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Abstract 

The speech fundamental frequency (henceforth F0) contour plays an important role 
in expressing the affective information of an utterance. The most popular F0 
modeling approaches mainly use the concept of separating the F0 contour into a 
global trend and local variation. For Mandarin, the global trend of the F0 contour is 
caused by the speaker’s mood and emotion. In this paper, the authors address the 
problem of affective intonation. For modeling affective intonation, an affective 
corpus has been designed and established, and all intonations are extracted with an 
iterative algorithm. Then, the concept of eigen-intonation is proposed based on the 
technique of Principal Component Analysis on the affective corpus and all the 
intonations are transformed to the lower-dimensional eigen sub-space spanned by 
eigen-intonations. A model of affective intonations is established in the sub-space. 
As a result, the corresponding emotion (maybe a mixed emotion) can be expressed 
by speech whose intonation is modified according to the above model. The 
experiments are performed with the affective Mandarin corpus, and the 
experimental results show that the intonation modeling approach proposed in this 
paper is efficient for both intonation representation and speech synthesis. 

Keywords: Eigen-Intonation, Affective Speech, Mixed Emotion, F0 Contour, 
Speech Synthesis 

1. Introduction 

Speech can convey not only literal meanings, but also the mood and emotion of a speaker. 
Some researchers have proven that the contour of the speech fundamental frequency 
(henceforth F0 contour) plays an important role in expressing the affective information of an 
utterance. It is concluded that some statistical characteristics of F0 play the most important 
roles in emotion perception [Tao and Kang 2005]. Especially, F0 contours differ from each 
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other because of the speaker’s different emotion in Mandarin [Yuan et al. 2002]. Due to 
significance of F0, the F0 contour modeling is one of the key issues that should be addressed. 

The most popular F0 modeling approaches mainly use the concept of separating the F0 
contour into a global trend and local variation [Abe and Sato 1992; Bellegarda et al, 2001]. 
Mandarin is a tonal language including four basic tone types and a so-called ‘light’ tone. The 
F0 contour is composed of three elements [Zhao 1980]: the tone of the syllable, the variety of 
tone in continuous utterance, and the movement influenced by mood. How to extract tones and 
intonations from speech is a difficult problem. Tian and Nurminen have proposed a 
data-driven tone modeling approach to describe the tonal element [Tian and Nurminen 2004]. 
In previous work [Su and Wang 2005], the authors of this paper also proposed an 
affective-tone modeling approach for Mandarin to separate F0 contour into two elements: 
variational tones based on syllables and intonations for prosody phrases. 

In this paper, the authors propose a data-driven intonation modeling approach based on 
Principal Component Analysis (henceforth, PCA [Fukunaga 2000]). For modeling affective 
intonations, an affective corpus of Mandarin has been designed and the corresponding 
intonations are extracted with an iterative algorithm from the original speech. The 
eigen-intonation concept is proposed based on the principal components of the above 
intonations obtained from the affective corpus, and all the intonations are then transformed 
into the sub-space spanned by the eigen-intonations. The distribution of affective intonations 
corresponding to an emotion in the above sub-space is a help to establish the corresponding 
affective intonation model. As a result, speech whose intonation is modified according to the 
model can express the corresponding emotion, even mixed emotions. In addition, the authors 
will also show emotion perception results using the proposed modeling approach. 

The remainder of the paper is organized as follows. The speech corpus and some statistic 
results of F0 based on the database are described first. Then, the algorithm of eigen-intonation 
extraction is described, and some of the basic properties of the eigen-intonation representation 
are concluded. Next, how to model the affective intonation is discussed. Last, the performance 
of the proposed modeling approach is given by experimental results. 

2. Speech Corpus and Statistic Results of F0 

Carrying on the affective speech research, a reasonable classification of the emotion is needed 
first, and then the speech features with different emotions can be analyzed effectively. In 
emotional psychology, Robert Plutchik proposed a four pair emotional ring constructed of eight 
pure emotions, including anger, joy, acceptance, surprise, fear, sadness, hatred and expectation. 
In the affective speech research for Mandarin, four emotions are generally selected, either 
including anger, joy, fear, sadness [Yuan et al. 2002; Tao and Kang 2005], or including anger, joy, 
surprise and sadness [Zhao et al. 2004]. In contrast, five emotions are selected for this paper, and 
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they are anger, joy, surprise, fear and sadness. 

