

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 107-126 ˄˃ˊʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received August 2, 2006; Revised March 7, 2007; Accepted March 8, 2007]

Using a Generative Model for Sentiment Analysis

Yi Hu , Ruzhan Lu , Yuquan Chen , and Jianyong Duan

Abstract

This paper presents a generative model based on the language modeling approach
for sentiment analysis. By characterizing the semantic orientation of documents as
“favorable” (positive) or “unfavorable” (negative), this method captures the subtle
information needed in text retrieval. In order to conduct this research, a language
model based method is proposed to keep the dependent link between a “term” and
other ordinary words in the context of a triggered language model: first, a batch of
terms in a domain are identified; second, two different language models
representing classifying knowledge for every term are built up from subjective
sentences; last, a classifying function based on the generation of a test document is
defined for the sentiment analysis. When compared with Support Vector Machine,
a popular discriminative model, the language modeling approach performs better
on a Chinese digital product review corpus by a 3-fold cross-validation. This result
motivates one to consider finding more suitable language models for sentiment
detection in future research.

Keywords: Sentiment Analysis, Subjective Sentence, Language Modeling,
Supervised Learning.

1. Introduction

Traditional wisdom of document categorization lies in mapping a document to given topics
that are usually sport, finance, politics, etc. Whereas, in recent years there has been a growing
interest in non-topical analysis, in which characterizations are sought by the opinions and
feelings depicted in documents, instead of just their themes. This method of analysis is defined
to classify a document as favorable (positive) or unfavorable (negative), which is called
sentiment classification. Labeling documents by their semantic orientation provides succinct
summaries to readers and will have a great impact on the field of intelligent information
retrieval.

 Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd,
Shanghai, China. Tel: 86-21-3420 4591
E-mail: huyi@cs.sjtu.edu.cn

˄˃ˋ Yi Hu et al.

In this study, the set of documents is rooted in the topic of digital product review, which
will be defined in the latter part of this article. Accordingly, the documents can be classified
into praising the core product or criticizing it. Obviously, a praising review corresponds to
“favorable” and a criticizing one is “unfavorable” (the neutral review is not considered in this
study).

Most research for document categorization adopts the “bag of words” representing model
that treats words as independent features. On the other hand, utilizing such a representing
mechanism may be imprecise for sentiment analysis. Take a simple sentence in Chinese as an
example: “ਲ㧃 P712㡕ຝ㢊෻ᕴ܂Ա֒伀Δ㢊෻ຒ৫䬗具ݶޓԱΖ(The processor inside
Kodak P712 has been upgraded, so its processing speed ought to be faster.)” The term “ਲ㧃
(Kodak)” is very helpful for determining its theme of “digital product review”, but words “֒
伀(update)” and “ݶ(fast)” corresponding to “㢊෻ᕴ(processor)” and “㢊෻ຒ৫(processing
speed)” ought to be the important clues for semantic orientation (praise the product). Inversely,
see another sentence in Chinese: “㪤㱐䶣ۃ䮦౛༉ৰݶΖ(So, the battery was used up
quickly.)” The words “䮦౛ (use up)” and “ݶ (fast)” become unfavorable features of the
term “䶣ۃ (battery)”. That is to say, these words probably contribute less to the sentiment
classification if they are dispersed into the document vector, because the direct/indirect
relationships between ordinary words and the terms within the sentence are lost. Unfortunately,
traditional n-gram features cannot easily deal with these long-distance dependencies.

Sentiment classification is a complex semantic problem [Pang et al. 2002; Turney 2002]
that needs knowledge for decision-making. The researchers, here, explore a new idea-based
language model for the sentiment classification of sentences rather than full document, in
which the terms such as “㢊෻ᕴ (processor)”, “㢊෻ຒ৫ (processing speed)” are target
objects to be evaluated in the context. They are mostly the nouns or noun phrases: “ৠኟ
(Screen)”, “։ᙃ෷ (Resolution)”, “咭ۥ (Color)”, etc. If the sentiment classifying
knowledge on how to comment on these terms can be obtained by the training data in advance,
the goal of sentiment analysis can be achieved by matching the terms in the test documents.
Thus, the classifying task for the full document is changed to recognizing the semantic
orientation of all terms in accordance with their sentence-level contexts. This can also be
considered a positive/negative word counting method for sentiment analysis.

In this study, the authors construct two language models for each term to capture the
difference of sentiment context for that term. In these language models, sentences are divided
into terms and their contexts. Sentences without the defined terms are ignored since they make
no contribution to the document level sentiment classification; hence, they are omitted from
training and test documents. This idea of grouping a document under subjective and objective
portions is similar to Pang’s work [Pang and Lee 2004].

Using a Generative Model for Sentiment Analysis ˄˃ˌ

This work can be divided into three main parts: first, some terms are extracted from a
Chinese digital product review corpus [Chen et al. 2005]; second, two language models
representing positive and negative classifying knowledge for each term are determined from
training a subjective sentence set; third, the two models are applied to the test set and then
compared with a popular discriminative classifier, SVM. The experiments demonstrate the
better performance of the language modeling approach.

The rest of this paper is structured as follows. Section 2 briefly reviews the related works.
Section 3 provides short introductions to SVM and language model. Section 4 describes the
model in detail. Section 5 presents the method of estimating model parameters, in which a
smoothing technique is utilized. Section 6 shows some experiments to exemplify the
availability of the language modeling approach. In section 7, conclusions are given.

2. Related Works

A considerable amount of research has been done about document categorization other than
topic-based classification in recent years. For example, Biber [Biber 1988] concentrated on
sorting documents in terms of their source or source style with stylistic variation such as
author, publisher, and native-language background. Sentiment classification for documents,
though, has attracted tremendous attention for its broad applications in various domains such
as movie reviews and customer feedback reviews [Gamon 2004; Pang et al. 2002; Pang and
Lee 2004; Turney and Littman 2003]. Many research projects have used positive or negative
term counting methods, which automatically determine the positive or negative orientation of
a term [Turney and Littman 2002]. Other projects have focused on machine learning
algorithms, such as Bayesian Classifier and SVMs, to classify entire reviews in a manner
similar to a pattern recognition task.�

Some related works focus on categorizing the semantic orientation of individual words or
phrases by employing linguistic heuristics [Hatzivassiloglou and McKeown 1997;
Hatzivassiloglou and Wiebe 2000; Turney and Littman 2002]. The word’s semantic
orientation refers to a real number measure of the positive or negative sentiment expressed by
a word or a phrase [Hatzivassiloglou and McKeown 1997]. In previous works, the approach
taken by Turney [Turney and Littman 2002] is used to derive such values for selected phrases
in the document. The semantic orientation of a phrase is determined based on the phrase’s
Pointwise Mutual Information (PMI) with the words “excellent” and “poor”. PMI is defined
by Church and Hanks [Church and Hanks 1989] as follows:

1 2
1 2 2

1 2

(&)
(&) log

() ()
p w w

PMI w w
p w p w

, (1)

˄˄˃ Yi Hu et al.

where p(w1&w2) is the probability that w1 and w2 co-occur. The orientation for a phrase is the
difference between its PMI with the word “excellent” and the PMI with the word “poor”. The
final orientation is:

() (," ") (," ")SO phrase PMI phrase excellent PMI phrase poor . (2)

This yields values above zero for phrases having greater PMI with the word “excellent”
and below zero for greater PMI with “poor”. An SO value of zero denotes a neutral semantic
orientation. This approach is simple but effective. Moreover, it is neither restricted to words of
a particular part of speech (e.g. adjectives), nor restricted to a single word, but can be applied
to multiple-word phrases. The semantic orientation of phrases can be used to determine the
sentiment of complete sentences and reviews. In Turney’s work, 410 reviews were taken and
the accuracy of classifying the documents was found when computing the polarity of phrases
for different kinds of reviews. Results ranged from 84% for automobile reviews to as low as
66% for movie reviews.

Another method of classifying documents into positive and negative is to use a learning
algorithm to classify the documents. Several algorithms were compared in [Pang et al. 2002],
where it was found that SVMs generally give better results. Unigrams, bigrams, part of speech
information, and the position of the terms in the text are used as features, where using only
unigrams is found to produce the best results. Pang et al. further analyzed the problem to
discover how difficult sentiment analysis is. Their findings indicate that, generally, these
algorithms are not able to generate accuracy in the sentiment classification problem in
comparison with the standard topic-based categorization. As a method to determine the
sentiment of a document, Bayesian belief networks are used to represent a Markov Blanket
[Bai 2004], which is a directed acyclic graph where each vertex represents a word and the
edges are dependencies between the words.

Methods for extracting subjective expressions from collections are presented in [Pang
and Lee 2004]. Subjectivity clues include low-frequency words, collocations, and adjectives
and verbs identified using distribution similarity. In [Riloff and Wiebe 2003], a bootstrapping
process learns linguistically rich extraction patterns for subjective expressions. Classifiers
define unlabeled data to automatically create a large training set, which is then given to an
extraction pattern learning algorithm. The learned patterns are then used to identify more
subjective sentences. A method to distinguish objective statements from subjective statements
is also presented in [Pang and Lee 2004]. This method is based on the assumption that
objective and subjective sentences are more possibly to appear in groups. First, each sentence
is given a score indicating if the sentence is more likely to be subjective or objective using a
Naive Bayes classifier trained on a subjectivity data set. The system then adjusts the
subjectivity of a sentence based on how close it is to other subjective or objective sentences.

Using a Generative Model for Sentiment Analysis ˄˄˄

This method obtains amazing results with up to 86% accuracy on the movie review set. A
similar experiment is presented in [Yu and Hatzivassiloglou 2003].�

Past works on sentiment-based categorization of entire texts also involve using cognitive
linguistics [Hearst 1992; Sack 1994] or manually constructing discriminated lexicons [Das and
Chen 2001; Tong 2001]. These works enlighten researchers on the research on learning
sentiment models for terms in the given domain.

It is worth referring to an interesting study conducted by Koji Eguchi and Victor
Lavrenko [Eguchi and Lavrenko 2006]. In their contribution, they do not pay more attention to
sentiment classification itself, but propose several sentiment retrieval models in the framework
of generative modeling approach for ranking. Their research assumes that the polarity of
sentiment interest is specified in the users’ need in some manner, where the topic dependence
of the sentiment is considered.

3. SVMs and Language Model

3.1 SVMs
Support Vector Machine (SVM) is highly effective on traditional document categorization
[Joachims 1998], and its basic idea is to find the hyper-plane that separates two classes of
training examples with the largest margin [Burges 1998]. It is expected that the larger the
margin, the better the generalization of the classifier.

The hyper-plane is in a higher dimensional space called feature space and is mapped
from the original space. The mapping is done through kernel functions that allow one to
compute inner products in the feature space. The key idea in mapping to a higher space is that,
in a sufficiently high dimension, data from two categories can always be separated by a
hyper-plane. In order to implement the sentiment classification task, these two categories are
designated positive and negative. Accordingly, if d is the vector of a document, then the
discriminant function is given by:

() ()f d w d b . (3)

Here, w is the weight vector in feature space that is obtained by the SVM from the training
examples. The “·” denotes the inner product and b is a constant. The function is the mapping
function. The equation w· (d) + b = 0 represents the hyper-plane in the higher space. Its value
f(d) for a document d is proportional to the perpendicular distance of the document’s
augmented feature vector (d) from the separating hyper-plane. The SVM is trained such that
f(d) 1 for positive (favorable) examples and f(x) -1 for negative (unfavorable) examples.

Joachim’s SVMlight package [Joachims 1999] was used for training and testing. For more
details on SVM, the reader is referred to Cristiani and Shawe-Tailor’s tutorial [Cristianini and

˄˄˅ Yi Hu et al.

Shawe-Taylor 2000] and Roberto Basili’s paper [Basili 2003].

3.2 Language Models
A statistical language model is a probability distribution over all possible word sequences in a
language [Rosenfeld 2000]. Generally, the task of language modeling handles the problem:
how likely would the ith word occur in a sequence given the history of the preceding i-1 words?
In most applications of language modeling, such as speech recognition and information
retrieval, the probability of a word sequence is decomposed into a product of n-gram
probabilities. Let one assume that L denotes a specified sequence of k words,

1 2... kL w w w . (4)

An n-gram language model considers the sequence L to be a Markov process with probability

1
1

1
() (|)

k i
i i n

i
p L p w w . (5)

When n is 1, it is a unigram language model which uses only estimates of the probabilities of
individual words, and when n is equal to 2, it is the bigram model which is estimated using
information about the co-occurrence of pairs of words. On the other hand, the value of n-1 is
also called the order of the Markov process.

To establish the n-gram language model, probability estimates are typically derived from
frequencies of n-gram patterns in the training data. It is common that many possible n-gram
patterns would not appear in the actual data used for estimation, even if the size of the data is
huge. As a consequence, for a rare or unseen n-gram, the likelihood estimates that are directly
based on counts may become problematic. This is often referred to as data sparseness.
Smoothing is used to address this problem and has been an important part of various language
models.

4. A Generative Model for Sentiment Classification

In this section, a language modeling approach to detect semantic orientation of document is
proposed. This approach is very simple: one must observe the usage of language in contexts of
terms appearing in positive and negative documents. “Favorable” and “unfavorable” language
models are likely to be substantially different: they are prone to different language habits. This
divergence in the language models is exploited to effectively classify a test document as
positive or negative.

Using a Generative Model for Sentiment Analysis ˄˄ˆ

4.1 Two Assumptions
Models usually have their own basic assumptions as foundation of reasoning and calculating,
which support their further applications. The researchers also propose two assumptions in this
study, and, based on them, employ a language modeling approach to deal with the sentiment
classification problem. As mentioned above, ordinary words in a sentence might have
correlation with the term in the same sentence. Therefore, this method follows the idea of
learning positive and negative language models for each term within sentences. After this, the
sentiment classification is transferred into calculating the generation probability of all
subjective sentences in a test document by these sentiment models. The following two
assumptions are presented:

A1. A subjective sentence contains at least one sentiment term and is assumed to have
obvious semantic orientation.

A2. A subjective sentence is the processing unit for sentiment analysis.

The first assumption (A1) gives the definition of subjective sentence, and it means a
significant sentence for training or testing should contain at least one term. In contrast, a
sentence without any term is regarded as an objective sentence because of its “no
contribution” to sentiment. It also assumes that a subjective sentence has complete sentiment
information to characterize its own orientation.

The second assumption (A2) allows one to handle the classification problem of
sentence-level processing. Therefore, the authors pay more attention to construct models
within the given sentence in terms of this assumption. A2 is an intuitive idea in many cases.

Previous work has rarely integrated sentence-level subjectivity detection with
document-level sentiment polarity. Yu and Hatzivassiloglou [Yu and Hatzivassiloglou 2003]
provide methods for sentence-level analysis and for determining whether a sentence is
subjective or not, but do not consider document polarity classification. The motivation behind
the single sentence selection method of Beineke et al. [Beineke et al. 2004] is to reveal a
document's sentiment polarity, but they do not evaluate the polarity-classification accuracy of
results.

4.2 Document Representation

Based on these two assumptions, a document d is naturally reorganized into subjective
sentences, and the objective sentences are omitted from d. That is to say, the original d is
reduced to:

{ | }d s t s . (6)

˄˄ˇ Yi Hu et al.

Furthermore, a subjective sentence can be traditionally represented by a Chinese word
sequence as follows,

1 2 1 , 1 2 l i l l l nw w w t w w w . (7)

In this, “ti,l ” indicates one term ti appears in the sentence si, which is usually denoted as the
serial number ‘l’ in the sequence. Moreover, the subsequence from w1 to wl-1 is the group of
ordinary words on the left side of ti, and the subsequence from wl+1 to wn is the group of
ordinary words on the right. In (7), ordinary words in this sentence consist of ti’s context (Cxi).
So, a subjective sentence si is simplified to:

,i i is t Cx . (8)

The authors now focus on a special form, by which a document is represented. Let d be
defined again,

{ , }i id t Cx . (9)

Definition (9) means that there also exists an independent assumption between sentences and
every word has certain correlation with the term within a sentence. Each sentence has
semantic orientation and makes a contribution to the global polarity.

Note that it is possible for there to exist more than one term in a sentence. However,
when investigating one of them, the others are to be treated as ordinary words. Each term can
create a <t, Cx> structure. That is to say, one sentence may create more than one such
structure.

4.3 Sentiment Models of Term
With respect to each term, each plays an important role in sentiment classification because the
pivotal point of this work lies in learning and evaluating its context. This kind of classifying
knowledge, derived from the contexts of terms in two subject-sentence collections labeled
positive or negative in different contexts, would like to use words with polarity, such as “ݶ
(Fast)” and “ኬ (Slow)”. A formalized depiction of classifying knowledge is shown as the
following 3-tuple ki:

, , P N
i i i i ik t t T . (10)

The character “T” denotes the list of all terms obtained from collections. With respect to ti, its
classifying knowledge is divided into two models: P

i and N
i which represent the positive

and negative models, respectively. The model parameters are estimated from the training data.
The contribution of wj to polarity is quantified by a triggered unigram model to express the
long distance dependency, which is a language modeling idea explained in next subsection.

Using a Generative Model for Sentiment Analysis ˄˄ˈ

4.4 Language Modeling Approach for Sentiment Classification
Language models applied to information retrieval [Pone and Croft 1998; Song and Croft 1999]
have proven the effectiveness of this approach in an ad-hoc IR task. However, little work has
been done in sentiment classification other than considering statistical language modeling. The
most important idea in this study is to treat sentiment analysis of a document as the
comparison of different generation probabilities in their subjective sentences. The difference
is derived from the sentiment language models, { }P

i and{ }N
i , of terms.

Up to the present, the unigram model has been widely used in many applications due to
its relatively small parameter space and suitability for avoiding data sparseness. The
traditional unigram model takes a strict assumption that each word is independent from all
others, consequently, the probability of a word sequence transfers into the product of the
probabilities of individual words. In the authors’ model, a triggered unigram model based on
subjective sentence collection is built. Thus, the sentiment classification of a document
becomes a generation process.

It is assumed that each subjective sentence has its own contribution. Therefore, the global
document orientation is calculated by the differences between the probabilities of generating
every subjective sentence in the document based on the sentiment language models. Thus, the
logarithm decision function (11) is defined as:

,

(|)(; ,) ln
(|)

ln (| ,) ln (| ,)
i i i

P
P N

N

P N
i i i i i it s s d

p dF d
p d

p s t p s t

. (11)

Equation (11) means that, to a subjective sentence in the document, if it is more possibly
generated by the positive language model of term “ti” than by its negative language model, the
sentence gives more weight to positive orientation than the negative. If the opposite is true, the
sentence is regarded as more negative. The value of these probabilities is then used to classify
the documents:

0
:

0
positive

F
negative

 . (12)

It is obvious that decision value is the semantic orientation of the whole document. Every
subjective sentence will also be calculated by the multiplication of each generation probability
of an ordinary word in this sentence except the term itself, i.e.:

˄˄ˉ Yi Hu et al.

,

,

(| ,) (| ,)

(| ,) (| ,)

j i j i

j i j i

P P
i i i j i iw Cx w t

N N
i i i j i iw Cx w t

p s t p w t

p s t p w t
. (13)

Using the logarithm, one can rewrite (13) in its final form:

,

,

ln (| ,) ln (| ,)

ln (| ,) ln (| ,)

j i j i

j i j i

P P
i i i j i iw Cx w t

N N
i i i j i iw Cx w t

p s t p w t

p s t p w t
. (14)

Equations (13) and (14) are both composed of two functions corresponding to positive and
negative cases, respectively. Finally, when one substitutes Equation (14) into Equation (11),
one gets a new sentiment classifying function:

,
(| ,)

(; ,) ln
(| ,)i j i j i

P
j i iP N

s d w Cx w t N
j i i

p w t
F d

p w t
. (15)

5. Parameter Estimation

In equation (15), one has to estimate (| ,)P
j i ip w t , and (| ,)N

j i ip w t .

5.1 MLE for (| ,)j i ip w t
The researchers have two available training collections labeled with “positive” and “negative”.
The detailed information of this corpus will be described in Section 6.1.

Two methods are used to estimate the unigram probability: <1> the Maximum
Likelihood Estimate (MLE); <2> the Dirichlet Prior Smoothing for language models. The two
estimating methods are compared in sentiment classification. The language models are trained
on the positive collection (CP) and negative collection (CN), respectively. The MLE is

#(, |)
(| ,)

#(, |)
#(, |)

(| ,)
#(, |)

j i j iP P
mle j i i i

i i

j i j iN N
mle j i i i

i i

w t w Cx
p w t s C

t Cx
w t w Cx

p w t s C
t Cx

, (16)

where #(, |)j i j iw t w Cx is the number of times
jw co-occurring with it in same

subjective sentences in positive/negative document collection CP/CN, while #(, |)i it Cx
is the total number of any word (*) co-occurring with the term it in the same subjective
sentences in CP/CN.

Using a Generative Model for Sentiment Analysis ˄˄ˊ

In the probability perspective, if a word wj often co-occurs with ti in sentences in the
training corpus with a positive view, it may mean that it contributes more to a positive
orientation than negative, and vice-versa.

The training data consists of small document samples. The MLE models are inherently
poor representations of the true models for unseen words that will be unreasonably assigned
zero probability. Therefore, a smoothing language model is worthy of being tried to
approximate their true models.�

5.2 Dirichlet Prior Smoothing
Dirichlet Prior smoothing [Zhai and Lafferty 2001; Zhai and Lafferty 2002] is a general
smoothing method for the problem of zero probabilities and is suitable for unigram smoothing.
It belongs to a type of linearly interpolated method. The purpose of the Dirichlet Prior
smoothing is to address the estimation bias due to the fact that a document collection has a
relatively small amount of data used to estimate a unigram model. More specifically, it is
designed to discount the MLE appropriately and assign non-zero probabilities to n-gram,
which are not observed in the collection. This is the normal role of language model smoothing.

The sentence generation is now taken into account. The basic models are the unigram
models { }i (includes { }P

i and{ }N
i , respectively), which will result in models with the

Dirichlet Prior smoothing. That is,

(| ,) { }
(| ,)

(|)
i i i

dir i i
mle

p w t w Cx
p w t

p w C otherwise
, (17)

where (| ,)i ip w t indicates the smoothed probability of w seen in the positive/negative
subjective sentence collection of ti. The probability (|)mlep w C denotes the whole corpus
(C) language model based on MLE, and is a coefficient controlling the probability mass
assigned to unseen words, so that all probabilities sum to one. In general, may depend on
all (| ,)i ip w t . In this study, the authors exploit the following smoothing formalizations:

#(, | ,) (|)

#(, | ,)
(| ,)

#(, | ,) (|)

#(, | ,)

P
Pi i i mle
iP

i i i
i i N

Ni i i mle
iN

i i i

w t w Cx s C p w C
to

t Cx s C
p w t

w t w Cx s C p w C
to

t Cx s C

, (18)

and

| |C
, (19)

˄˄ˋ Yi Hu et al.

where is a controlling parameter that needs to be set empirically.

In particular, Dirichlet Prior smoothing may play two different roles in the sentence
likelihood generation method. One is to improve the accuracy of the estimated document
language model, while the other is to accommodate generation of non-informative common
words. The following experiment results further suggest that this smoothing measure is useful
in the estimation procedure.

6. Experiment Results and Discussions

This study is interested in the subject of “digital product review”, and all documents are
obtained from digital product review web sites. In terms of evaluating the results of sentiment
classification, the researchers employ average accuracy based on 3-fold cross validation over
the polarity corpus in the following several experiments.�

6.1 Document Set and Evaluating Measure
The datasets select digital product reviews where the author rating is expressed either with
thumbs “up” or thumbs “down”. For the works described in this study, the dataset only
concentrates on discriminating between positive and negative sentiment.

To avoid domination of the corpus by a small number of prolific reviewers, the corpus
imposes a limit of fewer than 25 reviews per author per sentiment category, yielding a corpus
of 900 negative and 900 positive reviews, with a total of more than a hundred reviewers
represented. Some statistics about the corpus are shown in Table 1.

Table 1. The two collections from the same domain (digital product reivew).
Collections # of Documents Average # of Subjective Sentences Sizes (KB)

Positive 900 28.3 462.99
Negative 900 25.9 453.82

Note that these 1800 documents in the corpus have obvious semantic orientations to their
products: favorable or unfavorable. Furthermore, in terms of positive documents, they contain
an average of 28.3 subjective sentences, while negative document collections contain an
average of 25.9. All these digital product reviews downloaded from several web sites are
about electronic products, such as DV, mobile phones, and cameras. On the other hand, all of
these Chinese documents have been pre-processed in a standard manner: they are segmented
into words and Chinese stop words are removed. All of these labeled documents are to be
naturally divided into three collections in every process of 3-fold cross validation, which are
used either for training or for testing.

In evaluating processes, a document may be grouped into positive or negative. That is to
say, there exist two kinds of classification errors called “false negative” and “false positive”.

Using a Generative Model for Sentiment Analysis ˄˄ˌ

Thus, the authors could build the following Contingency Table.

Table 2. Contingency Table.
 Tagged Positive Tagged Negative

True Positive A B
True Negative C D

In the table A, B, C and D respectively indicate the number of every case. When the system
classifies a true positive document into “positive” or classifies a true negative document into
“negative”, these two are correct, yet the other two cases are wrong. Therefore, the accuracy is
defined as a global evaluation mechanism:

() /()Accuracy A D A B C D . (20)

Obviously, the larger the accuracy value is, the better the system performance is. In the
following experiments, the 3-fold cross validation based average accuracy is the major
evaluating measure in the following experiments.

6.2 Term Extraction
The researchers extract term candidates using a term extractor from the previous work of the
authors [Chen et al. 2005]. Following this study, the hybrid method for automatic extraction
of terms from domain-specific un-annotated Chinese corpus is used through means of
linguistic knowledge and statistical techniques. Then, hundreds of terms applied in the
sentiment analysis are extracted from the digital product review documents. They are ranked
by their topic-relativity scores.

The main idea in [Chen et al. 2005] lies in finding the two neighboring Chinese
characters with high co-occurrence, called “bi-character seeds”. These seeds can only be terms
or the components of terms. For instance, the seed “։ᙃ” is the left part of the real term “։
ᙃ෷ (Resolution)”. So the system has to determine the two boundaries by adding characters
one by one to these seeds in both directions to acquire multi-character term candidates.
Apparently, there exist many non-terms in these candidates, so one must take a dual filtering
strategy and introduce a weighting formula to filter these term candidates via a large
background corpus.

Although the authors have adopted the dual filtering strategy in this system to improve
performance, it cannot separate the terms and non-terms completely. Therefore, it also needs
manual selection of the suitable terms that strictly belong to the digital product domain. The
terms were chosen from the candidate list one by one via their topic-relativity scores.

It is worth noting that all the selected terms are nouns/noun phrases that represent
concepts that are usually evaluated in real-life contexts. For example, “䀀东ઌ᫕ (digital

˄˅˃ Yi Hu et al.

camera, one of the digital products)”, “㢊෻ᕴ (processor, a key part of some digital
products)”.

6.3 Experiments and Discussions
Three experiments were designed to investigate the proposed method as compared to SVM.
The first was to select the most suitable number of terms given their topic-relativity to the
domain. The second was to select a suitable kernel from linear, polynomial, RBF and sigmoid
kernels for sentiment classification. The last was to compare the performance between the
language modeling approach and SVM.

With respect to these three experiments, the 1800 digital product reviews were split into
three parts: 1000 training samples (500 positive and 500 negative); 600 test samples (300
positive and 300 negative); and the remaining 200 samples (100 positive and 100 negative)
that were prepared for choosing a suitable number of terms.

Table 3 shows a series of contrastive results by testing on the 200 samples after training
models of terms ranging from 20 to 200 given their topic-relativity ranks. This is a method for
selecting a suitable term set. In this experiment, unigram models are employed by MLE. Here,
all of the Chinese words occurring are used as unigrams to learn the language models, and this
is different from selecting a portion of them in the following experiments (see Section 6.4).

Table 3. Average accuracy based on the number of terms from 20 to 200 according to
their topic-relativity ranking scores. In this experiment, we employ the
unigram model by MLE.

of
terms 20 40 60 80 100 120 140 160 180 200

Avg.
Accuracy 48.31 50.50 57.11 58.78 70.83 74.27 79.31 77.04 76.78 73.50

The experiment proves that it is not clear whether or not one ought to use a large term set
for achieving better system performance, because redundant terms may bring “noise” to
semantic polarity decision. As seen in Table 3, experimental results achieve the greatest
accuracy when keeping 140 terms by topic-relativity ranking scores in the term set. According
to this result, the authors use the 140 terms next for smoothing of sentiment language models
and comparison with SVM.

6.4 Comparison with SVM
Unigrams are extracted as input feature sets for SVM. The following experiments compare the
performance of SVM using linear, polynomial, RBF and sigmoid kernels, the four
conventional learning methods commonly used for text categorization. The SVMlight package
[Joachims 1999] was used for training and testing on the document-level, and other

Using a Generative Model for Sentiment Analysis ˄˅˄

parameters of different kernel functions were set to their default values in this package. This
experiment aims at exploring which method is more suitable for the sentiment detection
problem (See Table 4).

To make sure that the results for the four kernels are not biased by an inappropriate
choice of features, all four methods are run after selecting unigrams (Chinese words)
appearing at least three times in the whole 1800 document collection. Finally, the total number
of features in this study is 5783 for SVM, including those “terms” used in the language
modeling approach.

Table 4. Comparison of four kernel functions on the digital product review training
and test corpus and average performance over two categories. Linear kernel
achieves highest performance on unigram feature set.

Features # of features Linear Polynomial Radial Basis Function Sigmoid

unigrams 5783 80.17 61.25 53.09 51.26

The result with the best performance in the test set is the linear kernel. Thus, the language
model based method is compared with the SVM using linear kernel. The next table gives the
results achieved by the language modeling approach and the control group. In this experiment,
the 5783 single word forms (i.e. vocabulary) are also used as the features for language models.

Table 5. Comparison between language model based method and SVM using linear
kernel.

 # of features AvgAccuracy % change over SVM

SVM (Linear Kernel) 5783 80.17 —

Uni-MLE 5783 83.10 +3.65
Uni-Smooth (=1100) 5783 85.33 +6.44

Seen from table 5, Uni-MLE performs better on the unigrams features set than SVM,
which achieved an average significant improvement of 3.65% compared with the best SVM
result. As to the model smoothing, Dirichlet Prior smoothes unigram language model with
parameter set to 1100 (In this experiment, the best result appears when 1100 in
Dirichlet Prior smoothing). It makes a contribution to estimating a better unigram language
model leading to a significantly better result than SVM (+6.44%). The effect of the smoothing
method in sentiment analysis is just like its effect on most language model based applications
in NLP. In practice, the unigram model built up from the two limited collections by simple
MLE has not enough reasonability in terms of the unseen words. The smoothing method gives
the unobserved ordinary words of every term a suitable non-zero probability and improves the
system performance.

The better results obtained by this generative model may be due to the sentiment

˄˅˅ Yi Hu et al.

description within sentences, which proves that the two assumptions in Section 4.1 may be
reasonable. The authors use the triggered unigram models to describe the classifying
contribution of features of every term, and then construct sentiment language models.
Accordingly, the motivation to further explore the refinement of sentiment language models
based on learning higher order models and introduce more powerful smoothing methods in
future is acquired.

7. Conclusions

In this paper, the authors have presented a new language modeling approach for sentiment
classification. To this generative model, the terms of a domain are introduced as counting
terms, and their contexts are learnt to create sentiment language models. It was assumed that
sentences have complete semantic orientation when they contain at least one term. This
assumption allows one to design models to learn positive and negative language models from
the subjective sentence set with polarity. The approach is then used to test a real document in
steps: first to generate all the subjective sentences in the document, and then to generate each
ordinary word in turn depending on the terms by positive and negative sentiment models. The
difference between the generation probabilities by the two models is used as the determining
rule for sentiment classification.

The authors have also discussed how the proposed model resolves the sentiment
classification problem by refining the basic unigram model through smoothing. When the
language model based method is compared with a popular discriminative model, i.e., SVM,
the experiment shows the potential power of language modeling. It was demonstrated that the
proposed method is applicable for learning the positive and negative contextual knowledge
effectively in a supervised manner.

The difficulty of sentiment classification is apparent: negative reviews may contain many
apparently positive unigrams even while maintaining a strongly negative tone and vice-versa.
In terms of the Chinese language, it is a language of concept combination, allowing the usage
of words to be more flexible than in Indo-European languages, which makes it more difficult
to acquire statistic information than other languages. All classifiers will face this difficulty.
Therefore, the authors plan to improve the language model based method in the following
three possibilities:

Future works may focus on finding a good way to estimate better language models,
especially the higher order n-gram models and more powerful smoothing methods.

The authors have assumed an independent condition among sentences so far. It is also
possible to introduce a suitable mathematic model to group the close sentences. Constructing
an enlarged sentiment analyzing area may utilize more linking information between words.

Using a Generative Model for Sentiment Analysis ˄˅ˆ

The conceptual analysis of Chinese words may be helpful to sentiment analysis because
this theory pays more attention to counting the real sense of concepts. In future works, the
authors may integrate more conceptual features into the models.

Acknowledgement
This work is supported by NSFC Major Research Program 60496326: Basic Theory and Core
Techniques of Non Canonical Knowledge.

References
Bai, X., R. Padman, and E. Airoldi, “Sentiment extraction from unstructured text using tabu

search-enhanced markov blanket,” In Proceedings of the International Workshop on
Mining for and from the Semantic Web, 2004, Seattle, WA, USA.

Basili, R., “Learning to Classify Text Using Support Vector Machines: Methods, Theory, and
Algorithms by Thorsten Joachims,” Computational Linguistics, 29(4), 2003, pp.
655-661.

Beineke, P., T. Hastie, C. Manning, and S. Vaithyanathan, “Exploring sentiment
summarization,” In AAAI Spring Symposium on Exploring Attitude and Affect in Text:
Theories and Applications (AAAI tech report SS-04-07), 2004.

