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Abstract 

Recently many new techniques have been proposed for language modeling, such as 
ME, MEMM and CRF. However, the ngram model is still a staple in practical 
applications. It is well worthy of studying how to improve the performance of the 
ngram model. This paper enhances the traditional ngram model by relaxing the 
stationary hypothesis on the Markov chain and exploiting the word positional 
information. Such an assumption is made that the probability of the current word is 
determined not only by history words but also by the words positions in the 
sentence. The non-stationary ngram model (NS ngram model) is proposed. Several 
related issues are discussed in detail, including the definition of the NS ngram 
model, the representation of the word positional information and the estimation of 
the conditional probability. In addition, three smoothing approaches are proposed 
to solve the data sparseness problem of the NS ngram model. Several smoothing 
algorithms are presented in each approach. In the experiments, the NS ngram 
model is evaluated on the pinyin-to-character conversion task which is the core 
technique of the Chinese text input method. Experimental results show that the NS 
ngram model outperforms the traditional ngram model significantly by the 
exploitation of the word positional information. In addition, the proposed 
smoothing techniques solve the data sparseness problem of the NS ngram model 
effectively with great error rate reduction. 

Keywords: Ngram, Stationary Hypothesis, Pinyin-to-character Conversion, 
Smoothing 

1. Introduction 

Statistical language model plays an important role in natural language processing. It has a 
wide range of applications in many domains, such as speech recognition [Jelinek 1997], OCR 
[Kolak et al. 2003], machine translation [Brown et al. 1992], and pinyin-to-character 
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conversion [Gao et al. 2005; Xiao et al. 2005] etc. In recent years, great efforts are devoted to 
the research of language modeling. Many novel techniques are proposed, such as maximum 
entropy model [Rosenfeld 1994], maximum entropy Markov model [McCallum et al. 2000] 
and conditional random field model [Lafferty et al. 2001]. However, the ngram model is still a 
staple in practical applications. Therefore, it is well worthy of studying how to improve the 
performance of the ngram model. 

The ngram model takes the word sequence as a Markov chain. It makes the Markov 
hypothesis on the sequence so as to simplify the probability inference. There are actually two 
hypotheses implied by the Markov hypothesis, named the limited history hypothesis and the 
stationary hypothesis [Manning and Schutze 1999]. The first one assumes that the probability 
of the current word is determined only by a few of previous words, but irrelevant to the whole 
history of words. The second one assumes that the word probability is irrelevant to the actual 
word positions in the sentence. 

The most obvious extension to the traditional ngram model is simply to enlarge the 
number of history words and build up the higher-order ngram model [Carpenter 2005]. 
However, the high-order ngram model suffers from the curse of dimensionality [Novak and 
Ritter 1998]. The bigram model and the trigram model are currently two prevalent language 
models. 

From another point of view, the paper relaxes the stationary hypothesis and enhances the 
traditional ngram model by exploiting the word positional information. It is based on the 
philosophy that most words are not only constrained by their contextual information, but also 
influenced by their positions in the sentence. For example, the Chinese word “首先” (first of 
all) is usually used to start a sentence, but rarely occurs elsewhere in the sentence. Then higher 
probability should be assigned to it by a language model when it is in the front of a sentence, 
and lower probability elsewhere. Moreover, some of punctuations, such as full stop and 
exclamation, always appear at the end of a sentence. So it may be mistaken for a Chinese 
sentence that the exclamation appears in the middle of it. Therefore, a language model can 
benefit from modeling the word positional information. 

This paper enhances the traditional ngram model by the exploitation of the word 
positional information. The non-stationary ngram model (NS ngram model) is proposed. 
Several related issues are discussed in detail, including the definition of the NS ngram model, 
the representation of the word positional information and the estimation of the conditional 
probability. In addition, three smoothing approaches are proposed to solve the data sparseness 
problem of the NS ngram model. The NS ngram model is evaluated on the pinyin-to-character 
conversion task which is the core technique of the Chinese text input method. Experimental 
results show that the NS ngram model outperforms the traditional ngram model significantly 
and the smoothing techniques proposed in this paper solve the data sparseness problem of the 
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NS ngram model effectively with great error rate reduction. 

The remaining part of the paper is organized as follows. The related works are outlined in 
section 2. In section 3, the NS ngram model is proposed and several related issues are 
discussed in detail. In section 4, the data sparseness problem of the NS ngram problem is 
addressed and three smoothing approaches are proposed. The experimental results and 
discussions are presented in section 5 and the conclusion is drawn in section 6. 

2. Related Works 

There are many ways to improve the performance of the ngram model. The most obvious way 
is to relax the limited history hypothesis and build up the high-order ngram model, which has 
been discussed in the above section. Another way is to construct the skipping ngram model 
[Rosenfeld 1994; Ney et al. 1994], in which the current word is constrained by the skipped 
words in the word history, other than the adjacent words. The skipping ngram model can 
exploit more information of history words and avoid the curse of dimensionality meanwhile. 
In the experiments, it yields limited improvements by interpolating with the traditional ngram 
model. 

The class-based ngram model [Brown et al. 1992] is constructed based on word cluster 
instead of word. The syntax and semantic information can be well captured in this way. 
Meanwhile, the parameter space is reduced greatly and the data sparseness problem is 
alleviated. However, the predictive capability of the class-based ngram model is much lower 
than the traditional ngram model due to its small parameter space. It usually achieves limited 
improvements by interpolating with the traditional ngram model. 

The cache-based ngram model [Kuhn 1988; Kuhn and Mori 1990] assumes that people 
tends to use words as few as possible in the article. If a word has been used, it would possibly 
be used again in the future. The cache-based ngram model is usually utilized to construct a 
self-adaptive language model. 

3. Non-Stationary Ngram Model 

This section firstly reviews the traditional ngram model briefly. Secondly, it defines the NS 
ngram model formally. Thirdly, the word positional information is formalized. Finally, the 
estimation method is provided for the conditional probability of the NS ngram model. 

3.1 Ngram Model 
Language model aims to determine the probability of the sequence of words. The sequence 
probability is usually decomposed into the conditional probabilities of words which are 
composed of sequences. For the sequence of 

1 1 2 2, , ,...
m ml p l p l ps w w w= , its probability is 
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calculated in formula (1): 

1 1 2 2 1 1, , , ,
1

( ) ( | , ... )
i i i i

m
l p l p l p l p

i
P s p w w w w

− −
=

= ∏ ,    (1) 

where ,i jl pw is the ith word in the lexicon and appears at the jth position in sequence S. 