What is discussed in this paper is the global variety of the F0 contour, so a reasonable 
duration of the target needs to be considered. Due to the multi-level structure of prosody 
[Abney 1995; Li et al. 2000], a complicated sentence with many syllables can be divided into 
several simple prosody units with fewer syllables at prosody boundaries. So, studying 
intonation based on prosody units can transform this complicated problem into several simple 
ones. Moreover, it is known that prosodic phrases can keep a relatively stable intonation 
pattern. Therefore, the authors model intonation based on prosodic phrases in the paper. 

It is known that F0 contour is influenced by several factors, including syntax, stress, 
speaker’s emotion and his or her individual character. This paper focuses on the movement of 
intonation caused by emotion, and the influence of other factors such as syntax, stress, and the 
individual characters will not be considered. Currently, there are no effective methods that can 
eliminate the influence of these factors from the original speech signals directly, so the corpus 
used in the paper are obtained in such a way as to avoid these interferential factors’ influence. 

To avoid unwanted factors’ influence and to simplify the following processing, the 
corpus is designed with some limitations. The authors have designed 40 sentences with 
different literal contents for the following test, and each sentence only consists of three 
components: subject, verb, and object. Furthermore, the subject, verb, and the object are all 
designed to be disyllabic words. So, each sentence only has 6 syllables in this case, and all of 
these sentences have the same syntax. As the length of a prosodic phrase is approximately six 
syllables [Zhao et al. 2002], each sentence consists of only one prosodic phrase. An example 
of such a sentence is given by “北京召开奥运”. This design can be advantageous to the 
following experiments, and the model will be established directly based on one sentence. Each 
sentence is then performed by a female actor with all six emotions, including fear, sadness, 
neutral, anger, joy and surprise. In the end, the corpus used for analysis contains 240 total 
sentences, consisting of 1,440 syllables from a single speaker, with same syntax and the same 
individual characters. The speech signals are digitized at 16 kHz with 16-bit precision. 

To evaluate the representational ability of the corpus, some experiments about the 
distributions of F0 are performed. Here, the F0 of a speech is extracted by using a modified 
autocorrelation algorithm. The results are demonstrated in Figure 1. 

Figure 1 shows that “surprise”, “happy” and “angry” make a very high F0, while “sad” 
generates lower value than the neutral state. It can also be found that the varying range of 
“sad” is smaller than the others. F0 parameters of “fear” make quite similar behaviors as “sad”. 
“Angry”, “happy”, and “surprise” also behave similarly. All of the results accord with the 
conclusions given by other researches [Yuan et al. 2002; Zhao et al. 2004; Tao and Kang 
2005]. So the speech corpus is representational and effective for the following analysis. 
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3. Concept of Eigen-Intonation 

The affective intonation will be modeled with a concept called “eigen-intonation”. The concept 
of eigen-intonation is derived through the use of the PCA technique. PCA [Fukunaga 2000] is a 
multivariate analysis method that carries out a compact description of a data set. In a PCA 
process, a set of correlated variables is transformed into a set of uncorrelated variables that are 
ordered by reducing variability, and these new uncorrelated variables are linear combinations of 
the original variables. It can be concluded that the first new variable contains the greatest 
amount of variation; the second contains the next greatest residual variance and orthogonal to 
the first, and so on. Thus, the last of these variables can be removed with a minimal loss of real 
data. 

With the affective corpus in the paper, the speech intonations for sentences should be 
very similar in all configurations, and they should be able to be described by some “basic 
intonations”. From the previous description, one knows that one of the main functions of PCA 
is that it can be used to extract new uncorrelated features from original data. According to 
these ideas, one can find the “basic intonations” that best account for distribution of speech 
intonations within the entire intonation space using the principal components analysis. The 
“basic intonations” are called “eigen-intonations”. 

With eigen-intonation, original intonations can be transformed to corresponding 
representations with lower dimensions. Some rules can also be possibly given out in the 
low-dimensional space. Moreover, the resultant rules with low dimensions have simpler 
expression, and it is advantageous to control the rules for the goal of this study. 

 

Figure 1. Statistic results for F0 with different emotional states 
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4. Analysis for Eigen-Intonation 

The concept of eigen-intonation is proposed based on PCA technique. Mathematically, the 
principal component analysis involves an eigen analysis on a covariance matrix. A good 
low-dimensional representation in the space of possible speech intonations can be achieved by 
considering only a few principal components or eigenvectors, corresponding to the first largest 
eigenvalues. 

