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Abstract 

This paper presents an empirical study of word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition (LVCSR). First, the 
minimum phone error (MPE) criterion, which is one of the most popular 
discriminative training criteria, is extensively investigated for both acoustic model 
training and adaptation in a Mandarin LVCSR system. Second, the word error 
minimization (WEM) criterion, used to rescore N-best word strings, is 
appropriately modified for a Mandarin LVCSR system. Finally, a series of speech 
recognition experiments is conducted on the MATBN Mandarin Chinese broadcast 
news corpus. The experiment results demonstrate that the MPE training approach 
reduces the character error rate (CER) by 12% for a system initially trained with 
the maximum likelihood (ML) approach. Meanwhile, for unsupervised acoustic 
model adaptation, MPE-based linear regression (MPELR) adaptation outperforms 
conventional maximum likelihood linear regression (MLLR) in terms of CER 
reduction. When the WEM decoding approach is used for N-best rescoring, a slight 
performance gain over the conventional maximum a posteriori (MAP) decoding 
method is also observed. 
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1. Introduction 

Due to advances in computer technology and the growth of the Internet, large volumes of 
multimedia content, such as broadcast news, lectures, voice mails, and digital archives 
continue to grow and fill our computers, networks, and lives. It is obvious that speech is the 
richest source of information for the large volumes of multimedia content; thus, associated 
speech processing technologies will play an increasingly important role in multimedia 
organization and retrieval in the future. Among these technologies, automatic speech 
recognition (ASR) has long been the focus of research in the speech processing community. 

Automatic speech recognition is a pattern classification task that classifies sound 
segments into different linguistic categories based on the acoustic vector sequence extracted 
from the speech signal. Traditionally, in most pattern classification applications, the goal of 
classifier design is to reduce the probability of errors by using the minimum error rate (MER) 
criterion [Duda et al. 2000]. Under this paradigm, the problems of classifier optimization are 
resolved by minimizing the expected loss over the training data directly. The zero-one loss 
function, which simply assigns no loss to a correct classification and a unit loss to an error, is 
often employed for this purpose. For example, in ASR, a hypothesized word sequence 
containing one or more word errors, or a totally different sequence, as compared to the correct 
sequence, will incur the same amount of loss. However, the most common performance 
evaluation metrics adopted in ASR often consider individual word errors, instead of merely 
counting the string-level errors. The use of the zero-one loss function leads to a mismatch 
between classifier optimization and performance evaluation. In recent years, a common 
practice in ASR has been to replace the zero-one loss function with alternative loss functions 
that consider word- or phone-level errors. In practice, such improved loss functions can be 
used in both model parameter estimation (i.e., classifier optimization) and speech decoding. 

In this paper, we present an empirical study of word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition (LVCSR). The minimum phone 
error (MPE) criterion is extensively investigated in both acoustic model training and 
adaptation; while the word error minimization (WEM) criterion is exploited to rescore N-best 
word strings. 

The remainder of the paper is organized as follows. In Section 2, the general background 
of the Bayes risk and overall risk criteria is given, and their use in ASR is explained. Section 3 
presents the application of the MPE criterion for acoustic model training, and Section 4 
describes its extension to unsupervised linear regression based acoustic model adaptation. The 
use of the WEM criterion for speech decoding is discussed in Section 5. The experiment setup 
is detailed in Section 6 and a series of speech recognition experiments is described in Section 
7. Finally, we present the conclusions drawn from the research in Section 8. 
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2. Bayes Risk and Overall Risk 

Given an acoustic vector sequence O , the goal of an ASR system is to make a decision 
( )u Oα  that identifies O as a certain word sequence u  from a hypothesized space hW  of 

all possible word sequences in the language. Let ( , )L u c  be the loss incurred by the decision 
( )u Oα , where the correct (i.e., reference) transcription is c . Actually, we have no prior 

knowledge of the correct transcription; in other words, any arbitrary word sequence s  in 

hW  could be identical to c . Consequently, for each possible decision ( )u Oα , the expected 
loss (or risk) is calculated as [Duda et al. 2000]: 

( )( | ) ( , ) ( | )
hu sR O O L u s P s Oα ∈= ∑ W ,          (1) 

where ( | )P s O  is the posterior probability of the word sequence s  given that the acoustic 
vector sequence O  is observed. Therefore, the Bayes decision ( )opt Oα  is made by 
selecting the action with the minimum expected loss, i.e., 