The ngram model makes the Markov hypothesis on the sequence so as to simplify 
formula (1). The procedures are described in formula (2): 

1 1 1 1 1 1, , ,
1 1

( ) ( | ... ) ( | ... )
i i i n i n i i i i n i

m m
l p l p l p l l l

i i
P s p w w w p w w w

− + − + − − − + −
= =

≈ ≈∏ ∏ . (2) 

Actually, there are two hypotheses implied by the Markov hypothesis: 

1. The limited history hypothesis: the probability of current word is dependent only on 
the previous n-1 words, but irrelevant to the whole history of words. 

2. The stationary hypothesis: the word transition probability is determined only by the 
words which consist of the transition probability, but irrelevant to the positions where 
these words possess in the sequence. 

Formula (1) is firstly simplified by the limited history hypothesis, resulted in the second item 
of formula (2). Then, the stationary hypothesis is applied on it and the final form of the ngram 
model is obtained, as represented by the last item of formula (2). The paper substitutes 

il
w  

for ,i jl pw  since the conditional probability is irrelevant to word position. In literature, the 
limited history hypothesis is referred to frequently, but seldom is the stationary hypothesis. 

The most obvious way to extend the ngram model is simply to relax the limited history 
hypothesis and involve more history information of words. The higher-order ngram model is 
built up. However, the high-order ngram model suffers from the curse of dimensionality. As 
the model order increases, the parameter space explodes at an exponential rate. The data 
sparseness problem becomes very severe which hampers its applications gravely. From 
another point of view, the paper relaxes the stationary hypothesis and enhances the ngram 
model by the exploitation of the word positional information. The NS ngram model is 
proposed. It is described in the following sections. 

3.2 NS Ngram Model 
As presented in section 1, the occurrence of words is relevant to their positional information in 
sentence. It is beneficial for the language model to exploit the positional information to 
determine the word probability. However, the Markov hypothesis is too restricted to exploit 
the positional information due to its stationary assumption. The paper relaxes the stationary 
hypothesis of the traditional ngram model and proposes a non-stationary ngram model. The 
NS ngram model is formulized in as below: 
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1 1 1 1 1 1, , ,
1 1

( ) ( | ... ) ( | ... , )
i i i n i n i i i i n i

m m
l p l p l p l l l

i i
P s p w w w p w w w t

− + − + − − − + −
= =

≈ =∏ ∏ . (3) 

In the NS ngram model, formula (1) is simplified merely by the limited history hypothesis, 
rather than the stationary hypothesis. The conditional probability of the current word is 
determined not only by history words but also by the words’ positions in sentence. The paper 
uses a single positional variable of t to denote the word positional information in formula (3). 
The traditional ngram model is a special case of the NS ngram model in which t is a constant. 

Important things for the NS ngram model are how to calculate the value of t and how to 
estimate the conditional probability of word in formula (3). 

3.3 Representation of t 
Since t denotes the word positional information in a sentence, it is a natural way to take the 
word position index as the concrete value of t. However, there are two serious problems with 
this method. Firstly, index has different meanings in sentences of different lengths. For 
example, there are two English sentences: “Yesterday I saw you” and “Yesterday I saw you 
were looking around here”. In both of the sentences, the word “you” has the same position 
index - 4. However, “you” appears at the end of the first sentence, while it is in the middle in 
the second. It possesses completely different positional information in these two sentences. 
Secondly, since a sentence may have arbitrary length, the t value can be any natural number. 
But computer can not deal with infinite value. 

A refined method is to use the ratio of the word position index to the sentence length, 
which maps t into a real number in the range of [0, 1]. But there are infinite real numbers in 
that range and it can not make statistics based on each real number. 

This paper divides the above range into several equivalent classes (bins). It assumes that 
the words in each bin share the same positional information. The value of t is set to the index 
of the according class. More formally, the above procedures are described as below: 

1. Calculate the ratio of the word position index to the sentence’s length, which maps t 
into the range of [0, 1]. 

2. Divide the range into several bins. The words in each bin share the same positional 
information. 

3. Set the t value of current word as the index of the according bin. 

Figure 1 shows an example of the above procedures: 
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Figure 1. Calculation of the t value in NS ngram model 

From the above procedures, the more number of bins it divides of the word sequence, the 
more accuracy of the positional information is extracted from the sentence. 

3.4 Training Method 
The section discusses how to estimate the conditional probability in formula (3), which is the 
training problem of the NS ngram model. Based on the representation of t in section 3.3, the 
sentences in the training corpus are divided into the same number of bins. The words in each 
bin share the same value of t. The paper builds up a specific ngram model for each value of t 
within each bin. All these specific ngram models constitute of the NS ngram model. Using k to 
denote the number of bins, there are totally k specific ngram models in the NS ngram model 
with k bins. The conditional probability of 

1 1
( | ... , )

i i n il l lp w w w t
− + −

 is estimated under the 
Maximum Likelihood Estimation (MLE) principle: 

1

1 1
1 1

( ... , )
( | ... , )

( ... , )
i n i

i i n i
i n i

l l
l l l

l l

C w w t
p w w w t

C w w t
− +

− + −

− + −

= .                                    (4) 

1
( ... , )

i n il lC w w t
− +

 is the occurrence times that the word sequence 
1
...

i n il lw w
− +

 falls in the tth bin 
of the sentences in the training corpus. It is similar to interpreting 

1 1
( ... , )

i n il lC w w t
− + −

. 

In order to calculate the probability of a sentence, the t value is firstly obtained for each 
word. Then, the conditional probability of word is computed according to formula (4). Finally, 
the sentence probability is calculated by formula (3). The traditional ngram model is a special 
case of the NS ngram model in which there is only one bin. 

4. Smoothing Techniques 

As shown in section 3.4, there are totally k traditional ngram models in the NS ngram model 
with k bins. The space complexity of the NS ngram model is consequently k times more than 
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the traditional ngram model. Data sparseness problem is an inherent and severe problem in the 
traditional ngram model [Brown et al. 1992]. Therefore, it is more severe in the NS ngram 
model. Figure 2 illustrates the data sparseness problem in the NS ngram model. 