4.1 Extraction of Intonation 
In order to obtain the intonation of a speech, the F0 contour of the speech should be extracted 
first. After that, the F0 contour will be separated into a global variety, which is regarded as 
intonation, and rapidly-varying components corresponding to local changes based on syllables. 
The details of intonation extraction are described in the following. 

The entire intonation extracting algorithm can be divided into five main steps: 

1) Estimating initial F0 values based the modified normalized autocorrelation from voiced 
regions of the original speech. 

2) Cubic Hermite interpolating for unvoiced regions and obtaining a continuous F0 curve. 

3) Filtering the continuous F0 contour with two serial modified smoothing processes. 

4) Applying piecewise three-order polynomial iterative fitting to the entire F0 contour, the 
n-th iterative processing step is as: 

(a) Fitting the entire F0 contour with n pieces of cubic polynomial. 

(b) Calculating the fitting error En. 

(c) If En < Et, ending the iterative algorithm and taking n pieces of cubic polynomial 
fitting as final resultant F0 contour. Else, n = n + 1, go to (a). Where Et is a given 
threshold of maximal fitting error. 

5) The ln(F0) contour is passed through a high-pass filter with a stop frequency at 0.5Hz, 
and the residual low frequency contour after filtering is denoted as LF contour. 

From the authors’ previous work [Su and Wang 2005], The LF contour can be regarded 
as the F0 global variety of a speech. As all sentences have the same syntax and each sentence 
consists of only one prosodic phrase in this corpus, the model can be established directly 
based on one sentence. It is to say that the resultant LF contour of the algorithm for each 
sentence in the corpus is the modeling target, intonation based prosodic phrase (henceforth 
intonation). Finally, each intonation is normalized into an N-dimensional vector (N = 100 in 
the paper). 
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4.2 PCA for Intonation 
Let the data set of intonations be I1, I2, … IM, where Ii is an N-dimensional intonation sample, 
and M is the number of intonations (M = 240 in the paper). Then the intonation covariance 
matrix CN× N is computed by (1). 
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Where, m is the average intonation calculated by (2).  
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The differential intonations matrix A is defined as (3). 
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Then, C = AAT is an N×N covariance matrix. The eigen analysis on the covariance 
matrix CN× N yields a set of positive eigenvalues {λ1, λ2, …, λN} in descending order and the 
corresponding eigenvectors, {V1, V2, …, VN). The first L (L < N) eigenvectors, denoted as U = 
{Vi, i = 1, 2,…, L}, are selected as principal components, and the intonations corresponding to 
these L vectors are so-called eigen-intonations, denoted as Uo. 

The eigen sub-space spanned by the principal components U is called sub-space of 
intonation, denoted as P, and the original space of intonation is denoted as O. All intonations 
in O can be projected to be the corresponding representations in P. It is known that the 
dimension of P is lower than that of O, and one can establish the rules of intonation in P and 
then restore the resultant intonations in O. Obviously, rules with lower dimension are easily 
controlled. Next, restoration of intonation will be discussed. 

4.3 Restoration Based on PCA 
According to the principal component analysis, the original intonations in O are projected into 
the sub-space P as (4). 

( ), 1, 2, ...,T
k kU I m k MΩ = − =    (4) 

Where, Ωk is coordinate vector of the k-th intonation. With Ω, the intonation samples are 
restored as (5), and the final approximation of the original intonations I is given out as (6), 
denoted as J. 

B U= Ω  (5) 

1, 2, ...,k kJ B m k M= + =  (6) 
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Especially, let B = U in (6), intonations corresponding to U can be given out, and that are 
eigen-intonations Uo. It can be concluded that although Uo is higher than U, the configuration 
of Uo is same as U. So the authors do not distinguish them when their configurations are 
discussed. 

To evaluate the ability of restoration, the restoring rate for k-th intonation is defined as 
(7). 
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The final restoring rate of the entire algorithm is defined as (8). 
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5. Affective Intonation 

5.1 About Affective Intonation 
Affective intonation is the concept that a speech with a certain affective intonation can express 
a corresponding emotion. Some works of speech prosody have proposed much qualitative 
analysis for affective intonations, and this paper will try to give quantitative affective 
intonation rules. At last, speech whose intonation is modified according to a certain affective 
intonation obtained in the paper can express the corresponding emotion. 