Biber, D., Variation across Speech and Writing, The Cambridge University Press, 1988.
Burges, C., “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining

and Knowledge Discovery, 2(2), 1998, pp. 121-167.
Chen, X., X. Li, Y. Hu, and R. Lu, “Dual Filtering Strategy for Chinese Term Extraction,” In

Proceedings of FSKD(2), Changsha, China, 2005, pp. 778-786.
Church, K. W., and P. Hanks, “Word association norms, mutual information and

lexicography,” In Proceedings of the 27th Annual Conference of the ACL, 1989,
Vancouver, BC, Canada.

Cristianini, N., and J. Shawe-Taylor, An Introduction to Support Vector Machines and other
Kernel-based Learning Methods, The Cambridge University Press, 2000.

Das, S., and M. Chen, “Yahoo! for Amazon: Extracting market sentiment from stock message
boards,” In Proceedings of the 8th Asia Pacific Finance Association Annual Conference,
2001, Bangkok, Thailand.

Eguchi, K., and V. Lavrenko, “Sentiment Retrieval using Generative Models,” In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 2006, Sydney,
Australia, pp. 345-354.

Gamon, M., “Sentiment classification on customer feedback data: noisy data, large feature
vectors, and the role of linguistic analysis,” In Proceedings the 20th International
Conference on Computational Linguistics, 2004, Switzerland.

˄˅ˇ Yi Hu et al.

Hatzivassiloglou, V., and K. McKeown, “Predicting the semantic orientation of adjectives,” In
Proceedings of the 35th ACL/8th EACL, 1997, Madrid, Spain, pp. 174-181.

Hatzivassiloglou, V., and J. Wiebe, “Effects of Adjective Orientation and Gradability on
Sentence Subjectivity,” In Proceedings the 18th International Conference on
Computational Linguistics, 2000, Germany, pp. 299-305.

Hearst, M., “Direction-based text interpretation as an information access refinement,”
Text-based intelligent systems: current research and practice in information extraction
and retrieval, ed. by Paul Jacobs, Lawrence Erlbaum Associates, 1992, pp. 257-274.

Joachims, T., “Text categorization with support vector machines: Learning with many relevant
features,” In Proceedings of the European Conference on Machine Learning, 1998,
Chemnitz, pp. 137-142.

Joachims, T., “Making large-scale SVM learning practical”, Advances in Kernel
Methods-Support Vector Learning, ed. by Bernhard Scholkopf and Alexander Smola,
The MIT Press, 1999, pp. 44-56.

Pang, B., and L. Lee, “A Sentimental Education: Sentiment Analysis Using Subjectivity
Summarization Based on Minimum Cuts,” In Proceedings of the 42nd ACL, 2004,
Barcelona, Spain, pp. 271-278.

Pang, B., L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment Classification using Machine
Learning Techniques,” In Proceedings of The Conference on Empirical Methods in
Natural Language Processing, 2002, Philadelphia, USA.

Pone, J., and W. B. Croft, “A language modeling approach to information retrieval,” In
Proceedings of the 21st Annual Int�’l ACM SIGIR Conference on Research and
Development in Information Retrieval, 1998, Melbourne, Australia.

Riloff, E., and J. Wiebe, “Learning extraction patterns for subjective expressions,” In
Proceedings of the 41st Conference on Empirical Methods in Natural Language
Processing, 2003, Sapporo, Japan, pp. 105-112.

Rosenfeld, R., “Two decades of statistical language modeling: where do we go from here?” In
Proceedings of the IEEE, 88(8), 2000.

Sack, W., “On the computation of point of view,” In Proceedings of the Twelfth AAAI, Student
abstract, 1994, Seattle, WA, USA, pp. 1488.

Song, F., and W. B. Croft, “A general language model information retrieval,” In Proceedings
of the 22nd Annual Int�’l ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999, Berkeley, CA, USA.

Tong, R.M., “An operational system for detecting and tracking opinions in on-line
discussion,” Workshop Notes, SIGIR Workshop on Operational Text Classification,
2001, New Orleans.

Turney, P.D., “Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews,” In Proceedings of the ACL, 2002, Philadelphia, Pennsylvania,
USA, pp. 417-424.

Using a Generative Model for Sentiment Analysis ˄˅ˈ

Turney, P.D., and M. L. Littman, “Measuring praise and criticism: Inference of semantic
orientation from association,” ACM Transactions on Information Systems (TOIS), 21(4),
2003, pp. 315-346.

Turney, P.D., and M. L. Littman, “Unsupervised learning of semantic orientation from a
hundred-billion-word corpus,” Technical Report EGB-1094, National Research Council,
Canada, 2002.

Yu, H., and V. Hatzivassiloglou, “Towards answering opinion questions: Separating facts
from opinions and identifying the polarity of opinion sentences,” In Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, 2003, Sapporo,
Japan.

Zhai, C. and J. Lafferty, “A study of smoothing methods for language models applied to ad
hoc information retrieval,” In Proceedings of SIGIR, 2001, New Orleans, USA.

Zhai, C. and J. Lafferty, “Two Stage Language Models for Information Retrieval,” In
Proceedings of S IGIR, 2002, Tampere, Finland.

˄˅ˉ Yi Hu et al.

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 127-154 127

” The Association for Computational Linguistics and Chinese Language Processing

[Received November 28, 2006; Revised April 19, 2007; Accepted April 23, 2007]

An Empirical Study of Non-Stationary

Ngram Model and its Smoothing Techniques

Jinghui Xiao*, Bingquan Liu* and Xiaolong Wang*

Abstract

Recently many new techniques have been proposed for language modeling, such as
ME, MEMM and CRF. However, the ngram model is still a staple in practical
applications. It is well worthy of studying how to improve the performance of the
ngram model. This paper enhances the traditional ngram model by relaxing the
stationary hypothesis on the Markov chain and exploiting the word positional
information. Such an assumption is made that the probability of the current word is
determined not only by history words but also by the words positions in the
sentence. The non-stationary ngram model (NS ngram model) is proposed. Several
related issues are discussed in detail, including the definition of the NS ngram
model, the representation of the word positional information and the estimation of
the conditional probability. In addition, three smoothing approaches are proposed
to solve the data sparseness problem of the NS ngram model. Several smoothing
algorithms are presented in each approach. In the experiments, the NS ngram
model is evaluated on the pinyin-to-character conversion task which is the core
technique of the Chinese text input method. Experimental results show that the NS
ngram model outperforms the traditional ngram model significantly by the
exploitation of the word positional information. In addition, the proposed
smoothing techniques solve the data sparseness problem of the NS ngram model
effectively with great error rate reduction.

Keywords: Ngram, Stationary Hypothesis, Pinyin-to-character Conversion,
Smoothing

1. Introduction

Statistical language model plays an important role in natural language processing. It has a
wide range of applications in many domains, such as speech recognition [Jelinek 1997], OCR
[Kolak et al. 2003], machine translation [Brown et al. 1992], and pinyin-to-character

* School of Computer Science and Techniques, Harbin Institute of Technology, Harbin, 150001, China
 E-mail: {xiaojinghui, liubq, wangxl}@insun.hit.edu.cn

128 Jinghui Xiao et al.

conversion [Gao et al. 2005; Xiao et al. 2005] etc. In recent years, great efforts are devoted to
the research of language modeling. Many novel techniques are proposed, such as maximum
entropy model [Rosenfeld 1994], maximum entropy Markov model [McCallum et al. 2000]
and conditional random field model [Lafferty et al. 2001]. However, the ngram model is still a
staple in practical applications. Therefore, it is well worthy of studying how to improve the
performance of the ngram model.

The ngram model takes the word sequence as a Markov chain. It makes the Markov
hypothesis on the sequence so as to simplify the probability inference. There are actually two
hypotheses implied by the Markov hypothesis, named the limited history hypothesis and the
stationary hypothesis [Manning and Schutze 1999]. The first one assumes that the probability
of the current word is determined only by a few of previous words, but irrelevant to the whole
history of words. The second one assumes that the word probability is irrelevant to the actual
word positions in the sentence.

The most obvious extension to the traditional ngram model is simply to enlarge the
number of history words and build up the higher-order ngram model [Carpenter 2005].
However, the high-order ngram model suffers from the curse of dimensionality [Novak and
Ritter 1998]. The bigram model and the trigram model are currently two prevalent language
models.

From another point of view, the paper relaxes the stationary hypothesis and enhances the
traditional ngram model by exploiting the word positional information. It is based on the
philosophy that most words are not only constrained by their contextual information, but also
influenced by their positions in the sentence. For example, the Chinese word “ !” (first of
all) is usually used to start a sentence, but rarely occurs elsewhere in the sentence. Then higher
probability should be assigned to it by a language model when it is in the front of a sentence,
and lower probability elsewhere. Moreover, some of punctuations, such as full stop and
exclamation, always appear at the end of a sentence. So it may be mistaken for a Chinese
sentence that the exclamation appears in the middle of it. Therefore, a language model can
benefit from modeling the word positional information.

This paper enhances the traditional ngram model by the exploitation of the word
positional information. The non-stationary ngram model (NS ngram model) is proposed.
Several related issues are discussed in detail, including the definition of the NS ngram model,
the representation of the word positional information and the estimation of the conditional
probability. In addition, three smoothing approaches are proposed to solve the data sparseness
problem of the NS ngram model. The NS ngram model is evaluated on the pinyin-to-character
conversion task which is the core technique of the Chinese text input method. Experimental
results show that the NS ngram model outperforms the traditional ngram model significantly
and the smoothing techniques proposed in this paper solve the data sparseness problem of the

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 129

NS ngram model effectively with great error rate reduction.

The remaining part of the paper is organized as follows. The related works are outlined in
section 2. In section 3, the NS ngram model is proposed and several related issues are
discussed in detail. In section 4, the data sparseness problem of the NS ngram problem is
addressed and three smoothing approaches are proposed. The experimental results and
discussions are presented in section 5 and the conclusion is drawn in section 6.

2. Related Works

There are many ways to improve the performance of the ngram model. The most obvious way
is to relax the limited history hypothesis and build up the high-order ngram model, which has
been discussed in the above section. Another way is to construct the skipping ngram model
[Rosenfeld 1994; Ney et al. 1994], in which the current word is constrained by the skipped
words in the word history, other than the adjacent words. The skipping ngram model can
exploit more information of history words and avoid the curse of dimensionality meanwhile.
In the experiments, it yields limited improvements by interpolating with the traditional ngram
model.

The class-based ngram model [Brown et al. 1992] is constructed based on word cluster
instead of word. The syntax and semantic information can be well captured in this way.
Meanwhile, the parameter space is reduced greatly and the data sparseness problem is
alleviated. However, the predictive capability of the class-based ngram model is much lower
than the traditional ngram model due to its small parameter space. It usually achieves limited
improvements by interpolating with the traditional ngram model.

The cache-based ngram model [Kuhn 1988; Kuhn and Mori 1990] assumes that people
tends to use words as few as possible in the article. If a word has been used, it would possibly
be used again in the future. The cache-based ngram model is usually utilized to construct a
self-adaptive language model.

3. Non-Stationary Ngram Model

This section firstly reviews the traditional ngram model briefly. Secondly, it defines the NS
ngram model formally. Thirdly, the word positional information is formalized. Finally, the
estimation method is provided for the conditional probability of the NS ngram model.

3.1 Ngram Model
Language model aims to determine the probability of the sequence of words. The sequence
probability is usually decomposed into the conditional probabilities of words which are
composed of sequences. For the sequence of

1 1 2 2, , ,...
m ml p l p l ps w w w= , its probability is

130 Jinghui Xiao et al.

calculated in formula (1):

1 1 2 2 1 1, , , ,
1

() (| , ...)
i i i i

m
l p l p l p l p

i
P s p w w w w

- -
=

= ’ , (1)

where ,i jl pw is the ith word in the lexicon and appears at the jth position in sequence S.

The ngram model makes the Markov hypothesis on the sequence so as to simplify
formula (1). The procedures are described in formula (2):

1 1 1 1 1 1, , ,
1 1

() (| ...) (| ...)
i i i n i n i i i i n i

m m
l p l p l p l l l

i i
P s p w w w p w w w

- + - + - - - + -
= =

ª ª’ ’ . (2)

Actually, there are two hypotheses implied by the Markov hypothesis:

1. The limited history hypothesis: the probability of current word is dependent only on
the previous n-1 words, but irrelevant to the whole history of words.

2. The stationary hypothesis: the word transition probability is determined only by the
words which consist of the transition probability, but irrelevant to the positions where
these words possess in the sequence.

Formula (1) is firstly simplified by the limited history hypothesis, resulted in the second item
of formula (2). Then, the stationary hypothesis is applied on it and the final form of the ngram
model is obtained, as represented by the last item of formula (2). The paper substitutes

il
w

for ,i jl pw since the conditional probability is irrelevant to word position. In literature, the
limited history hypothesis is referred to frequently, but seldom is the stationary hypothesis.

The most obvious way to extend the ngram model is simply to relax the limited history
hypothesis and involve more history information of words. The higher-order ngram model is
built up. However, the high-order ngram model suffers from the curse of dimensionality. As
the model order increases, the parameter space explodes at an exponential rate. The data
sparseness problem becomes very severe which hampers its applications gravely. From
another point of view, the paper relaxes the stationary hypothesis and enhances the ngram
model by the exploitation of the word positional information. The NS ngram model is
proposed. It is described in the following sections.

3.2 NS Ngram Model
As presented in section 1, the occurrence of words is relevant to their positional information in
sentence. It is beneficial for the language model to exploit the positional information to
determine the word probability. However, the Markov hypothesis is too restricted to exploit
the positional information due to its stationary assumption. The paper relaxes the stationary
hypothesis of the traditional ngram model and proposes a non-stationary ngram model. The
NS ngram model is formulized in as below:

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 131

1 1 1 1 1 1, , ,
1 1

() (| ...) (| ... ,)
i i i n i n i i i i n i

m m
l p l p l p l l l

i i
P s p w w w p w w w t

- + - + - - - + -
= =

ª =’ ’ . (3)

In the NS ngram model, formula (1) is simplified merely by the limited history hypothesis,
rather than the stationary hypothesis. The conditional probability of the current word is
determined not only by history words but also by the words’ positions in sentence. The paper
uses a single positional variable of t to denote the word positional information in formula (3).
The traditional ngram model is a special case of the NS ngram model in which t is a constant.

Important things for the NS ngram model are how to calculate the value of t and how to
estimate the conditional probability of word in formula (3).

3.3 Representation of t
Since t denotes the word positional information in a sentence, it is a natural way to take the
word position index as the concrete value of t. However, there are two serious problems with
this method. Firstly, index has different meanings in sentences of different lengths. For
example, there are two English sentences: “Yesterday I saw you” and “Yesterday I saw you
were looking around here”. In both of the sentences, the word “you” has the same position
index - 4. However, “you” appears at the end of the first sentence, while it is in the middle in
the second. It possesses completely different positional information in these two sentences.
Secondly, since a sentence may have arbitrary length, the t value can be any natural number.
But computer can not deal with infinite value.

A refined method is to use the ratio of the word position index to the sentence length,
which maps t into a real number in the range of [0, 1]. But there are infinite real numbers in
that range and it can not make statistics based on each real number.

This paper divides the above range into several equivalent classes (bins). It assumes that
the words in each bin share the same positional information. The value of t is set to the index
of the according class. More formally, the above procedures are described as below:

1. Calculate the ratio of the word position index to the sentence’s length, which maps t
into the range of [0, 1].

2. Divide the range into several bins. The words in each bin share the same positional
information.

3. Set the t value of current word as the index of the according bin.

Figure 1 shows an example of the above procedures:

132 Jinghui Xiao et al.

Figure 1. Calculation of the t value in NS ngram model

From the above procedures, the more number of bins it divides of the word sequence, the
more accuracy of the positional information is extracted from the sentence.

3.4 Training Method
The section discusses how to estimate the conditional probability in formula (3), which is the
training problem of the NS ngram model. Based on the representation of t in section 3.3, the
sentences in the training corpus are divided into the same number of bins. The words in each
bin share the same value of t. The paper builds up a specific ngram model for each value of t
within each bin. All these specific ngram models constitute of the NS ngram model. Using k to
denote the number of bins, there are totally k specific ngram models in the NS ngram model
with k bins. The conditional probability of

1 1
(| ... ,)

i i n il l lp w w w t
- + -

 is estimated under the
Maximum Likelihood Estimation (MLE) principle:

1

1 1
1 1

(... ,)
(| ... ,)

(... ,)
i n i

i i n i
i n i

l l
l l l

l l

C w w t
p w w w t

C w w t
- +

- + -

- + -

= . (4)

1
(... ,)

i n il lC w w t
- +

 is the occurrence times that the word sequence
1
...

i n il lw w
- +

 falls in the tth bin
of the sentences in the training corpus. It is similar to interpreting

1 1
(... ,)

i n il lC w w t
- + -

.

In order to calculate the probability of a sentence, the t value is firstly obtained for each
word. Then, the conditional probability of word is computed according to formula (4). Finally,
the sentence probability is calculated by formula (3). The traditional ngram model is a special
case of the NS ngram model in which there is only one bin.

4. Smoothing Techniques

As shown in section 3.4, there are totally k traditional ngram models in the NS ngram model
with k bins. The space complexity of the NS ngram model is consequently k times more than

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 133

the traditional ngram model. Data sparseness problem is an inherent and severe problem in the
traditional ngram model [Brown et al. 1992]. Therefore, it is more severe in the NS ngram
model. Figure 2 illustrates the data sparseness problem in the NS ngram model.

Figure 2. Data sparseness problem in NS ngram model

In Figure 2, the color of deep shade indicates that the data sparseness problem is severe
in the NS ngram model, while the color of light shade means that the problem is not severe.
As shown in Figure 2, there are two main factors in determining the degree of the data
sparseness problem in the NS ngram model. They are the model order n and the bin number k.
As n (or k) increases, the problem becomes more severe, and the estimated probability
becomes more unreliable.

It is necessary to start with these two factors to solve the data sparseness problem of the
NS ngram model. Considering the factor of the model order which is represented as the
vertical axis in Figure 2, the high-order NS ngram model can be smoothed by lower-order NS
ngram model, just as the traditional smoothing techniques do. It is our first smoothing
approach. Considering the factor of the bin number which is shown as the horizontal axis,
there are two ways to design the smoothing methods. The first way, the NS ngram model with
larger value of k can be smoothed by the NS ngram model with smaller value of k. In
particular, the traditional ngram model (k=1) can be utilized to smooth the NS ngram model
(k>1). It is our second smoothing approach. The second way, the paper builds up a more
compact form of the NS ngram model. It firstly constructs some statistical variables of the
word positional information from the bins of the NS ngram model. Then, it calculates a weight
from these variables for the traditional ngram probability. The weight is used to substitute for
the concrete positional information which tends to cause the data sparseness problem in the
NS ngram model. It is our third approach to smooth the NS ngram model. Until now, three
smoothing approaches have been provided in sketch. They will be described in the following

134 Jinghui Xiao et al.

sections in detail.

4.1 The First Approach
Since the NS ngram model is composed of several traditional ngram models, each of these
component ngram models can be smoothed separately by the traditional smoothing techniques.
The traditional smoothing techniques have been well studied before. Many smoothing
algorithms have been proposed, such as the additive smoothing [Jeffreys 1948], the
Good-Turing smoothing [Good 1953], the back-off smoothing [Katz 1987], the linear
interpolation smoothing [Jelinek and Mercer 1980], the Kneser-Ney smoothing [Kneser and
Ney 1995], and so on. Generally, they smooth the unreliable probabilities in the high-order
ngram model by the reliable probabilities in the low-order ngram model. The paper can not try
each existent smoothing algorithm on the NS ngram model. Three popular algorithms are
taken in the paper. They are the additive smoothing, the back-off smoothing and the linear
interpolation smoothing. The NS bigram model is taken as an example and the formulas are
listed as below.

Additive smoothing:

1

1
1

~ (, ,) 1
(| ,)

(,)
i i

i i
i

l l
l l

l

C w w t
P w w t

C w t l
-

-

-

+
=

+
 (5)

t is the positional variable which is defined in section 3.3; l is the lexicon size; and
~
p is the

smoothed probability of the NS bigram model.

Back-off smoothing:

1 1

1

1

~
~

(| ,) (, ,) 0
(| ,)

(,) (,)

i i i i

i i

i i

GT l l l l

l l
l l

P w w t if C w w t
P w w t

w t P w t otherwisea

- -

-

-

>Ï
Ô= Ì
ÔÓ

 (6)

PGT is the probability of the NS bigram model which is smoothed by the Good-Turing method.
It is formalized as below:

1

1
1

(, ,)
(| ,)

(,)
i i

i i
i

GT l l
GT l l

l

C w w t
P w w t

C w t
-

-

-

= (7)

and

1

1 1
1

((, ,) 1)
(, ,) ((, ,) 1)

((, ,))
i i

i i i i
i i

l l
GT l l l l

l l

E C w w t
C w w t C w w t

E C w w t
-

- -

-

+
= + ¥ (8)

E(C) is the expectation of the number of the bigram items which occurs C times in the corpus.
In reality, N(C) is usually substituted for E(C). N(C) is the concrete number of the bigram

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 135

items which actually occurs C times in the training corpus. Formula (8) is reformulated as
below:

1

1 1
1

((, ,) 1)
(, ,) ((, ,) 1)

((, ,))
i i

i i i i
i i

l l
GT l l l l

l l

N C w w t
C w w t C w w t

N C w w t
-

- -

-

+
= + ¥ (9)

However, N(C) can not be estimated reliably for some large values of C. At this time, formula
(9) can not work properly and problems occur in the Good-Turing method. In particular, when
C reaches its max value in the training corpus,

1
(, ,)

i iGT l lC w w t
-

 is calculated to be zero
according to formula (9) because N(C+1) is equal to zero. It is obviously wrong. In this paper,
a simple strategy is adopted to address the problem. Formula (7) and formula (9) are adopted
only for the small value of C (i.e. below a threshold). For the large value of C, it is regarded
that the bigram probabilities can be estimated reliably according to the word frequencies and
they need not to be smoothed. The MLE principle is applied on them directly.

In formula (6), $ is the coefficient for normalization and it is calculated as below:

1 1

1

1 1

~ ~

: (,) 0 : (,) 0

(,) (,)
(,)

(,) 1 (,)

i i

i

i i
l l l l l li i i i i i

l l
l

l l
w C w w t w C w w t

w t w t
w t

P w t P w t

b b
a - -

-

- -
= >

= =
-Â Â

 (10)

and

1 1

1
: (,) 0

(,) 1 (| ,)
i i i

l l li i i

l GT l l
w C w w t

w t P w w tb
- -

-
>

= - Â (11)

Linear interpolation smoothing:

1 1

~ ~
(| ,) () (| ,) (1 ()) (,)

i i i i il l l l lP w w t t P w w t t P w tl l
- -

= ¥ + - ¥ (12)

P is the probability of the NS bigram model which is estimated by formula (4); l(t) is the
coefficient which is a function of t and can be estimated by the EM algorithm on the held-out
corpus.

4.2 The Second Approach
As shown in Figure 2, when the value of k increases, there are more probability distributions
in the NS ngram model to be estimated on the training corpus. The conditional probability
becomes more specific and unreliable, and the data sparseness problem of the NS ngram
model becomes more severe. Usually, the smoothing techniques utilize the general and
reliable probability distributions to smooth the specific and unreliable ones. Therefore, it can
make use of the reliable probability of the NS ngram model with small k, to smooth the
unreliable probability of the NS model with large k. In particular, it can utilize the traditional

136 Jinghui Xiao et al.

ngram model (k=1) to smooth the NS ngram model (k>1). However, the traditional ngram
model also suffers from the data sparseness problem. Actually, the paper utilizes the smoothed
traditional ngram model in this approach.

Totally, three smoothing methods are investigated. They are the back-off method, the
linear interpolation method and the hybrid method. The formulas are listed as below.

Back-off smoothing:

1 1

1

1 1

~
~1

(| ,) (,) 0
(| ,)

(,) (|)

i i i i

i i

i i i

GT l l l l

l l
l l l

P w w t if C w w t
P w w t

w t P w w otherwisea

- -

-

- -

>Ï
Ô= Ì
ÔÓ

 (13)

$1 is the coefficient for normalization, and it can be calculated as below:

1 1

1

1 1

1 1

1 1
1

~ ~

: (,) 0 : (,) 0

(,) (,)
(,)

(|) 1 (|)

i i

i

i i i i
l l l l l li i i i i i

l l
l

l l l l
w C w w t w C w w t

w t w t
w t

P w w P w w

b b
a - -

-

- -

- -
= >

= =
-Â Â

 (14)

and

1 1

1

1

: (,) 0
(,) 1 (| ,)

i i i
l l li i i

l GT l l
w C w w t

w t P w w tb
- -

-
>

= - Â (15)

In formula (13),
1

~
(|)

i il lP w w
-

 is the traditional bigram probability smoothed by the back-off
method, and it is calculated as below:

1 1

1

1

~
~2

(|) () 0
(|)

() ()

i i i i

i i

i i

GT l l l l

l l
l l

P w w if C w w
P w w

w P w otherwisea

- -

-

-

>Ï
Ô= Ì
ÔÓ

 (16)

$2 is the coefficient for normalization, and it can be computed as below:

1 1

1

1 1

2 2
2

~ ~

: () 0 : () 0

() ()
()

() 1 ()

i i

i

i i
l l l l l li i i i i i

l l
l

l l
w C w w w C w w

w w
w

P w P w

b b
a - -

-

- -
= >

= =
-Â Â

 (17)

and

1 1

1

2

: () 0
() 1 (|)

i i i
l l li i i

l GT l l
w C w w

w P w wb
- -

-
>

= - Â (18)

Linear interpolation smoothing:

1 1 1

~ ~
(| ,) () (| ,) (1 ()) (|)

i i i i i il l l l l lP w w t t P w w t t P w wl l
- - -

= ¥ + - ¥ (19)

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 137

1

~
(|)

i il lP w w
-

 is the traditional bigram probability smoothed by the linear interpolation method,
and it is calculated by formula (20):

1 1

~
(|) (|) (1) ()

i i i i il l l l lP w w P w w P wq q
- -

= ¥ + - ¥ (20)

The coefficients of l(t) and q can be optimized by the EM algorithm on the held-out corpus.

Hybrid smoothing:

1 1 1

^ ~ ~
(| ,) () (| ,) (1 ()) (|)

i i i i i il l l l l lP w w t t P w w t t P w wl l
- - -

= ¥ + - ¥ (21)

1

~
(| ,)

i il lP w w t
-

 is the NS bigram probability smoothed by the back-off method, and it can be
calculated by formula (6);

1

~
(|)

i il lP w w
-

 is the traditional bigram probability smoothed by the
back-off method, and it can be calculated by formula (16). These two probabilities are
interpolated into a hybrid probability of

1

^
(| ,)

i il lP w w t
-

 which forms the hybrid smoothing
method.

4.3 The Third Approach
The above sections provide two smoothing approaches for the NS ngram model. They are
mainly based on the traditional smoothing techniques. This section proposes a novel
smoothing method and constructs a more compact model to solve the data sparseness problem
of the NS ngram model.

As shown in Figure 2, the model order and the bin number are two main factors in
determining the degree of the data sparseness problem in the NS ngram model. The first one is
also the dominant factor of the traditional ngram model. Then, the data sparseness in the NS
ngram model, which is brought forth by the first factor, can be regarded as inheriting from the
traditional ngram model. The second factor is specific to the NS ngram model. It brings forth
the data sparseness problem when the positional information is modeled. Based on the above
analysis, the smoothing method for the NS ngram model can be decomposed into two steps.
The first step is to solve the data sparseness problem which is brought forth by modeling the
word positional information. Some statistical variables are constructed to substitute for the
concrete positional information. A more compact model is built up. The second step is to solve
the data sparseness problem which is inherited from the traditional ngram model. The
traditional smoothing techniques are utilized.

After describing the motivation and the technique sketch, the formula is presented as
below:

138 Jinghui Xiao et al.

2

1 1
1

()
~ ~((()))1(| ,) (|)

()

li

li
i i i i

i

V w
t E w

l l l l
l

p w w t e p w w
Z w

a
b

- -

-

¥

- += ¥ (22)

where

l t is the positional variable.

l ()
il

E w is the expectation of the positional information of
il

w in the training corpus.

l ()
il

V w is the variance of the positional information of
il

w in the training corpus.

l and ! are the coefficients to adjust the weight.

l
1

~
(|)

i il lp w w
-

 is the smoothed traditional bigram probability. Any smoothing algorithm,
such as the back-off algorithm and the linear interpolation algorithm, can be applied.

l
1

()
il

Z w
-

 is the factor for normalization and it is defined as below:

2

1 1

()
~((()))

1
() (|)

li
i

li
i i i

i

V w
l l t E w

l l l
l

Z w e p w w

a
b

- -

¥
= - +

=
= ¥Â (23)

l l is the size of the lexicon

To smooth the word positional information, the paper aims at reducing the parameter
number of the NS ngram model. Different from the clustering technique in the class-based
ngram model [Brown et al. 1992], the paper constructs the statistical variables of the word
positional information to substitute for the concrete value of t in the NS ngram model. Two
statistical variables are calculated: the expectation and the variance. The weight is computed
for the bigram probability according to these variables. Such an assumption is made that more
weight should be awarded if the current word position fits in better with the training corpus,
and less weight vice versa. According to the assumption, the term of t-E(wli), which defines
the difference between the current word position and its average position in the training corpus,
is adopted in formula (22). As the value decreases, t fits in with the training corpus better and
more weight should be awarded. Henceforth, the weight function is descendent with the value
of t-E(wli) as formula (22) shows. Moreover, the weight function is ascendant with the
variance V(wli). The term V(wli) is mainly used to balance the value of the term t-E(wli) for
some active words. For example, some adjectives can appear at any position in a sentence.
Then it is unreasonable to decrease the weight just as the term t-E(wli) increases. In such a
situation, the value of V(wli) of the active word is usually bigger than that of the inactive. Then
it can provide a balance for the value of t-E(wli). Until now, the section has described the
method to solve the data sparseness problem which is brought forth by modeling the word
positional information. It is the first step of this approach to smooth the NS ngram model. It

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 139

should be noticed that the way to constructing the weight is a purely empirical method. There
is no theoretic foundation on it. However, it performs pretty well in the experiments, as
presented later in section 5.4.3. In the second step, the traditional smoothing techniques can be
adopted to solve the data sparseness problem which inherits from the traditional ngram model.
The paper investigates two smoothing techniques: the back-off smoothing and the linear
interpolation smoothing.

Moreover, the coefficients of and ! can be optimized by some automatic methods on
the held-out corpus. The genetic algorithm is adopted in this paper. It is presented as below:

Algorithms: Genetic algorithm to optimize and !

Input: The held-out corpus

Output: The optimal value of and !

1. Initiation: generate the initial population of and ! randomly

2. Evolution of population

 Step 1: calculate fitness for each individual

 Step 2: selection

 Step 3: crossover

 Step 4: mutation

 Step 5: if termination criterion is met

 go to 3

 else

 go to step 1

3. Choose the best individual as the solution

The actual performance of formula (22) on the held-out corpus is taken as the fitness function
in the above algorithm.

Until now, a compact NS ngram model has been built up in the section. The parameter
space is reduced by substituting the statistical variables for the concrete positional information,
which results in a space complexity of O(ln+2l+2). The data sparseness problem is alleviated.
However, the predictive capability is also lowered to some extent due to the small parameter
space, which is the limitation of this smoothing approach. To overcome the above drawback,
the paper constructs the statistical variables for the word ngram other than for the word itself.
It results in a larger space complexity of O(3¥ln), and therefore yields a more powerful
predictive capability. In addition, the compact model has a slight higher time complexity than
the normal NS ngram model by calculation of the weight function.

140 Jinghui Xiao et al.

5. Experiments and Discussions

This section evaluates the NS ngram model and its smoothing techniques on the
pinyin-to-character conversion task which is the core technique of the Chinese keyboard input
method. The section is organized as follows. Firstly, the task and the data set are described.
Secondly, the non-stationary property of words is investigated in a statistical way so as to
verify the motivation of the paper. Thirdly, the performance of the NS ngram model is
presented and compared with the traditional ngram model. Finally, the smoothing algorithms
proposed in the paper are evaluated and the performances of the smoothed NS ngram model
are provided.

5.1 Task and Data Set Description
Task Description

The standard keyboard is initially designed for native English speakers. In Asia, such as China,
Japan and Thailand, people can not input their language through the standard keyboard
directly. Asian text input becomes the challenge for the computer users in Asia. Asian
language input method is one of the most important techniques in Asian language processing.
The pinyin-based input method is the most important Chinese text input method. There are
over 97% of Chinese computer users using pinyin to input Chinese text [Chen 1997].
According to the scale of the input unit, the pinyin-based input method can be categorized into
three types: the character-level input method, the word-level or phrase-level input method and
the sentence-level input method respectively. The sentence-level input method becomes the
most prevalent pinyin-based input method due to its high precision. The pinyin-to-character
conversion task aims to convert the sequence of pinyin strings into one Chinese sentence. It is
the core technique of the sentence-level pinyin-based Chinese text input method. Therefore,
the improvement on the pinyin-to-character conversion task has a great effect on Chinese text
input method.

In Chinese, there are totally 410 pinyin symbols (without the tone information) which
correspond to more than 30,000 Chinese characters. For a certain inputted pinyin sequence,
there are many candidates of Chinese character sequence corresponding to it, but only one is
what the user really wants to obtain. Language model is to select the most probable one among
these candidates. Error rate is usually used to evaluate the performance of a language model
on this task.

The pinyin-to-character conversion task can also be taken as a simplified automatically
speech recognition task [Gao et al. 2005]. Both of the two tasks aim to convert the phonetic
information into the character sequence. However, unlike the speech recognition task, the
pinyin-to-character conversion task doesn ’t have to deal with the acoustic ambiguity because

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 141

the pinyin strings are directly inputted on the keyboard by user. Therefore, our techniques also
illuminate to the speech recognition task.