 
Figure 2. Data sparseness problem in NS ngram model 

In Figure 2, the color of deep shade indicates that the data sparseness problem is severe 
in the NS ngram model, while the color of light shade means that the problem is not severe. 
As shown in Figure 2, there are two main factors in determining the degree of the data 
sparseness problem in the NS ngram model. They are the model order n and the bin number k. 
As n (or k) increases, the problem becomes more severe, and the estimated probability 
becomes more unreliable. 

It is necessary to start with these two factors to solve the data sparseness problem of the 
NS ngram model. Considering the factor of the model order which is represented as the 
vertical axis in Figure 2, the high-order NS ngram model can be smoothed by lower-order NS 
ngram model, just as the traditional smoothing techniques do. It is our first smoothing 
approach. Considering the factor of the bin number which is shown as the horizontal axis, 
there are two ways to design the smoothing methods. The first way, the NS ngram model with 
larger value of k can be smoothed by the NS ngram model with smaller value of k. In 
particular, the traditional ngram model (k=1) can be utilized to smooth the NS ngram model 
(k>1). It is our second smoothing approach. The second way, the paper builds up a more 
compact form of the NS ngram model. It firstly constructs some statistical variables of the 
word positional information from the bins of the NS ngram model. Then, it calculates a weight 
from these variables for the traditional ngram probability. The weight is used to substitute for 
the concrete positional information which tends to cause the data sparseness problem in the 
NS ngram model. It is our third approach to smooth the NS ngram model. Until now, three 
smoothing approaches have been provided in sketch. They will be described in the following 
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sections in detail. 

4.1 The First Approach 
Since the NS ngram model is composed of several traditional ngram models, each of these 
component ngram models can be smoothed separately by the traditional smoothing techniques. 
The traditional smoothing techniques have been well studied before. Many smoothing 
algorithms have been proposed, such as the additive smoothing [Jeffreys 1948], the 
Good-Turing smoothing [Good 1953], the back-off smoothing [Katz 1987], the linear 
interpolation smoothing [Jelinek and Mercer 1980], the Kneser-Ney smoothing [Kneser and 
Ney 1995], and so on. Generally, they smooth the unreliable probabilities in the high-order 
ngram model by the reliable probabilities in the low-order ngram model. The paper can not try 
each existent smoothing algorithm on the NS ngram model. Three popular algorithms are 
taken in the paper. They are the additive smoothing, the back-off smoothing and the linear 
interpolation smoothing. The NS bigram model is taken as an example and the formulas are 
listed as below. 

Additive smoothing: 

1

1
1

~ ( , , ) 1
( | , )

( , )
i i

i i
i

l l
l l

l

C w w t
P w w t

C w t l
−

−

−

+
=

+
                                           (5) 

t is the positional variable which is defined in section 3.3; l is the lexicon size; and 
~
p  is the 

smoothed probability of the NS bigram model. 

Back-off smoothing: 

1 1

1

1

~
~

( | , ) ( , , ) 0
( | , )

( , ) ( , )

i i i i

i i

i i

GT l l l l

l l
l l

P w w t if C w w t
P w w t

w t P w t otherwiseα

− −

−

−

>
= 


 (6) 

PGT is the probability of the NS bigram model which is smoothed by the Good-Turing method. 
It is formalized as below: 

1

1
1

( , , )
( | , )

( , )
i i

i i
i

GT l l
GT l l

l

C w w t
P w w t

C w t
−

−

−

=                                          (7) 

and 

1

1 1
1

( ( , , ) 1)
( , , ) ( ( , , ) 1)

( ( , , ))
i i

i i i i
i i

l l
GT l l l l

l l

E C w w t
C w w t C w w t

E C w w t
−

− −

−

+
= + ×  (8) 

E(C) is the expectation of the number of the bigram items which occurs C times in the corpus. 
In reality, N(C) is usually substituted for E(C). N(C) is the concrete number of the bigram 
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items which actually occurs C times in the training corpus. Formula (8) is reformulated as 
below: 

1

1 1
1

( ( , , ) 1)
( , , ) ( ( , , ) 1)

( ( , , ))
i i

i i i i
i i

l l
GT l l l l

l l

N C w w t
C w w t C w w t

N C w w t
−

− −

−

+
= + ×  (9) 

However, N(C) can not be estimated reliably for some large values of C. At this time, formula 
(9) can not work properly and problems occur in the Good-Turing method. In particular, when 
C reaches its max value in the training corpus, 

1
( , , )

i iGT l lC w w t
−

 is calculated to be zero 
according to formula (9) because N(C+1) is equal to zero. It is obviously wrong. In this paper, 
a simple strategy is adopted to address the problem. Formula (7) and formula (9) are adopted 
only for the small value of C (i.e. below a threshold). For the large value of C, it is regarded 
that the bigram probabilities can be estimated reliably according to the word frequencies and 
they need not to be smoothed. The MLE principle is applied on them directly.  

In formula (6), α is the coefficient for normalization and it is calculated as below: 

1 1

1

1 1

~ ~

: ( , ) 0 : ( , ) 0

( , ) ( , )
( , )

( , ) 1 ( , )

i i

i

i i
l l l l l li i i i i i

l l
l

l l
w C w w t w C w w t

w t w t
w t

P w t P w t

β β
α − −

−

− −
= >

= =
−∑ ∑

 (10) 

and 

1 1

1
: ( , ) 0

( , ) 1 ( | , )
i i i

l l li i i

l GT l l
w C w w t

w t P w w tβ
− −

−
>

= − ∑  (11) 

Linear interpolation smoothing: 

1 1

~ ~
( | , ) ( ) ( | , ) (1 ( )) ( , )

i i i i il l l l lP w w t t P w w t t P w tλ λ
− −

= × + − ×  (12) 

P is the probability of the NS bigram model which is estimated by formula (4); λ(t) is the 
coefficient which is a function of t and can be estimated by the EM algorithm on the held-out 
corpus. 

4.2 The Second Approach 
As shown in Figure 2, when the value of k increases, there are more probability distributions 
in the NS ngram model to be estimated on the training corpus. The conditional probability 
becomes more specific and unreliable, and the data sparseness problem of the NS ngram 
model becomes more severe. Usually, the smoothing techniques utilize the general and 
reliable probability distributions to smooth the specific and unreliable ones. Therefore, it can 
make use of the reliable probability of the NS ngram model with small k, to smooth the 
unreliable probability of the NS model with large k. In particular, it can utilize the traditional 
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ngram model (k=1) to smooth the NS ngram model (k>1). However, the traditional ngram 
model also suffers from the data sparseness problem. Actually, the paper utilizes the smoothed 
traditional ngram model in this approach. 

