC 撿 X Na 皮球

The processes above are repeated for each new input sentence from the Gigaword corpus. 

Finally, we obtain a great deal of knowledge about dependent word pairs and their 
association strengths. In our experiments, we have 37,489,408 sentences that are successfully 
parsed and contain word association information. The number of extracted word associations 
is 221,482,591. The extracted word to word associations that undergo structure analysis and 
head word assignment are not perfectly correct, but they are more informative and precise than 
simply taking words on the left and right hand window. 

3.1 Coverage Rates of the Word Associations 
Data sparseness is always a problem of statistical evaluation methods. As mentioned in the 
last section, we automatically segment, tag, parse and assign roles in CNA data, and then 
extract word associations. We test our extracted word association data in five different levels 
of granularities. Level-1 to Level-5 represents HWC_WC, HW_W, HC_WC, HW_C, and 
HC_C respectively. The 5 levels of word associations derived from Figure 1 are as follows: 
                                                 
5 The simplified way please refer to CKIP 93-05 Technical Report. 
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Level Type Word Associations 
Level-1 HWC_WC (他/Nh _H/叫/VF) (H/叫/VF_李四/Nb) (H/叫/VF_撿/VC)  

(H/撿/VC_球/Na) 

Level-2 HW_W (他_H/叫) (H/叫_李四) (H/叫_撿) (H/撿_皮球) 

Level-3 HC_WC (他/Nh_H/VF) (H/VF_李四/Nb) (H/VF_撿/VC) (H/VC_皮球/Na) 

Level-4 HW_C (Nh_H/叫) (H/叫_Nb) (H/叫_VC) (H/撿_Nb) 

Level-5 HC_C (Nh_H/VF) (H/VF_Nb) (H/VF_VC) (H/VC_Na) 

Theoretically, the precision of fine-grain level like HWC_WC is much better, but it 
suffers the problem of data sparseness, hence, its coverage rate is low; on the other hand, the 
coarse-grain level has best coverage rate but relatively low precision. This is the trade-off 
between precision and coverage. Therefore, we carry out a series of experiments to find a 
balanced measurement by linear combination of different level associations. There will be 
experimental results in the following sections. 

Why not use HWC_W or HC_W? From our observation, we have found that these two 
show similar performance with HWC_WC and HC_WC respectively; therefore, we exclude 
them. Besides, there are some asymmetric representations, such as the use of “HW_C”. They 
are used to raise the coverage rate in word association while not being too general. 

We like to see the bi-gram coverage rates for each level of representation. After CNA 
producing word associations in each level, we observe the relationship between the amount of 
word associations and the coverage rates of the three texts: Sinica, Sinorama, and Textbook. 
We extracted word associations from the three data sets in each level and calculated their 
coverage rates. 

We tested the coverage rates for 10 different size word association data, of which each 
was extracted from different size corpora. Figure 2 shows coverage relationships between five 
levels and sizes of word association data for three testing data. 

Figure 2 shows that larger data increases the coverage rates, but the coverage of the 
fine-grained level word associations, e.g. Level-1 (HWC_WC), is only about 70%, which is 
far from saturation. Nonetheless, the coverage rate can be improved by reading more texts 
from the web. The coarse-grained level associations, e.g. Level-5 (HC_C), cover the most 
bi-gram categories. However, it may not be very useful, since syntactic associations which are 
partially embedded in the PCFG are redundant. To attain a better evaluation model, we 
derived new associations between semantic classes. Criteria for semantic classification are 
discussed in the following section. 
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Figure 2. Coverage rates vs. size of Corpus: (a) Sinica; (b) Sinorama; (c) Textbook. 

3.2 Incorporating Semantic Knowledge 
For precision and coverage tradeoffs, we face a dilemma of using word or PoS category. We 
find that the coverage of word is low, though its precision is high; on the contrary, the 
coverage of PoS is too high to be discriminative. We hope to find a classification that covers 
enough information and is discriminative as well; that is, a classification system that falls 
between word and PoS category. A semantic classification is the solution. 
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There are many ways to classify semantic properties of words. Xiong et al. [2005] adopt 
CiLin and HowNet as their semantic classes in their experiment; however, the data sparseness 
is still a problem to be solved. Here, we propose a simple approach to build a 
semantic-class-based association strength for word pairs, which will be our Level-6 (HS_S). 
Semantic class information is put into Level-6 in order to get high coverage and to avoid 
redundant syntactic associations in other levels. Besides, it can smooth the problem of data 
sparseness. 