Text Corpus

The paper chooses the 6763 Chinese frequent characters as lexicon. Two sets of the People ’s
Daily corpus are adopted in the experiments: the half year of corpus in 1998 for the
experiments of the NS bigram model and the whole year of corpus in 2000 for the experiments
of the NS trigram model. Each set of corpus is divided into three parts: the training corpus, the
held-out corpus and the testing corpus. The detailed information is listed in Table 1.

Table 1. Description of text corpus

Training

(months / #characters)
Held-out

(months / #characters)
Testing

(months / #characters)

People’s Daily
corpus in 1998

1-5 months
9.09¥106

1/3 of 6th month
6.29¥105

2/3 of 6th month
1.25¥106

People’s Daily
corpus in 2000

1-11 months
2.27¥107

1/3 of 12th month
7.01¥105

2/3 of 12th month
1.40¥106

The paper chooses the large scale of corpus for the NS trigram model since its parameter
space is much larger than that of the NS bigram model. In what follows, the paper presents the
distributions of the lengths of the sentences in those corpora. The information is crucial to
evaluating the NS ngram model which exploits the positional information of word in the
sentences. The distributions are presented in Figure 3.

0 10 20 30 40 50 60 70 80 90 100 110 120
0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
a

ti
o

Sentence Length

 Training Corpus

 Held-out Corpus

 Testing Corpus

0 10 20 30 40 50 60 70 80 90 100 110 120
0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
a

ti
o

Sentence Length

 Training Corpus

 Held-out Corpus

 Testing Corpus

Figure 3. Distributions of the sentence length in text corpus

142 Jinghui Xiao et al.

According to Figure 3, most of the lengths of the sentences fall in the range from 10 to 60. The
average lengths of sentences are 27.41 on the corpus in 1998, and 29.64 on the corpus in 2000
respectively. Moreover, the distributions of the sentences ’ lengths are much similar to each
other among the three parts of the text corpus.

Pinyin Corpus

The pinyin corpus is necessary for evaluating the NS ngram models on the pinyin-to-character
conversion task. The paper gets the pinyin corpus from the above text corpus by a conversion
toolkit1 which yields 99.7% accuracy evaluated on a golden corpus. When the NS ngram
models are evaluated, the pinyin corpus is firstly converted into the text corpus by the NS
ngram model. Then, the converted results are compared with the standard text corpus and the
error rate is calculated. As the pinyin corpus is not a golden corpus, the errors in the pinyin
corpus could lead to the conversion error of the NS ngram model. Therefore, the actual error
rate of the NS ngram model is a little lower than the reported results in the paper and the NS
ngram model could get a little better performance in the real system. However, since there are
not many errors in the pinyin corpus because of the high precision of the conversion toolkit,
the reported error rate of the NS ngram model can be regarded to be close enough to the actual
error rate.

5.2 Non-Stationary Property of Words
Section 1 has provided some intuitive examples for the non-stationary property (NS property)
of words. However, the intuition is not enough for our motivation of the paper. The section
will further present some statistical evidences.

The NS property assumes that word behaves differently in different portions of sentences.
Then their probability distributions would be different in different portions. The more
differences between these distributions, the more positional information has been implied by
word. The section investigates the probability distributions in the NS bigram model, and
presents their differences by comparing them with the distribution in the traditional bigram
model. The Kullback-Leibler (KL) distance [Cover and Thomas 1991] is taken as the metric.
And only if the distances are great enough, could the NS bigram model be expected to
outperform the traditional bigram model; otherwise, they would have similar performances.

As mentioned in section 3, there are totally k probability distributions in the NS ngram
model with k bins. So there are k different KL distances to be calculated between the
traditional bigram model and the NS bigram model. The section calculates these KL distances

1 The toolkit can be obtained freely from the link:

http://www.insun.hit.edu.cn/product/viewproduct.asp?id=105

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 143

for the NS bigram model with different k values. The experimental results are summarized in
Table 2.

Table 2. The KL distances between the traditional bigram model and the NS bigram
model

Bin number

Bin index
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

t=1 0 0.11 0.15 0.19 0.24 0.28 0.32 0.37
t=2 --- 0.05 0.08 0.08 0.10 0.11 0.12 0.14
t=3 --- --- 0.13 0.09 0.09 0.09 0.09 0.10
t=4 --- --- --- 0.21 0.10 0.09 0.09 0.09
t=5 --- --- --- --- 0.32 0.12 0.10 0.09
t=6 --- --- --- --- --- 0.42 0.13 0.10
t=7 --- --- --- --- --- --- 0.52 0.14
t=8 --- --- --- --- --- --- --- 0.62

Average KL Distance 0 0.08 0.12 0.15 0.17 0.18 0.19 0.21

In the row of Table 2, the section lists the NS bigram models with various values of k
which are up to 8. In the column, it calculates the KL distance between each distribution of the
NS bigram model and the distribution of the traditional bigram model. At last, it calculates the
average KL distance for each NS bigram model.

According to the experimental results in Table 2, it is found that as k increases, the
average KL distance becomes larger and larger, indicating that there are more and more
differences between the distributions of the NS bigram model and that of the traditional
bigram model. Therefore, more and more positional information is modeled by the NS bigram
model, and more predictive capability is expected. Moreover, focusing on a certain column in
Table 2, i.e. the column of k=5, it calculates the KL distance for each distribution of the NS
bigram model with 5 bins. It is found that the KL distances calculated from the marginal
positions are greater than the distances from the middle ones. For example, the KL distances
of t=1 (0.24) and t=5 (0.32) are greater than the distance of t=3 (0.09). It is more obvious for
the lager value of k. It indicates that the distributions in the marginal positions represent more
positional information, and therefore contribute more to the ultimate performance of the NS
bigram model than the middle ones.

5.3 Experiments of NS Ngram Model
This section evaluates the un-smoothed NS ngram model on the pinyin-to-character
conversion task. Two sets of experiments, the close test and the open test, are carried out. The

144 Jinghui Xiao et al.

test on the training corpus is referred to as the close test; and the test on the testing corpus is
referred to as the open test. In order to avoid the zero-probability problem in the open test, the
paper adds a small value2 to the zero-frequency words when estimating their probabilities.
The un-smoothed traditional ngram model is taken as the baseline model. Both the NS bigram
model and the NS trigram model are investigated. The experimental results of the NS bigram
model are firstly presented in Table 3.

Table 3. Experimental results of the NS bigram model
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Error Rate 8.30% 7.17% 6.55% 6.08% 5.74% 5.43% 5.19% 4.98% Close

test Reduction --- 13.61% 21.08% 26.75% 30.84% 34.58% 37.47% 40.00%

Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% Open

test Reduction --- 15.70% 12.09% 9.08% 6.95% 4.94% 3.01% 1.07%

As mentioned in section 3.4, the traditional bigram model can be regarded as the NS
bigram model in which k=1. According to the experimental results in Table 3, the NS bigram
model outperforms the traditional bigram model significantly. It yields as much as 40% error
rate reduction in the close test, and 15.7% reduction in the open test. It proves that the NS
bigram model has more powerful predictive capability than the traditional bigram model.
Moreover, as the value of k increases, the error rate of the NS bigram model in the close test is
reduced constantly, proving that the improvement of the NS ngram model is due to the
increasing positional information of word. However, in the open test, the error rate stops
decreasing after k=2, because the data sparseness problem becomes more severe as k
increases.

The NS trigram model is also investigated. The experimental results are presented in
Table 4.

Table 4. Experimental results of the NS trigram model
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Error Rate 2.21% 1.80% 1.73% 1.65% 1.61% 1.59% 1.57% 1.57% Close
test Reduction --- 18.55% 21.71% 25.34% 27.15% 28.05% 28.96% 28.96%

Error Rate 18.92% 19.72% 20.55% 21.34% 21.94% 22.61% 23.22% 23.74% Open
test Reduction --- -4.06% -8.61% -12.79% -15.96% -19.50% -22.72% -25.47%

2 It is the minimum positive floating point value in the Windows system (the DBL_MIN constant), and

has the value of 2.22¥10-308.

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 145

The experimental results are similar to those of the NS bigram model. As presented in
Table 4, the NS trigram model outperforms the traditional trigram model significantly in the
close test, and has achieved as much as 28.96% error rate reduction. It proves that the NS
trigram model is more powerful than the traditional trigram model. Moreover, the error rate
decreases along with the k value, proving that the improvements of the NS trigram model are
due to the increasing positional information of word. However, unlike the NS bigram model,
the NS trigram model performs worse in the open test, indicating that the NS trigram model
suffers from much more severe data sparseness problem than the NS bigram model even
though a larger training corpus is adopted in the experiments.

To sum up, the NS ngram model achieves great improvements by exploiting the word
positional information; however, it suffers from severe data sparseness problem. The
following sections will investigate the smoothing techniques presented in section 4, and
provide the experimental results of the smoothed NS ngram model. Without loss of the
generality, all the following experiments are carried out on the NS bigram model.

5.4 Experiments of Smoothing Techniques
This section firstly investigates the three smoothing approaches separately. Then, these
techniques are compared to each other and some conclusions are drawn. Finally, it investigates
the performance of each probability distribution of the smoothed NS bigram model so as to
gain further insight. All the experiments are carried out in the open test since the data
sparseness problem occurs only on the unseen data.

5.4.1 The First Approach
This approach smoothes the probability distributions in the NS bigram model by the
traditional smoothing techniques. Totally three smoothing algorithms are investigated: the
additive smoothing, the back-off smoothing and the linear interpolation smoothing. The
techniques have been well presented in section 4.1. The un-smoothed NS bigram model is
taken as the baseline model from which the error rate reduction is calculated. The
experimental results are provided in Table 5.

Firstly, according to the experimental results, the traditional smoothing techniques
smooth the NS bigram model effectively. It yields great error rate reductions on the
pinyin-to-character conversion task. For example, as much as 15.77% error rate reduction has
been yielded by the back-off smoothing technique. Secondly, the error reductions of the
smoothed NS bigram model become more significant when k>2. It indicates that as the value
of k increases, the data sparseness problem becomes more and more severe, and the smoothing
technique plays a more important role. However, the most significant error rate reduction
occurs at k=1 which is the traditional bigram model. It is for the reason that the baseline

146 Jinghui Xiao et al.

accuracy of the traditional bigram model is relative lower than those of the NS bigram models.
Thirdly, the error rate of the smoothed NS bigram model still increases when k>2, just as the
un-smoothed NS bigram model does. It proves that the NS bigram model smoothed by this
approach can not make full use of the increasing positional information of word so as to gain
further improvements. It indicates that this smoothing approach can only alleviate the data
sparseness problem of the NS bigram model, but can not really solve it.

Table 5. Experimental results of the first smoothing approach

Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81%

Error Rate 13.63% 12.22% 12.58% 12.9% 13.12% 13.41% 13.61% 13.87%
Additive

Reduction 8.95% 3.17% 4.41% 5.22% 5.81% 5.76% 6.27% 6.35%

Error Rate 12.4% 10.88% 11.24% 11.54% 11.78% 12.05% 12.23% 12.51%
Back-off

Reduction 17.17% 13.79% 14.58% 15.21% 15.43% 15.32% 15.77% 15.53%

Error Rate 12.17% 11.00% 11.42% 11.79% 12.07% 12.35% 12.58% 12.86%
Interpolation

Reduction 18.7% 12.84% 13.22% 13.37% 13.35% 13.21% 13.50% 13.17%

5.4.2 The Second Approach
In the second approach, the paper smoothes the NS bigram model by the traditional bigram
model. Three smoothing algorithms are provided. They are the back-off method, the linear
interpolation method and the hybrid method, as described in section 4.2. The experimental
results are presented in Table 6.

Table 6. Experimental results of the second smoothing approach
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81%

Error Rate 12.4% 10.54% 10.83% 11.16% 11.47% 11.83% 12.18% 12.49%
Back-off

Reduction 17.17% 16.48% 17.71 18% 17.66% 16.87% 16.12% 15.67%

Error Rate 12.17% 10.46% 10.46% 10.44% 10.4% 10.37% 10.36% 10.37%
Interpolation

Reduction 18.7% 17.12% 20.52% 23.29% 25.34% 27.13% 28.65% 29.98%

Error Rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13%
hybrid

Reduction 17.17% 17.43% 21.43% 24.54% 26.70% 28.60% 30.30% 31.80%

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 147

According to the experimental results, the second smoothing approach is more effective
in smoothing the NS bigram model than the first one. For example, the hybrid method yields
as much as 31.8% error rate reduction which is much higher than the best result of the first
smoothing approach (which is 15.77% yielded by the back-off method). Moreover, for the
linear interpolation method and the hybrid method, the error rate of the smoothed NS bigram
model no longer increases along with the k value as the un-smoothed NS bigram model does,
but decreases constantly. It proves that the NS bigram model smoothed by these methods can
make full use of the increasing positional information of word and get further improvements.
It can be concluded that these smoothing methods can really solve the data sparseness problem
of the NS bigram model, rather than just alleviate the problem. The back-off smoothing
method does not perform as well as the above two methods because it is based on the model
selection methodology and can not make full use of each component model.

5.4.3 The Third Approach
The third approach smoothes the NS bigram model by reducing its parameter space and
building up a more compact model. The statistical variables are utilized to substitute for the
concrete positional information. A weight is calculated from these variables for the traditional
bigram probability. The traditional smoothing techniques are utilized to smooth the bigram
probability. Two smoothing techniques are investigated in the section: the back-off smoothing
and the linear interpolation smoothing. The coefficients of and ! are optimized by the
genetic algorithm on the held-out corpus. The settings of the genetic algorithm are presented
in Table 7.

 Table 7. Settings of the genetic algorithm

Population size 30

Probability of reproduction 0.1

Probability of crossover 0.65

Probability of mutation 0.2

Selection mechanism Rank selection

Crossover mechanism Arithmetical crossover

Mutation mechanism Normal mutation

Fitness function Error rate of the pinyin-to-character converter

The un-smoothed NS bigram model is taken as the baseline model. The experimental results
are presented in Table 8.

148 Jinghui Xiao et al.

Table 8. Experimental results of the third smoothing approach
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81%

Error Rate 12.4% 10.59% 10.47% 10.47% 10.43% 10.43% 10.43% 10.41%
Back-off

Reduction 17.17% 16.09% 20.44% 23.07% 25.13% 26.70% 26.70% 29.71%

Error Rate 12.17% 10.56% 10.48% 10.44% 10.43% 10.42% 10.43% 10.4%
Interpolation

Reduction 18.7% 16.32% 20.36% 23.29% 25.13% 26.77% 28.17% 29.78%

Firstly, according to the experimental results, this approach can smooth the NS bigram
model effectively. It achieves as much as 29.78% error rate reduction which is slightly lower
than the second approach’s (31.8%), whereas much higher than the first one ’s (15.77%). This
smoothing approach can not achieve the best performance because the compact model has a
smaller parameter space and its predictive capability is lower than that of the NS bigram
model. Secondly, the error rate of the smoothed NS bigram model decreases along with the k
value constantly. It proves that the approach can really solve the data sparseness problem of
the NS bigram model, just as the second approach does. Finally, the performance of the
smoothed NS bigram model becomes stably after k=2, which indicates that a small number of
bins are enough to estimate the statistical variables and get the performance improvements.

5.4.4 Comparisons
This section compares the performances of the three smoothing approaches with each other. In
each approach, it presents the smoothing algorithm which yields the best experimental results.
The smoothed traditional bigram model is also presented for comparison. The results are
summarized in Figure 4.

According to Figure 4, several conclusions can be drawn as follows. Firstly, the
smoothed NS bigram model outperforms the smoothed traditional bigram model significantly
by the exploitation of the word positional information. Secondly, all the smoothing approaches
smooth the NS bigram model effectively with great error rate reduction. Thirdly, the second
and the third approaches perform better than the first one. They can make full use of the
positional information and really solve the data sparseness problem of the NS bigram model.
Finally, the third approach yields the comparable experimental results with the second one,
while it needs much smaller parameter space.

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 149

0 1 2 3 4 5 6 7 8 9

9

10

11

12

13
E

rr
o

r
R

a
te

(%
)

Bin Number: K

 the smoothed traditional bigram

 the first approach to NS bigram

 the second approach to NS bigram

 the third approach to NS bigram

Figure 4. Comparison of the three smoothing approaches

5.4.5 Performance of Each Distribution in NS Bigram Model
In section 5.2, it has presented the NS property of words by investigating the probability
distributions in the NS bigram model. In order to gain more insight, this section presents the
performance of each probability distribution in the NS bigram model and evaluates their
contributions to the ultimate performance of the NS bigram model.

Generally speaking, it can not tell exactly which probability distribution in the NS
bigram model leads to a certain error in the pinyin-to-character conversion process. An
approximate method is then provided. The section simply divides each sentence of the test
corpus into several bins according to the method in section 3.3, and then calculates the error
rate in each bin separately. Each error rate corresponds to the performance of a particular
probability distribution in the NS bigram model. All the following experiments are carried out
in the open test. The hybrid algorithm in the second approach is utilized to smooth the NS
bigram model. It yields the best experimental results in the above sections. The NS bigram
model is built up on various values of k which are up to 8. The experimental results are
summarized in Table 9.

150 Jinghui Xiao et al.

Table 9. Performance of each probability distribution in the NS bigram model

Bin number

Bin index
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

t=1 12.4% 11.29% 11.06% 10.93% 10.70% 10.52% 10.42% 10.28%

t=2 --- 9.48% 11.46% 11.18% 11.05% 10.93% 10.85% 10.77%

t=3 --- --- 8.29% 11.39% 11.50% 11.20% 11.20% 10.99%

t=4 --- --- --- 7.14% 10.96% 11.45% 11.23% 11.24%

t=5 --- --- --- --- 6.13% 10.58% 11.17% 11.54%

t=6 --- --- --- --- --- 5.33% 10.18% 11.09%

t=7 --- --- --- --- --- --- 4.52% 9.62%

t=8 --- --- --- --- --- --- --- 3.81%

Overall error rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13%

In the row of Table 9, the section lists the NS bigram model with various values of k
which are up to 8. In the column, it presents the error rate of each probability distribution of
the NS bigram model. In the last line, it lists the overall error rate of the NS bigram model.

Focusing on a certain column in Table 9, the error rates of the probability distributions in
the marginal positions are generally lower than those in the middle positions in the NS bigram
model. For example, in the NS bigram model with k=5, the error rates of t=1(10.7%) and
t=5(6.13%) are much lower than the error rate of t=3 (11.5%). It is more obvious for the
larger values of k. The experimental results verify our speculations in section 5.2 and prove
that the distributions in the marginal positions have more predictive capabilities than the
middle ones, and consequently contribute more to the ultimate performance of the NS bigram
model. In addition, it is found that the error rate at the end position is much lower than those
in other positions. In the above example, the error rate of t=5(6.13%) is much lower than
others. It is because many of punctuations are modeled in this probability distribution. These
punctuations, such as full stop and exclamation, always appear at the end of the sentence.
Their positional information is much richer than words ’. Therefore, the predictive capability
of the probability distribution at the end position is much more powerful than other
distributions in the NS bigram model, and it yields much higher performance.

6. Conclusions

This paper enhances the traditional ngram model by relaxing the stationary hypothesis and
exploring the word positional information. The non-stationary ngram model is proposed.
Several related issues are discussed in detail, including the definition of the NS ngram model,

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 151

the representation of the word positional information and the estimation of the conditional
probability. In addition, three smoothing approaches are proposed to solve the data sparseness
problem of the NS ngram model. Several smoothing algorithms are presented in each
approach. In the experiments, the NS ngram model and its smoothing techniques are evaluated
on the pinyin-to-character conversion task which is the core technique of Chinese text input
method. According to the experimental results, several conclusions are drawn as follows:

1. The NS ngram model outperforms the traditional ngram model significantly by the
exploitation of the word positional information; however, it suffers from severe data
sparseness problem.

2. The traditional smoothing techniques are effective in smoothing the NS ngram model;
however, they can only alleviate the data sparseness problem without solving it
completely.

3. The traditional ngram model is utilized to smooth the NS ngram model. Combined
with the traditional smoothing techniques, this smoothing approach can solve the data
sparseness problem completely and achieve the best experimental results.

4. The third smoothing approach can also solve the data sparseness problem of the NS
ngram model, and it yields a comparable experimental result to the second approach
at the cost of a smaller parameter space.

5. Among the probability distributions in the NS ngram model, the distributions in the
marginal positions have more predictive capability than the middle ones, and
therefore contribute more to the ultimate performance of the NS ngram model.

Acknowledgments
This investigation was supported by the key project of the National Natural Science
Foundation of China (“Research on Theory and Technique of Question-Answering
Information Retrieval”, grant No.60435020), the project of the National Natural Science
Foundation of China (“Research on the Non-stationary Property of Language Element in
Natural Language Processing”, grant No.60673037), the project of the High Technology
Research and Development Program of China (“Intelligent Search Engine based on Natural
Language Processing”, grant No. 2006AA01Z197) and the project of MOE-MS Key
Laboratory of Natural Language Processing and Speech in China (“Lexicon Construction for
Statistical Language Modeling on Special Area ”, grant No.01307620).

We especially thank the anonymous reviewers for their valuable suggestions and
comments.

152 Jinghui Xiao et al.

References
Brown, P. F., S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer, “The Mathematics of

Statistical Machine Translation: Parameter Estimation, ” Computational Linguistics,
19(2), 1992, pp. 269-311.

Brown, P. F., V. J. D. Pietra, and P. V. deSouza, “Class-based n-gram models of natural
language,” Computational Linguistics, 18(4), 1992, pp. 467-479.

Carpenter, B., “Scaling high-order character language models to gigabytes, ” In Proceedings of
the Association for Computational Linguistics Software Workshop , 2005, Ann Arbor.

Chen, Y., Chinese Language Processing, Shanghai education publishing company, 1997.
Cover, T. M., and J. A. Thomas, Elements of Information Theory, John Wiley & Sons Inc.,

New York, 1991.
Gao, J. F., H. Yu, and W. Yuan, “Minimum Sample Risk Methods for Language Modeling, ”

In Proceedings of Human Language Technology Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP 2005) , Oct 6-8, 2005, Vancouver, Canada.

Good, I. J., “The population frequencies of species and the estimation of population
parameters,” Biometrika, 40(16), 1953, pp. 237-264.

Jeffreys, H., Theory of Probability, 2nd Edition, The Clarendon Press, Oxford, 1948.
Jelinek, F., Statistical methods for speech recognition, The MIT Press, Cambridge, Mass,

1997.
Jelinek, F., and R. L. Mercer, “Interpolated estimation of Markov source parameters from

sparse data,” In Proceedings of the Workshop on Pattern Recognition in Practice ,
Amsterdam, 1980, pp. 381-397.

Katz, S. M., “Estimation of probabilities from sparse data for the language model component
of a speech recognizer,” IEEE Transactions on Acoustics, Speeech and Signal
Processing, 35(3), 1987, pp. 400-401.

Kneser, R., and H. Ney, “Improved backing-off for m-gram language modeling, ” In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, vol 1, 1995, pp. 181-184.

Kolak, O., W. Byrne, and P. Resnik, “A generative probabilistic OCR model for NLP
applications,” In Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology
(HLT-NAACL 2003), Edmonton, Alberta, Canada, May 2003.

Kuhn, R., “Speech Recognition and the Frequency of Recently Used Words: A Modified
Markov Model for Natural Language, ” In Proceedings of 12th International Conference
on Computational Linguistics (COLING 1988), pp. 348-350, Budapest, August 1988.

Kuhn, R., and R. D. Mori, “A Cache-Based Natural Language Model for Speech
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence , 12(6),
1990, pp. 570-583.

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques 153

Lafferty, J., A. McCallum, and F. Pereira, “Conditional random field: Probabilistic models for
segmenting and labeling sequence data,” In Proceedings of the International Conference
on Machine Learning (ICML 2001) , 2001, pp. 282-289.

Manning, C. D., and H. Schutze, Foundation of Statistic Natural Language Processing, The
MIT Press, 1999.

McCallum, A., D. Freitag, and F. Pereira, “Maximum Entropy Markov Models for
Information Extraction and Segmentation,” In Proceedings of the International
Conference on Machine Learning (ICML 2000) , Stanford, CA, USA, 2000, pp. 591-598.

Ney, H., U. Essen, and R. Kneser, “On structuring probabilistic dependences in stochastic
language modeling,” Computer, Speech, and Language , 8, 1994, pp. 1-38.

Novak, E., and K. Ritter, “The curse of dimension and a universal method for numerical
integration,” In Multivariate Approximation and Splines, G. Nurnberger, J.W. Schmidt,
G. Walz (eds.), 1998.

Rosenfeld, R, “Adaptive statistical language modeling: a maximum entropy approach, ” The
Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA. 1994.

Xiao, J. H., B. Q. Liu, and X. L. Wang, “Principles of Non-stationary Hidden Markov Model
and its Applications on Sequence Labeling Task,” In Proceedings of 2th International
Joint Conference on Natural Language Processing (IJCNLP 2005) , Lecture Notes on
Artificial Intelligent, Jeju, Korea, Oct 11-13, 2005, pp. 827-837.

154 Jinghui Xiao et al.

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 155-174 155

” The Association for Computational Linguistics and Chinese Language Processing

[Received March 18, 2007; Revised June 23, 2007; Accepted July 2, 2007]

Hierarchical Web Catalog Integration with Conceptual

Relationships in a Thesaurus

Ing-Xiang Chen
*
, Jui-Chi Ho

*
, and Cheng-Zen Yang

*

Abstract

Web catalog integration has become an integral aspect of current digital content
management for Internet and e-commerce environments. The Web catalog
integration problem concerns integration of documents in a source catalog into a
destination catalog. Many investigations have focused on flattened
(one-dimensional) catalogs, but few works address hierarchical Web catalog
integration. This study presents a hierarchical catalog integration (EHCI) approach
based on the conceptual thesauri extracted from the source catalog and the
destination catalog to improve performance. Experiments involving real-world
catalog integration are performed to measure the performance of the improved
hierarchical catalog integration scheme. Experimental results demonstrate that the
EHCI approach consistently improves the average accuracy performance of each
hierarchical category.

Keywords: Hierarchical catalog integration, conceptual relationships, thesaurus,
Support Vector Machines (SVMs)

1. Introduction

Automatically integrating various information sources is pertinent for many real applications
given the large, and still rapidly growing, amount of information available. For instance, an
on-line service provider may merge various catalogs from other on-line vendors into its local
catalog to provide customers with versatile content, and a Web portal may also have to
integrate different Web catalogs from other portals to provide increasingly abundant
information services to users [Agrawal and Srikant 2001]. In these examples, users can gain
more relevant and organized information in an integrated catalog. They can also save
considerable time, because they do not need to browse different Web catalogs. According to

* Dept. of Computer Sci. and Eng., Yuan Ze University, 135 Yuan-Tung Rd., Chungli, 320, Taiwan.
Tel.: +886-3-4638800 ext: 2361 Fax: +886-3-4638850.
The author for correspondence is Cheng-Zen Yang.
E-mail: czyang@syslab.cse.yzu.edu.tw

156 Ing-Xiang Chen et al.

previous studies [Keller 1997; Stonebraker and Hellerstein 2001; Kim et al. 2002; Marrón et
al. 2003], Web catalog integration has attracted much research interest.

Web catalog integration is not just a straightforward classification task [Agrawal and
Srikant 2001]. Exploring implicit source information can effectively improve the integration
accuracy [Agrawal and Srikant 2001]. Many methods for enhancing catalog integration
performance have been proposed so far. The most important approach, called ENB, enhances
the Naive Bayes classifiers with implicit source information. Other state-of-the-art approaches,
including Support Vector Machines (SVMs) [Sarawagi et al. 2003; Tsay et al. 2003; Zhang
and Lee 2004a; Chen et al. 2005; Chen et al. 2006; Ho et al. 2006] and the Maximum Entropy
model [Wu et al. 2005], have been also presented to elevate the performance of Web catalog
integration, and they further outperform the ENB approach.

 Past studies in text classification [MacCallum et al. 1998; Dumais and Chen 2000] have
indicated that exploiting a hierarchical structure can bring strong advantages over using a
flattened structure in classification. [MacCallum et al. 1998] presented a probabilistic
framework, and a shrinkage approach was proposed to improve text classification in a
hierarchy of classes. Experimental results indicate that hierarchical text classification with
large numbers of features (feature set > 10000) can obtain better average accuracy
performance than flattened text classification. However, the shrinkage approach may either
have no effect or hurt slightly in some classes with a large amount of training data
[MacCallum et al. 1998].

Previous hierarchical data integration studies [Doan et al. 2002; Rajan et al. 2005]
examined the hierarchical structures of the destination catalog are studied to improve the
accuracy of catalog integration. [Doan et al. 2002] extracted the domain constraint features
obtained from the neighboring nodes to enhance the mapping of ontological data. [Rajan et al.
2005] developed a maximum likelihood-based framework that exploits the hierarchical
structure of categories, and examined four mapping scenarios. Experimental results have
demonstrated that hierarchical relationships in the destination catalog are effective in catalog
integration. Some source class labels can further be integrated into the destination catalog as
new classes to maintain a new hierarchy.

However, hierarchical relationships of the categories and subcategories between the
source and destination catalogs have not been investigated in the previous work. Moreover,
experimental results indicate that the previously proposed approaches only integrate the data
into the leaf nodes of the destination catalog. Although past methods for conventional text
classification and hierarchical catalog integration can benefit from using a hierarchical
structure, they only address the hierarchical structure in the destination categories and do not
consider the differing hierarchical structures in the source and destination catalogs. Hence,
this work performs some pilot studies for the hierarchical catalog integration problem by

 Hierarchical Web Catalog Integration with 157

Conceptual Relationships in a Thesaurua

considering the implicit information embedded in the hierarchical structure of both the source
and destination catalogs. The pilot experimental results reported in Chen et al. [2006] indicate
that the implicit hierarchical information does indeed contribute to the hierarchical Web
catalog integration problem.

While extending the results of our previous pilot study, this work presents an enhanced
hierarchical catalog integration (EHCI) approach with conceptual relationships extracted from
the source and destination catalog thesauri to improve the integration performance. An EHCI
approach based on SVM was adopted in these experiments due to its good classification
performance. To demonstrate the effectiveness of EHCI, its performance is compared with
that of a simple hierarchical catalog integration approach (SHCI) based on previous
hierarchical classification studies [Dumais and Chen 2000; Sun and Lim 2001; Sun et al. 2003;
Vural and Dy 2004].

Results of experiments with real-world catalogs reveal that the EHCI approach
consistently raises the accuracy of hierarchical Web catalog integration in almost all
hierarchical levels in both Yahoo!-to-Google and Google-to-Yahoo! catalog integration. These
results also demonstrate that EHCI attains an average accuracy improvement of 11.1% in
Yahoo!-to-Google catalog integration, and 21.6% in Google-to-Yahoo! catalog integration.
The results further indicate that hierarchical catalog integration can be effectively improved by
enhancing the conceptual relationships discovered from the hierarchical thesauri.

The remainder of this paper is organized as follows. Section 2 reviews the related studies
of catalog integration. Section 3 then describes in detail the hierarchical Web catalog
integration and the enhanced hierarchical integration approach. Next, Section 4 shows the
environmental settings and discusses the experimental results. Finally, conclusions are drawn
in Section 5, along with recommendations for future research.

2. Related Work

Most methods proposed for solving the catalog integration problem have been based on a
flattened structure, implying that the categories in a catalog are isolated and lack hierarchical
relationships. Agrawal and Srikant were the first to study this problem in 2001, and presented
an enhanced Naive Bayes approach (ENB) to improve the integration accuracy by exploiting
implicit information from the source catalog [Agrawal and Srikant 2001]. Experimental results
involving real-world catalogs indicate that ENB can achieve an average accuracy
improvement of more than 14%. Their promising results reveal that exploiting implicit source
information indeed benefits the accuracy for automated catalog integration.

 Several algorithms have been proposed in the past few years to increase the accuracy of
catalog integration based on a flattened structure. Since SVM has presented superior

158 Ing-Xiang Chen et al.

performance in classification problems [Dumais et al. 1998; Joachims 1998; Yang and Liu
1999; Rennie and Rifkin 2001], many related studies have also adopted the SVM classifiers
with different strategies to extract the implicit information and improve the integration
accuracy. These SVM-based integration approaches include a cross-training technique for
SVM classifiers (SVM-CT) [Sarawagi et al. 2003], a topic restriction strategy (SVM-TR)
[Tsay et al. 2003], a cluster shrinkage approach (CS-TSVM) [Zhang and Lee 2004a], and an
iterative approach with pseudo-relevance feedback (SVM-IA) [Chen et al. 2005]. Most of
these approaches employing the SVM classifiers were found to have higher accuracy then
ENB.

 In addition to the SVM-based approaches, some state-of-the-art investigations have also
been presented to enhance the catalog integration accuracy with a flattened structure. Zhang
and Lee proposed a co-bootstrapping approach with boosting to obtain the optimal
combination of heterogeneous weak hypotheses without adjusting feature weights manually
[Zhang and Lee 2004b]. Wu et al. first extracted the source hierarchical information and then
applied the Maximum Entropy model to increase the accuracy of catalog integration in a
flattened structure. Their experimental results showed that their approach is more accurate
than ENB.

 Most previous catalog integration studies adopted a flattened structure to simplify the
catalog integration problem, thus neglecting the hierarchical relationships among the
categories. Since previous studies on text classification problems have reported that a
hierarchical structure can improve performance, an approach called shrinkage was presented
to further improve the Bayesian classifiers in hierarchical text classification [MacCallum et al.
1998]. With the shrinkage-based approach, the parameter estimation of a node is smoothed by
interpolation from the parent nodes, thus significantly reducing the number of prediction
errors in hierarchical text classification.

Experimental results indicate that the accuracy performance of the method of MacCallum
et al. [1998] can be raised by shrinking each leaf node with linear interpolation of the parent
nodes in the destination hierarchy. However, the classification is based on the same hierarchy,
instead of considering both the source and the destination hierarchies, respectively. Therefore,
the original algorithm may need to be modified for application to hierarchal Web catalog
integration.