Totally, three smoothing methods are investigated. They are the back-off method, the 
linear interpolation method and the hybrid method. The formulas are listed as below. 

Back-off smoothing: 

1 1

1

1 1

~
~1

( | , ) ( , ) 0
( | , )

( , ) ( | )

i i i i

i i

i i i

GT l l l l

l l
l l l

P w w t if C w w t
P w w t

w t P w w otherwiseα

− −

−

− −

>
= 


 (13) 

α1 is the coefficient for normalization, and it can be calculated as below: 

1 1

1

1 1

1 1

1 1
1

~ ~

: ( , ) 0 : ( , ) 0

( , ) ( , )
( , )

( | ) 1 ( | )

i i

i

i i i i
l l l l l li i i i i i

l l
l

l l l l
w C w w t w C w w t

w t w t
w t

P w w P w w

β β
α − −

−

− −

− −
= >

= =
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 (14) 

and 

1 1

1

1

: ( , ) 0
( , ) 1 ( | , )

i i i
l l li i i

l GT l l
w C w w t

w t P w w tβ
− −

−
>

= − ∑  (15) 

In formula (13), 
1

~
( | )

i il lP w w
−

 is the traditional bigram probability smoothed by the back-off 
method, and it is calculated as below: 

1 1

1

1

~
~2

( | ) ( ) 0
( | )

( ) ( )

i i i i

i i

i i

GT l l l l

l l
l l

P w w if C w w
P w w

w P w otherwiseα

− −

−

−

>
= 


 (16) 

α2 is the coefficient for normalization, and it can be computed as below: 

1 1

1

1 1

2 2
2

~ ~

: ( ) 0 : ( ) 0

( ) ( )
( )

( ) 1 ( )

i i

i

i i
l l l l l li i i i i i

l l
l

l l
w C w w w C w w

w w
w

P w P w

β β
α − −

−

− −
= >
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 (17) 

and 

1 1

1

2

: ( ) 0
( ) 1 ( | )

i i i
l l li i i

l GT l l
w C w w

w P w wβ
− −

−
>

= − ∑    (18) 

Linear interpolation smoothing: 

1 1 1

~ ~
( | , ) ( ) ( | , ) (1 ( )) ( | )

i i i i i il l l l l lP w w t t P w w t t P w wλ λ
− − −

= × + − ×  (19) 
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1

~
( | )

i il lP w w
−

 is the traditional bigram probability smoothed by the linear interpolation method, 
and it is calculated by formula (20): 

1 1

~
( | ) ( | ) (1 ) ( )

i i i i il l l l lP w w P w w P wθ θ
− −

= × + − ×  (20) 

The coefficients of λ(t) and θ can be optimized by the EM algorithm on the held-out corpus. 

Hybrid smoothing: 

1 1 1

^ ~ ~
( | , ) ( ) ( | , ) (1 ( )) ( | )

i i i i i il l l l l lP w w t t P w w t t P w wλ λ
− − −

= × + − ×  (21) 

1

~
( | , )

i il lP w w t
−

 is the NS bigram probability smoothed by the back-off method, and it can be 
calculated by formula (6); 

1

~
( | )

i il lP w w
−

 is the traditional bigram probability smoothed by the 
back-off method, and it can be calculated by formula (16). These two probabilities are 
interpolated into a hybrid probability of 

1

^
( | , )

i il lP w w t
−

 which forms the hybrid smoothing 
method. 

4.3 The Third Approach 
The above sections provide two smoothing approaches for the NS ngram model. They are 
mainly based on the traditional smoothing techniques. This section proposes a novel 
smoothing method and constructs a more compact model to solve the data sparseness problem 
of the NS ngram model. 

As shown in Figure 2, the model order and the bin number are two main factors in 
determining the degree of the data sparseness problem in the NS ngram model. The first one is 
also the dominant factor of the traditional ngram model. Then, the data sparseness in the NS 
ngram model, which is brought forth by the first factor, can be regarded as inheriting from the 
traditional ngram model. The second factor is specific to the NS ngram model. It brings forth 
the data sparseness problem when the positional information is modeled. Based on the above 
analysis, the smoothing method for the NS ngram model can be decomposed into two steps. 
The first step is to solve the data sparseness problem which is brought forth by modeling the 
word positional information. Some statistical variables are constructed to substitute for the 
concrete positional information. A more compact model is built up. The second step is to solve 
the data sparseness problem which is inherited from the traditional ngram model. The 
traditional smoothing techniques are utilized. 

After describing the motivation and the technique sketch, the formula is presented as 
below: 
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2

1 1
1
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~ ~(( ( )) )1( | , ) ( | )
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i i i i
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V w
t E w

l l l l
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α
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−

×

− += ×  (22) 

where 

l t is the positional variable. 

l ( )
il

E w is the expectation of the positional information of
il

w in the training corpus. 

l ( )
il

V w is the variance of the positional information of
il

w in the training corpus. 

l α and β are the coefficients to adjust the weight. 

l 
1

~
( | )

i il lp w w
−

 is the smoothed traditional bigram probability. Any smoothing algorithm, 
such as the back-off algorithm and the linear interpolation algorithm, can be applied. 

l 
1

( )
il

Z w
−

 is the factor for normalization and it is defined as below: 
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l l is the size of the lexicon 

To smooth the word positional information, the paper aims at reducing the parameter 
number of the NS ngram model. Different from the clustering technique in the class-based 
ngram model [Brown et al. 1992], the paper constructs the statistical variables of the word 
positional information to substitute for the concrete value of t in the NS ngram model. Two 
statistical variables are calculated: the expectation and the variance. The weight is computed 
for the bigram probability according to these variables. Such an assumption is made that more 
weight should be awarded if the current word position fits in better with the training corpus, 
and less weight vice versa. According to the assumption, the term of t-E(wli), which defines 
the difference between the current word position and its average position in the training corpus, 
is adopted in formula (22). As the value decreases, t fits in with the training corpus better and 
more weight should be awarded. Henceforth, the weight function is descendent with the value 
of t-E(wli) as formula (22) shows. Moreover, the weight function is ascendant with the 
variance V(wli). The term V(wli) is mainly used to balance the value of the term t-E(wli) for 
some active words. For example, some adjectives can appear at any position in a sentence. 
Then it is unreasonable to decrease the weight just as the term t-E(wli) increases. In such a 
situation, the value of V(wli) of the active word is usually bigger than that of the inactive. Then 
it can provide a balance for the value of t-E(wli). Until now, the section has described the 
method to solve the data sparseness problem which is brought forth by modeling the word 
positional information. It is the first step of this approach to smooth the NS ngram model. It 
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should be noticed that the way to constructing the weight is a purely empirical method. There 
is no theoretic foundation on it. However, it performs pretty well in the experiments, as 
presented later in section 5.4.3. In the second step, the traditional smoothing techniques can be 
adopted to solve the data sparseness problem which inherits from the traditional ngram model. 
The paper investigates two smoothing techniques: the back-off smoothing and the linear 
interpolation smoothing. 