The idea is to classify words into their head morpheme. It begins with the transformation 
of every input “WORD, POS” in the data. We adopt the affix database of high frequency verbs 
and nouns [Chiu et al. 2004] to set up noun and verb classes. There are 34,857 examples of 
compound words in the database. As to determinative measures (DM), we refer to the 
dictionary of measure words, and divide the DMs in the data into thirteen categories, 
according to the meanings of the measure words. The thirteen categories include general, 
event, length, science, approximate measures, weight, square measures, container, capacity, 
time, currency value, classification measures, and measures of verbs. Finally, we consult parts 
of speech analyses [CKIP 1993] and set up the transformation rules to transform a word-PoS 
pair into its semantic class. The transformation algorithm is shown at Appendix A. Take “李

四, Nb” as example, its semantic class is “PersonalName(人名)” in our classification. In 
another instance, the semantic class of “皮球, Na” is “Na_球”. The transformation rules are 
PoS dependent. Each PoS is referred to CKIP [1993], which explains the PoS with words and 
examples. We set up discriminative subcategorization on some parts-of-speech: N/P/D/A 
according to the distribution of PoS and word frequency. As to the verbs, we use an initial step 
to assign initial value. Take PoS as "A" for example, adding prefix information is more useful 
than using "A" alone. 

Role1 PoS1 Word1 Class1 Role2 PoS2 Word2 Class2 

X Nh 他 他 H VF 叫 叫 

H VF 叫 VF_叫 X Nb 李四 PersonalName 

H VF 叫 VF_叫 X VC 撿 VC_撿 

H VC 撿 VC_撿 X Na 皮球 Na_球 

The following example is the result of DM, prefix and affix, through a function in Level-6 
(HS_S): 

 

S(theme:NP(quantifier:DM:兩個|Head:Nab:人)|deontics:Dbab:能|Head:VC1:在

|goal:GP(DUMMY:NP(property:Nad:人生|Head:Nad:旅途)|Head:Ng:中)) 
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Role1 PoS1 Word1 Class1 Role2 PoS1 Word1 Class2 

X DM 兩個 general_DM H Na 人 Na_人 

X Na 人 Na_人 H VCL 在 VCL_在 

X D 能 D_能 H VCL 在 VCL_在 

H VCL 在 VCL_在 X Na 旅途..中 Na..Ng 

X Na 人生 N_人 H Na 旅途 Na_途 

X Na 旅途 Na_途 H Ng 中 Location 

It is necessary to discriminate syntactic head from semantic head in word association 
extraction of GPs and PPs. From the table above, Row 4, signified by the different color 
shows that “旅途” is the semantic head of the GP “旅途..中”, while the word “中” is the 
syntactic head of the phrase. 

We estimate the word association coverage rate of the Level-6 associations. From the 
results shown in Figure 3, the coverage rate of Level-6 is higher than Level-2, and the problem 
of data sparseness is indeed moderately smoothed. 
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Figure 3. WA coverage rate of Level-6. 

Next, we will use different levels of associations to construct an evaluation model to find 
the best structure among the numerous ambiguous candidates. 

4. Building Evaluation Model 

A sentence structure is evaluated by its syntactic and semantic plausibility. The syntactic 
plausibility is modeled by products of phrase rule probabilities of its syntactic tree. The 
semantic plausibility is modeled by the word association strengths between head words and 
their arguments or modifiers. For an input sentence S, the feature-embedded PCFG parser 
produces its n-best trees 1{ ( ),..., ( )}ny s y s . The evaluating model finds out the best structure 
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according to the rule probability (syntactic) and corresponding word association probability 
(semantic). Rule probabilities are generated by the PCFG parser when n-best trees are 
produced. We will estimate word association probabilities in the following formula. In the 
formula, “Head” means the Head of a word association, notated as HWC, HC, or HW. 
“Modify” means dependent daughter, notated as WC, W, or C. 