Rajan et al. [2005] presented a two-stage mapping and integration approach, and
discussed four integration scenarios. They comprehensively investigated their hierarchical
catalog integration scheme using a maximum likelihood approach, and found that its
integration performance is very promising, particularly in one-to-many mapping (Scenario 3).
Rajan et al. further demonstrated that the hierarchical structure of the destination catalog is
helpful in improving integration accuracy in different data sets. However, the implicit

 Hierarchical Web Catalog Integration with 159

Conceptual Relationships in a Thesaurua

information in the source hierarchy has not been utilized in this work.

The hierarchical relationships between the source catalog and the destination catalog
requires further investigation when considering hierarchical Web catalog integration. Chen et
al. preliminarily explored the effectiveness of a hierarchical catalog integration scheme with
the consideration of both the source catalog and the destination catalog [Chen et al. 2006].
Their experimental results indicated a consistent improvement in accuracy of real-world Web
catalog integration over the EHCI approach. Although the performance improvements are
significant, the integration effectiveness based on a hierarchical structure has not been
comprehensively studied. The following sections first define the problem, and then describe
the ECHI approach in detail.

3. Hierarchical Web Catalog Integration

The integration process of the hierarchical catalog integration problem involves two
hierarchical catalogs. Figure 1 illustrates the integration process in which the source catalog S
with a set of m categories S1, S2,…, Sm, is integrated into the destination catalog D with a set of
n categories D1, D2,…, Dn. These categories may have subcategories, such as S11, D11 and
D121.

The integration process in Figure 1 is performed by merging each document di in S into a
correspondent destination category in D. Thus, for each directory in the hierarchy, the training
documents trained as directory classifiers and local classifiers are utilized to help integrate
each document di into a corresponding directory. Only the documents integrated into the
corresponding level categories and subcategories are regarded as correctly integrated.

Figure 1. The process of hierarchical catalog integration.

160 Ing-Xiang Chen et al.

This study adopts SVM classifiers with linear kernel functions [Yang and Liu
1999], : nf X R RŒ Æ to locate a hyperplane that can separate the positive
examples, () 1f x ≥ + , from the negative examples, () 1f x £ - . The linear function is in the
form 1() (,) n i iif x x b b w x b== + = +Â where (,) nw b R RŒ Æ . The linear SVM is trained to
determine the optimal values of w and b such that ||w|| is minimized. These trained SVM
classifiers are employed in the simple hierarchical catalog integration (SHCI) approach and
the enhanced hierarchical catalog integration (EHCI) approach in hierarchical catalog
integration. The SHCI approach and the EHCI scheme are described as follows.

3.1 The Simple Hierarchical Catalog Integration (SHCI) Approach
In SHCI, the SVM classifiers are trained with the training documents coming from the
destination catalog and are used to integrate the test documents from the source catalog into
the destination catalog. Whether a training document is considered a positive document or a
negative document depends on its subordinate relationship to each destination category.
Referring to Sun and Lim [2001] and Sun et al. [2003], the destination catalog was designed
with two classifiers at every category node, namely a directory classifier and a local classifier.

The directory classifiers were designed to categorize the source documents into different
category and subcategory trees. The directory classifiers are trained with equal numbers of
positive and negative examples. The positive examples were chosen from the categories and
their subcategories where the documents were located. The negative examples were selected
from the remaining categories and their subcategories under the same level. The local
classifiers were designed to classify the source documents further into different destination
levels in each category tree. The local classifiers in each level were trained with the positive
examples chosen from each destination level, and the negative examples selected from the
subcategories under that level.

In real-world Web catalogs, a document may be integrated into more than one category.
Therefore, a “one-against-rest” strategy was adopted to extend the binary SVM classifiers and
solve the multi-class catalog integration problem. This study uses the SHCI approach as a
baseline for hierarchical catalog integration, and considers the performance improvement of
the SVM classifiers resulting from the enhancement of conceptual relationships in thesauri.

3.2 Conceptual Relationships in Web Thesaurus
Foskett utilized a thesaurus as a dictionary and a reference for classification [Foskett 1997]. A
thesaurus can be defined as a set of related terms in a given domain knowledge, and these
related terms are the basic semantic units for conveying concepts [Wikipedia: thesaurus].
Since a hierarchical thesaurus defines broad and narrow terms, its classification system can be
considered a vocabulary hierarchy. Likewise, the child nodes in a hierarchical Web catalog

 Hierarchical Web Catalog Integration with 161

Conceptual Relationships in a Thesaurua

structure generally comprise related terms to express the classified concepts of the parent
nodes, and so the classified terms in a hierarchical Web catalog can be treated as a hierarchical
thesaurus. Figure 2 shows an example in which the “Automotive” category in Yahoo! Web
catalog is categorized like a hierarchical thesaurus with some conceptual relationships in the
hierarchy.

Figure 2. The illustration of a Web thesaurus in Yahoo! catalog

In Figure 2, the term “Automotive” is the thesaurus root, which expresses a broad term in
the hierarchy, and has different narrow terms to define different types of “Automotive”.
Narrower terms are defined down to the leaf nodes in the hierarchy. In the Web catalog
hierarchy, the conceptual relationships can be extracted from the hierarchical thesaurus and
can construct different semantic concepts. Therefore, different domain knowledge can be
extracted from the Web catalog hierarchy, thus enhancing the performance of the SVM
classifiers.

3.3 Enhanced Hierarchical Catalog Integration (EHCI) Scheme
To elevate the integration performance, a weighting formula, Equation (1), is designed to
exploit the conceptual relationships from the hierarchical Web thesaurus, where the terms in
different category levels are extracted as label features. Equation (1) calculates the feature
weight of each document, FeatureWeight(x, d), where Li denotes the relevant label weight
assigned exponentially as 1/2 i, fx represents the occurrence ratio of feature x in the document,
and ' indicates the magnitude relation of the label weight. In Equation (1), the weight of each
thesaurus is exponentially decreased and accumulated based on the increased levels, where n
denotes the depth of a document in the hierarchy. If feature x appears in the label feature, then
Lx is denoted as the label weight with the level where x is located. Otherwise, Lx=0.
Consequently, Equation (1) is applied to both the source and destination hierarchies to
represent the semantic concepts obtained from the source category labels and the destination
category labels.

162 Ing-Xiang Chen et al.

(,)
0

(1)x
x d xn

ii

L
FeatureWeight f

L
l l

=
= ¥ + - ¥

Â
 (1)

Table 1. The label weights assigned for different hierarchical levels
Hierarchical Level Label Weight

Document Level (L0) 1/20
One Level Upper (L1) 1/21
Two Levels Upper (L2) 1/22
… …
n Levels Upper (Ln) 1/2n

Figure 3. The process of the enhanced hierarchical catalog integration

In Equation (1), Li further denotes the label weight at a depth of i. The label weight falls
from the document level (i=0) to top level n. This thesaurus weighting method can be utilized
to transform the conceptual relationships of the hierarchical source categories, and add them
into the test documents. Table 1 lists the weights of different hierarchical labels, where L0
denotes the document level; L1 represents one level above, and so on down to Ln representing
n levels above.

Similarly, the EHCI scheme is used in the destination catalog to build enhanced
classifiers in destination categories. With the enhancement of the features and native category
label information, the classifiers can thus be trained to be more distinctive to classify the
documents into the correct categories. The weights of the features and native category label
information in the destination catalog are also calculated according to Equation (1). The
threshold l is set with different values from 0 to 1 to find the optimized weights for the
source thesauri to enhance the destination classifiers, as are the values of l set in the native
destination category. Moreover, the features occurring in the upper categories are removed to
avoid misleading integration in the subcategories.

 Hierarchical Web Catalog Integration with 163

Conceptual Relationships in a Thesaurua

Figure 3 displays a three-level example to demonstrate the concept of the EHCI approach.
In the source catalog, the hierarchical thesaurus information is added to the test documents
with different label weights accumulated upward from their current categories to the top-level
category according to the weighting formula. In the destination catalog, the test documents are
integrated into the destination categories based on the EHCI integration scheme. Figure 3 also
indicates that a document d1 may be integrated into more than one destination category.

3.4 Enhanced Catalog Integration Process
Since a Web document generally comprises HTML tags, script codes and texts, the HTML
tags and scripts codes are eliminated, and only the texts obtained after retrieving the Web
documents from both the source and destination catalogs are kept. In the preprocessing stage,
the texts are segmented into terms by removing the stopwords and stemming the terms with
the Porter Stemmer [Porter 1980]. The weight of each stemmed term x is assigned by

x iTF TFÂ , where i denotes the number of the stemmed terms in each document. This
preprocessing flow and feature weight strategy is applied to both the SHCI and EHCI
schemes.

The source
documents in the

source catalog

Training the
directory
classifiers

Extracting the Web
thesaurus from the

source catalog

The documents in
the destination

catalog hierarchy

Adding the source
labels into the test

documents

Extracting the Web
thesaurus from the
destination catalog

Removing the
common features
from the parent

categories
Training the

local classifiers
Integrating the test
documents into the
destination layers

Directory
classifiers

Local
classifiers

Figure 4. The process of enhanced hierarchical catalog integration

Figure 4 shows the process of hierarchical catalog integration with the EHCI scheme. In
the integration process, the terms transformed from the test documents are added with the
source catalog labels based on Equation (1). Similarly, the terms transformed from the
documents in the destination categories are trained using the labels extracted from the
destination catalog. To establish the directory classifiers and local classifiers in the destination
catalog, the common features in the parent categories are removed in the training stage to
avoid building ambiguous classifiers.

164 Ing-Xiang Chen et al.

In Figure 4, the directory classifiers are trained with the positive documents from their
categories and subcategories to represent the classifiers of the category trees. The local
classifiers are trained by the positive documents of the same levels to represent the classifiers
of their local levels. The selection of negative examples in the directory classifiers and the
local classifiers is similar to the SHCI approach as described in Section 3.1. The test
documents are then integrated into the destination categories through both the directory
classifiers and the local classifiers. The integration process is finished when all the test
documents from their source categories are integrated into the designated destination
categories.

4. Experiments and Discussion

Experiments were performed involving real-world catalogs from both Yahoo! and Google to
examine the performance of the EHCI schemes with SVM light [Joachims 2002]. The average
integration performance with different l values between 0 and 1 were compared. The
results with the optimal l value are listed in detail. Experimental results indicate that the
EHCI approach consistently enhances the SVM classifiers in almost all levels and boosts the
integration accuracy of a hierarchical structure. The following subsections describe the data
sets and the experimental results.

4.1 Data Sets
Five categories were extracted from Yahoo! and Google. Table 2 shows the statistics of our
experimental data including the number of hierarchical classes, the training documents and the
test documents in these five categories. The experimental data were collected after neglecting
the documents that could not be retrieved and removing the documents with error messages.
The stopword list in Frakes and Baeza-Yates [1992] was adopted to remove the stopwords in
preprocessing. Over 38,000 terms were employed for training and testing after removing the
stopwords and stemming. As in [Agrawal and Srikant 2001], documents appearing in only one
catalog were used as the training documents in the destination catalog D, and the common
documents were adopted as the test documents in the source catalog S.

Table 2. The experimental data collected from the Google catalog
Category Google |G-Y| |G Class| |G Test| Yahoo! |Y-G| |Y Class| |Y Test|
Autos …/Autos/… 1094 312 437 …/Automotive/… 1823 148 404
Movies …/Movies/… 5174 1165 1340 …/Movies_Film/… 7776 1035 1211
Outdoors …/Outdoors/… 2308 523 224 …/Outdoors/… 1724 100 177
Photo …/Photography/… 615 158 206 …/Photography/… 1399 80 175
Software …/Software/… 5693 1185 683 …/Software/… 1940 109 646
Total 14884 3343 2890 14662 1472 2613

 Hierarchical Web Catalog Integration with 165

Conceptual Relationships in a Thesaurua

A set of 1,472 classes in the Yahoo! catalog and a set of 3,343 classes in the Google
catalog were organized according to the original hierarchy to a depth of six levels as shown in
Table 2. The test documents were chosen by cross-referencing the documents of Yahoo! with
those of Google. Table 2 indicates that the numbers of test documents in Yahoo! and Google
were different, in the sense that some test documents may appear in more than one class
simultaneously. The training documents of the Yahoo! catalog and the Google catalog were
accumulated by subtracting the common documents in the other catalog. In this experiment,
the documents were integrated both from Yahoo! into Google and from Google to Yahoo!.

Tables 3 and 4 further describe the number of the hierarchical classes, the training
documents, and the test documents of six levels in the Google and Yahoo! catalogs. Since
most of the sixth levels contain less than ten documents, the hierarchies were only retrieved
down to the sixth level, and any documents below the sixth level were merged upward to the
sixth level. Tables 3 and 4 indicate that the numbers of some Level 1 classes were zero,
meaning that the destination category contained no Level 1 test documents. This experiment
only considered the documents that were correctly integrated into the destination categories,
thus we list the number of classes with common test documents.

Table 3. The experimental data collected from the Google catalog
 Level 1 Level 2 Level3 Level 4 Level 5 Level 6 Total
Class # in Autos 0 14 98 148 46 6 312
Training doc.# in Autos 0 144 422 389 127 12 1094
Test doc. # in Autos 0 86 218 111 19 3 437
Class # in Movies 1 27 115 700 245 77 1165
Training doc.# in Movies 3 136 2581 1554 718 182 5174
Test doc. # in Movies 0 131 524 348 302 35 1340
Class # in Outdoors 1 23 114 111 104 170 523
Training doc.# in Outdoors 1 104 594 376 434 799 2308
Test doc. # in Outdoors 0 40 76 69 24 15 224
Class # in Photo 0 9 29 50 52 18 158
Training doc.# in Photo 0 28 172 227 141 47 615
Test doc. # in Photo 0 26 88 59 25 8 206
Class # in Software 1 59 281 352 306 186 1185
Training doc.# in Software 2 547 1784 1656 1189 515 5693
Test doc. # in Software 2 29 149 241 157 105 683

166 Ing-Xiang Chen et al.

Table 4. The experimental data collected from the Yahoo! catalog
 Level 1 Level 2 Level3 Level 4 Level 5 Level 6 Total

Class # in Autos 1 24 61 39 17 6 148
Training doc.# in Autos 56 490 575 467 186 49 1823
Test doc. # in Autos 11 126 119 101 38 9 404
Class # in Movies 1 27 91 195 584 137 1035
Training doc.# in Movies 2 653 992 2210 3260 659 7776
Test doc. # in Movies 0 140 180 353 404 134 1211
Class # in Outdoors 1 26 47 17 5 4 100
Training doc.# in Outdoors 63 455 815 305 25 61 1724
Test doc. # in Outdoors 0 44 114 18 0 1 177
Class # in Photo 1 18 28 14 17 2 80
Training doc.# in Photo 28 266 453 138 496 18 1399
Test doc. # in Photo 1 72 78 19 5 0 175
Class # in Software 1 15 24 24 26 19 109
Training doc.# in Software 50 366 488 489 364 183 1940
Test doc. # in Software 3 146 133 155 174 35 646

Table 5. The analysis of common classes between Google and Yahoo!
 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Common class # in Autos - 2 39 1 0 0

Common class # in Movies - 16 24 9 6 1

Common class # in Outdoors - 5 3 2 3 0

Common class # in Photo - 4 2 1 3 0

Common class # in Software - 7 6 8 8 3

Since hierarchical catalog integration is not like hierarchical text classification on the
basis of the same hierarchy, the structure of the source hierarchy can be very different from
the structure of the destination hierarchy. Table 5 further analyzes the number of common
classes in different levels between the Yahoo! catalog and the Google catalog. Table 5
indicates that the number of common classes from Level 2 to Level 6 was very small. For
example, the Level 2 category of “Autos” contains only two common classes
(chats_and_forums and makes_and_models) between the Google catalog (14 classes) and the
Yahoo! catalog (24 classes).

In addition to the common classes in the same Level 1 categories, the common classes in
different Level 1 categories were also analyzed. The results reveal that the different Level 1
categories had very few common classes or even no common classes in other hierarchical

 Hierarchical Web Catalog Integration with 167

Conceptual Relationships in a Thesaurua

subcategories. For instance, Yahoo! “Outdoor” has only one common Level 2 subcategory in
Google “Movie”, and no common Level 2 subcategories in Google “Autos”, “Photo”, and
“Software”. Prior analysis reveals that the hierarchical structure of the source catalog in the
real-world experimental data is different from that of the destination catalog.

4.2 Measurement
Since some documents may appear in more than one category of the same catalog, the number
of test documents may vary slightly between Yahoo! and Google. This experiment followed
an assumption in Agrawal and Srikant [2001] by measuring the performance of hierarchical
catalog integration with accuracy defined in the following equation.

Number of the test documents correctly integrated into
Total number of the test documents in the dataset

iD (2)

 To measure the performance of hierarchical catalog integration, Equation (2) was
adopted in each level of the destination categories to assess its accuracy performance. In each
level of the destination categories, the numerator denotes the test documents correctly
integrated into that level, and the denominator represents the total test documents to be
correctly integrated. The accuracy of each level in the destination categories and the average
accuracy of the five categories were measured.

4.3 Results and Discussion
In the experiment, the documents were integrated both from Yahoo! into Google and from
Google to Yahoo!. In the EHCI approach, the conceptual relationships between the
hierarchical thesauri in both the source and destination categories added to an increasing l
value in the range 0–1. To further verify the effectiveness of the EHCI approach, three sets of
negative examples were randomly chosen for Google training and the other three sets of
negative examples were used for Yahoo! training. The overall performance of the EHCI
approach is significantly boosted in all of these six sets. The best average performance
improvements from Yahoo! to Google with the three sets of negative examples were 9.0%,
11.1%, and 21.6%. In contrast, the best performance improvements from Google to Yahoo!
with the other three sets of negative examples were 18.1%, 21.6%, and 23.7%. Table 6 and
Table 7, notably, list the medians and detail the average integration results with l increasing
from 0 to 1.

Table 6 shows the average catalog integration performance from Yahoo! to Google, and
Table 7 lists that from Google to Yahoo!. Both first columns represent the l values of the
source catalog, and the first rows represent the l values of the destination catalog. As
indicated in Tables 6 and 7, the accuracy with the SHCI approach (0.00l =) from Yahoo! to

168 Ing-Xiang Chen et al.

Google was 61.4% and that from Google to Yahoo! was 63.7%. The best performance
improvements with EHCI were achieved at 0.01l = in the destination catalog and 0.30l =
in the source catalog. The average accuracy from Yahoo! to Google and Google to Yahoo!
was 72.5% and 85.3%, respectively.

Table 6. The average integration performance from Yahoo! to Google
S \ D 0.00 0.01 0.05 0.10 0.30 0.50 0.70 0.90 1.00
0.00 61.4% 61.1% 52.4% 38.4% 17.8% 15.1% 14.2% 13.9% 13.7%
0.01 60.7% 62.3% 54.9% 40.7% 18.4% 15.2% 14.3% 14.0% 13.7%
0.05 63.6% 66.2% 63.4% 52.1% 21.2% 15.9% 14.6% 14.2% 14.0%
0.10 66.3% 69.6% 68.0% 60.3% 27.6% 17.6% 15.3% 14.3% 14.2%
0.30 68.7% 72.5% 72.1% 68.5% 54.7% 35.9% 26.2% 18.2% 17.4%
0.50 67.1% 71.2% 71.7% 69.9% 61.6% 53.7% 40.1% 30.8% 28.0%
0.70 64.6% 68.5% 69.1% 68.2% 61.2% 58.7% 52.2% 41.3% 37.9%
0.90 64.1% 67.8% 69.0% 68.5% 62.7% 60.5% 56.8% 51.9% 47.6%
1.00 63.6% 67.4% 68.9% 68.5% 63.3% 61.5% 58.5% 53.8% 51.8%

Table 7. The average integration performance from to Google to Yahoo!
S \ D 0.00 0.01 0.05 0.10 0.30 0.50 0.70 0.90 1.00
0.00 63.7% 61.7% 33.1% 15.0% 0.8% 0.2% 0.1% 0.1% 0.1%
0.01 66.0% 65.6% 37.8% 16.9% 1.0% 0.2% 0.1% 0.2% 0.1%
0.05 72.4% 74.2% 54.2% 29.4% 1.8% 0.3% 0.2% 0.2% 0.1%
0.10 76.7% 80.4% 64.9% 42.2% 4.6% 0.6% 0.2% 0.2% 0.2%
0.30 81.8% 85.3% 75.5% 57.1% 29.7% 12.2% 2.3% 0.3% 0.2%
0.50 80.2% 85.0% 77.7% 60.4% 39.6% 26.2% 16.4% 8.4% 4.3%
0.70 77.5% 83.5% 77.8% 61.7% 43.2% 32.7% 24.3% 19.6% 14.5%
0.90 75.8% 82.5% 78.1% 62.9% 45.9% 38.5% 30.0% 24.2% 21.0%
1.00 75.2% 81.7% 78.3% 63.1% 46.6% 38.9% 32.0% 26.2% 24.2%

Since the best accuracy in both Google-to-Yahoo! and Yahoo!-to-Google integration was
obtained by adding the hierarchical label weights with 0.30l = , we can infer that the
conceptual thesaurus extracted from the source hierarchy significantly improves hierarchical
catalog integration. Conversely, the conceptual thesaurus extracted from the destination
hierarchy to enhance the hierarchical classifiers is not as effective as the source hierarchical
thesaurus. Tables 6 and 7 show that the improvement in accuracy obtained by changing from

0.00l = to 0.01l = was less than 5%. Experimental results indicate that the conceptual
relationships in the source hierarchical thesaurus are more likely to enhance hierarchal Web
catalog integration than those in the destination hierarchical thesaurus.

 Hierarchical Web Catalog Integration with 169

Conceptual Relationships in a Thesaurua

Tables 8 and 9 further describe the integration accuracy of the six hierarchical levels with
0.01l = in the destination catalog and 0.30l = in the source catalog. Analytical results

indicate that the EHCI approach consistently improves the accuracy performance of each level
in almost all cases. However, Table 8 still indicates that the EHCI approach induced a 2.7%
accuracy decrease at Level 3 and a 23.8% accuracy decrease at Level 6 in the Software
category when integrating from Yahoo! to Google. Table 9 also indicates a 0.7% accuracy
decrease at Level 6 in the Movies category, and a 5.7% accuracy decrease at Level 6 in the
Software category when integrating from Google to Yahoo!. The main reason for these falls in
accuracy is probably due to the training documents in those destination levels lacking the
hierarchical thesauri extracted from the source catalog.

Table 8. The Yahoo!-to-Google integration performance in six levels
 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total
Autos 0.0% (0) 84.9% (73) 50.0% (109) 40.5% (45) 52.6% (10) 0.0% (0) 54.2% (237)
Autos_E 0.0% (0) 91.9% (79) 74.8% (163) 60.4% (67) 68.4% (13) 66.7% (2) 74.1% (324)
Movies 0.0% (0) 63.4% (83) 75.4% (395) 56.6% (197) 54.0% (163) 37.1% (13) 63.5% (851)
Movies_E 0.0% (0) 71.8% (94) 80.0% (419) 61.5% (214) 70.2% (212) 40.0% (14) 71.1% (953)
Outdoors 0.0% (0) 70.0% (28) 75.0% (57) 69.6% (48) 79.2% (19) 46.7% (7) 71.0% (159)
Outdoors_E 0.0% (0) 72.5% (29) 93.4% (71) 87.0% (60) 87.5% (21) 73.3% (11) 85.7% (192)
Photo 0.0% (0) 42.3% (11) 55.7% (49) 39.0% (23) 36.0% (9) 25.0% (2) 45.6% (94)
Photo_E 0.0% (0) 61.5% (16) 68.2% (60) 57.6% (34) 52.0% (13) 25.0% (2) 60.7% (125)
Software 100.0% (2) 72.4% (21) 63.1% (94) 68.0% (164) 58.0% (91) 58.1% (61) 63.4% (433)
Software_E 100.0% (2) 86.2% (25) 60.4% (90) 82.6% (199) 73.2% (115) 34.3% (36) 68.4% (467)

Table 9. The Google-to-Yahoo! integration performance in six levels
 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total
Autos 63.6% (7) 68.3% (86) 64.7% (77) 52.5% (53) 47.4% (18) 88.9% (8) 61.6% (249)
Autos_E 100.0% (11) 84.9% (107) 89.1% (106) 88.1% (89) 84.2% (32) 100.0% (9) 87.6% (354)
Movies 0.0% (0) 72.1% (101) 56.7% (102) 50.1% (177) 53.7% (217) 50.7% (68) 54.9% (665)
Movies_E 0.0% (0) 91.4% (128) 78.9% (142) 94.9% (335) 65.6% (265) 50.0% (67) 77.4% (937)
Outdoors 0.0% (0) 70.5%(31) 80.7% (92) 44.4% (8) 0.0% (0) 100.0% (1) 74.6% (132)
Outdoors_E 0.0% (0) 100.0% (44) 97.4% (111) 88.9% (16) 0.0% (0) 100.0% (1) 97.2% (172)
Photo 0.0% (0) 63.9% (46) 60.3% (47) 84.2% (16) 40.0% (2) 0.0% (0) 63.4% (111)
Photo_E 0.0% (0) 90.3% (65) 93.6% (73) 84.2% (16) 60.0% (3) 0.0% (0) 89.7% (157)
Software 100.0% (3) 83.6% (122) 75.9% (101) 76.1% (118) 79.9% (139) 71.4% (25) 78.6% (508)
Software_E 100.0% (3) 93.8% (137) 85.0% (113) 91.6% (142) 97.1% (169) 65.7% (23) 90.9% (587)

170 Ing-Xiang Chen et al.

Figures 5 and 6 depict the overall performance between the EHCI and SHCI approaches.
The results indicate that EHCI outperforms SHCI in both Yahoo!-to-Google and
Google-to-Yahoo! catalog integration. Figure 5 indicates that the EHCI approach achieved an
average accuracy improvement of 11.1% in Yahoo!-to-Google catalog integration. In Figure 6,
the EHCI approach obtained an average accuracy improvement of 21.6% in Google-to-Yahoo!
catalog integration. The results further indicate that hierarchical catalog integration can be
effectively boosted by enhancement of the conceptual relationships extracted from the
hierarchical thesauri.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Autos Movies Outdoors Photo Software

SHCI
EHCI

Figure 5. The average integration performance from Yahoo! to Google

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Autos Movies Outdoors Photo Software

SHCI
EHCI

Figure 6. The average integration performance from Google to Yahoo!

 Hierarchical Web Catalog Integration with 171

Conceptual Relationships in a Thesaurua

As well as the accuracy performance, the computation cost of SHCI and EHCI
approaches was further analyzed. The experimental environment was in an IBM PC with an
Intel Core Duo T2400 CPU and 1GB memory. The overall CPU runtime provided by SVM light

 was to analyze the training and testing time, excluding the data I/O time, in a Windows XP
environment. Results of runtime analysis demonstrate that SHCI took 65.60 seconds to
perform Google-to-Yahoo! catalog integration and 6.40 seconds to perform Yahoo!-to-Google
catalog integration. Conversely, EHCI took 86.53 seconds to perform Google-to-Yahoo!
catalog integration and 6.69 seconds to perform Yahoo!-to-Google catalog integration. The
reason for the faster CPU time of Yahoo!-to-Google integration is the much smaller number of
Google classifiers than Yahoo! classifiers. The CPU runtime analysis further indicates that the
proposed approach can efficiently complete the catalog integration work.

5. Conclusion

Web catalog integration is a significant issue in Web content management. Although past
studies have indicated that a hierarchical structure is superior to a flattened structure in
classification, recent studies have only presented a few primitive results and have not
comprehensively studied hierarchical structures in hierarchical Web catalog integration. This
study addresses the problem of hierarchical catalog integration, and proposes an enhanced
hierarchical catalog integration (EHCI) scheme.

This study further reports experimental results concerning the improvement in Web
catalog integration accuracy resulting from the use of EHCI. The integration accuracy is
significantly improved by exploiting the conceptual relationships extracted from the source
and destination catalog thesauri to enhance hierarchical catalog integration. Experimental
results indicate that EHCI is effective for hierarchical Web catalog integration, and achieves
improvements in almost every hierarchical level on real-world catalogs with SVM classifiers.
In overall performance of hierarchical catalog integration, the EHCI approach can consistently
improve accuracy in real-world catalog integration.

To conclude, this study demonstrates that the conceptual relationships learned from the
source and destination catalog thesauri can enhance hierarchical catalog integration.
Experimental results indicate that the accuracy improvements in a hierarchical structure are
very promising, especially the hierarchical thesaurus extracted from the source catalog. Future
work will involve investigating other classification models in order to build an integration
platform for hierarchical catalog integration. Furthermore, complex catalog integration issues
will be considered through ontology relationships.

172 Ing-Xiang Chen et al.

Acknowledgement
The authors would like to thank the National Science Council of the Republic of China,
Taiwan, for partially supporting this research under Contract No. NSC 95-2745-E-155-008.
The authors would also like to express many thanks to the anonymous reviewers for their
precious suggestions.

References
Agrawal, R., and R. Srikant., “On Integrating Catalogs,” in Proceedings of the 10th WWW

Conf. (WWW10), Hong Kong, 2001, pp. 603–612.
Chen, I.-X., C.-Z. Yang, and J.-C. Ho, “An Iterative Approach for Web Catalog Integration

with Support Vector Machines,” in Proceedings of Asia Information Retrieval
Symposium 2005 (AIRS2005), Jeju Island, Korea, 2005, pp. 703–708.

Chen, I.-X., C.-Z. Yang, and J.-C., Ho, “On Hierarchical Web Catalog Integration with
Conceptual Relationships in Thesaurus,” in Proceedings of the 29th Annual ACM Conf.
on Research and Development in Information Retrieval (SIGIR ’06), Settle, Washington,
USA, 2006, pp. 635–636.

Doan, A., J. Madhavan, P. Domingos, and A. Halevy, “Learning to Map between Ontologies
on the Semantic Web,” in Proceedings of the 11th WWW Conf. (WWW2002) , Honolulu,
Hawaii, 2002, pp. 662–673.

Dumais, S., J. Platt, D. Heckerman, and M. Sahami, “Inductive Learning Algorithms and
Representations for Text Categorization, ” in Proceedings of the 7th Int’l Conf. on
Information and Knowledge Managemen (CIKM) , Bethesda, Maryland, USA, 1998, pp.
148–155.

Dumais, S., and H. Chen, “Hierarchical Classification of Web Content, ” in Proceedings of the
23rd Annual ACM Conf. on Research and Development in Information Retrieval
(SIGIR’00), Athens, Greece, 2000, pp. 256–263.

Frakes, W., and R. Baeza-Yates, Information Retrieval: Data Structures and Algorithms ,
Prentice Hall Press, USA, 1992.

Foskett, D.J., “Thesaurus,” in Readings in Information Retrieval, Jones, K.S., and Willett, P.,
Ed. Morgan Kaufmann Press, San Francisco, CA, USA, 1997, pp. 111 –134.

Ho, J.-C., I.-X. Chen, and C.-Z. Yang, “Learning to Integrate Web Catalogs with Conceptual
Relationships in Hierarchical Thesaurus,” in Proceedings of Asia Information Retrieval
Symposium 2006 (AIRS2006), Singapore, 2006, pp. 217–229.

Joachims, T., “Text Categorization with Support Vector Machines: Learning with Many
Relevant Features,” in Proceedings of the 10th European Conf. on Machine Learning
(ECML’98), Chemnitz, DE, 1998, pp. 137–142.

Keller, A. M., “Smart Catalogs and Virtual Catalogs,” in Readings in Electronic Commerce ,
Kalakota, R., and Whinston, A., Ed. Addison-Wesley Press, USA, 1997.

 Hierarchical Web Catalog Integration with 173

Conceptual Relationships in a Thesaurua

Kim, D., J. Kim, and S. Lee, “Catalog Integration for Electronic Commerce through
Category-Hierarchy Merging Technique, ” in Proceedings of the 12th Int’l Workshop on
Research Issues in Data Engineering: Engineering e-Commerce/e-Business Systems
(RIDE’02), San Jose, CA, USA, 2002, pp. 28–33.

MacCallum, A., R. Rosenfeld, T. Mitchell, and A. Ng, “Improving Text Classification by
Shrinkage in a Hierarchy of Classes,” in Proceedings of the 15th International
Conference on Machine Learning (ICML-98), Madison, Wisconsin, 1998, pp.
359–367.

Marrón, P. J., G. Lausen, and M. Weber, “Catalog Integration Made Easy,” in Proceedings of
the 19th Int’l Conf. on Data Engineering (ICDE’03), Bangalore, India, 2003, pp.
677–679.

Rajan, S., K. Punera, and J. Ghosh, “A Maximum Likelihood Framework for Integrating
Taxonomies”, in Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), Pittsburgh, Pennsylvania, pp. 856–861.

Rennie, J. D. M., and R. Rifkin, “Improving Multiclass Text Classification with the Support
Vector Machine,” Technical Report AI Memo AIM-2001-026 and CCL Memo 210 , MIT
Press, USA, 2001.

Sarawagi, S., S. Chakrabarti, and S. Godbole, “Cross-Training: Learning Probabilistic
Mappings between Topics,” in Proceedings of the 9th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining , Washington, D.C., 2003, pp. 177–186.

Stonebraker, M., and J. M. Hellerstein, “Content Integration for e-Commerce,” in Proceedings
of the 2001 ACM SIGMOD Int’l Conf. on Management of Data, Santa Barbara, CA,
USA, 2001, pp. 552–560.

Sun, A., and E.-P. Lim, “Hierarchical Text Classification and Evaluation ,” in Proceedings of
the 2001 IEEE Int’l Conf. on Data Mining (ICDM’01), Washington, D.C., USA, 2001,
pp. 521–528.