Moreover, the coefficients of α and β can be optimized by some automatic methods on 
the held-out corpus. The genetic algorithm is adopted in this paper. It is presented as below: 

Algorithms: Genetic algorithm to optimize α and β 

Input: The held-out corpus 

Output: The optimal value of α and β 

1. Initiation: generate the initial population of α and β randomly 

2. Evolution of population 

   Step 1: calculate fitness for each individual  

   Step 2: selection 

   Step 3: crossover 

   Step 4: mutation 

   Step 5: if termination criterion is met 

              go to 3 

         else 

              go to step 1 

3. Choose the best individual as the solution 

The actual performance of formula (22) on the held-out corpus is taken as the fitness function 
in the above algorithm. 

Until now, a compact NS ngram model has been built up in the section. The parameter 
space is reduced by substituting the statistical variables for the concrete positional information, 
which results in a space complexity of O(ln+2l+2). The data sparseness problem is alleviated. 
However, the predictive capability is also lowered to some extent due to the small parameter 
space, which is the limitation of this smoothing approach. To overcome the above drawback, 
the paper constructs the statistical variables for the word ngram other than for the word itself. 
It results in a larger space complexity of O(3×ln), and therefore yields a more powerful 
predictive capability. In addition, the compact model has a slight higher time complexity than 
the normal NS ngram model by calculation of the weight function. 
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5. Experiments and Discussions 

This section evaluates the NS ngram model and its smoothing techniques on the 
pinyin-to-character conversion task which is the core technique of the Chinese keyboard input 
method. The section is organized as follows. Firstly, the task and the data set are described. 
Secondly, the non-stationary property of words is investigated in a statistical way so as to 
verify the motivation of the paper. Thirdly, the performance of the NS ngram model is 
presented and compared with the traditional ngram model. Finally, the smoothing algorithms 
proposed in the paper are evaluated and the performances of the smoothed NS ngram model 
are provided. 

5.1 Task and Data Set Description 
Task Description 

The standard keyboard is initially designed for native English speakers. In Asia, such as China, 
Japan and Thailand, people can not input their language through the standard keyboard 
directly. Asian text input becomes the challenge for the computer users in Asia. Asian 
language input method is one of the most important techniques in Asian language processing. 
The pinyin-based input method is the most important Chinese text input method. There are 
over 97% of Chinese computer users using pinyin to input Chinese text [Chen 1997]. 
According to the scale of the input unit, the pinyin-based input method can be categorized into 
three types: the character-level input method, the word-level or phrase-level input method and 
the sentence-level input method respectively. The sentence-level input method becomes the 
most prevalent pinyin-based input method due to its high precision. The pinyin-to-character 
conversion task aims to convert the sequence of pinyin strings into one Chinese sentence. It is 
the core technique of the sentence-level pinyin-based Chinese text input method. Therefore, 
the improvement on the pinyin-to-character conversion task has a great effect on Chinese text 
input method. 

In Chinese, there are totally 410 pinyin symbols (without the tone information) which 
correspond to more than 30,000 Chinese characters. For a certain inputted pinyin sequence, 
there are many candidates of Chinese character sequence corresponding to it, but only one is 
what the user really wants to obtain. Language model is to select the most probable one among 
these candidates. Error rate is usually used to evaluate the performance of a language model 
on this task. 

The pinyin-to-character conversion task can also be taken as a simplified automatically 
speech recognition task [Gao et al. 2005]. Both of the two tasks aim to convert the phonetic 
information into the character sequence. However, unlike the speech recognition task, the 
pinyin-to-character conversion task doesn ’t have to deal with the acoustic ambiguity because 
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the pinyin strings are directly inputted on the keyboard by user. Therefore, our techniques also 
illuminate to the speech recognition task. 

Text Corpus 

The paper chooses the 6763 Chinese frequent characters as lexicon. Two sets of the People ’s 
Daily corpus are adopted in the experiments: the half year of corpus in 1998 for the 
experiments of the NS bigram model and the whole year of corpus in 2000 for the experiments 
of the NS trigram model. Each set of corpus is divided into three parts: the training corpus, the 
held-out corpus and the testing corpus. The detailed information is listed in Table 1.  

Table 1. Description of text corpus 

 
Training 

(months / #characters) 
Held-out 

(months / #characters) 
Testing 

(months / #characters) 

People’s Daily 
corpus in 1998 

1-5 months 
9.09×106 

1/3 of 6th month 
6.29×105 

2/3 of 6th month 
1.25×106 

People’s Daily 
corpus in 2000 

1-11 months 
2.27×107 

1/3 of 12th month 
7.01×105 

2/3 of 12th month 
1.40×106 

The paper chooses the large scale of corpus for the NS trigram model since its parameter 
space is much larger than that of the NS bigram model. In what follows, the paper presents the 
distributions of the lengths of the sentences in those corpora. The information is crucial to 
evaluating the NS ngram model which exploits the positional information of word in the 
sentences. The distributions are presented in Figure 3. 
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Figure 3. Distributions of the sentence length in text corpus 
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According to Figure 3, most of the lengths of the sentences fall in the range from 10 to 60. The 
average lengths of sentences are 27.41 on the corpus in 1998, and 29.64 on the corpus in 2000 
respectively. Moreover, the distributions of the sentences ’ lengths are much similar to each 
other among the three parts of the text corpus. 