( , )( | )
( )

freq Head ModifyP Modify Head
freq Head

=  (1) 

Data sparseness is a common problem in dealing with corpora. A minimal value σ  is 
used to smooth data sparseness: 

1 1
221482591total number of  WA token

σ = =  

The evaluation value ( ( ))nValue y s  to each candidate tree Yn(S) is defined as: 

( ( ))
* ( ( )) (1 ) ( ( ))

n

n n

Value y s
RuleValue y s WAValue y sλ λ

=

+ −
 (2) 

where ( ( ))nRuleValue y s is the rule probability of the sentence and ( ( ))nWAValue y s  is the 
total word association value in different level n. RuleValue and WAValue are normalized, i.e. 
(i-min)/(max-min). The following shows weighting in different levels and explanation of 
formula: 

6

1
( ( )) * ( ( ))n level level n

level
WAValue y s WA y sθ

=
= ∑  (3) 

_ _ _ _ ( )
( ( )) ( | )

n

level n
all word association for y s

WA y s P Modify Head= ∏  (4) 

After semantic probability collocating with rule probability, we hope to find the best tree 
*( )y s . 

*( ) arg max ( ( ))ny s Value y s=  /*Yi on all i (5) 

We calculate related λ  and θ  values from the development sets. The development 
sets are adopted from trees in training data. In evaluation, we substitute λ  and θ  for every 
interval of 0.1 from 0 to 1. Then, we find out the best results in certain probability. The 
experiment results will be shown in the following section. Moreover, we justify whether the 
word associations are reasonable. 

For instance, the following example has eight different ambiguous parsing results 
produced by the parser. 
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Input segmentation with PoS tag: 我們(Nh) 都(D) 喜歡(VK) 蝴蝶(Na) 
Parsing results: 
#1:1.[0] S(NP(Head:Nh:我們)|D:都|Head:VK:喜歡|NP(Head:Na:蝴蝶))# 
#1:2.[0] NP(Nh:我們|Head:NP(VP(D:都|Head:VK:喜歡)|Head:Na:蝴蝶))# 
#1:3.[0] VP(PP(Head:Nh:我們)|VP(D:都|Head:VK:喜歡)|Head:Na:蝴蝶)# 
#1:4.[0] NP(VP(Head:Nh:我們)|Head:NP(VP(D:都|Head:VK:喜歡)|Head:Na:蝴蝶))# 
#1:5.[0] VP(Head:VP(VP(Head:Nh:我們)|VP(D:都|Head:VK:喜歡))|NP(Head:Na:蝴蝶))# 
#1:6.[0] NP(S(NP(Head:Nh:我們)|D:都|Head:VK:喜歡)|Head:Na:蝴蝶)# 
#1:7.[0] VP(PP(Head:Nh:我們)|Head:VP(VP(D:都|Head:VK:喜歡)|VP(Head:Na:蝴蝶)))# 
#1:8.[0] VP(Head:VP(VP(Head:Nh:我們)|VP(Head:D:都))|Head:VP(Head:VK:喜歡|NP(Head:Na:蝴蝶)))# 
 

 Prob (log2) 
Rule -23.74 

 
Type WA Prob (log2) 
Level-1 
(HWC_WC) 

(我們/Nh_H/喜歡/VK) 
(都/D_H/喜歡/VK) 
(H/喜歡/VK_蝴碟/Na) 

log2(76/21528)+log2(578/21528)+ 
log2(2/12200) = -25.9395936826742 

Level-2 
(HW_W) 

(我們_H/喜歡) 
(都_H/喜歡) 
(H/喜歡_蝴碟) 

log2(76/21528)+log2(578/21528)+ 
log2(2/12200) = -25.9395936826742 

Level-3 
(HC_WC) 

(我們/Nh_H/VK) 
(都/D_H/VK) 
(H/VK_蝴碟/Na) 

log2(25520/3235010)+log2(49025/3235010)+ 
log2(8/2501420) = -31.2844226460991 

Level-4 
(HW_C) 

(Nh_H/喜歡) 
(D_H/喜歡) 
(H/喜歡_Na) 

log2(3257/21528)+log2(6160/21528)+ 
log2(2927/11741) = -6.53387135079941 

Level-5 
(HC_C) 

(Nh_H/VK) 
(D_H/VK) 
(H/VK_Na) 

log2(230163/3235010)+log2(1086580/3235010)+ 
log2(575635/2601356) = -7.56305573913316 

Level-6 
(HS_S) 

(我們_H/VK 喜) 
(D 都_H/VK 喜) 
(H/VK 喜_Na 碟) 

log2(81/23809)+ log2(586/23809)+ 
log2(2/13986) = -26.3155277463539 

Figure 4. An Example of Rule calculationand and WA probability. 