Sun, A., E.-P. Lim, and W.-K. Ng, “Performance Measurement Framework for Hierarchical
Text Classification,” Journal of the American Society for Information Science and
Technology (JASIST) , 54(11), 2003, pp. 1014–1028.

Tsay, J.-J., H.-Y. Chen, C.-F. Chang, and C.-H. Lin, “Enhancing Techniques for Efficient
Topic Hierarchy Integration,” in Proceedings of the 3rd Int’l Conf. on Data Mining
(ICDM’03), Melbourne, FL, USA, 2003, pp. 657–660.

Vural, V., and J. G. Dy, “A Hierarchical method for Multi-Class Support Vector Machine, ” in
Proceedings of the Int’l Conf. on Machine Learning 2004 (ICML2004) , Banff, Alberta,
Canada, 2004, pp. 105.

Wu, C.-W., T.-H. Tsai, and W.-L. Hsu, “Learning to Integrate Web Taxonomies with
Fine-Grained Relations: A Case Study Using Maximum Entropy Model, ” in
Proceedings of Asia Information Retrieval Symposium 2005 (AIRS2005) , Jeju Island,
Korea, 2005, pp. 190–205.

174 Ing-Xiang Chen et al.

Yang, Y., and X. Liu, “A Re-examination of Text Categorization Methods, ” in Proceedings of
the 22nd Annual ACM Conference on Research and Development in Information
Retrieval (SIGIR’99), Berkeley, CA, USA, 1999, pp. 42–49.

Zhang, D., and W.S. Lee, “Web Taxonomy Integration using Support Vector Machines, ” in
Proceedings of the 13th WWW Conf. (WWW2004), New York, NY, USA, 2004a, pp.
472–481.

Zhang, D., and W.S. Lee, “Web Taxonomy Integration through Co-Bootstrapping,” in
Proceedings of the 27rd Annual ACM Conf. on Research and Development in
Information Retrieval (SIGIR’04), Athens, Greece, Sheffield, United Kingdom, 2004b,
pp. 410–417.

Online Resources
Google Catalog: http://www.google.com/dirhp
Joachims, T., SVM ligh:, version 5.0, http://svmlight.joachims.org/, 2002
Porter, M., Porter Stemmer: http://www.tartarus.org/martin/PorterStemmer/, 1980
Yahoo! Catalog: http://dir.yahoo.com/
Wikipedia http://en.wikipedia.org/wiki/Thesaurus

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 175-194 ˄ˊˈʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received November 26, 2006; Revised July 3, 2007; Accepted July 11, 2007]

MiniJudge: Software for

Small-Scale Experimental Syntax

James Myers

Abstract

MiniJudge is free online open-source software to help theoretical syntacticians
collect and analyze native-speaker acceptability judgments in a way that combines
the speed and ease of traditional introspective methods with the power and
statistical validity afforded by rigorous experimental protocols. This paper shows
why MiniJudge is useful, what it feels like to use it, and how it works.

Keywords: Syntax, Experimental Linguistics, JavaScript, R, Generalized Linear
Mixed Effect Modeling

1. Introduction

Every theoretical syntactician has faced the problem of native-speaker judgments that, instead
of correlating neatly with the theoretical issue at hand, vary unexpectedly across sentences or
speakers. This problem is generally dealt with indiscriminately, either by fiat (“assuming these
judgments are correct...”) or by dropping the data entirely, along with the potentially
important theoretical issue it may provide. Perhaps forty years ago [Chomsky 1965:19-20]
was right to declare that “[t]he critical problem for grammatical theory today is not a paucity
of evidence but rather the inadequacy of present theories of language to account for masses of
evidence that are hardly open to serious question.” However, as [Schütze 1996:27] observed
(ten years ago now), “the questions linguists are now addressing rely crucially on facts that are
indeed ‘open to serious question’.”

Acceptability judgments reflect grammatical knowledge, but as data they are merely a
form of linguistic behavior, parallel to the accuracy rates or reaction times measured by
psycholinguists ([Chomsky 1965], [Penke and Rosenbach 2004]). From a cognitive science
perspective, then, the ideal solution to the linguists’ data woes would be for them to adopt the
rigorous experimental protocols honed over the two centuries scientists have been struggling

 Graduate Institute of Linguistics, National Chung Cheng University, 168 University Road, Min-Hsiung,
Chia-Yi 62102, Taiwan Phone: 886-5-242-8251 Fax: 886-5-272-1654
E-mail: lngmyers@ccu.edu.tw

˄ˊˉ James Myers

to extract information about mental structure from often messy behavioral data. When
linguistic judgments are collected with such protocols, they often (though not always)
reconfirm the essential validity of empirical claims made on the basis of more informal
methods, but they can also go beyond simple reconfirmation (or falsification) to reveal
hitherto unsuspected theoretical insights. Recent examples of the growing experimental syntax
literature include [Sorace and Keller 2005], [Featherston 2005], and [Clifton et al. 2006];
[Cowart 1997] is a user-friendly handbook.

Unfortunately, full-fledged experimental syntax is complex, forcing the researcher to
spend considerable time on work that is not theoretically very interesting. Fortunately, the
complexity of an experiment need only be proportional to the subtlety of the effect it is trying
to detect. Most judgments are very clear (perhaps because a grammar must be shared by a
speech community, and hence must be “obvious” enough to learn), and so are reliably detected
even with traditional “trivially simple” methods. Very subtle or variable judgments, or
hypotheses involving gradient degrees of acceptability or interactions between grammar and
processing, may require full-fledged experimental methods. However, in the large area in
between, a compromise seems appropriate, where methods are powerful enough to yield
statistically valid results, yet are simple enough to apply quickly. This is where MiniJudge
comes in.

MiniJudge [Myers 2007a] is a family of software tools designed to help theoretical
syntacticians design, run, and analyze linguistic judgment experiments quickly and painlessly.
Though MiniJudge experiments are small-scale experiments, testing the minimum number of
speakers and sentences in the shortest amount of time, they use statistical techniques designed
to maximize interpretive power from small data sets. In this paper, I first define more
precisely what makes a MiniJudge experiment small-scale. Then, I walk through a sample
MiniJudge experiment on Chinese. Finally, I reveal MiniJudge’s inner workings, which
involve some underused or novel statistical techniques. The most updated implementation of
MiniJudge is MiniJudgeJS, which is written in JavaScript, HTML, and the statistical language
R [R Development Core Team 2007]. It has been tested most extensively in Firefox for
Windows XP, but also seems to work properly in Internet Explorer and Opera in Windows,
Firefox for Linux (though line breaks are not handled properly in R for Linux), and Firefox,
Opera, and Safari for Macintosh. There is also a Java implementation called MiniJudgeJava
[Chen et al. 2007] with somewhat different internal algorithms and interface, but which
otherwise works the same as the JavaScript version described in this paper.

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˊˊ

2. Small-Scale Experimental Syntax

Experimental syntax (at least the type carried out in laboratories) generally adheres rather
closely to conventions developed in psycholinguistics: multiple stimuli and subjects (naive
ones rather than the bias-prone experimenters themselves), factorial designs (where materials
represent all possible combinations of the experimental factors, to avoid confounds and make
it possible to study interactions between factors), filler items (to prevent subjects from
guessing which materials are the theoretically crucial ones), counterbalancing (so no subject is
presented with “minimal pairs” differing only in theoretically relevant factors), continuous
response measures (e.g., open-ended judgment scales, to permit the use of standard statistical
techniques like the analysis of variance, or ANOVA), and statistical analysis (to determine
how unlikely the obtained results were to have occurred by chance alone). Together, these
conventions can make the designing, running, and analysis of syntax experiments quite
time-consuming and intimidating to the novice, especially if the experiment ends up merely
reconfirming results already suspected from informally collected judgments.

In a small-scale judgment experiment, however, only the most essential of these
conventions are maintained, as summarized in Table 1.

Table 1. Key characteristics of small-scale experimental syntax
Very few sentence sets (about 10) No fillers
Very few (naive) speakers (about 10-20) No counterbalancing of sentence lists
Maximum of two binary factors Random sentence order
Binary yes/no judgments Order treated as a factor in the statistics

The very small number of sentence sets and speakers (in comparison with the typical
psycholinguistics experiment) means that experiments can be designed and conducted quite
quickly. Statistical power need not be sacrificed, since, as explained below, the statistical
analysis uses all of the raw data; hence an experiment with ten speakers judging ten sentence
pairs yields 200 distinct observations. Restricting to two binary factors also speeds up
experimental design, and reflects quite well the sorts of designs implicit in most actual
syntactic research; an example demonstrating this is given below. Binary yes/no judgments are
inherently less information-rich than judgments on a continuous scale, but they are generally
easier for naive subjects to provide (see, e.g., [Snyder 2000]); unclear cases can simply be
responded to with an arbitrary guess (which may feel random, but rarely is). Though binary
judgments are the default when judgments are collected informally, they are often avoided
when experimenters intend to analyze their results statistically, one reason being that the most
familiar statistical techniques (like ANOVA) are designed for continuous data. Rather than
adjusting the judgment conventions to suit the statistics, MiniJudge adjusts the statistics to suit
the judgment conventions of actual practicing syntacticians, adopting a recently developed

˄ˊˋ James Myers

method designed specifically for binary response measures collected across both subjects and
materials (see 4.2.1).

The lack of fillers and counterbalancing means that subjects have more opportunities to
guess the purpose of the experiment than is typically tolerated in psycholinguistics, but the
effect of any biases that may result is limited due to the treatment sentence order. First, as is
standard in psycholinguistic experiments, materials are presented in random order, since by far
the most powerful (hence, annoying) bias in linguistic responses is memory of recently
processed forms. Second, going beyond standard practice, MiniJudge is capable of ignoring in
the statistics any lingering order effects (see 4.2.2). As I demonstrate below, this feature is
sometimes essential to bring particularly subtle and sensitive judgment patterns up to the level
of statistical significance.

For further justification of the built-in restrictions of MiniJudge, see the MiniJudge
homepage [Myers 2007a].

3. Using MiniJudge

To show how MiniJudge is used, I describe a recent application of it to a morphosyntactic
issue in Chinese (see [Myers 2007b] for discussion of the linguistic background). MiniJudge
has also been used to run syntax experiments on English and Taiwan Sign Language, as well
as to run pilots for larger studies and to help teach basic concepts in experimental design.
MiniJudge can also be used for judgments experiments in pragmatics, semantics, and
phonology.

3.1 Goal of the Experiment
[He 2004] presents an interesting observation about the interaction of compound-internal
phrase structure and affixation of the plural marker men in Chinese. Part of his paradigm is
shown in Table 2, where V = verb and O = object (based on his (2) & (4), pp. 2-3).

Table 2. The VOmen paradigm of He (2004)
 [+men] [-men]

[+VO] *zhizao yaoyan zhe men
make rumor person PLURAL

zhizao yaoyan zhe
make rumor person

[-VO] yaoyan zhizao zhe men
rumor make person PLURAL

yaoyan zhizao zhe
rumor make person

He’s analysis is not relevant here; the question is simply whether or not his observation
about the judgment pattern in Table 2 is empirically correct. As a non-native speaker of
Chinese, I have no intuitions myself. When I have informally asked colleagues and students to
double-check the judgments, I have received a mixed response. Some looking at He’s paper

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˊˌ

seem to be influenced more by the printed star pattern than the examples themselves. Others
rule out men or VO entirely, but this misses the point, since He’s claim concerns the
ungrammaticality of the VOmen form relative to all the others. It may also be that He’s
generalization works for the few examples he cites, but fails in general. My goal, then, was to
use MiniJudge to generate more examples to test systematically on native speakers.

3.2 The MiniJudgeJS Interface
MiniJudgeJS is simply a JavaScript-enabled HTML form. Input and output are handled by text
areas; generated text includes code to run statistical analyses in R. Like the rest of the
MiniJudge family, MiniJudgeJS divides the experimental process into the steps in Table 3.

Table 3. The steps used by MiniJudge
I. Design experiment II. Run experiment III. Analyze experiment

Choose experimental factors Choose number of speakers Download and install R

Choose set of prototype sentences Write instructions for speakers Enter raw results

Choose number of sentence sets Print or email survey forms Generate data file

Segment prototype set (optional) Save schematic survey file Save data file

Replace segments (optional) Generate R code

Save master list of test sentences Paste R command code into R

3.3 Designing the Experiment
A MiniJudge experiment is defined by its experimental factors. Thus, the paradigm in Table 2
is derived via two binary factors: [±VO] (VO vs. OV) and [±men] (with or without men
suffixation). As noted above, He’s observation doesn’t relate to each factor separately, but
rather to an interaction: the combination of the factor values [+VO] and [+men] is claimed to
result in lower acceptability, relative to overall judgments for [+VO] and for [+men].

The next step is to enter the prototype set of sentences (a pair if one factor, a quartet if
two factors). Similar to the example sets shown in syntax papers and presentations, the
prototype set serves multiple purposes. Most fundamentally, it helps to make the logic of
factorial experimental design intuitive for novice experimenters. Syntacticians are not always
aware of the importance of contrasting sentences that differ only in theoretically relevant
factors, or of the central role played by interactions in many syntactic claims (for further
discussion of the relevance of factors and interactions in syntax experiments, see [Cowart
1997], as well as the MiniJudge main page [Myers 2007a]).

˄ˋ˃ James Myers

Another purpose of the prototype set is that it can be used to help generate further
sentence sets that maintain the same factorial contrasts but vary in irrelevant lexical properties.
In the case of the present experiment, the claim made in [He 2004] says nothing about the
particular verb, object, or head that is used. Thus the judgment pattern claimed for Table 2
above should also hold for the sets shown in Table 4 below, regardless of any additional
influences from pragmatics, frequency, suffixlikeness (zhe vs. the others), or freeness (ren vs.
the others); the stars here represent what He should predict (lexical content for the new sets
was chosen with the help of Ko Yu-guang and Zhang Ning).

Table 4. Extending the VOmen paradigm of He [2004]
 [+men] [-men]

[+VO] *chuanbo bingdu yuan men
spread virus person PLURAL

chuanbo bingdu yuan
spread virus person

[-VO] bingdu chuanbo yuan men
virus spread person PLURAL

bingdu chuanbo yuan
virus spread person

[+VO] *sheji shipin ren men
design ornaments person PLURAL

sheji shipin ren
design ornaments person

[-VO] shipin sheji ren men
ornaments design person PLURAL

shipin sheji ren
ornaments design person

MiniJudge partly automates the process of creating new sentence sets by dividing up the
prototype sentences into the largest repeating segments and replacing them with user-chosen
substitutes. The prototype segments for Table 2 are shown in the first row of Table 5. The user
only has to find parallel substitutes for four segments, rather than having to construct whole
new sentences consistent with the factorial design (Table 5 shows the segments needed to
generate the new sets in Table 4). The segmentation and set generation algorithms (see 4.1)
are designed to work equally well in English-like and Chinese-like orthographies. Of course,
since MiniJudge knows no human language, it sometimes makes strange errors, so users are
allowed to correct its output, or even to generate new sets manually.

Table 5. Prototype segments and new segments for the VOmen experiment
Set 1 (prototype) segments: zhizao yaoyan zhe men

Set 2 segments: chuanbo bingdu yuan men

Set 3 segments: sheji shipin ren men

After the user has corrected and approved the master list of sentences, it can be saved to a
file for use in reports. In the present experiment, the master list contained 48 sentences (12
sets of 4 sentences each). This is an unusually large number of sentences for a MiniJudge
experiment; significant results have been found with experiments with as few as 10 sentences.

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˋ˄

3.4 Running the Experiment
In order to run a MiniJudge experiment, the user must make three decisions. The first concerns
the maximum number of speakers to test. It is possible to get significant results with as few as
7 speakers, but in the present experiment, I generated 30 surveys. As it turned out, only 18
surveys were returned.

The second decision concerns whether surveys will be distributed by printed form or by
email. In MiniJudgeJS, printing surveys involves saving them from a text area and printing
them with a word processor. MiniJudgeJS cannot send email automatically, so emailed
surveys must be individually copied and pasted. In the present experiment, I emailed thirty
students, former students, or faculty of my linguistics department who did not know the
purpose of the experiment.

The final decision concerns the instructions, which the user may edit from a default.
MiniJudgeJS requires that judgments be entered as 1 (yes) vs. 0 (no). Chinese instructions for
the VOmen experiment were written with the help of Ko Yu-guang.

Surveys themselves are randomized individually to prevent order confounds, as is
standard in psycholinguistics. The randomization algorithm, taken from [Cowart 1997:101],
results in every sentence having an equal chance to appear at any point in the experiment (by
randomization of blocks), while simultaneously distributing sentence types evenly and
randomly.

Each survey starts with the instructions, followed by a speaker ID number (e.g. “##02”),
and finally the survey itself, with each sentence numbered in the order seen by the speaker.
Because the speakers’ surveys intentionally hide the factorial design, the experimenter must
save this information separately in a schematic survey file. This file is meant to be read only
by MiniJudgeJS; as an example, the first line of the schematic survey file for the present
experiment is explained in Table 6.

Table 6. The structure of the schematic survey information file for the VOmen
experiment

File line: 01 20 05 01 -VO -men

Explanation: speaker ID
number

sentence ID
number

set ID number order in
survey

value of first
factor

value of
second factor

After completed surveys have been returned, the experimenter pastes them into a text
area in any order (as long as each survey still contains its ID number), and pastes the
schematic survey information back into another text window. MiniJudgeJS extracts judgments
from the surveys and creates a data file in which each row represents a single observation,
with IDs for speakers, sentences, and sets, presentation order of sentences, factor values (1 for
[+] and -1 for [-]), and judgments. As an example, the first three lines of the data file for the

˄ˋ˅ James Myers

VOmen experiment are shown in Table 7.

Table 7. First three lines of data file for the VOmen experiment
Speaker Sentence Set Order VO men Judgment

1 20 5 1 -1 -1 1

1 45 12 2 1 1 0

3.5 Analyzing the Results
For novice experimenters, the most intimidating aspect of psycholinguistic research is
statistical analysis. MiniJudge employs quite complex statistical methods that are unfamiliar
even to most psycholinguists, yet hides them behind a relatively user-friendly interface. Data
from a MiniJudge experiment are both categorical and repeated-measures (grouped within
speakers). Currently the best available statistical model for repeated-measures categorical data
is generalized linear mixed effect modeling (GLMM), which can be thought of as an extension
of logistic regression (see e.g. [Agresti et al. 2000].

GLMM poses serious programming challenges, so MiniJudgeJS passes the job to R, the
world’s foremost free statistical package [R Development Core Team 2007]. R is an
open-source near clone of the proprietary program S [Chambers and Hastie 1993], and like S,
is a full-featured programming language. Its syntax is somewhere between C++ and Matlab,
and, of course, it has a wide variety of built-in statistical functions, including many
user-written packages. The specific R package for GLMM used by MiniJudgeJS is lme4 and
its prerequisite packages [Bates and Sarkar 2007].

However, since R is a command-line program, and its outputs can be unintelligible
without statistical training, MiniJudgeJS handles the interface with it. The user merely enters
the name of the data file, decides whether or not to test for syntactic satiation (explained
below in section 3.5.2), and pastes the code generated by MiniJudgeJS into the R window.
After the last line has been processed by R, the code will either generate a warning (that the
file was not found or was not formatted correctly), or, if all went well, display a simple
interpretive summary report. A much more detailed technical report is also saved
automatically; this report is explained, step by step for the novice user, in the MiniJudge help
page (Myers 2007a).

3.5.1 A Null Result?
When the data file containing the 18 completed surveys in the VOmen experiment was
analyzed using the R code generated by MiniJudgeJS, the summary report in Figure 1 was
produced along with the bar graph in Figure 2. The summary report has three parts: a table
showing the number of yes judgments for each category (shown graphically in Figure 2), a

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˋˆ

listing of significant patterns (if any), and a statement about whether there was any significant
confound between items and factors (explained more fully in section 4.2.5).

Number of YES judgments for each category:

 [+V] [-V] Total V = VO
[+m] 23 74 97 m = men
[-m] 89 163 252
Total 112 237 349

Significance summary (p < .05):

The factor VO had a significant negative effect.
The factor men had a significant negative effect.
Order had a significant negative effect.
There were no other significant effects.

Items and factors were significantly confounded, so the above
results take cross-item variability into account.

Figure 1. Default results summary generated by MiniJudgeJS for the VOmen
experiment

[+VO] [-VO]

[+men]
[-men]

Number of YES judgments

C
ou

nt
s

0
50

10
0

15
0

20
0

Figure 2. Default graph generated by MiniJudgeJS for the VOmen experiment

˄ˋˇ James Myers

The negative effects of the [VO] and [men] factors mean that items containing VO or
men were judged worse, on average. These patterns are also clear from the table and graph.
However, as noted in 3.1, these patterns are not what the empirical claim of He [2004] is
concerned with. What we expected to see was a significant interaction between [VO] and
[men], but this was not found. Instead, inspection of the technical results file shows that the p
value for the interaction was .89 for the by-speaker-only analysis and .73 for the
by-speaker-and-sentence analysis, clearly non-significant (p > .05).

However, this is not a refutation of He’s claim, but merely a null result. Indeed, the
number of yes judgments trends in the predicted direction: for VO forms, non-men forms were
judged better than men forms by a ratio of almost 4:1 (89/23 = 3.87), about twice as high as
the ratio for OV forms (163/74 = 2.20). That is, it was worse to affix men to VO forms than to
OV forms, just as He claims.

One possible cause of a null result is a confound with a nuisance variable. A clue to what
this nuisance variable might be here is the significant negative effect of order, which means
that judgments got worse as the experiment progressed (i.e. there was a rising probability of
judging a form as unacceptable). This shift in judgments suggests that further analysis may be
advisable, as described next.

3.5.2 Syntactic Satiation
Though MiniJudge factors out raw order effects in its default analysis, it is possible that order
also interacts with one or more factors. Testing for interactions with continuous variables
without a specific theoretical reason may make it more difficult to interpret main effects (see
e.g. [Bernhardt and Jung 1979], but MiniJudge offers the option to test for interactions with
order because it helps in the detection of syntactic satiation. Satiation is the phenomenon
(known informally as “linguist’s disease”) in which linguistic intuitions are dulled by repeated
testing, making it harder to be confident in one’s judgments. MiniJudge tests for satiation by
looking for interactions with order: early on, the effect of a factor is strong, but later it’s weak.

[Snyder 2000] argues that satiation could provide a new window into grammar and/or
processing, since different types of syntactic violations differ in whether or not they satiate.
Snyder suggests two possible reasons for such differences. On the one hand, satiation may be
caused by processing, not grammar, thus providing a diagnostic for performance influences on
acceptability (a position taken by [Goodall 2004]). On the other hand, satiability may differ
due to differences between the components of competence itself, thus permitting a new
grammatical classification tool (a position taken by [Hiramatsu 2000]).

Although [He 2004] makes no predictions relating to satiation, the unexpected null result
noted in section 3.5.1 suggests that it may be worthwhile trying out a more complex analysis

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˋˈ

that includes interactions with order. Running this analysis simply involves telling
MiniJudgeJS that we want to test for satiation by clicking a check box, and then pasting the
newly generated code into R.

Since we chose to test satiation, MiniJudge changes the format of the graph to a line
graph, as in Figure 3, which makes the overall order effect quite clear. A satiation trend is also
visible in the graph, since the lines not only drop over time, but also get closer together,
meaning that discrimination between sentence types weakened over the course of the
experiment. Unfortunately, factoring out satiation doesn’t result in any change in the main
report, which comes out the same as the earlier one shown in Figure 1: no significant
interaction between [VO] and [men].

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Judgment trend lines

Presentation order of sentences

M
ea

n
ju

dg
m

en
t s

co
re

s
(0

=N
O

, 1
=Y

E
S

)

[+V][+m]
[+V][-m]
[-V][+m]
[-V][-m]

Figure 3. Graph generated by MiniJudgeJS when testing for satiation

The technical report for this analysis, automatically saved under a different name from
the earlier one, clarifies what happened. The summary report gives the analysis that takes both
cross-speaker and cross-sentence variability into account, since this model had statistically
better coverage of the data, as indicated by the statement in the summary report that “items
and factors were significantly confounded.” This analysis only shows marginally significant
satiation of the VOmen effect (p = .08), and the VOmen effect itself shows p = 0.17. However,
in the less stringent, but still meaningful, by-speakers-only analysis, factoring out satiation did
make the interaction between the factors [VO] and [men] significant (p = .023), and this

˄ˋˉ James Myers

analysis also shows a three-way interaction between [VO], [men] and order (p = .016), that is,
satiation of the VOmen effect.

This experiment, thus, not only provided reliable evidence in favor of the empirical claim
made by [He 2004], though only in the less stringent by-speakers analysis. It also revealed
three additional patterns not reported by He: overall lower acceptability for VO forms relative
to OV forms, overall lower acceptability of men forms, and the satiability of the VOmen effect.
Detecting satiation, and the VOmen effect it obscured, depended crucially on the use of
careful experimental design and statistical analysis, and would have been impossible to
confirm using traditional informal methods. Despite this power, the MiniJudge experiment
was designed, run, and analyzed within a matter of days (with most of the delay due to tardy
subject replies), rather than the weeks required for full-fledged experimental syntax.

4. The Inner Workings

MiniJudgeJS, as with MiniJudgeJava and all future versions in the MiniJudge family, is free
and open source. The JavaScript and R code can be modified freely, and both are heavily
commented on to make them easier to follow. In this section I give overviews of the
programming relating to material generation and statistical analysis.

4.1 Material Generation
As described in section 3.3, MiniJudgeJS can assist with the generation of additional sentence
sets. This involves two major phases: segmenting the prototype sentences into the largest
repeated substrings, and substituting new segments for old segments in the new sentence sets.

The first step is to determine whether the prototype sentences contain any spaces. If they
do, words are treated as basic units, and capitalization is removed from the initial word and
any sentence-final punctuation mark is also set aside (for adding again later). If there are no
spaces (as in Chinese, or in a phonology or morphology experiment involving single words),
characters are treated as basic units and there is no capitalization adjustment. Next, the
boundaries between prototype sentences are demarcated to indicate that cross-sentence strings
can never be segments. The algorithm for determining other segment boundaries requires the
creation of a lexicon containing all unique words (or characters) in the prototype corpus. If the
algorithm detects that items from the corpus and from the lexicon match only if one of the
items is lowercase, this item is recapitalized. Versions of the prototype sentences with
“word-based” capitalization are later used when old segments are replaced by new ones.

The most crucial step in the segmentation algorithm is to check each word (or character)
in the lexicon to determine whether or not it has at least two neighbors on the same side in the
corpus. For example, suppose the prototype set consists of the sentences “A dog loves the cat.

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˋˊ

The cat loves a dog.” The lexical item “loves” has two neighbors on the left: “dog” and “cat”.
Thus a segment boundary should be inserted to the left of “loves” in the corpus. Similarly, the
right neighbor of “loves” is sometimes “the” and sometimes “a”; hence “loves” will be treated
as a whole segment. By contrast, the lexical item “cat” always has the same item to its left
(once sentence-initial capitalization is removed): “the”. Similarly, the right neighbor of “the”
is always “cat”. Thus “the cat” will be treated as a segment, and the same logic applies to “a
dog”. The prototype segments are thus “a dog”, “loves”, “the cat”.

The final phase involves substituting the user-chosen new segments for the prototype
segments using JavaScript’s built-in regular expression functions.

4.2 Statistical Analysis
The statistical analyses conducted by MiniJudgeJS involve several innovations: the use of
GLMM, the inclusion of order and interactions with order as factors, the use of JavaScript to
communicate with R, the use of R code to extract key values from R’s technical output so that
a simple report can be generated, and the use of R code to compare by-subject and
by-subject-and-item analyses to decide whether the latter is really necessary. In this section I
describe each of these innovations in turn.

4.2.1 GLMM
As explained in section 3.5, generalized linear mixed effect modeling (GLMM) is
conceptually akin to logistic regression, which is at the core of the sociolinguistic
variable-rule analyzing program VARBRUL and its descendants [Mendoza-Denton et al.
2003], but unlike logistic regression, GLMM regression equations also include random
variables (e.g., the speakers); see [Agresti et al. 2000]. One major advantage of a
regression-based approach is that no data is thrown away as it is when by-subject and by-item
averages are analyzed in separate ANOVAs, as is standard in psycholinguistics (see 4.2.5).
Moreover, since each observation is treated as a separate data point, GLMM is usually not
affected much by missing data as long as it is missing non-systematically (this is why
participants in MiniJudge experiments are requested to judge all sentences, guessing if they’re
not sure).

Though GLMM is the best statistical model currently available for repeated-measures
categorical data, it does have some limitations. First, R’s implementation of GLMM tests
significance using z scores, which are most reliable if the number of observations is greater
than 100 or so, but in actual practice, 100 judgments are trivial to collect (e.g. 5 speakers
judging 10 sentence pairs). Second, like regression in general, GLMM assumes that the
correlation between the dependent and independent variables is not perfect, so it is
paradoxically unable to confirm the significance of perfect correlations. Third, like logistic

˄ˋˋ James Myers

regression (but unlike ANOVA or ordinary regression), it is impossible to calculate GLMM
coefficients and p values exactly; they can only be estimated. Unfortunately, the best way to
estimate GLMM values is extremely complicated and slow, so R uses “simpler” yet less
accurate estimation methods. Currently, R provides two options for estimating GLMM
coefficients: the faster but less accurate penalized quasi-likelihood approximation, and the
slower but more accurate Laplacian approximation. MiniJudgeJS uses the latter.

The function in the lme4/Matrix packages used for GLMM is lmer, which can also
handle linear mixed-effect modeling (i.e. repeated-measures linear regression). The syntax is
illustrated in Figure 3, which shows the commands used to run the final analyses described
above in section 3.5.2. “Factor1” and “Factor2” are variables whose values are set in the R
code to represent the actual factors. The use of categorical data is signaled by setting the
distribution family to “binomial”. The name of the loaded data file is arbitrarily called
“minexp” (for MiniJudge experiment). The first function treats only subjects as random, while
the second function treats both subjects and items as random. The choice to test for satiation
or not is determined by the user; based on this choice, JavaScript generates different versions
of the R code. The choice to run one-factor or two-factor analyses is determined by the R code
itself by counting the number of factors in the data file. Both analyses in Figure 4 are always
run, then compared with another R function described in 4.2.5.

glmm1 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker),
data = minexp, family = "binomial", method = "Laplace")

glmm2 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker)
+ (1|Sentence), data = minexp, family = "binomial", method =
"Laplace")

Figure 4. R commands for GLMM when testing satiation in a two-factor

experiment

4.2.2 Order as a Factor
MiniJudgeJS includes order as a factor whether or not the user tests for satiation to
compensate for the fact that MiniJudge experiments use no counterbalanced lists of sentences
across subgroups of speakers. List counterbalancing is used in full-fledged experimental
syntax so that speakers don’t use an explicit comparison strategy when judging sentences from
the same set (a comparison strategy may create an illusory contrast or have other undesirable
consequences). However, comparison can only occur when the second sentence of a matched
pair is encountered. If roughly half of the speakers get sentence type [+F] first and half get [-F]
first, then on average, judgments for [+F] vs. [-F] are only partially influenced by a
comparison strategy. The comparison strategy (if any) will be realized as an order effect: early

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˋˌ

judgments (when comparison is impossible) will be different from later judgments. Thus,
factoring out order effects in the statistics serves roughly the same purpose as counterbalanced
lists.

4.2.3 JavaScript as an R interface
JavaScript is much more powerful than many programmers realize. In fact, a key inspiration
for MiniJudgeJS was the Logistic Regression Calculating Page [Pezzullo 2005], a
JavaScript-enabled HTML file written by John C. Pezzullo. Using only basic
platform-universal JavaScript, the page collects data, reformats it, estimates logistic regression
coefficients via a highly efficient maximum likelihood estimation algorithm, and generates
chi-square values and p values. Thus, a JavaScript-only version of MiniJudgeJS is conceivable,
without any need to pass work over to R.

Currently, however, in MiniJudgeJS, the role of JavaScript in the statistical analysis is
mainly as a user-friendly GUI. Since the statistics needed for a MiniJudge experiment are
highly standardized, very little input is needed from the user, but the potential to use
JavaScript to interface with R in more flexible ways is there. This would help fix a major
limitation with R, which has a command-line interface that is quite intimidating for novice
users along with online help that leaves a lot to be desired (cf. [Fox 2005]).

Of course, JavaScript has its own limitations, the most notable of which are the built-in
security constraints that prevent JavaScript from being able to read or write to files, or to
communicate directly with other programs. For example, it’s impossible to have JavaScript
run R in the background, to save users the bother of copying and pasting in R code. This is
why we developed MiniJudgeJava as well, though, in its current version, it still requires the
user to interface with R by pasting in code.

4.2.4 R Code to Simplify Output
GLMM is a high-powered statistical tool, unlikely to be used by people who don’t already
have a strong background in statistics; therefore, the outputs generated by R are not
understandable without such a background. Since MiniJudge is intended for statistical novices,
extra programming is needed to translate R output into plain language. For MiniJudgeJS, the
most crucial portion of R’s output for GLMM is the matrix containing the regression
coefficient estimates and p values, like that shown in Figure 5 (from the VOmen experiment,
without testing for satiation). The trick is to extract the estimates (the signs of which provide
information about the nature of the pattern) and the p values (which indicate significance) in
order to generate a simple summary containing no numbers at all.

˄ˌ˃ James Myers

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.198279 0.392239 -0.506 0.6132
Factor1 -1.125097 0.252556 -4.455 8.40e-06
Factor2 -1.420005 0.253253 -5.607 2.06e-08
Order -0.019289 0.007518 -2.566 0.0103
Factor1:Factor2 0.087524 0.251891 0.347 0.7282

Figure 5. Output generated by lmer for the VOmen experiment without testing for
satiation

The current version of MiniJudgeJS extracts values from the lmer output by “sinking”
lmer’s displayed output to an offline file, and then reading this file back in as a string (the
offline file becoming the permanent record of the detailed analysis). The string is then
searched for the string “(Intercept)” which always appears at the upper left of the value matrix.
The coefficient is the first value to the right of the left-most column, and the p value is the
fourth value (skipping “<”, if any).