Pinyin Corpus 

The pinyin corpus is necessary for evaluating the NS ngram models on the pinyin-to-character 
conversion task. The paper gets the pinyin corpus from the above text corpus by a conversion 
toolkit1 which yields 99.7% accuracy evaluated on a golden corpus. When the NS ngram 
models are evaluated, the pinyin corpus is firstly converted into the text corpus by the NS 
ngram model. Then, the converted results are compared with the standard text corpus and the 
error rate is calculated. As the pinyin corpus is not a golden corpus, the errors in the pinyin 
corpus could lead to the conversion error of the NS ngram model. Therefore, the actual error 
rate of the NS ngram model is a little lower than the reported results in the paper and the NS 
ngram model could get a little better performance in the real system. However, since there are 
not many errors in the pinyin corpus because of the high precision of the conversion toolkit, 
the reported error rate of the NS ngram model can be regarded to be close enough to the actual 
error rate. 

5.2 Non-Stationary Property of Words 
Section 1 has provided some intuitive examples for the non-stationary property (NS property) 
of words. However, the intuition is not enough for our motivation of the paper. The section 
will further present some statistical evidences. 

The NS property assumes that word behaves differently in different portions of sentences. 
Then their probability distributions would be different in different portions. The more 
differences between these distributions, the more positional information has been implied by 
word. The section investigates the probability distributions in the NS bigram model, and 
presents their differences by comparing them with the distribution in the traditional bigram 
model. The Kullback-Leibler (KL) distance [Cover and Thomas 1991] is taken as the metric. 
And only if the distances are great enough, could the NS bigram model be expected to 
outperform the traditional bigram model; otherwise, they would have similar performances. 

As mentioned in section 3, there are totally k probability distributions in the NS ngram 
model with k bins. So there are k different KL distances to be calculated between the 
traditional bigram model and the NS bigram model. The section calculates these KL distances 

                                                 
1 The toolkit can be obtained freely from the link:  

http://www.insun.hit.edu.cn/product/viewproduct.asp?id=105 
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for the NS bigram model with different k values. The experimental results are summarized in 
Table 2. 

Table 2. The KL distances between the traditional bigram model and the NS bigram 
model 

Bin number  

Bin index 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

t=1 0 0.11 0.15 0.19 0.24 0.28 0.32 0.37 
t=2 --- 0.05 0.08 0.08 0.10 0.11 0.12 0.14 
t=3 --- --- 0.13 0.09 0.09 0.09 0.09 0.10 
t=4 --- --- --- 0.21 0.10 0.09 0.09 0.09 
t=5 --- --- --- --- 0.32 0.12 0.10 0.09 
t=6 --- --- --- --- --- 0.42 0.13 0.10 
t=7 --- --- --- --- --- --- 0.52 0.14 
t=8 --- --- --- --- --- --- --- 0.62 

Average KL Distance 0 0.08 0.12 0.15 0.17 0.18 0.19 0.21 

In the row of Table 2, the section lists the NS bigram models with various values of k 
which are up to 8. In the column, it calculates the KL distance between each distribution of the 
NS bigram model and the distribution of the traditional bigram model. At last, it calculates the 
average KL distance for each NS bigram model. 

According to the experimental results in Table 2, it is found that as k increases, the 
average KL distance becomes larger and larger, indicating that there are more and more 
differences between the distributions of the NS bigram model and that of the traditional 
bigram model. Therefore, more and more positional information is modeled by the NS bigram 
model, and more predictive capability is expected. Moreover, focusing on a certain column in 
Table 2, i.e. the column of k=5, it calculates the KL distance for each distribution of the NS 
bigram model with 5 bins. It is found that the KL distances calculated from the marginal 
positions are greater than the distances from the middle ones. For example, the KL distances 
of t=1 (0.24) and t=5 (0.32) are greater than the distance of t=3 (0.09). It is more obvious for 
the lager value of k. It indicates that the distributions in the marginal positions represent more 
positional information, and therefore contribute more to the ultimate performance of the NS 
bigram model than the middle ones. 

5.3 Experiments of NS Ngram Model 
This section evaluates the un-smoothed NS ngram model on the pinyin-to-character 
conversion task. Two sets of experiments, the close test and the open test, are carried out. The 
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test on the training corpus is referred to as the close test; and the test on the testing corpus is 
referred to as the open test. In order to avoid the zero-probability problem in the open test, the 
paper adds a small value2 to the zero-frequency words when estimating their probabilities. 
The un-smoothed traditional ngram model is taken as the baseline model. Both the NS bigram 
model and the NS trigram model are investigated. The experimental results of the NS bigram 
model are firstly presented in Table 3. 

Table 3. Experimental results of the NS bigram model 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Error Rate 8.30% 7.17% 6.55% 6.08% 5.74% 5.43% 5.19% 4.98% Close 

test Reduction --- 13.61% 21.08% 26.75% 30.84% 34.58% 37.47% 40.00% 

Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% Open 

test Reduction --- 15.70% 12.09% 9.08% 6.95% 4.94% 3.01% 1.07% 

As mentioned in section 3.4, the traditional bigram model can be regarded as the NS 
bigram model in which k=1. According to the experimental results in Table 3, the NS bigram 
model outperforms the traditional bigram model significantly. It yields as much as 40% error 
rate reduction in the close test, and 15.7% reduction in the open test. It proves that the NS 
bigram model has more powerful predictive capability than the traditional bigram model. 
Moreover, as the value of k increases, the error rate of the NS bigram model in the close test is 
reduced constantly, proving that the improvement of the NS ngram model is due to the 
increasing positional information of word. However, in the open test, the error rate stops 
decreasing after k=2, because the data sparseness problem becomes more severe as k 
increases. 

The NS trigram model is also investigated. The experimental results are presented in 
Table 4. 

Table 4. Experimental results of the NS trigram model 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Error Rate 2.21% 1.80% 1.73% 1.65% 1.61% 1.59% 1.57% 1.57% Close 
test Reduction --- 18.55% 21.71% 25.34% 27.15% 28.05% 28.96% 28.96% 

Error Rate 18.92% 19.72% 20.55% 21.34% 21.94% 22.61% 23.22% 23.74% Open 
test Reduction --- -4.06% -8.61% -12.79% -15.96% -19.50% -22.72% -25.47% 

                                                 
2 It is the minimum positive floating point value in the Windows system (the DBL_MIN constant), and 

has the value of 2.22 ×10-308.  
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The experimental results are similar to those of the NS bigram model. As presented in 
Table 4, the NS trigram model outperforms the traditional trigram model significantly in the 
close test, and has achieved as much as 28.96% error rate reduction. It proves that the NS 
trigram model is more powerful than the traditional trigram model. Moreover, the error rate 
decreases along with the k value, proving that the improvements of the NS trigram model are 
due to the increasing positional information of word. However, unlike the NS bigram model, 
the NS trigram model performs worse in the open test, indicating that the NS trigram model 
suffers from much more severe data sparseness problem than the NS bigram model even 
though a larger training corpus is adopted in the experiments. 