Figure 4 shows the WA values of the first sentence at each level. Similarly the WA data 
are produced for all other input sentences. Then, we derive the evaluation values 

( ( ))nValue y s for each ambiguous sentence and find the best result with respect to different 
weights. 
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5. Experimental Results 

The parsing performance and our evaluating model are evaluated by standard PARSEVAL 
metrics. In our experiments, we only use sentences longer than 6 words for our testing, since 
Hsieh et al. [2005] found that the bracketing f-score of short sentence (the length of a sentence 
is from 1 to 5 words) is over 90%. We use the n-best tree structures produced from “Rule 
type-3” mentioned in the Section 2. The oracle 50-best and the top 1-best bracketed f-scores of 
“Rule type-3” are listed in Table 4. Take the data of Sinica for example, we find that for the 
50-best results, the oracle score is 90.11%. In contrast the 1-best f-score is 83.09%. 

Table 4. The bracketed f-scores of 1-best and oracle performance of 50-best. 
(sentence length≥ 6) 

Testing data 
Top n-best 

Sinica Sinorama Textbook 

1-best 83.09 77.54 83.19 

50-best 90.11 87.44 89.94 

To simplify our evaluation model, we try to find the most effective levels of associations 
first. In turn, the parser uses only one level of association and rule probabilities to select the 
best structure from n candidates. That is: 

_ _ _ _ ( )

( ( )) ( ( ))
( | )

n

n level n

all word association for y s

WAValue y s WA y s
P Modify Head

= =

∏  (6) 

Figure 5 displays the bracketing f-scores of testing data for each different level of 
association. The best results of Level-1 slightly surpass that of Level-2; results of Level-6 
overtake that of Level-3; Level-6 has better performance than Level-5. Therefore, in 
considering type of information, data coverage, and dimension reduction only three levels 
(Level-1, Level-4 and Level-6) are taken into consideration to form the final evaluation 
model. 
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Figure 5. Matching rule with WA value in each level (sentence length≥ 6). 
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Finally, we adjust the weights of L1, L4, and L6 associations and rule probabilities to 
evaluate the plausibility of structures from the 50-best parses tree of the developing data and 
the results of experiments on the three testing data are shown in Table 5. For our experiments, 
λ  =0.7, 1θ =0.7, 4θ =0.3, and 6θ =0.5. 

Table 5. The bracketed f-scores of 50-best parses (sentence length≥ 6) 
Testing data 

Models 
Sinica Sinorama Textbook

R, L1, L4, L6 86.59 82.81 85.97 

1-best 83.09 77.54 83.19 

50-best 90.11 87.44 89.94 

From the results shown in Table 5, we see that semantic information is effective in 
finding better structures. About 3.5%~5.2% of the bracketing f-scores are raised. In Charniak 
et al. [2005], the f-score was improved from 89.7% (without re-ranking) to 91.02% (with 
re-ranking) for English6; the oracle f-score was 96.8% for n-best in their paper. We also 
believe that with more data parsed, better word-association values will be obtained; hence, the 
parsing performance will be improved by self-learning. Our WA was first extracted from the 
1-best result from parser. With the parser producing n-best and the evaluating system finding 
the best structure, we can continuously derive more and better word associations. Similarly, if 
we have a better WA referent statistic, we should be able to choose the better structure. This is 
the idea of how self-learning works. The left side of Figure 6 denotes how we produce 
knowledge initially, and the right side of Figure 6 explains the repeated procedure of 
automatic knowledge extraction and accumulation. From the results shown in Table 4 and 
Table 5, we see that there is much space for improvement. 