If the p value associated with a factor or interaction is less than 0.05, a summary line is
generated that gives the actual factor name and the sign of the estimate, as in Figure 1 above.
The R code generates the summary table and bar graph counting the number of yes judgments
for each category (see Figures 1 and 2) directly from the data file itself. When satiation is
tested, the line graph (as in Figure 3) is created by computing the mean judgment values (i.e.
proportion of 1 judgments) across speakers with each order value (i.e. 1, 2, ...), separately for
each item type (as defined by the experimental factors), and then plotting linear regression
lines for each item type.

4.2.5 By-Subject and By-Item Analyses
MiniJudgeJS runs both by-subject and by-subject-and-item analyses, but it reports only the
first in the main summary unless it finds that the more complex analysis is really necessary.
This approach differs from standard psycholinguistic practice, where both by-subject and
by-item analyses are always run. A commonly cited reason for always running a by-item
analysis is that it is required to test for generality across items, just as a by-subject analysis
tests for generality across subjects. However, this logic is based on a misinterpretation of
[Clark 1973], which is the paper usually cited as justification.

First, it is wrong to think that by-item analyses check to see if any item behaves
atypically (i.e. is an outlier). For parametric models like ANOVA, it is quite possible for a
single outlier to cause an illusory significant result, even in a by-item analysis (categorical
data analyses like GLMM don’t have this weakness). To test for outliers, there’s no substitute
for checking the individual by-item results manually. MiniJudge helps with this by reporting

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˌ˄

the by-sentence rates of yes judgments in a table saved as part of the offline analysis file;
items with unusually low or high acceptability relative to others of their type stand out clearly.
In the case of the VOmen experiment, this table did not seem to show any outliers.

The second problem with the standard justification for performing obligatory by-item
analyses, as [Raaijmakers et al. 1999] emphasize, is that the advice given in [Clark 1973]
actually applies only to experiments without matched items, such as an experiment comparing
a random set of sentences with transitive verbs (“eat”, etc.) with a random set of sentences
with unrelated intransitive verbs (“sleep”, etc.). Such sentences will differ in more than just
the crucial factor (transitive vs. intransitive), so, even if a difference in judgments is found, it
may actually relate to uninteresting confounded properties (e.g. the lexical frequency of the
verbs). However, if lexically matched items are used, as in the VOmen experiment, there is no
such confound, since items within each set differ only in terms of the experimental factor(s). If
items are sufficiently well matched, taking cross-item variation into account won’t make any
difference in the analysis (except to make it much more complicated), but if they are not well
matched, ignoring the cross-item variation will result in misleadingly low p values.

Nevertheless, if we only computed models that take cross-item variation into account, we
might lose useful information. After all, a high p value does not necessarily mean that there is
no pattern at all, just that we have failed to detect the pattern. Thus, it may be useful to know
if a by-speaker analysis is significant even if the by-speaker-and-sentence analysis is not. Such
an outcome could mean that the significant by-speaker result is an illusion due to an
uninteresting lexical confound, but it could instead mean that if we do a better job matching
the items in our next experiment, we will be able to demonstrate the validity of our
theoretically interesting factor. Moreover, it is quite difficult to compute GLMM models with
two random variables, making such models somewhat less reliable than those with only one
random variable. Just in the last year, the lme4 package in R has been upgraded, so that the
lmer function now gives different results for by-subjects-and-items analyses than it did when
MiniJudge was first developed. Due to concerns like these, MiniJudge runs both types of
analyses and only chooses the by-subjects-and-items analysis for the main report if a
statistically significant confound between factors and items is detected. The full results of both
analyses are saved in an off-line file, along with the results of the statistical comparison of
them.

The R language makes it quite easy to perform this comparison, since the model in which
only speakers are treated as random is a special case of the model in which both speakers and
sentences are treated as random. This means the two GLMM models can be compared by a
likelihood ratio test using ANOVA [Pinheiro and Bates 2000]. As with the output of the lmer
function, the output of the lme4 package’s anova function makes it difficult to extract p
values, so again the output is “sunk” to the offline analysis file to be read back in as a string.

˄ˌ˅ James Myers

Only if the p value is below 0.05 is the more complex model taken as significantly better. If
the p value is above 0.2, MiniJudgeJS assumes that items and factors are not confounded and
reports only the by-subjects-only analysis in the main summary. Nevertheless, MiniJudgeJS,
erring on the side of caution, gives a warning if 0.2 > p > 0.05. In any case, both GLMM
analyses are available for inspection in the offline analysis file. Each analysis also includes
additional information, generated by lmer, that may help determine which analysis is really
more reliable, including variance of the random variables and the estimated scale (compared
with 1); these details are explained in the MiniJudge help page.

In the case of the VOmen experiment, the comparison of the two models showed that the
by-subjects-only model was sufficient, unsurprisingly, given that the materials were almost
perfectly matched, and that the items table showed no outliers among the sentence judgments.

The final problem with the standard justification for automatic by-item analyses is one
that even [Raaijmakers et al. 1999] fail to point out. Namely, since repeated-measures
regression models make it possible to take cross-speaker and cross-sentence variation into
account at the same time, without throwing away any data, they are superior to standard
models like ANOVA. To learn more about how advances in statistics have made some
psycholinguistic traditions obsolete, see [Baayen 2004].

5. Conclusions

MiniJudge, currently implemented as MiniJudgeJS and MiniJudgeJava, is software for
theoretical syntacticians who want a reliable and easy way to collect and interpret judgments
consistent with the key methodological principles of experimental cognitive science.
MiniJudge is limited in some ways, in particular in how it interfaces with R, though, in
ongoing work, we are developing efficient code to compute GLMM within JavaScript or Java
itself. Nevertheless, even in its current version, MiniJudge is quite easy to use, as testing by
my students has demonstrated, and powerful enough to detect theoretically interesting patterns
with very little data. Behind this power is original programming and statistical techniques.
Finally, MiniJudge is an entirely free, open-source program (as will be all future versions).
Anyone interested is invited to try it out and contribute to its further development.

Acknowledgements
This research was supported by National Science Council (Taiwan) grant NSC
94-2411-H-194-018. MiniJudgeJS is co-copyrighted by National Chung Cheng University.
Experimental or programming help came from my research assistants Ko Yu-guang, Chen
Tsung-yin, and Yang Chen-Tsung. The students in my spring 2006 class Competence &
Performance helped test MiniJudgeJS and made useful suggestions. John C. Pezzullo and
Harald Baayen also provided helpful information on programming and statistical matters. An

MiniJudge: Software for Small-Scale Experimental Syntax ˄ˌˆ

earlier version was presented at ROCLING 18 (Hsinchu, Taiwan, September, 2006), and I
thank conference reviewers and audience members for their comments. Of course I am solely
responsible for any mistakes.

References
Agresti, A., J. G. Booth, J. P. Hobert, and B. Caffo, “Random-Effects Modeling of Categorical

Response Data,” Sociological Methodology, 30, 2000, pp. 27-80.
Baayen, R. H., “Statistics in Psycholinguistics: A Critique of Some Current Gold Standards,”

Mental Lexicon Working Papers, vol. 1, ed. by G. Libben and K. Nault, University of
Alberta, Canada, 2004, pp. 1-45.

Bates, D., and D. Sarkar, lme4: Linear Mixed-Effects Models Using S4 Classes, version
0.99875-7, http://cran.r-project.org/src/contrib/Descriptions/lme4.html, 2007.

Bernhardt, I., and B. S. Jung, “The Interpretation of Least Squares Regression with Interaction
or Polynomial Terms,” The Review of Economics and Statistics, 61(3), 1979, pp.
481-483.

Chambers, J. M., and T. J. Hastie, Statistical Models in S, Chapman & Hall, New York, 1993.
Chen, T.-Y., C.-T. Yang, and J. Myers, MiniJudgeJava, version 0.9.9,

http://www.ccunix.ccu.edu.tw/~lngproc/MiniJudge.htm, 2007.
Chomsky, N., Aspects of the Theory of Syntax, The MIT Press, Cambridge, MA, 1965.
Clark, H., “The Language-As-Fixed-Effect Fallacy: A Critique of Language Statistics in

Psychological Research,” Journal of Verbal Learning and Verbal Behavior, 12, 1973, pp.
335-359.

Clifton, Jr., C., G. Fanselow, and L. Frazier, “Amnestying Superiority Violations: Processing
Multiple Questions,” Linguistic Inquiry, 37(1), pp. 51–68.

Cowart, W., Experimental Syntax: Applying Objective Methods to Sentence Judgments, Sage
Publications, London, 1997.

Featherston, S., “That-Trace in German,” Lingua, 115(9), 2005, pp. 1277-1302.
Fox, J., “The R Commander: A Basic-Statistics Graphical User Interface to R,” Journal of

Statistical Software, 14(9), 2005, pp. 1-42.
Goodall, G., “On the Syntax and Processing of Wh-Questions in Spanish,” Proceedings of the

23rd West Coast Conference on Formal Linguistics, 2004, Davis, California, pp.
101-114.

He, Y., “The Words-and-Rules Theory: Evidence from Chinese Morphology,” Taiwan
Journal of Linguistics, 2(2), pp. 1-26.

Hiramatsu, K., Accessing Linguistic Competence: Evidence from Children’s and Adults’
Acceptability Judgements, PhD thesis, University of Connecticut, Storrs, 2000.

˄ˌˇ James Myers

Mendoza-Denton, N., J. Hay, and S. Jannedy, “Probabilistic Sociolinguistics: Beyond
Variable Rules,” Probabilistic Linguistics, ed. by R. Bod, J. Hay and S. Jannedy, The
MIT Press, Cambridge, MA, 2003, pp. 97-138.

Myers, J., MiniJudgeJS, Version 1.0, www.ccunix.ccu.edu.tw/~lngproc/MiniJudgeJS.htm,
2007a.

Myers, J., “Generative Morphology as Psycholinguistics,” The Mental Lexicon: Core
Perspectives, ed. by G. Jarema and G. Libben, Elsevier, Amsterdam, pp. 105-128.

Penke, M., and A. Rosenbach, “What Counts as Evidence in Linguistics? An Introduction,”
Studies in Language, 28(3), 2004, pp. 480-526.

Pezzullo, J. C., Logistic Regression Calculating Page, version 05.07.20,
http://statpages.org/logistic.html, 2005.

Pinheiro, J. C., and D. M. Bates, Mixed-Effects Models in S and S-Plus, Springer, Berlin,
2000.

R Development Core Team, R: A Language and Environment for Statistical Computing,
http://www.R-project.org.

Raaijmakers, J. G. W., J. M. C. Schrijnemakers, and F. Gremmen, “How to Deal with ‘the
Language-As-Fixed-Effect Fallacy’: Common Misconceptions and Alternative
Solutions,” Journal of Memory and Language, 41, 1999, pp. 416-426.

Schütze, C. T., The Empirical Base of Linguistics: Grammaticality Judgments and Linguistic
Methodology, University of Chicago Press, Chicago, 1996.

Snyder, W., “An Experimental Investigation of Syntactic Satiation Effects,” Linguistic Inquiry,
31, 2000, pp. 575-582.

Sorace, A., and F. Keller, “Gradience in Linguistic Data,” Lingua, 115, 2005, pp. 1497-1524.

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 195-216 ˄ˌˈʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received February 7, 2007; Revised July 2, 2007; Accepted July 9, 2007]

Improve Parsing Performance by Self-Learning

Yu-Ming Hsieh , Duen-Chi Yang , and Keh-Jiann Chen

Abstract

There are many methods to improve performance of statistical parsers. Resolving
structural ambiguities is a major task of these methods. In the proposed approach,
the parser produces a set of n-best trees based on a feature-extended PCFG
grammar and then selects the best tree structure based on association strengths of
dependency word-pairs. However, there is no sufficiently large Treebank
producing reliable statistical distributions of all word-pairs. This paper aims to
provide a self-learning method to resolve the problems. The word association
strengths were automatically extracted and learned by parsing a giga-word corpus.
Although the automatically learned word associations were not perfect, the
constructed structure evaluation model improved the bracketed f-score from
83.09% to 86.59%. We believe that the above iterative learning processes can
improve parsing performances automatically by learning word-dependence
information continuously from web.

Keywords: Parsing, Word association, Knowledge Extraction, PCFG, PoS
Tagging, Semantic.

1. Introduction

How to solve structural ambiguity is an important task in building a high-performance
statistical parser, particularly for Chinese. Since Chinese is an analytic language, words can
play different grammatical functions without inflection. A great deal of ambiguous structures
would be produced by parsers if no structure evaluation were applied. There are three main
steps in our approach that aim to disambiguate the structures. The first step is to have the
parser produce n-best structures. Second, we extract word-to-word associations from large
corpora and build semantic information. The last step is to build a structural evaluator to find
the best tree structure from the n-best candidates.

There have been some approaches proposed in the past to resolve structure ambiguities.
For instance:

 Institute of Information science, Academia Sinica, Taipei, Taiwan
E-mail: {morris, ydc, kchen}@iis.sinica.edu.tw

˄ˌˉ Yu-Ming Hsieh et al.

Adding on lexical dependencies. Collins [1999] solves structural ambiguity
by extracting lexical dependencies from Penn WSJ Treebank and applying
dependencies to the statistic model. Lexical dependency (or Word-to-word
association, WA) is one type of semantic information. It is a current trend to add
on semantic related information in traditional parsers. Some incorporate
word-to-word association in their parsing models, such as the Dependency
Parsing in Chen et al. [2004]. They take advantage of statistical information of
word dependency in the parsing process to produce dependency structures.
However, word association methods suffer low coverage when lacking very
large tree-annotated training corpora while checking dependency relationships
between word pairs.

Adding on word semantic knowledge where CiLin and HowNet
information are used in the statistic model in the experiment [Xiong et al. 2005].
Their results work to solve common parsing mistakes efficiently.

Using a re-annotation method in grammar rules. Johnson [1998] thinks that
re-annotating each node with the category of its parent category in Treebank is
able to improve parsing performance. Klein et al. [2003] proposes internal,
external, and tag-splitting annotation strategies to obtain better results.

Building an evaluator. Some people re-rank the structure values and find
the best parse [Collins 2000; Charniak et al. 2005]. At first, the parser produces a
set of candidate parses for each sentence. Later, the re-ranker finds the best tree
through relevance features. The performance is better than without the re-ranker.

This paper is going to show a self-learning method to produce imperfect (due to errors
produced by automatic parsing) but unlimited amount of word association data to evaluate the
n-best trees produced by a feature-extended PCFG grammar. The parser with this WA
evaluation is considerably superior to those without the evaluation.

The organization of the paper is as follows: Section 2 describes how to generate n-best
trees in a simple way. In Section 3, we account for building word-to-word association and a
primitive semantic class as well. As to the design of the evaluating model, our probability
model, coordination of rule probability, and word association probability are presented in
Section 4. In Section 5, we discuss and explain the experimental data and results. Ambiguities
of PoS are to be considered in a practical system. Section 6 deals with further experiments on

 Improve Parsing Performance by Self-Learning ˄ˌˊ

automatic tagging with PoS. Finally, we offer concluding remarks in Section 7.

2. Feature Extension of PCFG Grammars for Producing the N-best Trees

It is clear that Treebanks [Chen et al. 2003] provide not only instances of phrasal structures
and word dependencies but also their statistical distributions. Recently, probabilistic
preferences for grammar rules and feature dependencies were incorporated to resolve
structure-ambiguities and had great improvement on parsing performance. However, the
automatically extracted grammars and feature-dependence pairs suffer the problem of low
coverage. We proposed different approaches to solve these two different types of low
coverage problems. For the low coverage of extracted grammar, a linguistically-motivated
grammar generalization method is proposed [Hsieh et al. 2005]. The low coverage of word
association pairs is resolved by a self-learning method of automatic parsing and extracting
word dependency pairs from very large corpora.

The linguistically-motivated generalized grammars are derived from probabilistic
context-free grammars (PCFG) by right-association binarization and feature embedding. The
binarized grammars have better coverage than the original grammars directly extracted from
Treebank. Features are embedded into the lexical and phrasal categories to improve the
precision of generalized grammar. The important features adopted in our grammar are
described in the following:

Head (Head feature): The PoS of phrasal head will propagate all intermediate nodes

within the constituent.
Example: S(NP(Head:Nh:ה)|S’-Head:VF(Head:VF:׻ |S’-Head:VF(NP(Head:Nb:

 (((((෺ؼ:Head:Na)Head:VC:ᖚ| NP)VP |(؄ޕ
Linguistic motivations: To constrain the sub-categorization frame.

Left (Leftmost feature): The PoS of the leftmost constitute will propagate one-level to its

intermediate mother-node only.
Example: S(NP(Head:Nh:ה)|S’-Head:VF(Head:VF:׻ |S’-NP(NP(Head:Nb:ޕ

؄)| VP(Head:VC:ᖚ| NP(Head:Na:ؼ෺)))))
Linguistic motivation: To constrain linear order of constituents.

Head 0/1 (Existence of

phrasal head):
If phrasal head exists in intermediate node, the nodes will be
marked with feature 1; otherwise 0.

Example: S(NP(Head:Nh: ה)|S’-1(Head:VF: ׻ |S’-0(NP(Head:Nb: ޕ
؄)|VP(Head:VC:ᖚ| NP(Head:Na:ؼ෺)))))

Linguistic motivation: To enforce unique phrasal head in each phrase.

˄ˌˋ Yu-Ming Hsieh et al.

There are two functions of applying the embedded features: one is to increase the
precision of the grammar and the other is to produce more candidate parse structures. With
features embedded in phrasal categories, PCFG parsers are forced to produce varieties of
different possible structures1. In order to achieve a better n-best oracle performance (i.e. the
ceiling performance achieved by picking the best structure from n bests), we designed some
different feature-embedded grammars and try to find a grammar with the better n-best oracle
performance. For instance, “S(NP(Head:Nh: ה)|Head:VF: ׻ | NP(Head:Nb: ޕ ؄)|
VP(Head:VC:ᖚ| NP(Head:Na:ؼ෺)))”. The explanations of feature sets are as follow.

Rule type-1:

Intermediate node: add on “Left and Head 1/0” features.

Non-intermediate node: if there is only one member in the NP, add on “Head” feature.

Example: S(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:׻|S’-NP-0(NP-Head:Nb(Head:Nb:ޕ
؄)|VP(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ෺)))))

Rule type-2:

Intermediate node: add on “Left and Head 1/0” features.

Non-intermediate node: add on “Head and Left” features, if there is only one member in
the NP, add on “Head” feature.

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:׻
|S’-NP-0(NP-Head:Nb(Head:Nb:؄ޕ)|VP-Head:VC(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ෺)))))

Rule type-3:

Intermediate node: add on “Left, and Head 1/0” features.

Top-Level node: add on “Head and Left” features. (see example of S-NP-Head:VF)

Non-intermediate node: if there is only one member in the NP, add on “Head” feature.

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:׻
|S’-NP-0(NP-Head:Nb(Head:Nb:؄ޕ)|VP(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ෺)))))

1 The parser adopts an Earley's Algorithm. It is a top-down left-to-right algorithm. So, in parts that have

the same non-terminals, we keep only the best structure after pruning, to reduce the load of calculation
and thus fasten the parsing speed. Therefore, if we add different features in the Top-Level rules, we'll
get more results.

 Improve Parsing Performance by Self-Learning ˄ˌˌ

Rules and their statistical probabilities are extracted from the transformed structures. The
grammars are derived and trained from Sinica Treebank2. Sinica Treebank contains 38,944
tree-structures and 230,979 words. Table 1 shows the number of rule types in each grammar
and Table 2 shows their 50-best oracle bracketed f-scores on three sets of testing data. The
three sets of testing data used in our experiments represent “moderate”, “difficult”, and “easy”
scale of Chinese language respectively. Black [1991] proposed two structural evaluating
systems in 1991; the more strictly based is named PARSEVAL, and the less strictly based is
crossing. We adopt PARSEVAL measures to evaluate the bracketed f-score. The formula
represents as follows:

data testingof parse sparser'in tsconstituenbracket #
data testingof parse sparser'in tsconstituencorrect brack #(BP)precision bracketed

data testingof parse sk'in treeban tsconstituenbracket #
data testingof parse sparser'in tsconstituencorrect brack #(BR) recall bracketed

BRBP
BRBPf 2**(BF) score- bracketed

A bracket represents the phrasal scope. The reason we don't use a labeled f-score is that we
aim to evaluate the phrasal scope, rather than the effect brought by the phrasal category. For
example, the dependency information is much more related to the structure.

Table 1. Numbers of rules for each grammar.

Rule Type

Rule-1 Rule-2 Rule-3

Rule number 9,899 26,797 13,652

Table 2. The 50-best oracle performances from the different grammars.

Rule type
Testing Data Sources Hardness

Rule type-1 Rule type-2 Rule type-3

Sinica Balanced corpus Moderate 92.97 94.84 96.25

Sinorama Magazine Difficult 90.01 91.65 93.91

Textbook Elementary school Easy 93.65 95.64 96.81

2 http://treebank.sinica.edu.tw/

˅˃˃ Yu-Ming Hsieh et al.

From the above table, we can observe that the “Rule type-3” outperforms the “Rule
type-1” and “Rule type-2”. We adopt the approach used in Charniak et al. [2005] to analyze
the n-best parse. Table 3 shows the best bracketed f-score values of different n-best parse trees.
From the results, we observe that the improvement after n=5 is slight. Thus, the number of
ambiguous candidates can be dynamically adjusted according to the complexity of input
sentences. For normal sentences, we may consider to take n=5 in order to minimize the
complexity. For long sentences or sentences with auto PoS tagging should take as large as
n=50 to raise the ceiling of the best f-score.

Table 3. Oracle bracketed f-scores as a function of number n of n-best parses.

n
Testing Data

1 2 5 10 25 50

Sinica 91.88 94.39 95.91 96.17 96.25 96.25

Sinorama 86.69 90.44 92.87 93.47 93.86 93.91

Textbook 92.24 95.01 96.21 96.61 96.78 96.81

For each candidate tree, its syntactic plausibility is obtained by rule probabilities
produced by PCFG parser. In addition to this, we need semantic related information to help
with finding the best tree structure among candidate trees. In the next section, we will look at
some methods of attaining semantic related information.

3. Auto-Extracting World Knowledge

We could extract word knowledge from Treebanks, but the availability of a very large set of
trees with rich linguistic annotations has long been a problem. A cheaper way to extract word
knowledge is to automatically parse a large amount of data. We believe that with good parsing
performance, we could get sufficient information.

Therefore, in our experiments, we use a Gigaword Chinese corpus to extract word
dependence pairs. The Gigaword corpus contains about 1.12 billion Chinese characters,
including 735 million characters from Taiwan's Central News Agency (traditional characters),
and 380 million characters from Xinhua News Agency (simplified characters) 3 . Word
associations are extracted from the texts of Central News Agency (CNA). First we use
Chinese Autotag System [Tsai et al. 2003], developed by Academia Sinica, to process the
segmentation and PoS tagging of the texts. This system reaches a performance of 95%
segmentation and 93% tagging accuracies. Then we parse each sentence4 in the corpus and
assign semantic roles to each constituent. Based on the head word information, we extract

3 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T09
4 An existing parser is used to produce 1-best tree of a sentence.

 Improve Parsing Performance by Self-Learning ˅˃˄

dependence word-pairs between head words and their arguments or modifiers. The following
illustrates how the automatic knowledge extraction works. We input a Chinese sentence to the
parser:

ʳה ʳ׻ ؄ʳޕ ᖚʳ ෺ʳؼ ʳ
Ta jiao Li-si jian qiu
He ask Li-si pick ball

"He asked Li-si to pick up the ball."

Here is the sentence after segmentation and PoS tagging:

ʳ(Nh)ה ʳ(VF)׻ ʳ(Nb)؄ޕ ᖚ(VC)ʳ ෺(Na)ؼ

The parser analyzes the sentence structure and assigns roles to each phrase as follows. Then,
word-pair knowledge of heads and their modifiers are extracted as shown in Figure 1.

Figure 1. A sample for word association extraction.

Role1 PoS1 Word1 Role2 PoS2 Word2

agent[NP] Nhaa ה Head[S] VF2 ׻

Head[S] VF2 ׻ goal[NP] Nba ؄ޕ

Head[S] VF2 ׻ theme[NP] VC2 ᖚ

Head[S] VC2 ᖚ goal[NP] Nab ෺ؼ

S

agent
NP

Head
Nhaa

ה

Head
VF2

׻ ؄ޕ ᖚ ෺ؼ

Head
Nba

Head
VC2

Head
Nab

goal
NP

theme
VP

goal
NP

˅˃˅ Yu-Ming Hsieh et al.

Figure 1 shows the examples of extracted word associations. “Role1/PoS1/Word1 and
Role2/Role2/Word2” represent the right- and left-part of the word-pairs. “Role”, “PoS”, and
“Word” here mean semantic role, part-of-speech and word respectively. To reduce the number
of word association types, we transform the original word-pairs into three simplified types of
the word pairs:

(a) head word on the left hand side: (H_W_C, X_W_C);

(b) head word on the right hand side: (X_W_C, H_W_C);

(c) coordinating structure: (H_W_C, H_W_C).

In the word pairs, “H” denotes Head, “W” means word, and “C” refers to the simplified PoS
tag5, “X” refers to any semantic role other than Head role. So, we get basic information of
experimental data as follows:

Role1 PoS1 Word1 Role2 PoS2 Word2

X Nh ה H VF ׻

H VF ׻ X Nb ؄ޕ

H VF ׻ X VC ᖚ

H VC ᖚ X Na ؼ෺

The processes above are repeated for each new input sentence from the Gigaword corpus.

Finally, we obtain a great deal of knowledge about dependent word pairs and their
association strengths. In our experiments, we have 37,489,408 sentences that are successfully
parsed and contain word association information. The number of extracted word associations
is 221,482,591. The extracted word to word associations that undergo structure analysis and
head word assignment are not perfectly correct, but they are more informative and precise than
simply taking words on the left and right hand window.

3.1 Coverage Rates of the Word Associations
Data sparseness is always a problem of statistical evaluation methods. As mentioned in the
last section, we automatically segment, tag, parse and assign roles in CNA data, and then
extract word associations. We test our extracted word association data in five different levels
of granularities. Level-1 to Level-5 represents HWC_WC, HW_W, HC_WC, HW_C, and
HC_C respectively. The 5 levels of word associations derived from Figure 1 are as follows:

5 The simplified way please refer to CKIP 93-05 Technical Report.

 Improve Parsing Performance by Self-Learning ˅˃ˆ

Level Type Word Associations
Level-1 HWC_WC (VF_ᖚ/VC/׻/H) (Nb/؄ޕ_VF/׻/H) (VF/׻/Nh _H/ה)

(H/ᖚ/VC_෺/Na)

Level-2 HW_W (ה_H/׻) (H/؄ޕ_׻) (H/׻_ᖚ) (H/ᖚ_ؼ෺)

Level-3 HC_WC (ה/Nh_H/VF) (H/VF_؄ޕ/Nb) (H/VF_ᖚ/VC) (H/VC_ؼ෺/Na)

Level-4 HW_C (Nh_H/׻) (H/׻_Nb) (H/׻_VC) (H/ᖚ_Nb)

Level-5 HC_C (Nh_H/VF) (H/VF_Nb) (H/VF_VC) (H/VC_Na)

Theoretically, the precision of fine-grain level like HWC_WC is much better, but it
suffers the problem of data sparseness, hence, its coverage rate is low; on the other hand, the
coarse-grain level has best coverage rate but relatively low precision. This is the trade-off
between precision and coverage. Therefore, we carry out a series of experiments to find a
balanced measurement by linear combination of different level associations. There will be
experimental results in the following sections.

Why not use HWC_W or HC_W? From our observation, we have found that these two
show similar performance with HWC_WC and HC_WC respectively; therefore, we exclude
them. Besides, there are some asymmetric representations, such as the use of “HW_C”. They
are used to raise the coverage rate in word association while not being too general.

We like to see the bi-gram coverage rates for each level of representation. After CNA
producing word associations in each level, we observe the relationship between the amount of
word associations and the coverage rates of the three texts: Sinica, Sinorama, and Textbook.
We extracted word associations from the three data sets in each level and calculated their
coverage rates.

We tested the coverage rates for 10 different size word association data, of which each
was extracted from different size corpora. Figure 2 shows coverage relationships between five
levels and sizes of word association data for three testing data.

Figure 2 shows that larger data increases the coverage rates, but the coverage of the
fine-grained level word associations, e.g. Level-1 (HWC_WC), is only about 70%, which is
far from saturation. Nonetheless, the coverage rate can be improved by reading more texts
from the web. The coarse-grained level associations, e.g. Level-5 (HC_C), cover the most
bi-gram categories. However, it may not be very useful, since syntactic associations which are
partially embedded in the PCFG are redundant. To attain a better evaluation model, we
derived new associations between semantic classes. Criteria for semantic classification are
discussed in the following section.

˅˃ˇ Yu-Ming Hsieh et al.

Figure 2. Coverage rates vs. size of Corpus: (a) Sinica; (b) Sinorama; (c) Textbook.

3.2 Incorporating Semantic Knowledge
For precision and coverage tradeoffs, we face a dilemma of using word or PoS category. We
find that the coverage of word is low, though its precision is high; on the contrary, the
coverage of PoS is too high to be discriminative. We hope to find a classification that covers
enough information and is discriminative as well; that is, a classification system that falls
between word and PoS category. A semantic classification is the solution.

Sinorama

40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

3M 6M 9M 12M 17M 21M 26M 30M 33M 37M
size of corpus

co
ve

ra
ge

 ra
te

 (%
)

Level-1 Level-2
Level-3 Level-4
Level-5

Textbook

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3M 6M 9M 12M 17M 21M 26M 30M 33M 37M

size of corpus

co
ve

ra
ge

 ra
te

 (%
)

Level-1 Level-2
Level-3 Level-4
Level-5

Sinica

40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

3M 6M 9M 12M 17M 21M 26M 30M 33M 37M

size of corpus

co
ve

ra
ge

 ra
te

 (%
)

Level-1 Level-2
Level-3 Level-4
Level-5

 Improve Parsing Performance by Self-Learning ˅˃ˈ

There are many ways to classify semantic properties of words. Xiong et al. [2005] adopt
CiLin and HowNet as their semantic classes in their experiment; however, the data sparseness
is still a problem to be solved. Here, we propose a simple approach to build a
semantic-class-based association strength for word pairs, which will be our Level-6 (HS_S).
Semantic class information is put into Level-6 in order to get high coverage and to avoid
redundant syntactic associations in other levels. Besides, it can smooth the problem of data
sparseness.

The idea is to classify words into their head morpheme. It begins with the transformation
of every input “WORD, POS” in the data. We adopt the affix database of high frequency verbs
and nouns [Chiu et al. 2004] to set up noun and verb classes. There are 34,857 examples of
compound words in the database. As to determinative measures (DM), we refer to the
dictionary of measure words, and divide the DMs in the data into thirteen categories,
according to the meanings of the measure words. The thirteen categories include general,
event, length, science, approximate measures, weight, square measures, container, capacity,
time, currency value, classification measures, and measures of verbs. Finally, we consult parts
of speech analyses [CKIP 1993] and set up the transformation rules to transform a word-PoS
pair into its semantic class. The transformation algorithm is shown at Appendix A. Take “ޕ
؄, Nb” as example, its semantic class is “PersonalName(Գټ)” in our classification. In
another instance, the semantic class of “ؼ෺, Na” is “Na_෺”. The transformation rules are
PoS dependent. Each PoS is referred to CKIP [1993], which explains the PoS with words and
examples. We set up discriminative subcategorization on some parts-of-speech: N/P/D/A
according to the distribution of PoS and word frequency. As to the verbs, we use an initial step
to assign initial value. Take PoS as "A" for example, adding prefix information is more useful
than using "A" alone.

Role1 PoS1 Word1 Class1 Role2 PoS2 Word2 Class2

X Nh ה ה H VF ׻ ׻

H VF ׻ VF_׻ X Nb ؄ޕ PersonalName

H VF ׻ VF_׻ X VC ᖚ VC_ᖚ

H VC ᖚ VC_ᖚ X Na ؼ෺ Na_෺

The following example is the result of DM, prefix and affix, through a function in Level-6
(HS_S):

S(theme:NP(quantifier:DM:ࠟଡ|Head:Nab:Գ)|deontics:Dbab:౨|Head:VC1:ڇ

|goal:GP(DUMMY:NP(property:Nad:Գس|Head:Nad:ளຜ)|Head:Ng:խ))

˅˃ˉ Yu-Ming Hsieh et al.

Role1 PoS1 Word1 Class1 Role2 PoS1 Word1 Class2

X DM ࠟଡ general_DM H Na Գ Na_Գ

X Na Գ Na_Գ H VCL ڇ_VCL ڇ

X D ౨ D_౨ H VCL ڇ_VCL ڇ

H VCL X Na ளຜ..խ ڇ_VCL ڇ Na..Ng

X Na Գس N_Գ H Na ளຜ Na_ຜ

X Na ளຜ Na_ຜ H Ng խ Location

It is necessary to discriminate syntactic head from semantic head in word association
extraction of GPs and PPs. From the table above, Row 4, signified by the different color
shows that “ளຜ” is the semantic head of the GP “ளຜ..խ”, while the word “խ” is the
syntactic head of the phrase.

We estimate the word association coverage rate of the Level-6 associations. From the
results shown in Figure 3, the coverage rate of Level-6 is higher than Level-2, and the problem
of data sparseness is indeed moderately smoothed.

Level-6 (HS_S)

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3M 6M 9M 12M 17M 21M 26M 30M 33M 37M

size of corpus

co
ve

ra
ge

 ra
te

 (%
)

Sinica
Sinorama
Textbook

Figure 3. WA coverage rate of Level-6.

Next, we will use different levels of associations to construct an evaluation model to find
the best structure among the numerous ambiguous candidates.