To sum up, the NS ngram model achieves great improvements by exploiting the word 
positional information; however, it suffers from severe data sparseness problem. The 
following sections will investigate the smoothing techniques presented in section 4, and 
provide the experimental results of the smoothed NS ngram model. Without loss of the 
generality, all the following experiments are carried out on the NS bigram model.  

5.4 Experiments of Smoothing Techniques 
This section firstly investigates the three smoothing approaches separately. Then, these 
techniques are compared to each other and some conclusions are drawn. Finally, it investigates 
the performance of each probability distribution of the smoothed NS bigram model so as to 
gain further insight. All the experiments are carried out in the open test since the data 
sparseness problem occurs only on the unseen data. 

5.4.1 The First Approach 
This approach smoothes the probability distributions in the NS bigram model by the 
traditional smoothing techniques. Totally three smoothing algorithms are investigated: the 
additive smoothing, the back-off smoothing and the linear interpolation smoothing. The 
techniques have been well presented in section 4.1. The un-smoothed NS bigram model is 
taken as the baseline model from which the error rate reduction is calculated. The 
experimental results are provided in Table 5. 

Firstly, according to the experimental results, the traditional smoothing techniques 
smooth the NS bigram model effectively. It yields great error rate reductions on the 
pinyin-to-character conversion task. For example, as much as 15.77% error rate reduction has 
been yielded by the back-off smoothing technique. Secondly, the error reductions of the 
smoothed NS bigram model become more significant when k>2. It indicates that as the value 
of k increases, the data sparseness problem becomes more and more severe, and the smoothing 
technique plays a more important role. However, the most significant error rate reduction 
occurs at k=1 which is the traditional bigram model. It is for the reason that the baseline 
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accuracy of the traditional bigram model is relative lower than those of the NS bigram models. 
Thirdly, the error rate of the smoothed NS bigram model still increases when k>2, just as the 
un-smoothed NS bigram model does. It proves that the NS bigram model smoothed by this 
approach can not make full use of the increasing positional information of word so as to gain 
further improvements. It indicates that this smoothing approach can only alleviate the data 
sparseness problem of the NS bigram model, but can not really solve it. 

Table 5. Experimental results of the first smoothing approach 

Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 13.63% 12.22% 12.58% 12.9% 13.12% 13.41% 13.61% 13.87% 
Additive 

Reduction 8.95% 3.17% 4.41% 5.22% 5.81% 5.76% 6.27% 6.35% 

Error Rate 12.4% 10.88% 11.24% 11.54% 11.78% 12.05% 12.23% 12.51% 
Back-off 

Reduction 17.17% 13.79% 14.58% 15.21% 15.43% 15.32% 15.77% 15.53% 

Error Rate 12.17% 11.00% 11.42% 11.79% 12.07% 12.35% 12.58% 12.86% 
Interpolation 

Reduction 18.7% 12.84% 13.22% 13.37% 13.35% 13.21% 13.50% 13.17% 

5.4.2 The Second Approach 
In the second approach, the paper smoothes the NS bigram model by the traditional bigram 
model. Three smoothing algorithms are provided. They are the back-off method, the linear 
interpolation method and the hybrid method, as described in section 4.2. The experimental 
results are presented in Table 6. 

Table 6. Experimental results of the second smoothing approach 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 12.4% 10.54% 10.83% 11.16% 11.47% 11.83% 12.18% 12.49% 
Back-off 

Reduction 17.17% 16.48% 17.71 18% 17.66% 16.87% 16.12% 15.67% 

Error Rate 12.17% 10.46% 10.46% 10.44% 10.4% 10.37% 10.36% 10.37% 
Interpolation 

Reduction 18.7% 17.12% 20.52% 23.29% 25.34% 27.13% 28.65% 29.98% 

Error Rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13% 
hybrid 

Reduction 17.17% 17.43% 21.43% 24.54% 26.70% 28.60% 30.30% 31.80% 
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According to the experimental results, the second smoothing approach is more effective 
in smoothing the NS bigram model than the first one. For example, the hybrid method yields 
as much as 31.8% error rate reduction which is much higher than the best result of the first 
smoothing approach (which is 15.77% yielded by the back-off method). Moreover, for the 
linear interpolation method and the hybrid method, the error rate of the smoothed NS bigram 
model no longer increases along with the k value as the un-smoothed NS bigram model does, 
but decreases constantly. It proves that the NS bigram model smoothed by these methods can 
make full use of the increasing positional information of word and get further improvements. 
It can be concluded that these smoothing methods can really solve the data sparseness problem 
of the NS bigram model, rather than just alleviate the problem. The back-off smoothing 
method does not perform as well as the above two methods because it is based on the model 
selection methodology and can not make full use of each component model. 

5.4.3 The Third Approach 
The third approach smoothes the NS bigram model by reducing its parameter space and 
building up a more compact model. The statistical variables are utilized to substitute for the 
concrete positional information. A weight is calculated from these variables for the traditional 
bigram probability. The traditional smoothing techniques are utilized to smooth the bigram 
probability. Two smoothing techniques are investigated in the section: the back-off smoothing 
and the linear interpolation smoothing. The coefficients of α and β are optimized by the 
genetic algorithm on the held-out corpus. The settings of the genetic algorithm are presented 
in Table 7. 