                                                 
6 The English parser has better evaluating results than the Chinese one due to the better performance of 

the parser and language differences. The charateristic of a strictly regulated grammar in English gives 
an  advantage in parsing. Nonetheless, we have to admit that there is plenty of room for improvement 
in Chinese parsing. 
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Parser

Evaluation
WA

Best tree

n-best tree

Autotag

Web corpora

Knowledge 
Extraction+ WA

Knowledge Extraction

Parser

Autotag

Knowledge 
Extraction

Initial Step

Sinica Treebank and 
CNA corpus

1-best tree
Knowledge

 
Figure 6. Procedure of self-learning. 

6. Further Experiments on Sentences with Automatic PoS Tagging 

Perfect testing data was used in the above experiments without considering PoS tagging errors. 
However, in reality, PoS tagging errors will degenerate parsing performance. The real parsing 
performance of accepting input from a PoS tagging system is shown in Table 6(1). In this 
table, “Autotag” means to markup the best PoS on the segmented data. The naïve approach to 
overcome the PoS tagging errors is to delay some of the ambiguous PoS resolution for words 
with lower confidence tagging scores and leave the ambiguous PoS to be resolved in the 
parsing stage. In Tsai et al. [2003], the tagging confidence of each word is measured by the 
following value: 

)()(
)(

 valueConfidence
,2,1

,1

wcPwcP
wcP

+
=  (7) 

where P(c1,w) and P(c2,w) are probabilities assigned by the tagging model for the best 

candidate “c1,w” and the second best candidate “c2,w”. Some examples follow: 

 

confidence value=1.0 
他({Nh,Nes}) 叫({VG,VF}) 李四(Nb) 撿({VC,VB}) 皮球(Na) 
confidence value=0.8 
他(Nh) 叫({VG,VF}) 李四(Nb) 撿(VC) 皮球(Na) 
confidence value<0.5 
他(Nh) 叫(VF) 李四(Nb) 撿(VC) 皮球(Na) 
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In Table 6(2), “Autotag with confidence value=1.0” means that if confidence value ≦ 
1.0, we list all possible PoSs for the parser to decide. The experimental results of the 1-best, 
Table 6(2), show that delaying ambiguous PoS resolution does not improve parsing 
performance, since PoS ambiguities increase structural ambiguities and the PCFG parser is not 
robust enough to select better syntactic structures. However, for the experiment of 50-best, 
take the oracle score as the example; the 50-best oracle f-scores shown in Table 6(2) are better 
than the results without leaving ambiguous tags as shown in Table 6(1). Therefore, it is more 
likely to find better results after applying our evaluation model on the set of data with better 
oracle scores. Hence, we try to see the power of our evaluation model by leaving ambiguous 
PoS tags for the testing data. 

Table 6. Oracle bracketed f-scores of different autotag for parsing:  
(1)Autotag; (2)Autotag with confidence value = 1.0. 

Testing data 
Top n-best 

Sinica Sinorama Textbook

(1) 1-best  75.31 72.05 79.27 

 50-best  84.09 83.36 87.54 

(2) 1-best  73.41 68.34 77.83 

 50-best  86.45 83.99 88.83 

We then apply our evaluation model to select the best structure from the 50-best parses. 
The results are shown in Table 7. The experiment above takes “Rule type-3” for n-best parses. 
The bracketed f-score is raised from the original 73.41% to 79.34%, for about 4% 
improvement in the Sinica testing data. Sinorama data is improved from 68.34% to 74.78%. 
Textbook data is from 77.83% to 82.59%. This proves that our evaluating model is robust 
enough to handle ambiguous PoS tagging and produces better results than solely using the 
unique tag produced by Autotag. 

Table 7. The bracketed f-scores in Autotag with confidence value=1.0 and 
50-best parses (sentence length≥ 6). 