In order to research affective problems, emotion can be classified. Robert Plutchik 
[Plutchik 1960] considered that the emotions felt in normal human life were complicated and 
mixed, and considered some intensity of the eight pure emotions constructing a mixed 
emotion. So, in a similar way to him, all the mixed-emotional intonations are supposed to be 
defined by some vectors in the form of linear combination of the coefficients in the paper, 
where the vectors are the principal components U and the coefficient is the coordinate vector 
Ωk in (4). Based on this assumption, one can easily change the coefficient corresponding to a 
certain eigen-intonation to control some configuration of final affective intonation for the goal. 
How to perform the assumption is discussed in the following. 

5.2 Modeling Affective Intonation 
Let the set of emotions be a, a = 1, 2,…,6 representing anger, joy, surprise, fear, sadness and 
neutral emotional state. Intonations extracted from the speeches with emotion a are denoted as 
N-dimensional vector I a in original space O. Let I = I a in (4), and I a be projected into the 
sub-space P, denoted as Ω a. Ω a is distributed in different regions in P for the different 
emotions a, and the mass kernel vectors αΩ  are computed as (9). 
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Where, k
αΩ  is the projecting representation vector (henceforth projecting vector) in P 

of the k-th intonation with emotion a. Ka is the total number of all intonation samples with 
emotion a. 

{ αΩ , a = 1, 2, …, 6} are the resultant affective intonations with low dimension basing 
eigen-intonation. They are restored in the original intonation space O as (10). 

, 1, 2, ..., 6T U mα
α α= Ω + =  (10) 

Where Ta are the final affective rule-intonations (henceforth rule-intonations) and they 
can be applied directly to modify the target intonation for synthesizing affective speech, which 
will be performed in the following experiments. 

6. Experimental Results and Discussion 

6.1 Analysis on Eigen-Intonation 

 
 
To demonstrate the eigen-intonations, a PCA experiment using the affective speech corpus 
was performed. The first six principal components U are shown in Figure 2 and the authors do 
not distinguish the principal components selected and eigen-intonations here. It can be seen 
that the varying range of the first component is the smallest, and it is also the highest. So the 

Figure 2. Eigen-intonation of the affective speech 
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first eigen-intonation represents the flat and positive pitch. The second eigen-intonation 
contributes a big rising component, and the third matches a falling intonation with a little 
rising at the end. The fourth can be viewed as adding a falling part to the end of the third. The 
varying ranges are same between the fifth and the sixth, and their global trends are flat with 
big rising and falling varying. These two can be viewed as adding a rising or a falling part to 
the end of the previous component. It will be known that the sixth component contains a very 
small contribution of energy or variance to the intonation contour in the following analysis. 

Based on the previous resultant eigen-intonations, the authors carry out the restoring 
experiment using L components selected, respectively considering L be 3, 4, 5 and 6. The 
results are shown in Table 1. 

Table 1. The restoring rate r with L components selected 
L – component number 3 4 5 6 
r – restoring rate 81.61% 95.71% 99.46% 99.89% 

From Table 1, it can be concluded that selecting five components is acceptable, but with 
six principal components, the restoring rate is 99.89% and the approximation error is almost 
equal to zero. The approximating examples are shown in Figure 3. That means a good 
six-dimensional representation for the space of all speech intonations is achieved, and these 
eigen-intonations are very efficient for intonation representation. 

 

 

6.2 Modeling Affective Intonation 
The emotional state expressed by intonation of each affective speech in the corpus is known, 
and there are six categories of emotions, including the neutral state. And there are 40 speeches 
within each emotional state. According to Section 5.2, all affective intonations labeled with 

Figure 3. Illustration for restoring with eigen-intonations 
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different emotions are projected into six-dimensional sub-space P spanned by 
eigen-intonations. The distribution of first three weights of the projecting vector Ω a is shown 
as Figure 4, and the mass kernel of each emotional state is indicated by red color in the figure. 

 

 
From Figure 4, one can see that the kernel of surprise, job and anger is far from that of 

neutral, where the “surprise” is farthest and then “angry” is next. However, the “fear” almost 
distributes in the same region with “sad”, and they can be distinguished from the neutral 
emotional region. In addition, it can be known from analysis on eigen-intonations that the last 
several weights corresponding to these three weights in the figure contain a very small 
contribution of energy or variance, so the difference of their distribution is not as clear as in 
Figure 4. 