4. Building Evaluation Model

A sentence structure is evaluated by its syntactic and semantic plausibility. The syntactic
plausibility is modeled by products of phrase rule probabilities of its syntactic tree. The
semantic plausibility is modeled by the word association strengths between head words and
their arguments or modifiers. For an input sentence S, the feature-embedded PCFG parser
produces its n-best trees 1{ (),..., ()}ny s y s . The evaluating model finds out the best structure

 Improve Parsing Performance by Self-Learning ˅˃ˊ

according to the rule probability (syntactic) and corresponding word association probability
(semantic). Rule probabilities are generated by the PCFG parser when n-best trees are
produced. We will estimate word association probabilities in the following formula. In the
formula, “Head” means the Head of a word association, notated as HWC, HC, or HW.
“Modify” means dependent daughter, notated as WC, W, or C.

(,)(|)
()

freq Head ModifyP Modify Head
freq Head

 (1)

Data sparseness is a common problem in dealing with corpora. A minimal value is
used to smooth data sparseness:

1 1
221482591total number of WA token

The evaluation value (())nValue y s to each candidate tree Yn(S) is defined as:

(())
* (()) (1) (())

n

n n

Value y s
RuleValue y s WAValue y s

 (2)

where (())nRuleValue y s is the rule probability of the sentence and (())nWAValue y s is the
total word association value in different level n. RuleValue and WAValue are normalized, i.e.
(i-min)/(max-min). The following shows weighting in different levels and explanation of
formula:

6

1
(()) * (())n level level n

level
WAValue y s WA y s (3)

_ _ _ _ ()
(()) (|)

n

level n
all word association for y s

WA y s P Modify Head (4)

After semantic probability collocating with rule probability, we hope to find the best tree
*()y s .

*() arg max (())ny s Value y s /*Yi on all i (5)

We calculate related and values from the development sets. The development
sets are adopted from trees in training data. In evaluation, we substitute and for every
interval of 0.1 from 0 to 1. Then, we find out the best results in certain probability. The
experiment results will be shown in the following section. Moreover, we justify whether the
word associations are reasonable.

For instance, the following example has eight different ambiguous parsing results
produced by the parser.

˅˃ˋ Yu-Ming Hsieh et al.

Input segmentation with PoS tag: ݺଚ(Nh)ʳ ຟ(D)ʳ ໛ᦟ(VK)ʳ ᓗᓘ(Na)
Parsing results:
#1:1.[0] S(NP(Head:Nh:ݺଚ)|D:ຟ|Head:VK:໛ᦟ|NP(Head:Na:ᓗᓘ))#
#1:2.[0] NP(Nh:ݺଚ|Head:NP(VP(D:ຟ|Head:VK:໛ᦟ)|Head:Na:ᓗᓘ))#
#1:3.[0] VP(PP(Head:Nh:ݺଚ)|VP(D:ຟ|Head:VK:໛ᦟ)|Head:Na:ᓗᓘ)#
#1:4.[0] NP(VP(Head:Nh:ݺଚ)|Head:NP(VP(D:ຟ|Head:VK:໛ᦟ)|Head:Na:ᓗᓘ))#
#1:5.[0] VP(Head:VP(VP(Head:Nh:ݺଚ)|VP(D:ຟ|Head:VK:໛ᦟ))|NP(Head:Na:ᓗᓘ))#
#1:6.[0] NP(S(NP(Head:Nh:ݺଚ)|D:ຟ|Head:VK:໛ᦟ)|Head:Na:ᓗᓘ)#
#1:7.[0] VP(PP(Head:Nh:ݺଚ)|Head:VP(VP(D:ຟ|Head:VK:໛ᦟ)|VP(Head:Na:ᓗᓘ)))#
#1:8.[0] VP(Head:VP(VP(Head:Nh:ݺଚ)|VP(Head:D:ຟ))|Head:VP(Head:VK:໛ᦟ|NP(Head:Na:ᓗᓘ)))#

 Prob (log2)
Rule -23.74

Type WA Prob (log2)
Level-1
(HWC_WC)

 (ଚ/Nh_H/໛ᦟ/VKݺ)
(ຟ/D_H/໛ᦟ/VK)
(H/໛ᦟ/VK_ᓗ጗/Na)

log2(76/21528)+log2(578/21528)+
log2(2/12200) = -25.9395936826742

Level-2
(HW_W)

 (ଚ_H/໛ᦟݺ)
(ຟ_H/໛ᦟ)
(H/໛ᦟ_ᓗ጗)

log2(76/21528)+log2(578/21528)+
log2(2/12200) = -25.9395936826742

Level-3
(HC_WC)

 (ଚ/Nh_H/VKݺ)
(ຟ/D_H/VK)
(H/VK_ᓗ጗/Na)

log2(25520/3235010)+log2(49025/3235010)+
log2(8/2501420) = -31.2844226460991

Level-4
(HW_C)

(Nh_H/໛ᦟ)
(D_H/໛ᦟ)
(H/໛ᦟ_Na)

log2(3257/21528)+log2(6160/21528)+
log2(2927/11741) = -6.53387135079941

Level-5
(HC_C)

(Nh_H/VK)
(D_H/VK)
(H/VK_Na)

log2(230163/3235010)+log2(1086580/3235010)+
log2(575635/2601356) = -7.56305573913316

Level-6
(HS_S)

 (ଚ_H/VK໛ݺ)
(Dຟ_H/VK໛)
(H/VK໛_Na጗)

log2(81/23809)+ log2(586/23809)+
log2(2/13986) = -26.3155277463539

Figure 4. An Example of Rule calculationand and WA probability.

Figure 4 shows the WA values of the first sentence at each level. Similarly the WA data
are produced for all other input sentences. Then, we derive the evaluation values

(())nValue y s for each ambiguous sentence and find the best result with respect to different
weights.

 Improve Parsing Performance by Self-Learning ˅˃ˌ

5. Experimental Results

The parsing performance and our evaluating model are evaluated by standard PARSEVAL
metrics. In our experiments, we only use sentences longer than 6 words for our testing, since
Hsieh et al. [2005] found that the bracketing f-score of short sentence (the length of a sentence
is from 1 to 5 words) is over 90%. We use the n-best tree structures produced from “Rule
type-3” mentioned in the Section 2. The oracle 50-best and the top 1-best bracketed f-scores of
“Rule type-3” are listed in Table 4. Take the data of Sinica for example, we find that for the
50-best results, the oracle score is 90.11%. In contrast the 1-best f-score is 83.09%.

Table 4. The bracketed f-scores of 1-best and oracle performance of 50-best.
(sentence length 6)

Testing data
Top n-best

Sinica Sinorama Textbook

1-best 83.09 77.54 83.19

50-best 90.11 87.44 89.94

To simplify our evaluation model, we try to find the most effective levels of associations
first. In turn, the parser uses only one level of association and rule probabilities to select the
best structure from n candidates. That is:

_ _ _ _ ()

(()) (())
(|)

n

n level n

all word association for y s

WAValue y s WA y s
P Modify Head (6)

Figure 5 displays the bracketing f-scores of testing data for each different level of
association. The best results of Level-1 slightly surpass that of Level-2; results of Level-6
overtake that of Level-3; Level-6 has better performance than Level-5. Therefore, in
considering type of information, data coverage, and dimension reduction only three levels
(Level-1, Level-4 and Level-6) are taken into consideration to form the final evaluation
model.

70.00%

75.00%

80.00%

85.00%

90.00%

Level-1 Level-2 Level-3 Level-4 Level-5 Level-6

WA level

B
ra

ck
et

ed
 f-

sc
or

e
(%

)

Sinica
Sinorama
Textbook

Figure 5. Matching rule with WA value in each level (sentence length 6).

˅˄˃ Yu-Ming Hsieh et al.

Finally, we adjust the weights of L1, L4, and L6 associations and rule probabilities to
evaluate the plausibility of structures from the 50-best parses tree of the developing data and
the results of experiments on the three testing data are shown in Table 5. For our experiments,

 =0.7, 1 =0.7, 4 =0.3, and 6 =0.5.

Table 5. The bracketed f-scores of 50-best parses (sentence length 6)
Testing data

Models
Sinica Sinorama Textbook

R, L1, L4, L6 86.59 82.81 85.97

1-best 83.09 77.54 83.19

50-best 90.11 87.44 89.94

From the results shown in Table 5, we see that semantic information is effective in
finding better structures. About 3.5%~5.2% of the bracketing f-scores are raised. In Charniak
et al. [2005], the f-score was improved from 89.7% (without re-ranking) to 91.02% (with
re-ranking) for English6; the oracle f-score was 96.8% for n-best in their paper. We also
believe that with more data parsed, better word-association values will be obtained; hence, the
parsing performance will be improved by self-learning. Our WA was first extracted from the
1-best result from parser. With the parser producing n-best and the evaluating system finding
the best structure, we can continuously derive more and better word associations. Similarly, if
we have a better WA referent statistic, we should be able to choose the better structure. This is
the idea of how self-learning works. The left side of Figure 6 denotes how we produce
knowledge initially, and the right side of Figure 6 explains the repeated procedure of
automatic knowledge extraction and accumulation. From the results shown in Table 4 and
Table 5, we see that there is much space for improvement.

6 The English parser has better evaluating results than the Chinese one due to the better performance of

the parser and language differences. The charateristic of a strictly regulated grammar in English gives
an advantage in parsing. Nonetheless, we have to admit that there is plenty of room for improvement
in Chinese parsing.

 Improve Parsing Performance by Self-Learning ˅˄˄

Parser

Evaluation
WA

Best tree

n-best tree

Autotag

Web corpora

Knowledge
Extraction+ WA

Knowledge Extraction

Parser

Autotag

Knowledge
Extraction

Initial Step

Sinica Treebank and
CNA corpus

1-best tree
Knowledge

Figure 6. Procedure of self-learning.

6. Further Experiments on Sentences with Automatic PoS Tagging

Perfect testing data was used in the above experiments without considering PoS tagging errors.
However, in reality, PoS tagging errors will degenerate parsing performance. The real parsing
performance of accepting input from a PoS tagging system is shown in Table 6(1). In this
table, “Autotag” means to markup the best PoS on the segmented data. The naïve approach to
overcome the PoS tagging errors is to delay some of the ambiguous PoS resolution for words
with lower confidence tagging scores and leave the ambiguous PoS to be resolved in the
parsing stage. In Tsai et al. [2003], the tagging confidence of each word is measured by the
following value:

)()(
)(

 valueConfidence
,2,1

,1

wcPwcP
wcP (7)

where P(c1,w) and P(c2,w) are probabilities assigned by the tagging model for the best

candidate “c1,w” and the second best candidate “c2,w”. Some examples follow:

confidence value=1.0
ʳ({Nh,Nes})ה ʳ({VG,VF})׻ ʳ(Nb)؄ޕ ᖚ({VC,VB})ʳ ෺(Na)ؼ
confidence value=0.8
ʳ(Nh)ה ʳ({VG,VF})׻ ʳ(Nb)؄ޕ ᖚ(VC)ʳ ෺(Na)ؼ
confidence value<0.5
ʳ(Nh)ה ʳ(VF)׻ ʳ(Nb)؄ޕ ᖚ(VC)ʳ ෺(Na)ؼ

˅˄˅ Yu-Ming Hsieh et al.

In Table 6(2), “Autotag with confidence value=1.0” means that if confidence value Љ
1.0, we list all possible PoSs for the parser to decide. The experimental results of the 1-best,
Table 6(2), show that delaying ambiguous PoS resolution does not improve parsing
performance, since PoS ambiguities increase structural ambiguities and the PCFG parser is not
robust enough to select better syntactic structures. However, for the experiment of 50-best,
take the oracle score as the example; the 50-best oracle f-scores shown in Table 6(2) are better
than the results without leaving ambiguous tags as shown in Table 6(1). Therefore, it is more
likely to find better results after applying our evaluation model on the set of data with better
oracle scores. Hence, we try to see the power of our evaluation model by leaving ambiguous
PoS tags for the testing data.

Table 6. Oracle bracketed f-scores of different autotag for parsing:
(1)Autotag; (2)Autotag with confidence value = 1.0.

Testing data
Top n-best

Sinica Sinorama Textbook

(1) 1-best 75.31 72.05 79.27

 50-best 84.09 83.36 87.54

(2) 1-best 73.41 68.34 77.83

 50-best 86.45 83.99 88.83

We then apply our evaluation model to select the best structure from the 50-best parses.
The results are shown in Table 7. The experiment above takes “Rule type-3” for n-best parses.
The bracketed f-score is raised from the original 73.41% to 79.34%, for about 4%
improvement in the Sinica testing data. Sinorama data is improved from 68.34% to 74.78%.
Textbook data is from 77.83% to 82.59%. This proves that our evaluating model is robust
enough to handle ambiguous PoS tagging and produces better results than solely using the
unique tag produced by Autotag.

Table 7. The bracketed f-scores in Autotag with confidence value=1.0 and
50-best parses (sentence length 6).

Testing data
Models

Sinica Sinorama Textbook

R, L1, L4, L6 79.34 74.78 82.59

1-best 73.41 68.34 77.83

50-best 86.45 83.99 88.83

 Improve Parsing Performance by Self-Learning ˅˄ˆ

7. Conclusion

Parsers of any language aim to correctly analyze the syntactic structure of a sentence, often
with the help of semantic information. This paper shows a self-learning method to produce
imperfect (due to errors produced by automatic parsing) but unlimited amount of word
association data to evaluate the n-best trees produced by a feature-extended PCFG grammar.
We prove that, although the statistical association strengths produced by automatic parsing are
not perfect, the extracted data is reliable enough in measuring plausibility of ambiguous
structures. The parser with this WA evaluation is considerably superior to those without
evaluation. We believe that the above iterative learning processes can improve parsing
performances automatically by learning word-dependence knowledge continuously from web.
We also propose a method to modify our grammars to increase the oracle scores of the
produced n-best sentences.

On the other hand, we offer a general syntactic and semantic evaluation model. We input
n-best parses to our evaluating model. The evaluating model selects the best parse from this
set of parses using a rule and semantic probability. The system we described, using the
standard PARSEVAL framework, has a bracketed f-score of the selected trees, which is
86.59% higher than the original 1-best. Furthermore, the ambiguous PoS of a word is also
parsed and evaluated on n-best, and we prove that our evaluating model is robust enough to
improve parsing results on sentences with ambiguous PoS tagging.

From our experiment results, we find that sentences with coordinate structures are more
difficult to deal with. The information of semantic parallelism instead of semantic
dependencies is required for solving conjunctive structures. The extracted word associations
don’t have enough discriminative power to resolve both syntactic and semantic symmetry of
conjunctive structures. The possible improvement may come from modifying the extraction
method or predicting their plausible ranges before parsing. As to other difficult sentences, for
example, in Figure 2, the coverage rate of Level 2 (HW_W) associations is only about 70%,
which is far less than needed. We may expand our data to read more web texts to resolve this
problem.

In future research, we plan to improve the quality of word-association. Four aspects need
to be addressed: improving the accuracy of the PoS tagger, enhancing the parser's ability to
solve common mistakes (such as parsing conjunctive structures), extracting more word
associations by reading, and parsing text from web. As to the evaluation model, properly
corresponding semantic classifications from coarse to fine-grained categories are needed in
Level-6.

˅˄ˇ Yu-Ming Hsieh et al.

Acknowledgments
This research was supported in part by National Science Council under Grant NSC
95-2422-H-001-008- and National Digital Archives Program Grant 95-0210-29- ؙ
-13-09-00-2.

Reference
Black, E., S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P. Harrison, D. Hindle, R.

Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and T.
Strzalkowski, “A Procedure for Quantitatively Comparing the Syntactic Coverage of
English Grammars,” In Proceedings of the Workshop on Speech and Natural language,
1991, pp. 306-311.

Charniak, E., and M. Johnson, “Coarse-to-fine n-best parsing and MaxEnt discriminative
reranking,” In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, 2005, Ann Arbor, MI, pp. 173-180.

Chen, K.-J., C.-R. Huang, F.-Y. Chen, C.-C. Luo, M.-C. Chang, C.-J. Chen, and Z.-M. Gao,
“Sinica Treebank: design criteria, representational issues and implementation,” In Anne
Abeille, (ed.): Building and Using Parsed Corpora. Text, Speech and Language
Technology, 2003, 20, pp. 231-248.

Chen, Y., M. Asahara, and Y. Matsumoto, “Deterministic Dependency Structure Analyzer for
Chinese,” In Proceedings of the First International Join Conference on Natural
Language Processing, 2004, Sanya City, Hainan Island, China, pp. 135-140.

Chiu, C.-M., J.-Q. Luo, and K.-J. Chen, “Compositional semantics of mandarin affix verbs.”
In Proceedings of ROCLING XVI: Conference on Computational Linguistics and Speech
Processing, 2004, Taipei, pp. 131-139.

CKIP (Chinese Knowledge Information processing), ”The categorical analysis of Chinese,”
Technical Report No. 93-05, Institute of Information Science Academia Sinica, Taipei,
1993.

Collins, M., “Head-driven statistical models for natural language parsing,” PhD thesis,
University of Pennsylvania, 1999.

Collins, M., “Discriminative reranking for natural language parsing,” In Machine Learning:
Proceedings of the Seventeenth International Conference (ICML 2000), 2000, Morgan
Kaufmann, San Francisco, CA, pp. 175-182.

Hsieh, Y.-M., D.-C. Yang, and K.-J. Chen, “Linguistically-motivated grammar extraction,
generalization and adaptation,” In Proceedings of the Second International Join
Conference on Natural Language Processing, 2005, Jeju Island, Republic of Korea, pp.
177-187.

Johnson, M., “PCFG models of linguistic tree representations,” Computational Linguistics,
1998, 24(4), pp. 613-632.

 Improve Parsing Performance by Self-Learning ˅˄ˈ

Klein, D., and C. D. Manning, “Accurate unlexicalized parsing,” In Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, 2003, Sapporo, Japan,
pp. 423-430.

Tsai, Y.-F., and K.-J. Chen, “Context-rule model for PoS tagging,” In Proceedings of 17th
Pacific Asia Conference on Language, Information and Computation (PACLIC 17),
2003, COLIPS, Sentosa, Singapore, pp. 146-151.

Xiong, D., S. Li, Q. Liu, S. Lin, and Y. Qian, “Parsing the Penn Chinese Treebank with
semantic knowledge,” In Proceedings of the Second International Join Conference on
Natural Language Processing, 2005, Jeju Island, Republic of Korea, pp. 70-81.

˅˄ˉ Yu-Ming Hsieh et al.

Appendix A. Transformation algorithm

Notation:

WORD: user input Word
 POS: user input PoS of the word
 CLASS: transformation class of the word
 Affix(WORD): input WORD to find mapping affix from table
 Prefix(WORD): prefix of the WORD
 Suffix(WORD): suffix of the WORD
 DM(WORD): input Word to find DM category
Input: WORD, POS
Output: CLASS
Initial Step:
 CLASS=WORD;
 if WORD in affix table then CLASS=affix(WORD);
 if POS is verb or adverb then CLASS=POS+prefix(WORD);
 if POS is noun then CLASS=POS+suffix(WORD);
Mapping Step:
 if POS is non-predicative adjective then CLASS='A'+prefix(WORD); /* e.g. A */
 if POS is preposition then CLASS='P'+suffix(WORD); /* e.g. P */
 if POS is SHI then CLASS='SHI'; /* e.g. ਢ */
 if POS is V_2 then CLASS='V_2'; /* e.g. ڶ */
 if POS is DM or Measure and exist in DM table then CLASS=DM(WORD);

/* e.g. DM/Nf */
 if POS is conjunction then CLASS=POS+prefix(WORD); /* e.g. Caa/Cab/Cba/Cbb */
 if POS is determinative then CLASS=POS; /* e.g. Nep/Neqa/Neqb/Nes/Neu */
 if POS is pronoun then CLASS=WORD; /* e.g. Nh */
 if POS is time noun then CLASS='Time'; /* e.g. Nd */
 if POS is Postposition/Place Noun/Localizer then CLASS='Location';

/* e.g. Ng/Nc/Ncd */
 if POS is Proper Noun and is family names then CLASS='PersonalName'; /* e.g. Nb */
 if POS is aspectual adverb then CLASS=POS /* e.g. Di */
 if POS is pre/post-verbal adverb of degree then CLASS='Df'+suffix(Word)

/*e.g. Dfa/Dfb */
 if POS is VD/VCL/VL then CLASS=POS+suffix(WORD)

Computational Linguistics and Chinese Language Processing

Vol. 12, No. 2, June 2007, pp. 217-238 ˅˄ˊʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received March 2, 2007; Revised July 4, 2007; Accepted July 12, 2007]

A Comparative Study of Histogram Equalization (HEQ)

 for Robust Speech Recognition

Shih-Hsiang Lin , Yao-Ming Yeh , and Berlin Chen

Abstract

The performance of current automatic speech recognition (ASR) systems often
deteriorates radically when the input speech is corrupted by various kinds of noise
sources. Quite a few techniques have been proposed to improve ASR robustness
over the past several years. Histogram equalization (HEQ) is one of the most
efficient techniques that have been used to reduce the mismatch between training
and test acoustic conditions. This paper presents a comparative study of various
HEQ approaches for robust ASR. Two representative HEQ approaches, namely, the
table-based histogram equalization (THEQ) and the quantile-based histogram
equalization (QHEQ), were first investigated. Then, a polynomial-fit histogram
equalization (PHEQ) approach, exploring the use of the data fitting scheme to
efficiently approximate the inverse of the cumulative density function of training
speech for HEQ, was proposed. Moreover, the temporal average (TA) operation
was also performed on the feature vector components to alleviate the influence of
sharp peaks and valleys caused by non-stationary noises. All the experiments were
carried out on the Aurora 2 database and task. Very encouraging results were
initially demonstrated. The best recognition performance was achieved by combing
PHEQ with TA. Relative word error rate reductions of 68% and 40% over the
MFCC-based baseline system, respectively, for clean- and multi- condition training,
were obtained.

Keywords: Automatic Speech Recognition, Robustness, Histogram Equalization,
Data Fitting, Temporal Average

1. INTRODUCTION

With the successful development of much smaller electronic devices and the popularity of
wireless communication and networking, it is widely believed that speech will play a more

 Department of Computer Science & Information Engineering, National Taiwan Normal University,
Taipei, Taiwan
E-mail: { shlin, ymyeh, berlin }@csie.ntnu.edu.tw

˅˄ˋ Shih-Hsiang Lin et al.

active role and will serve as the major human machine interface (HMI) for the interaction
between people and different kinds of smart devices in the near future [Lee and Chen 2005].
Therefore, automatic speech recognition (ASR) has long been one of the major preoccupations
of research in the speech and language processing community. Nevertheless, varying
environmental effects, such as ambient noise, noises caused by the recording equipment and
transmission channels, etc., often lead to a severe mismatch between the acoustic conditions
for training and test. Such a mismatch will no doubt cause substantial degradation in the
performance of an ASR system. Substantial effort has been made and a large number of
techniques have been presented in the last few decades to cope with this issue for improving
ASR performance [Gong 1995; Junqua et al. 1996; Huang et al. 2001]. In general, they fall
into three main categories [Gong 1995]:

 Speech enhancement, which removes the noise from the observed speech signal.

 Robust speech features extraction, which searches for noise resistant and robust features.

 Acoustic model adaptation, which transforms acoustic models from the training (clean)
space to the test (noisy) space.

Techniques of each of the above three categories have their own reasons for superiority and
their own limitations. In practical implementation, acoustic model adaptation often yields the
best recognition performance, because it directly adjusts the acoustic models parameters (e.g.,
the mean vectors or covariance matrices of mixture Gaussian models) to accommodate the
uncertainty caused by noisy environments. Representative techniques, include, but are not
limited to, the maximum a posteriori (MAP) adaptation [Gauvain and Lee 1994; Huo et al.
1995], the maximum likelihood linear regression (MLLR) [Leggeter and Woodland 1995;
Gales 1998], etc. However, such techniques generally require a sufficient amount of extra
adaptation data (either with or without reference transcripts) and a significant computational
cost in comparison with the other two categories. Moreover, most of the speech enhancement
techniques target enhancing the signal-to-noise ratio (SNR) but not necessarily at improving
the speech recognition accuracy. On the other hand, robust speech feature extraction
techniques can be further divided into two subcategories, i.e., model-based compensation and
feature space normalization. Model-based compensation assumes the mismatch between clean
and noisy acoustic conditions can be modeled by a stochastic process. The associated
compensation models can be estimated in the training phase, and then exploited to restore the
feature vectors in the test phase. Typical techniques of this subcategory, include, but are not
limited to, the minimum mean square error log spectral amplitude estimator (MMSE-LSA)
[Ephraim and Malah 1985], the vector Taylor series (VTS) [Moreno 1996], the stochastic
vector mapping (SVM) [Wu and Huo 2006], the multi-environment model-based linear
normalization (MEMLIN) [Buera et al. 2007], etc.

 A Comparative Study of Histogram Equalization (HEQ) for ˅˄ˌ

Robust Speech Recognition

Feature space normalization is believed to be a simpler and more effective way to
compensate for the mismatch caused by noise, and it has also demonstrated the capability to
prevent the degradation of ASR performance under various noisy environments. Several
attractive techniques have been successfully developed and integrated into the state-of-the-art
ASR systems. As an example, the cepstral mean subtraction (CMS) [Furui 1981] is a simple
but effective technique for removing the time-invariant distortion introduced by the
transmission channel; while a natural extension of CMS, called the cepstral mean and variance
normalization (CMVN) [Vikki and Laurila 1998], attempts to normalize not only the means of
speech features but also their variances. Although these two techniques have already shown
their capabilities in compensating for channel distortions and some side effects resulting from
additive noises, their linear properties still make them inadequate in tackling the nonlinear
distortions caused by various noisy environments [Torre et al. 2005]. Accordingly, a
considerable amount of work on seeking more general solutions for feature space
normalization has been done over the past several years. For example, not content with using
either CMN or CMVN merely to normalize the first or the first two moments of the
probability distributions of speech features, some researchers have extended the principal idea
of CMN and CMVN to the normalization of the third [Suk et al. 1999] or even more higher
order moments of the probability distributions of speech features [Hsu and Lee 2004, 2006].
On the other hand, the histogram equalization (HEQ) techniques also have gained much
attention, and have been widely investigated in recent years [Dharanipragada and
Padmanabhan 2000; Molau et al. 2005; Torre et al. 2005; Hilger and Ney 2006; Lin et al.
2006]. HEQ seeks for a transformation mechanism that can map the distribution of the test
speech onto a predefined (or reference) distribution utilizing the relationship between the
cumulative distribution functions (CDFs) of the test speech and those of the training (or
reference) speech. Therefore, HEQ not only attempts to match the means and variances of
speech features but also completely match the distributions of speech features between
training and test. More specifically, HEQ normalizes all moments of the probability
distributions of test speech features to those of the reference ones. However, most of the
current HEQ techniques still have some inherent drawbacks for practical usage. For example,
they require either large storage consumption or considerable online computational overhead,
which might make them infeasible when being applied to the ASR systems built on devices
with limited resources, such as personal digital assistants (PDAs), smart phones and embedded
systems, etc.

With these observations in mind, in this paper we present a comparative study of various
HEQ approaches for robust speech recognition. Two representative HEQ approaches, namely,
the table-based histogram equalization (THEQ) and the quantile-based histogram equalization
(QHEQ), were first investigated. Then, a polynomial-fit histogram equalization (PHEQ)

˅˅˃ Shih-Hsiang Lin et al.

approach, exploring the use of the data fitting scheme to efficiently approximate the inverse of
the cumulative density function of training speech for HEQ, was proposed. Moreover, the
temporal average (TA) operation was also performed on the feature vector components to
alleviate the influence of sharp peaks and valleys that were caused by non-stationary noises.

The remainder of this paper is organized as follows. Section 2 describes the basic
concept of HEQ and reviews two representative HEQ approaches, namely, THEQ and QHEQ.
Section 3 elucidates our proposed HEQ approach, namely, PHEQ, and also briefly introduces
several standard temporal average operations. Section 4 gives an overview of the Aurora 2
database as well as a description of the experimental setup, while the corresponding
experimental results and discussions are also presented in this section. Finally, conclusions are
drawn in Section 5.

2. HISTOGRAM EQUALIZATION (HEQ)

2.1 Theoretical Foundation of HEQ
Histogram equalization is a popular feature compensation technique that has been well studied
and practiced in the field of image processing for normalizing the visual features of digital
images, such as the brightness, grey-level scale, contrast, and so forth. It has also been
introduced to the field of speech processing for normalizing the speech features for robust
ASR, and many good approaches have been continuously proposed and reported in the
literature [Dharanipragada and Padmanabhan 2000; Molau et al. 2003; Torre et al. 2005;
Hilger and Ney 2006; Lin et al. 2006]. Meanwhile, HEQ has shown its superiority over the
conventional linear normalization techniques, such as CMN and CMVN, for robust ASR. One
additional advantage of HEQ is that it can be easily incorporated with most feature
representations and other robustness techniques without the need of any prior knowledge of
the actual distortions caused by different kinds of noises.

Theoretically, HEQ has its roots in the assumptions that the transformed speech feature
distributions of the test (or noisy) data should be identical to that of the training (or reference)
data and each feature vector dimension can be normalized independently of each other. The
speech feature vectors can be estimated either from the Mel-frequency filter bank outputs
[Molau 2003; Hilger and Ney 2006] or from the cepstral coefficients [Segura et al. 2004;
Torre et al. 2005; Lin et al. 2006]. Since each feature vector dimension is considered
independently, from now on, the dimension index of each feature vector component will be
omitted from the discussion for the simplicity of notation unless otherwise stated. Under the
above two assumptions, the aim of HEQ is to find a transformation that can convert the
distribution of each feature vector component of the input (or test) speech into a predefined
target distribution which corresponds to that of the training (or reference) speech. The basic

 A Comparative Study of Histogram Equalization (HEQ) for ˅˅˄

Robust Speech Recognition

idea of HEQ is illustrated in Figure 1.

Accordingly, HEQ attempts not only to match the means and variances of the speech
features, but also to completely match the speech feature distributions of training and test data.
Phrased another way, HEQ normalizes all the moments of the probability distributions of the
speech features. The formulation of HEQ is described as follows [Torre et al. 2005]. For each
feature space dimension, let x be the feature vector component that follows the distribution

Testp x . A transformation function F x converts x to y and follows a reference
distribution Trainp y , according to the following expression:

1
1 ,Train Test Test

dF ydxp y p x p F y
dy dy

 (1)

where 1F y is the inverse function of F x . Moreover, the relationship between the
cumulative probability density functions (CDFs) associated with the test and training speech,
respectively, is governed by:

1
() 1

() ()

() (())

 ()

 () ,

x
Test Test

F x
Test

y
Train y F x

Train

C x p x d x

dF yp F y d y
dy

p y d y

C y

 (2)

1.0

CDF xCTest

1.0 yCTrain x

y

Transformation
Function

C
D

F of
Test Speech

C
D

F of
R

eference Speech

Figure 1. The basic idea of HEQ.

˅˅˅ Shih-Hsiang Lin et al.

where TestC x and TrainC y are the CDFs for the test and training speech, respectively;
y is the corresponding output of the transformation function F x ; and the transformation

function F x has the following property:

1 ,Train TestF x C C x (3)

where 1
Train

C is the inverse function of TrainC .

It is worth noting that the reliability of CDF estimation will have a significant influence
on the performance of HEQ. Due to the finite number of speech features being considered, the
CDFs of speech features are usually approximated by the cumulative histograms of speech
features for practical implementation. The CDFs of speech features can be accurately and
reliably approximated when there is a large amount of data available. On the contrary, such
approximation will probably not be accurate enough when the (test) speech utterance becomes
much shorter. Several studies have shown that the order-statistics based method tends to be
more accurate than the cumulative-histogram based when the amount of speech data is
insufficient for reliable approximation of CDFs [Segura et al. 2004; Torre et al. 2005].

2.2 Table-Based Histogram Equalization (THEQ)
The table-based histogram equalization (THEQ) was first proposed by Dharanipragada and
Padmanabhan [Dharanipragada and Padmanabhan 2000] and is a non-parametric method to let
the distributions of the test speech match those of the training speech. THEQ uses a
cumulative histogram to estimate the corresponding CDF value of each feature vector
component y . During the training phase, the cumulative histogram of each feature vector
component y of the training data is constructed as follows. The range of values of each
feature vector dimension over the entire training data is first determined by finding the feature
vector components maxy and miny that have the maximum and minimum values,
respectively. Let K be the total number of histogram bins and the range min max,y y is
then divided into K non-overlapped bins of equal size, 0 1 1, , KB B B . Next, the entire
training data is scanned once and each individual feature vector component falls exactly into
one bin. Thus, if we let N be the total number of training feature vector components of one
specific dimension and in be the number of feature vector components of that dimension
belonging to iB , the probability of feature vector components of that dimension being in iB
is approximated by:

.i
Train i

n
p B

N
 (4)

 A Comparative Study of Histogram Equalization (HEQ) for ˅˅ˆ

Robust Speech Recognition

The mean
iBy of each bin i is taken as one of the representative outputs of the

transformation function F x and the approximate CDF value TrainC y of the feature
vector component y that belongs to iB is calculated by:

0 .i
Train Train jjC y p B (5)

Finally, a look-up table consisting of all possible distinct reference pairs ,
iTrain BC y y is

constructed, where TrainC y is taken as the key and
iBy is the corresponding restored

value. During the test phase, the CDF estimation of the test utterance can be done in the same
way by using the cumulative histograms of itself. The restored value of each feature vector
component x of the test utterance is obtained by taken its approximate CDF value TestC x
as the key to finding the corresponding transformed (restored) value in the look-up table.

However, the normalization of the test data alone results in only a moderate gain of
performance improvement. It has been suggested that one should normalize the training data
in the same way to achieve good performance [Molau et al. 2003]. On the other hand, because
a set of cumulative histograms of all speech feature vector dimensions of the training data has
to be kept in memory for the table-lookup of restored feature values, THEQ needs large disk
storage consumption and its associated table-lookup procedure is also time-consuming, which
might make THEQ not very feasible for ASR systems that are built into devices with limited
resources, such as PDAs, smart phones and embedded systems, etc.