Testing data 
Models 

Sinica Sinorama Textbook

R, L1, L4, L6 79.34 74.78 82.59 

1-best 73.41 68.34 77.83 

50-best 86.45 83.99 88.83 
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7. Conclusion 

Parsers of any language aim to correctly analyze the syntactic structure of a sentence, often 
with the help of semantic information. This paper shows a self-learning method to produce 
imperfect (due to errors produced by automatic parsing) but unlimited amount of word 
association data to evaluate the n-best trees produced by a feature-extended PCFG grammar. 
We prove that, although the statistical association strengths produced by automatic parsing are 
not perfect, the extracted data is reliable enough in measuring plausibility of ambiguous 
structures. The parser with this WA evaluation is considerably superior to those without 
evaluation. We believe that the above iterative learning processes can improve parsing 
performances automatically by learning word-dependence knowledge continuously from web. 
We also propose a method to modify our grammars to increase the oracle scores of the 
produced n-best sentences. 

On the other hand, we offer a general syntactic and semantic evaluation model. We input 
n-best parses to our evaluating model. The evaluating model selects the best parse from this 
set of parses using a rule and semantic probability. The system we described, using the 
standard PARSEVAL framework, has a bracketed f-score of the selected trees, which is 
86.59% higher than the original 1-best. Furthermore, the ambiguous PoS of a word is also 
parsed and evaluated on n-best, and we prove that our evaluating model is robust enough to 
improve parsing results on sentences with ambiguous PoS tagging. 

From our experiment results, we find that sentences with coordinate structures are more 
difficult to deal with. The information of semantic parallelism instead of semantic 
dependencies is required for solving conjunctive structures. The extracted word associations 
don’t have enough discriminative power to resolve both syntactic and semantic symmetry of 
conjunctive structures. The possible improvement may come from modifying the extraction 
method or predicting their plausible ranges before parsing. As to other difficult sentences, for 
example, in Figure 2, the coverage rate of Level 2 (HW_W) associations is only about 70%, 
which is far less than needed. We may expand our data to read more web texts to resolve this 
problem. 

In future research, we plan to improve the quality of word-association. Four aspects need 
to be addressed: improving the accuracy of the PoS tagger, enhancing the parser's ability to 
solve common mistakes (such as parsing conjunctive structures), extracting more word 
associations by reading, and parsing text from web. As to the evaluation model, properly 
corresponding semantic classifications from coarse to fine-grained categories are needed in 
Level-6. 
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Appendix A. Transformation algorithm 
 
Notation: 

WORD: user input Word 
 POS: user input PoS of the word 
 CLASS: transformation class of the word 
 Affix(WORD): input WORD to find mapping affix from table 
 Prefix(WORD): prefix of the WORD 
 Suffix(WORD): suffix of the WORD 
 DM(WORD): input Word to find DM category 
Input:  WORD, POS 
Output: CLASS 
Initial Step: 
 CLASS=WORD; 
 if WORD in affix table then CLASS=affix(WORD); 
 if POS is verb or adverb then CLASS=POS+prefix(WORD); 
 if POS is noun then CLASS=POS+suffix(WORD); 
Mapping Step: 
 if POS is non-predicative adjective then CLASS='A'+prefix(WORD);   /* e.g. A */ 
 if POS is preposition then CLASS='P'+suffix(WORD);  /* e.g. P */ 
 if POS is SHI then CLASS='SHI';   /* e.g. 是 */ 
 if POS is V_2 then CLASS='V_2';   /* e.g. 有 */ 
 if POS is DM or Measure and exist in DM table then CLASS=DM(WORD); 

/* e.g. DM/Nf */ 
 if POS is conjunction then CLASS=POS+prefix(WORD);   /* e.g. Caa/Cab/Cba/Cbb */ 
 if POS is determinative then CLASS=POS;   /* e.g. Nep/Neqa/Neqb/Nes/Neu */ 
 if POS is pronoun then CLASS=WORD;   /* e.g. Nh */ 
 if POS is time noun then CLASS='Time';   /* e.g. Nd */ 
 if POS is Postposition/Place Noun/Localizer then CLASS='Location'; 

/* e.g. Ng/Nc/Ncd */ 
 if POS is Proper Noun and is family names then CLASS='PersonalName';   /* e.g. Nb */ 
 if POS is aspectual adverb then CLASS=POS  /* e.g. Di */ 
 if POS is pre/post-verbal adverb of degree then CLASS='Df'+suffix(Word) 

/*e.g. Dfa/Dfb */ 
 if POS is VD/VCL/VL then CLASS=POS+suffix(WORD) 
 

 