Now the projecting vectors Ω a in P of original intonations labeled with emotion are 
given out as well as the corresponding kernel vector αΩ  for each emotional state. By 
restoring with eigen-intonations, the kernel vectors are transformed as (10) into the original 
space, there they are regarded as rule-intonations. The rule-intonations representing emotion 
states are illustrated in Figure 5. From the figure, one can see that the intonations of anger, job 
and surprise are high, where the variety of surprise is greatest. However, the “fear” is flat and 
low, similar to that of the “sad”. All these qualitative results are in line with the previous 
works of other researchers. So the resultant rule-intonations are efficient for expressing 
emotions in theory.  

Figure 4. Distribution of first 3 weights of affective intonations in eigen sub-space 
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6.3 The Mixed-Emotional Intonation 
When the affective rule-intonation was modeled with eigen-intonation in the previous 
sub-section, the emotion labeled in the corpus and expressed by resultant intonation was 
supposed to be pure. It is known that the emotions of humans felt in normal life are not always 
so simple, and they are usually mixed with several so-called pure emotions, whose intensities 
differ corresponding to constructing the different emotions. The experiment is performed as 
the following to explain that the modeling approach proposed with eigen-intonation is also 
effective for representing the mixed-emotional intonation. 

All affective intonations labeled with emotions have been projected into sub-space P and 
the distribution of first three weights of the projecting vector Ω a in P has been shown in 
Figure 4. Now only the mass kernel of each emotional state, which is corresponding to the 
resultant rule-intonation, is represented in Figure 6. 

Nine equal space points in line between the neutral kernel and the surprise kernel are 
selected and indicated in the figure. If the kernel explains pure emotions, then what the points 
selected explain are the mixed emotions. Along the arrow in Figure 6, points at the starting 
vertex explain more neutral and those at the ending vertex explain more surprise. So the 
emotions expressed by the intonations correspond to these points transfer from neutral to 
surprise along the arrow and they are mixed. The mixed-emotional intonations corresponding 
to the selected-points are restored in original space and shown in the left of Figure 7. It can be 
concluded from the figure that, along the arrow, the first rule-intonations can express more 
neutral and the last ones express more surprise and all of them express the mixed emotions. 

Figure 5. Affective rule-intonations Tα  
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Another nine equal space points between the happy kernel and the surprise kernel are also 
selected and the same experiment is performed. The illustrations of the experiment are shown 
in Figure 6 and the right of Figure 7. 

 

 

 
Note:  

The arrows in the figure indicate the gradual varying direction corresponding to that in 
sub-space showed in Figure 6 and each gradual changing curve is corresponding to one point 
selected in Figure 6. 

Figure 7. Intonations transferring corresponding to that in sub-space 

Figure 6. Transferring illustration of affective intonation in sub-space 
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Figure 6 and Figure 7 show that the mixed-emotional intonation can be represented with 
eigen-intonation, so one can control the relative position of intonation-representation in the 
sub-space to explain the certain mixed-emotion felt in the usual human life. To sum up, the 
modeling approach proposed with eigen-intonation is effective for representing not only the 
simple emotional intonation but also the mixed-emotional intonation. 

6.4 Synthesis with Affective Intonation 
Based on the linear predictive coding technology [Quatieri 2004], the authors analyzed neutral 
speeches, modified their intonations with the six rule-intonations, respectively, and 
re-synthesized them. For example, the intonation of a neutral speech is modified to the 
surprise intonation, and the demonstration is shown as Figure 8. In the figure, the top is the 
waveform of the neutral speech, and the bottom includes the original F0 contour, the original 
intonation, the modified intonation, and the resultant F0 contour of the neutral speech. 
Moreover, the intonation of an original surprise speech is also plotted in the bottom figure for 
contrast. Figure 8 shows that the modified intonation is similar to the original intonation of the 
surprise speech, and the resultant F0 contour is higher than expressing surprise. 

 

 

 Figure 8. Illustration for modifying intonation with surprise rule-intonation 
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In the perception experiment, the listener was asked to judge the emotional state of the 
speech sound. The results show that, though it is difficult to distinguish anger from happy, and 
also can not point out whether the speech sounded closer to fear or sadness, it is easy to tell 
the emotional states such as joy, surprise, and fear of one speech. So one can conclude that the 
rule-intonations are almost corresponding to the emotional state and the eigen-intonation 
modeling method is efficient. 

7. Conclusion 

The F0 contour plays an important role in expressing the affective information of an utterance, 
and the most popular F0 modeling approaches are mainly using the concept of separating the 
F0 contour into a global trend and local variation. Mandarin is a tonal language, and the global 
trend of F0 contour is caused by speaker’s mood and emotion, which is focused on in this 
paper, and that is called affective intonation. Affective intonation is the concept that a speech 
with a certain affective intonation can express a corresponding emotion. Some works of 
speech prosody have proposed much qualitative analysis for affective intonations, and the 
paper has given out quantitative rule-intonation. 