2.3 Quantile-Based Histogram Equalization (QHEQ)
The quantile-based histogram equalization (QHEQ) is a parametric type of histogram
equalization. QHEQ attempts to calibrate the CDF of each feature vector component of the
test speech to that of the training speech in a quantile-corrective manner instead of a
full-match of the cumulative histogram as done by THEQ, described earlier in Section 2.2.
Normally, QHEQ only needs a small number of quantiles (usually the number is set to 4) for
reliable estimation [Hilger and Ney 2001, 2006]. A transformation function H x is
calculated by minimizing the mismatch between the quantiles of the test utterance and those of
the training data. The transformation function H x is a power function applied to each
feature vector component x , which attempts to make the CDF of the equalized feature vector
component match that observed in training. Before the actual application of the transformation
function H x , each feature vector component x is first scaled down into the interval
0,1ΓΓ by being divided by the maximum value KQ over the entire utterance. Then, the

transformation function H x is applied to x and the transformed (or restored) value of x
is scaled back to the original value range [Hilger and Ney 2006]:

˅˅ˇ Shih-Hsiang Lin et al.

1 ,K
K K

x xH x Q
Q Q

 (6)

where K is the total number of quantiles; KQ is the maximum value over the entire
utterance; and and are the transformation parameters. For each feature vector
dimension, and are chosen to minimize the squared distance between the quantiles

kH Q of the test utterance and the quantiles Train
kQ of the training data by using the

following equation:

1 2

, 1
, arg min .

K Train
k k

k
H Q Q (7)

In summary, QHEQ allows the estimation of the transformation function H x to
merely rely on a single test utterance (or extremely, a very short utterance), without the need
of an additional set of adaptation data [Hilger and Ney 2006]. However, in order to find the
optimum transformation parameters for each feature vector dimension, an exhaustive online
grid search is required, which, in fact, is very time-consuming.

3. IMPROVED APPROACHES

3.1 Polynomial-Fit Histogram Equalization (PHEQ)
In contrast to the above table-lookup or quantile based approaches, we propose a
polynomial-fit histogram equalization (PHEQ) approach which explores the use of the data
fitting scheme to efficiently approximate the inverse functions of the CDFs of the training
speech for HEQ [Lin et al. 2006]. Data fitting is a mathematical optimization method which,
when given a series of data points ,i iu v with 1, ,i N , attempts to find a function

iG u whose output iv closely approximates iv . That is, it minimizes the sum of the
squares error (or the squares of the ordinate differences) between the points ,i iu v and their
corresponding points ,i iu v in the data. The function iG u to be estimated can be either
linear or nonlinear in its coefficients. For example, if iG u is a linear M -order polynomial
function:

2
0 1 2 ,M

i i i i M iG u v a a u a u a u (8)

where 0 1, , , Ma a a are the coefficients, then its corresponding squares error can be defined
by

2
22

1 1 0
.

N N M m
i i i m i

i i m
E v v v a u (9)

 A Comparative Study of Histogram Equalization (HEQ) for ˅˅ˈ

Robust Speech Recognition

PHEQ makes use of such data fitting (or so-called least squares regression) scheme to
estimate the inverse functions of the CDFs of the training speech. For each speech feature
vector dimension of the training data, given the pair of the CDF value Train iC y of the
vector component iy and iy itself, the linear polynomial function Train iG C y with
output iy can be expressed as:

0
,

M m
Train i i m Train i

m
G C y y a C y (10)

where the coefficients ma can be estimated by minimizing the squares error expressed in the
following equation:

2
22

1 1 0
' ,

N N M m
i i i m Train i

i i m
E y y y a C y (11)

where N is the total number of training speech feature vectors. In implementation, we used
the order-statistics based method instead of the cumulative-histogram based method to obtain
the approximate CDF values. For the feature vector component sequence

1, , , ,i NY y y y of a specific dimension of a speech utterance, the corresponding CDF
value of each feature component iy can be approximated by the following two steps:

Step1: The sequence 1, , , ,i NY y y y is first sorted according to the values of the
feature vector components in ascending order.

Step2: The order-statistics based approximation of the CDF value of a feature vector
component iy is then given as:

0.5pos i
i

S y
C y

N
 (12)

where pos iS y is a function that returns the rank of iy in ascending order of the values of
the feature vector components of the sequence 1, , , ,i NY y y y . Therefore, for each
utterance, Equation (12) can be used to approximate the CDF values of the feature vector
components of all dimensions. During the training phase, the polynomial functions of all
dimensions are obtained by minimizing the squares error expressed in Equation (11). During
the test phase, for each feature vector dimension, the feature vector components of the test
utterance are simply sorted in ascending order of their values to obtain the approximate CDF
values, which can be then taken as the inputs to the inverse function to obtain the
corresponding restored component values.

The reason we choose the polynomial function here as the inverse function is mainly
because it has a simple form, without the need of a complicated computational procedure, and

˅˅ˉ Shih-Hsiang Lin et al.

has moderate flexibility in controlling the shape of the function. Though the polynomial
function is efficient in delineating the transformation function, it is worth mentioning that the
polynomial function to some extent has its inherent limitations. For example, high order
polynomial functions might lead to over-fitting of the training data. Moreover, the polynomial
function provides good fits for input data points that are located within the range of values of
the training data, but would also probably have rapid deterioration when the input data points
are located outside the range of values of the training data.

3.2 Temporal Average (TA)

Though the above HEQ approaches are very effective in matching the global feature statistics
of the test (or noisy) speech to that of the training (or reference) set, we found that some
undesired sharp peaks or valleys of the feature vector component sequence caused by the
non-stationary noises often occurring during the equalization process. This phenomenon is
illustrated in the upper and middle parts of Figure 2. Therefore, we believe that a rigorous
smoothing operation further performed on the time trajectory of the HEQ restored feature
vector component sequence will be helpful for suppressing the extraordinary changes of
component values. From the other perspective, temporal average can be treated as a low-pass
filter. The basic idea of TA is quite similar to RelAtive SpecTrA (RASTA) [Hermansky and
Morgan 1994] which aims to filter out the slow-varying or fast-varying artifacts (or noises)
based on the evidence of human auditory perception. The main differences between TA and
RASTA are the target (or feature domain) where the smoothing operation is performed and the

Figure 2. The 2th cepstral feature component sequence of an utterance

 A Comparative Study of Histogram Equalization (HEQ) for ˅˅ˊ

Robust Speech Recognition

design of the temporal filters. The smoothing (or temporal average) operation can be defined
as one of the following forms [Chen and Bilmes 2007]:

 Non-Causal Moving Average

 ,ˆ 2 1

L
t ii L

t

t

y
if L t T Ly L

y otherwise
 (13)

 Causal Moving Average

0

 , ˆ 1

L
t ii

t

t

y
if L t Ty L

y otherwise
 (14)

 Non-Causal Auto Regression Moving Average

1 0ˆ

 ,ˆ 2 1

L L
t i t ji j

t

t

y y
if L t T Ly L

y otherwise
 (15)

 Causal Auto Regression Moving Average

1 0ˆ

 ,ˆ 2 1

L L
t i t ji j

t

t

y y
if L t Ty L

y otherwise
 (16)

where ty denotes the HEQ restored feature vector component at speech frame t ; L is the
span order of temporal average operation; and ˆty is the corresponding one after the temporal
average operation. The feature vector component sequence obtained by Equation (13) is also
shown in the lower part of Figure 2.

4. EXPERIEMENTAL RESULTS

4.1 Experimental Setup
The speech recognition experiments were conducted under various noise conditions using the
Aurora-2 database and task [Hirsch and Pearce 2002]. The Aurora-2 database is a subset of the
TI-DIGITS, which contains a set of connected digit utterances spoken in English; while the
task consists of the recognition of the connected digit utterances interfered with various noise
sources at different signal-to-noise ratios (SNRs), in which Test Sets A and B are artificially
contaminated with eight different types of real-world noises (e.g., subway noise, street noise,

˅˅ˋ Shih-Hsiang Lin et al.

babble noise, etc.) in a wide range of SNRs (-5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and
Clean) and Test Set C additionally includes channel distortions. For the baseline system, the
training and recognition tests used the HTK recognition toolkit [Young et al. 2005], following
the original setup defined for the ETSI AURORA evaluations [Hirsch and Pearce 2002].

More specifically, each digit was modeled as a left-to-right continuous density hidden
Markov model (CDHMM) with 16 states and three diagonal Gaussian mixtures per state. Two
additional CDHMMs were defined for the silence. The first one had three states with six
diagonal Gaussian mixtures per state for modeling the silence at the beginning and at the end
of each utterance. The other one had one state with 6 diagonal Gaussian mixtures for modeling
the inter-word short pause. In the front-end speech analysis, the frame length is 25 ms and the
corresponding frame shift is 10 ms. Speech frames are pre-emphasized using a factor of 0.97,
and the Hamming window is then applied. From a set of 23 Mel-scaled log filter banks outputs
a 39-dimensional feature vector, consisting of 12 Mel-frequency cepstral coefficients
(MFCCs), the 0-th cepstral coefficient, and the corresponding delta and acceleration
coefficients, is extracted at each speech frame. The average word error rate (WER) results
obtained by the MFCC-based baseline system are 45.44% and 14.65%, respectively, for clean-
and multi-condition training, each of which is an average of the WER results of the test
utterances respectively contaminated with eight types of noises under different SNR levels (0
dB to 20 dB) for the three sets (Sets A, B and C).

4.2 Experiments on HEQ Approached
Table 1. Average WER results (%) of THEQ for clean-condition training, with respect

to different numbers of histogram bins and different sizes of table.
Table Size

10 50 100 500 1000 5000 10000 50000

100 41.32 45.65 46.39 44.59 44.55 44.65 44.67 44.65
500 33.21 28.60 25.44 22.42 22.42 22.41 22.45 22.41

1000 29.63 24.19 22.12 19.19 19.04 19.46 19.88 19.87
5000 28.13 23.72 20.68 18.22 18.02 18.18 18.19 18.10

10000 27.64 23.50 20.50 18.33 18.10 18.13 18.30 18.32
50000 27.46 23.30 20.29 18.58 18.41 18.46 18.47 18.45

H
is

to
gr

am
 B

in
 N

um
be

r

Order-Statistics 27.26 23.30 20.65 18.62 18.32 18.51 18.53 18.58

 A Comparative Study of Histogram Equalization (HEQ) for ˅˅ˌ

Robust Speech Recognition

Table 2. Average WER results (%) of THEQ for multi-condition training, with respect
to different numbers of histogram bins and different sizes of table.

Table Size

10 50 100 500 1000 5000 10000 50000

100 19.46 22.27 23.81 23.85 23.96 24.05 24.06 24.07
500 18.54 20.71 19.06 14.94 14.58 14.57 14.52 14.59
1000 18.94 19.46 17.04 13.63 13.30 13.36 13.35 13.33
5000 19.24 18.98 15.91 12.52 12.30 12.31 12.29 12.27

10000 19.27 18.79 15.75 12.26 12.26 12.23 12.22 12.23
50000 19.42 18.79 15.69 12.76 12.14 12.16 12.15 12.16

H
is

to
gr

am
 B

in
 N

um
be

r

Order-Statistics 19.43 18.91 15.73 12.79 12.18 12.17 12.17 12.17

In the first set of experiments, we compare the recognition performance when different
numbers of the histogram bins and different sizes of the look-up table are applied for THEQ.
Notice that the equalization was conducted on all dimensions of the feature vectors for the
training and test data, and the approximation of the CDFs of the test speech was conducted in
an utterance-by-utterance manner. The results are summarized in Tables 1 and 2 for clean- and
multi-condition training, respectively. As can been seen, the recognition performance is very
sensitive to the number of the histogram bins and the size of the look-up table. The WER is
improved when either the number of the histogram bins or the size of the look-up table is
increased. As compared to the MFCC-based baseline system, the best results of HEQ yield
about 60% and 16% relative WER improvements for clean- and multi-condition training,
respectively. These results suggest that a larger histogram bin number or table size can
improve the recognition performance, however, at the cost of huge consumption of the
memory storage. Moreover, THEQ is also time-consuming, because a huge set of cumulative
histograms of all speech feature vector dimensions of the training data have to be kept in
memory for the table-lookup of restored feature values. Furthermore, the CDF value of a
feature vector component approximated by the cumulative-histogram based method is
equivalent to that done by the order-statistics based method when the number of histogram
bins is taken to be infinite.

In the next set of experiments, we investigate the use of different quantile numbers for
QHEQ to see if the quantile number has any apparent effect on the recognition performance.
The corresponding average WER results are shown in Table 3. As indicated by the results, it
can be found the recognition performance is closely dependent on the quantile number. The
transformation function H x would tend to be too coarse to model the relationship between
the test utterance and the training data when only few quantiles are being considered. On the
contrary, the use of too many quantiles for the estimation of the transformation function

˅ˆ˃ Shih-Hsiang Lin et al.

H x might instead degrade the recognition performance [Hilger and Ney 2001]. However,
the optimum number of quantiles is found to be four for the Aurora 2 task studied here, and
the corresponding relative WER improvements over the MFCC-based baseline system are
50% and 30% for clean- and multi-condition training, respectively.

In the third set of experiments, we evaluate the performance of PHEQ with respect to
different polynomial orders and the associated results are presented in Table 4. Due to the end
behavior property of polynomial functions, even order polynomials are either “up” on both
ends or “down” on both ends which is not appropriate to characterize the behavior of a
cumulative distribution [Lial et al. 2006]. Therefore, only odd-order polynomials are utilized
in this paper for PHEQ. As evidenced by the results shown in Table 4, the average WER
results of PHEQ are slightly improved when the order of the polynomial function becomes
higher. However, as the order increases, the polynomial function might sometimes tend to
over-fit of the training data. The improvement of PHEQ seems to saturate when the order is
set to seven. As is indicated, PHEQ yields about a relative WER improvement of 65% for
clean-condition training, and 35% for multi-conditions training, as compared to the
MFCC-based baseline system.

To go a step further, the average WER results under different SNR levels for the MFCC
baseline, THEQ, QHEQ and PHEQ are shown in Tables 5 and 6, for clean- and
multi-condition training, respectively. In the case of clean-condition training, these three HEQ
approaches all yield significant improvement over the MFCC-based baseline, especially when
the SNR level becomes much lower (e.g., 10 dB, 5 dB or 0 dB). The average WERs for

Table 3. Average WER results (%) of QHEQ, with respect to different quantile
numbers.

Quantile Number

2 3 4 5 8 16 32

Clean-Condition
Training 24.02 23.67 22.86 23.00 24.93 24.83 24.95

Multi-Condition Training 11.63 11.25 10.23 10.24 12.36 12.32 12.36

Table 4. Average WER results (%) of PHEQ, with respect to different orders of the
polynomial transformation functions.

Polynomial Order

1-th 3-th 5-th 7-th 9-th 11-th 13-th

Clean-Condition
Training 18.54 17.1 16.05 15.71 15.72 15.72 16.68

Multi-Condition Training 12.17 9.44 9.26 9.50 9.45 9.46 11.45

 A Comparative Study of Histogram Equalization (HEQ) for ˅ˆ˄

Robust Speech Recognition

clean-condition training are 18.02%, 15.71% and 22.86% for THEQ, PHEQ and QHEQ,
respectively. In the case of multi-condition training, the average WER results for these three
HEQ approaches are slightly better than that of the MFCC-based baseline system (average
WERs of 12.30%, 9.5% and 10.23% for THEQ, PHEQ and QHEQ, respectively) which might
mainly be due to the fact that with multi-condition training, the mismatch between the training
and test conditions can be reduced to a great extent.

On the other hand, Table 7 shows the average WER results obtained by combining
PHEQ with different temporal average (TA) operations of different span orders. When the
span order is set to 0, it denotes that only PHEQ was applied to the feature vector components.
The results in Table 7 demonstrate that combining PHEQ with anyone of the TA operations
can further provide an additional relative WER reduction of about 5% to 8%. In a word, the
TA operations conducted after HEQ indeed provide a good compensation for non-stationary
noises. Nevertheless, TA operations with much higher span orders may instead result in the
degradation of the recognition performance.

Table 5. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ
and PHEQ for clean-condition training, with respect to different SNR levels.

SNR Level

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB

MFCC 0.89ʳ 7.55ʳ 20.41ʳ 43.17ʳ 70.80ʳ 90.21ʳ 96.37ʳ

THEQ 1.73ʳ 3.61ʳ 5.69ʳ 10.22ʳ 21.66ʳ 47.41ʳ 77.91ʳ

QHEQ 0.82ʳ 2.05ʳ 4.14ʳ 10.84ʳ 30.90ʳ 66.11ʳ 86.72ʳ

PHEQ 0.92ʳ 1.83ʳ 3.45ʳ 7.52ʳ 18.84ʳ 45.78ʳ 76.77ʳ

Table 6. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ
and PHEQ for multi-condition training, with respect to different SNR levels.

SNR Level

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB

MFCC 1.15ʳ 2.16ʳ 3.22ʳ 5.97ʳ 15.45ʳ 44.06ʳ 79.24ʳ

THEQ 1.10ʳ 2.24ʳ 3.53ʳ 6.52ʳ 15.63ʳ 40.60ʳ 73.39ʳ

QHEQ 2.15ʳ 2.02ʳ 2.74ʳ 5.10ʳ 10.32ʳ 29.46ʳ 57.96ʳ

PHEQ 1.34ʳ 1.65ʳ 2.43ʳ 4.19ʳ 10.14ʳ 27.96ʳ 62.13ʳ

˅ˆ˅ Shih-Hsiang Lin et al.

4.3 Comparison with Other Normalization Approaches

Finally, we compare the above HEQ approaches with the conventional normalization
approaches. The average WER results for the MFCC-based baseline system, as well as for
CMS and CMVN, for both clean- and multi-condition training, are shown in Table 8 and
presented graphically in Figures 3 and 4, respectively. Notice that the results for THEQ,
PHEQ and PHEQ-TA were obtained with the best settings from the above experiments.
GHEQ is the recognition results obtained using a Gaussian probability distribution with zero
mean and unity variance as the reference distribution rather than using the probability
distributions of the entire training data as the reference distributions [Torre et al. 2005]. In
other words, each feature space dimension is normalized to a standard normal distribution. It
can be found that all the HEQ approaches provide significant performance boosts over the
MFCC-based baseline system, and they are also better than CMS and CMVN for both clean-
and multi-condition training. If TA is further applied after CMVN (i.e., MVA) or PHEQ (i.e.,
PHEQ-TA), the recognition results of MVA or PHEQ-TA will be considerably better than
those obtained by using CMVN or PHEQ alone.

The experimental results shown in this and the previous sections suggest the following
observations:

 The estimation of CDF can have a significant influence on the performance of HEQ.
The cumulative-histogram method can give a reliable estimation if there is a large
amount of speech feature vectors available; otherwise, the order-statistics based
method is recommended.

Table 7. Average WER results (%) obtained by combining PHEQ with different TA
operations of different span orders.

Span Order
0 1 2 3 4 5

Non-Causal MA 15.71 14.57 14.53 15.78 16.61 16.87
Causal MA 15.71 15.20 14.88 14.66 14.61 15.06
Non-Causal ARMA 15.71 14.55 14.41 14.94 15.11 15.21

Clean-
Condition
Training

Causal ARMA 15.71 14.52 14.49 14.86 15.00 16.72

Non-Causal MA 9.5 8.96 8.98 9.66 10.18 10.75
Causal MA 9.5 9.35 9.22 8.98 8.95 9.08
Non-Causal ARMA 9.5 8.92 8.86 9.04 9.13 9.18

Multi-
Condition
Training

Causal ARMA 9.5 9.22 8.87 8.87 9.25 9.34

 A Comparative Study of Histogram Equalization (HEQ) for ˅ˆˆ

Robust Speech Recognition

 The full cumulative distribution function matching approach, such as THEQ, GHEQ,
or PHEQ, gives better recognition performance than the quantile-corrective
approach, such as QHEQ.

 In contrast, assuming that the probability distributions of speech feature vectors will
follow Gaussian distributions (e.g., GHEQ), the transformation functions used in
PHEQ are directly learned from the observed distributions of speech feature vectors.
As the results show in Table 8, PHEQ outperforms all the other equalization
approaches in most cases for clean-condition training.

 The performance of GHEQ appears slightly better than PHEQ for multi-condition
training. This result is probably explained by the fact that multi-condition training
can substantially reduce environmental mismatch. Consequently, normalizing the
speech feature vectors into a standard normal distribution or normalizing a
distribution learned from the training speech seems to make no significant difference
in multi-condition training.

 Performing TA after HEQ is necessary, because TA can alleviate the influence of
sharp peaks and valleys that were caused by some non-stationary noises or occurred
during the equalization process.

 Table 8. Comparison of the average WER results (%) obtained by the MFCC-based
baseline system and various normalization approaches for clean- and
multi-condition training.

Clean-Condition Training Multi-Condition Training

Test A Test B Test C Average Test A Test B Test C Average

MFCC 47.37 48.42 40.55 45.45 13.56 13.34 17.06 14.65

CMS 26.17 22.06 27.72 25.32 13.27 12.99 13.77 13.34

CMVN 20.21 19.84 21.13 20.39 12.18 11.23 13.21 12.21

MVA 16.63 14.92 17.90 16.48 8.86 8.82 9.69 9.12

THEQ 18.13 16.41 19.51 18.02 11.97 11.47 13.44 12.30

GHEQ 17.69 15.59 18.70 17.32 9.00 8.73 9.60 9.11

PHEQ 15.91 14.43 16.80 15.71 9.23 8.89 10.38 9.50

QHEQ 23.74 21.73 23.11 22.86 8.91 10.03 11.75 10.23

PHEQ-TA 14.29 13.75 15.20 14.41 8.72 8.64 9.21 8.86

˅ˆˇ Shih-Hsiang Lin et al.

Figure 3. Average WER results (%) obtained by the MFCC-based baseline
system and various normalization approaches for clean-condition
training.

Figure 4. Average WER results (%) obtained by the MFCC-based baseline system
and various normalization approaches for multi-condition training.

10

15

20

25

30

35

40

45

50

Test A Test B Test C Average

A
ve

ra
ge

 W
or

d
Er

ro
r R

at
e(

%
)

MFCC CMS CMVN MVA THEQ GHEQ PHEQ QHEQ PHEQ-TA

8

9

10

11

12

13

14

15

16

17

18

Test A Test B Test C Average

A
ve

ra
ge

 W
or

d
Er

ro
r R

at
e(

%
)

MFCC CMS CMVN MVA THEQ GHEQ PHEQ QHEQ PHEQ-TA

 A Comparative Study of Histogram Equalization (HEQ) for ˅ˆˈ

Robust Speech Recognition

4.4 Storage Requirement and Computational Complexity

As mentioned in the previous sections, the HEQ approaches have some drawbacks for
practical implementation issues, such as requiring large storage consumption and high
computational cost, which might make them infeasible when being applied to ASR systems
with limited storage and computation resources. Therefore, in this subsection, we analyze
these HEQ approaches from two perspectives: the storage requirement and the computational
complexity.

In general, the number of reference pairs ,
iTrain BC y y kept in the look-up table for

THEQ cannot be too small. As indicated in Table 1, the recognition performance for the
Aurora 2 task will not saturate until the table size is large than 1,000. If 1,000 reference pairs
are kept with double precision for THEQ, it requires a memory space of about 1M bytes to
store the transformation table for the equalization of all dimensions of the feature vectors.
However, for other complicated recognition tasks, such as large vocabulary continuous speech
recognition (LVCSR) of broadcast news, it normally requires a much larger size of look-up
table to keep the feature transformation/equalization information for better recognition
performance, which also implies the need of much larger storage consumption. However, for
QHEQ, a small number of quantiles (usually the number is set to 4) is enough for the efficient
transformation of speech feature vectors. The storage requirement of QHEQ is very small
when compared to THEQ. Similarly, the storage requirement of PHEQ depends mainly on the
order of the polynomial functions. In the case of using the polynomial functions with the order
set to seven, it roughly requires a memory space of 2.5K bytes to store the coefficients of the
polynomial functions.

On the other hand, the computational complexity of THEQ is mainly determined by the
size of the look-up table. As the reference pairs ,

iTrain BC y y stored in the look-up table
increase, the complexity for searching the corresponding restored value

iBy for the input

TrainC y would become much higher even though the table-lookup procedure can be
implemented with the hash table or other efficient data structures. When QHEQ is being used

Table 9. A summary of storage requirement and computational complexity with
respect to different HEQ approaches.

Method Storage Requirement Computational Complexity

THEQ Large - depending on the number of
reference pairs kept in the look-up table

Medium - depending on the look-up table size
for searching the corresponding restored value

QHEQ Small - depending on the number of
quantiles for quantile-correction

High - depending on the value ranges and
resolutions of parameters for online grid search.

PHEQ Small - depending on the order of the
polynomial functions

Low - depending on the order of the polynomial
function

˅ˆˉ Shih-Hsiang Lin et al.

in the test phase, its computational complexity is the highest when compared to the other two
HEQ approaches (THEQ and PHEQ), which is due to the fact that an exhaustive online grid
search is required for finding the optimum transformation parameters and . The search
process is completely dominated by the value ranges of and , and the resolutions, i.e.,
the step sizes for updating the values, of and . In contrast to the above two approaches,
the computational complexity of PHEQ is almost negligible. It requires only a few
mathematical operations, which will result in a tremendous saving in the computational cost.
A summary of storage requirement and computational complexity is shown in Table 9.

5. CONCLUSIONS

In this paper, we have given a detailed review of various histogram equalization (HEQ)
approaches for improving ASR robustness. Three approaches, namely, the table-based
histogram equalization (THEQ), the quantile-based histogram equalization (QHEQ) and the
polynomial-fit histogram equalization (PHEQ), were extensively compared and analyzed, in
terms of the recognition performance, storage requirement and computational complexity.
Moreover, the usage of temporal average (TA) operations also has been investigated for
alleviating the influence of sharp peaks and valleys caused by some non-stationary noises or
noises occurring during equalization. It has been found that PHEQ outperforms the other
equalization approaches and it only requires a small amount of storage consumption and
computational cost. The best results were obtained by combing PHEQ with TA that was in the
form of non-causal auto-regression moving average. Relative word error rate reductions of
68% and 40% over the MFCC-based baseline system have been obtained for clean- and
multi-condition training, respectively.

Acknowledgements
This work was supported in part by the National Science Council, Taiwan, under Grants: NSC
96-2628-E-003-015-MY3 and NSC95-2221-E-003-014-MY3.

REFERENCES
Acharya T. and A. K. Ray, Ϙ Image Processing: Principles and Applications, ϙ

Wiley-Interscience, 2005.
Buera, L., E. Lleida, A. Miguel, A. Ortega and O. Saz,ϘCepstral Vector Normalization Based

on Stereo Data for Robust Speech Recognition,ϙIEEE Transaction on Audio, Speech
and Language Processing, 15(3), 2007, pp. 1098-1113.

Chen, C.-P. and J. Bilmes,ϘMVA Processing of Speech Features,ϙIEEE Trans. on Audio,
Speech and Language Processing, 15(1), 2007, pp. 257-270.

 A Comparative Study of Histogram Equalization (HEQ) for ˅ˆˊ

Robust Speech Recognition

Dharanipragada, S. and M. Padmanabhan,ϘA Nonlinear Unsupervised Adaptation Technique
for Speech Recognition,ϙIn Proceedings of the 6th International Conference on Spoken
Language Processing(ICSLP 2000), Beijing, China, 2000.

Ephraim, Y. and D. Malah,Ϙ Speech Enhancement Using a Minimum Mean-Square
Log-Spectral Amplitude Estimator,ϙIEEE Transaction on Acoustic, Speech and Signal
Processing, 33(2), 1985, pp. 443-445.

Furui, S.,ϘCepstral Analysis Techniques for Automatic Speaker Verification,ϙ IEEE
Transaction on Acoustic, Speech and Signal Processing, 29(2), 1981, pp. 254-272.

Gales, M. J. F.,ϘMaximum Likelihood Linear Transformations for HMM-based Speech
Recognition,ϙComputer Speech and Language, 12(2), 1998, pp. 75-98.

Gauvain, J.-L. and C.-H. Lee,ϘMaximum a Posteriori Estimation for Multivariate Gaussian
Mixture Observations of Markov Chains,ϙIEEE Transaction on Speech and Audio
Processing, 2(2), 1994, pp. 291-297.

Gong, Y.,ϘSpeech Recognition in Noisy Environments: A Survey,ϙSpeech Communication,
16(3), 1995, pp. 261-291.

Hermansky, H and N. Morgan,ϘRASTA Processing of Speech, ϙ IEEE Transaction on
Speech and Audio Processing, 2(4), 1994, pp. 578-589.

Hilger, F. and H. Ney,ϘQuantile Based Histogram Equalization for Noise Robust Speech
Recognition, ϙ In Proceedings of the 7th European Conference on Speech
Communication and Technology (Eurospeech 2001), Aalborg, Denmark, 2001.

Hilger, F. and H. Ney,ϘQuantile Based Histogram Equalization for Noise Robust Large
Vocabulary Speech Recognition,ϙIEEE Transactions on Audio, Speech and Language
Processing, 14(3), 2006, pp. 845-854.

Hirsch, H. G. and D. Pearce,ϘThe AURORA Experimental Framework for the Performance
Evaluations of Speech Recognition Systems under Noisy Conditions,ϙIn Proceedings
of the 6th International Conference on Spoken Language Processing(ICSLP 2002),
Beijing, China, 2002.

Hsu, C.-W. and L.-S. Lee,ϘHigher Order Cepstral Moment Normalization (HOCMN) for
Robust Speech Recognition,ϙIn Proceedings of the IEEE International Conference on
Acoustic, Speech and Signal Processing (ICASSP 2004), Quebec, Canada, 2004.

Hsu, C.-W. and L.-S. Lee,ϘExtension and Further Analysis of Higher Order Cepstral
Moment Normalization (HOCMN) for Robust Features in Speech Recognition,ϙIn
Proceedings of the 9th International Conference on Spoken Language Processing
(ICSLP 2006), Pittsburgh, Pennsylvania, 2006.

Huang X., A. Acero, H. Hon,ϘSpoken Language Processing: A Guide to Theory, Algorithm
and System Development,ϙPrentice Hall, 2001

Huo, Q., C. Chany and C.-H. Lee,ϘBayesian Adaptive Learning of the Parameters of Hidden
Markov Model for Speech Recognition,ϙIEEE Transaction on Speech and Audio
Processing, 3(4), 1995, pp. 334-345.

˅ˆˋ Shih-Hsiang Lin et al.

Junqua, J. C., J. P. Haton and H. Wakita,ϘRobustness in Automatic Speech Recognition,ϙ
Kluwer, 1996.

Lee, L.-S. and B. Chen,ϘSpoken Document Understanding and Organization,ϙIEEE Signal
Processing Magazine, 22(5), 2005, pp. 42-60.

Leggeter, C. J. and P. C. Woodland,ϘMaximum Likelihood Linear Regression for Speaker
Adaptation of Continuous Density Hidden Markov Models,ϙComputer Speech and
Language, 9, 1995, pp. 171-185.

Lial M., R. N. Greenwell and N. P. Ritchey,ϘCalculus with Applications,ϙ Addison Wesley,
2005.

Lin, S.-H., Y.-M. Yeh and B. Chen,ϘExploiting Polynomial-Fit Histogram Equalization and
Temporal Average for Robust Speech Recognition,ϙ In Proceedings of the 9th
International Conference on Spoken Language Processing (ICSLP 2006), Pittsburgh,
Pennsylvania, 2006.

Molau, S., D. Keysers and H. Ney,ϘMatching Training and Test Data Distributions for
Robust Speech Recognition,ϙSpeech Communication, 41(4), 2003, pp. 579-601.

Molau, S., Ϙ Normalization in the Acoustic Feature Space for Improved Speech
Recognition,ϙPh.D. Dissertation, Computer Science Department, RWTH Aachen
University, Aachen, Germany, 2003.

Molau, S., F. Hilger and H. Ney,ϘFeature Space Normalization in Adverse Acoustic
Conditions,ϙIn Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2003), Hong Kong, 2003.

Moreno, P.,Ϙ Speech Recognition in Noisy Environment,ϙ Ph.D. Dissertation, ECE
Department, Carnegie Mellon University, Pittsburgh, PA, 1996.

Segura, J. C., C. Benitez, A. Torre, A. J. Rubio and J. Ramirez,ϘCepstral Domain Segmental
Nonlinear Feature Transformations for Robust Speech Recognition,ϙ IEEE Signal
Processing Letters, 11(5), 2004, pp. 517-520.

Suk, Y. H., S. H. Choi and H. S. Lee,ϘCepstrum Third-Order Normalisation Method for
Noisy Speech Recognition,ϙElectronics Letters, 35(7), 1999, pp. 527-528.

Torre, A., A. M. Peinado, J. C. Segura, J. L. Perez-Cordoba, M. C. Bentez and A. J. Rubio,
ϘHistogram Equalization of Speech Representation for Robust Speech Recognition,ϙ
IEEE Transactions on Speech and Audio Processing, 13(3), 2005, pp. 355-366.

Vikki, A. and K. Laurila,ϘSegmental Feature Vector Normalization for Noise Robust Speech
Recognition,ϙSpeech Communication, 25, 1998, pp. 133-147.

Wu, J. and Q. Huo,ϘAn Environment-Compensated Minimum Classification Error Training
Approach Based on Stochastic Vector Mapping,ϙIEEE Transactions on Audio, Speech
and Language Processing, 14(6), 2006, pp. 2147-2155.

Young, S., G. Evermann, M. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D.
Povey, V. Valtchev, and P. Woodland,ϘThe HTK Book (for HTK Verson 3.3),ϙ
Cambridge University Engineering Department, Cambridge, UK, 2005.