    Table 7. Settings of the genetic algorithm 

Population size 30 

Probability of reproduction 0.1  

Probability of crossover 0.65  

Probability of mutation 0.2  

Selection mechanism Rank selection 

Crossover mechanism Arithmetical crossover 

Mutation mechanism Normal mutation 

Fitness function Error rate of the pinyin-to-character converter 

The un-smoothed NS bigram model is taken as the baseline model. The experimental results 
are presented in Table 8. 
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Table 8. Experimental results of the third smoothing approach 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 12.4% 10.59% 10.47% 10.47% 10.43% 10.43% 10.43% 10.41% 
Back-off 

Reduction 17.17% 16.09% 20.44% 23.07% 25.13% 26.70% 26.70% 29.71% 

Error Rate 12.17% 10.56% 10.48% 10.44% 10.43% 10.42% 10.43% 10.4% 
Interpolation 

Reduction 18.7% 16.32% 20.36% 23.29% 25.13% 26.77% 28.17% 29.78% 

Firstly, according to the experimental results, this approach can smooth the NS bigram 
model effectively. It achieves as much as 29.78% error rate reduction which is slightly lower 
than the second approach’s (31.8%), whereas much higher than the first one ’s (15.77%). This 
smoothing approach can not achieve the best performance because the compact model has a 
smaller parameter space and its predictive capability is lower than that of the NS bigram 
model. Secondly, the error rate of the smoothed NS bigram model decreases along with the k 
value constantly. It proves that the approach can really solve the data sparseness problem of 
the NS bigram model, just as the second approach does. Finally, the performance of the 
smoothed NS bigram model becomes stably after k=2, which indicates that a small number of 
bins are enough to estimate the statistical variables and get the performance improvements. 

5.4.4 Comparisons 
This section compares the performances of the three smoothing approaches with each other. In 
each approach, it presents the smoothing algorithm which yields the best experimental results. 
The smoothed traditional bigram model is also presented for comparison. The results are 
summarized in Figure 4. 

According to Figure 4, several conclusions can be drawn as follows. Firstly, the 
smoothed NS bigram model outperforms the smoothed traditional bigram model significantly 
by the exploitation of the word positional information. Secondly, all the smoothing approaches 
smooth the NS bigram model effectively with great error rate reduction. Thirdly, the second 
and the third approaches perform better than the first one. They can make full use of the 
positional information and really solve the data sparseness problem of the NS bigram model. 
Finally, the third approach yields the comparable experimental results with the second one, 
while it needs much smaller parameter space. 
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Figure 4. Comparison of the three smoothing approaches 

5.4.5 Performance of Each Distribution in NS Bigram Model 
In section 5.2, it has presented the NS property of words by investigating the probability 
distributions in the NS bigram model. In order to gain more insight, this section presents the 
performance of each probability distribution in the NS bigram model and evaluates their 
contributions to the ultimate performance of the NS bigram model. 

Generally speaking, it can not tell exactly which probability distribution in the NS 
bigram model leads to a certain error in the pinyin-to-character conversion process. An 
approximate method is then provided. The section simply divides each sentence of the test 
corpus into several bins according to the method in section 3.3, and then calculates the error 
rate in each bin separately. Each error rate corresponds to the performance of a particular 
probability distribution in the NS bigram model. All the following experiments are carried out 
in the open test. The hybrid algorithm in the second approach is utilized to smooth the NS 
bigram model. It yields the best experimental results in the above sections. The NS bigram 
model is built up on various values of k which are up to 8. The experimental results are 
summarized in Table 9. 
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Table 9. Performance of each probability distribution in the NS bigram model 

Bin number 
 

Bin index 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

t=1 12.4% 11.29% 11.06% 10.93% 10.70% 10.52% 10.42% 10.28% 

t=2 --- 9.48% 11.46% 11.18% 11.05% 10.93% 10.85% 10.77% 

t=3 --- --- 8.29% 11.39% 11.50% 11.20% 11.20% 10.99% 

t=4 --- --- --- 7.14% 10.96% 11.45% 11.23% 11.24% 

t=5 --- --- --- --- 6.13% 10.58% 11.17% 11.54% 

t=6 --- --- --- --- --- 5.33% 10.18% 11.09% 

t=7 --- --- --- --- --- --- 4.52% 9.62% 

t=8 --- --- --- --- --- --- --- 3.81% 

Overall error rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13% 

In the row of Table 9, the section lists the NS bigram model with various values of k 
which are up to 8. In the column, it presents the error rate of each probability distribution of 
the NS bigram model. In the last line, it lists the overall error rate of the NS bigram model. 

Focusing on a certain column in Table 9, the error rates of the probability distributions in 
the marginal positions are generally lower than those in the middle positions in the NS bigram 
model. For example, in the NS bigram model with k=5, the error rates of t=1(10.7%) and 
t=5(6.13%) are much lower than the error rate of t=3 (11.5%). It is more obvious for the 
larger values of k. The experimental results verify our speculations in section 5.2 and prove 
that the distributions in the marginal positions have more predictive capabilities than the 
middle ones, and consequently contribute more to the ultimate performance of the NS bigram 
model. In addition, it is found that the error rate at the end position is much lower than those 
in other positions. In the above example, the error rate of t=5(6.13%) is much lower than 
others. It is because many of punctuations are modeled in this probability distribution. These 
punctuations, such as full stop and exclamation, always appear at the end of the sentence. 
Their positional information is much richer than words ’. Therefore, the predictive capability 
of the probability distribution at the end position is much more powerful than other 
distributions in the NS bigram model, and it yields much higher performance. 

6. Conclusions 

This paper enhances the traditional ngram model by relaxing the stationary hypothesis and 
exploring the word positional information. The non-stationary ngram model is proposed. 
Several related issues are discussed in detail, including the definition of the NS ngram model, 
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the representation of the word positional information and the estimation of the conditional 
probability. In addition, three smoothing approaches are proposed to solve the data sparseness 
problem of the NS ngram model. Several smoothing algorithms are presented in each 
approach. In the experiments, the NS ngram model and its smoothing techniques are evaluated 
on the pinyin-to-character conversion task which is the core technique of Chinese text input 
method. According to the experimental results, several conclusions are drawn as follows: 

1. The NS ngram model outperforms the traditional ngram model significantly by the 
exploitation of the word positional information; however, it suffers from severe data 
sparseness problem. 

2. The traditional smoothing techniques are effective in smoothing the NS ngram model; 
however, they can only alleviate the data sparseness problem without solving it 
completely. 

3. The traditional ngram model is utilized to smooth the NS ngram model. Combined 
with the traditional smoothing techniques, this smoothing approach can solve the data 
sparseness problem completely and achieve the best experimental results. 

4. The third smoothing approach can also solve the data sparseness problem of the NS 
ngram model, and it yields a comparable experimental result to the second approach 
at the cost of a smaller parameter space. 

5. Among the probability distributions in the NS ngram model, the distributions in the 
marginal positions have more predictive capability than the middle ones, and 
therefore contribute more to the ultimate performance of the NS ngram model. 
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