In order to establish the model of affective intonation, an affective corpus of Mandarin 
was obtained with some limitation for affective research goal and all intonations were 
extracted from the original speeches. Then the eigen-intonation concept was proposed basing 
PCA on the affective corpus and all the intonations were transformed to lower-dimensional 
representations in the eigen sub-space spanned by eigen-intonations. A model of affective 
intonations was established in the sub-space and then was restored in the original space of 
intonation to form the rule-intonations. As a result, speech whose intonation is modified 
according to a certain rule-intonation can express the corresponding emotion, even the mixed 
emotion. 

The authors have performed experiments with the affective Mandarin corpus. And the 
experimental results are in line with the theoretical analysis and the intonation modeling 
approach proposed is proved to be efficient for representing the simple emotional and 
mixed-emotional intonation. Future work will focus on how to accurately give out the 
boundaries of the pure emotional regions in sub-space with eigen-intonation. 

Acknowledgements 
This work is supported by Open Foundation of National Laboratory of Pattern Recognition, 
China. The authors would like to thank Dr. Tieniu Tan and Dr. Jianhua Tao for their help. 

 
 



 

 

             Affective Intonation-Modeling for Mandarin Based on PCA            47 

References 
Abe, M., and H. Sato, “Two-stage F0 control model using syllable based F0 units,” in 

Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 
San Francisco, USA, 1992，pp.53-56. 

Abney, S., “Chunks and dependencies: Bringing processing evidence to bear on syntax,” in 
Jennifer Cole and Georgia Green and Jerry Morgan(Eds.): Computational Linguistics 
and the Foundations of Linguistic Theory, pp. 145-164, CSLI, 1995. 

Bellegarda, J., K. Silverman, K. Lenzo, and V. Anderson, “Statistical prosodic modeling: from 
corpus design to parameter estimation,” IEEE Trans. Speech and Audio Processing, 9(1), 
2001, pp. 52-66. 

Fukunaga, K., Introduction to statistical pattern recognition, Academic Press, Dordrecht, 
2000. 

Li, A., M. Lin, X. Chen, Y. Zu, G. Sun, W. Hua, Z. Yin, and J. Yan, “Speech corpus of 
Chinese discourse and the phonetic research,” in Proceedings of Sixth International 
Conference on Spoken Language Processing, 2000, Beijing, China, pp. 13-18. 

Plutchik, R. “The multifactor-analytic theory of emotion,” Journal of Psychology, 50, 1960, 
pp. 153-171. 

Quatieri, T. F., Discrete-Time Speech Signal Processing: Principles and Practice, House of 
Electronics Industry, Beijing, 2004. 

Su, Z., and Z. Wang, “An Approach to Affective-Tone Modeling for Mandarin,” Lecture 
Notes in Computer Science 3784，ed. By J. Tao, T. Tan, and R.W. Picard, Springer, 2005, 
pp. 390-396. 

Tao, J., and Y. Kang, “Features Importance Analysis for Emotional Speech Classification,” 
Lecture Notes in Computer Science 3784，ed. By J. Tao, T. Tan, and R.W. Picard, 
Springer, 2005, pp. 449-457. 

Tian, J., and J. Nurminen, “On analysis of eigenpitch in Mandarin Chinese,” in Proceedings of 
2004 International Symposium on Chinese Spoken Language Processing, 2004, Beijing, 
China, pp. 89-92. 

Yuan, J., L. Shen, and F. Chen, “The acoustic realization of anger, fear, joy and sadness in 
Chinese,” in Proceedings of seventh International Conference on Spoken Language 
Processing, 2002, Denver, Colorado, USA, pp. 2025–2028. 

Zhao, L., C. Jiang, C. Zou, and Z. Wu, “A study on Emotional Feature Analysis and 
Recognition in Speech,” Acta Electronica Sinica, 32(4), 2004, pp. 606-609. 

Zhao, S., J. Tao, and H. Cai, “Rule-learning Based Prosodic Structure Prediction,” Journal of 
Chinese Information Processing, 16(5) , 2002, pp. 30-37. 

Zhao, Y., Problems of Language, Commercial Press of China, Beijing, 1980. 

 



 

 

48                                              Zhuangluan Su and Zengfu Wang 

 