( )( )( ) arg min |

             arg min ( , ) ( | )
h

h
h

opt u
u

s
u

O R O O

L u s P s O

α α
∈

∈
∈

=

= ∑
W

W
W

.             (2) 

In supervised training, on the other hand, the correct transcription of each training utterance 
O  is known, and the overall risk allR  of all possible training utterances is defined as: 

( ( ) | ) ( )all cR R O O P O dOα= ∫ ,                (3) 

where the integral extends over the whole acoustic space. However, in practice, we can only 
obtain the approximate overall risk Rall by summing the risks over a finite number of training 
utterances, i.e., 

( ( ) | ) ( )

( , ) ( | ) ( )

r

r
h

all c r r r
r

r r rs
r

R R O O P O

L c s P s O P O

α

∈

=

=

∑

∑ ∑ W
,               (4) 

where r
hW  and cr, respectively, denote a set of likely hypothesized word sequences and the 

reference word sequence associated with the training utterance rO ; and the distribution 
( | )rP s O  is always assumed to be governed by some underlying parametric distributions. To 

ensure that ASR is as accurate as possible, we need to design a classifier and estimate the 
parameters in ( | )rP s O  more carefully in order to minimize the overall risk Rall. By applying 
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the Bayes rule and replacing the probability ( | )rP O s  with its parameterization, ( | )rp O sλ , 
Eq. (4) can be expressed as: 

( , ) ( | ) ( )
( )

( | ) ( )

r
h

r
h

r rs
all r

r ru

L c s p O s P s
R P O

p O u P u
λ

λ

∈

∈
=

∑
∑

∑
W

W
,              (5) 

where ( | )rp O sλ  and ( | )rp O uλ  are, respectively, the acoustic model likelihoods for s  
and u under the acoustic model parameter set λ ; and ( )P s  and ( )P u  are the respective 
language model probabilities for s  and u . The parameters of both the acoustic model and 
the language model can be estimated by minimizing Rall. However, in this study, we only 
focus on the discriminative estimation of the acoustic model parameters, and adopt the 
conventional approach for language model training. Moreover, it is assumed that the prior 
probability ( )rP O  is uniformly distributed. As a result, the overall risk becomes 

( , ) ( | ) ( )

( | ) ( )

r
h

r
h

r rs
all

r ru

L c s p O s P s
R

p O u P u
λ

λ

∈

∈
=

∑
∑

∑
W

W
,          (6) 

and the optimal parameter set, optλ , can be estimated by minimizing the overall risk of the 
training utterances 

( , ) ( | ) ( )
arg min

( | ) ( )

r
h

r
h

r rs
opt

r ru

L c s p O s P s

p O u P u
λ

λ λ
λ ∈

∈
=

∑
∑

∑
W

W
.         (7) 

To minimize the overall risk, as shown by Equations (4) to (7), the hypothesized word 
sequence with a lower loss should have a larger posterior probability, and vice versa. How to 
select an appropriate loss function ( , )L ⋅ ⋅  used in the above equations remains an open 
research issue. In most pattern classification tasks, to minimize the probability of 
classification errors, the loss function is often chosen based on the minimum error rate (MER) 
criterion. This leads directly to the following symmetrical zero-one loss function [Duda et al. 
2000]: 

0 ,
( , )

1 ,
u s

L u s
u s
=⎧

= ⎨ ≠⎩
.                  (8) 

The loss function assigns no loss if u s= , and assigns a unit loss when a classification error 
occurs. In ASR, a hypothesized word sequence that is identical to the correct transcription 
does not introduce a loss; however, a hypothesized word sequence containing one or more 
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word errors, or a totally different sequence, compared to the correct sequence, will incur the 
same unit loss. Thus, minimizing the overall risk is equivalent to minimizing the expected 
string error rate (SER) of the training utterances. Nevertheless, SER is not a sufficient metric 
for the evaluation of ASR performance because, with this metric, all incorrectly hypothesized 
word sequences are regarded as having the same cost of recognition risk. Instead, the loss 
function could be defined as the distance of the hypothesized word sequence to the correct 
transcription. For this purpose, the string edit or Levenshtein distance [Levenshtein 1966] 
associated with the word error rate (WER) can be adopted. It is believed that WER is more 
suitable than SER in reflecting differences in ASR results. Optimization using the 
Levenshtein-based loss function is often referred to as word error minimization (WEM). 

However, in complicated ASR tasks, such as LVCSR, it is impossible to perform 
optimization over the hypothesized space r

hW  of each training utterance rO  without using 
a pruning technique because such hypothesized spaces usually contain an extremely large 
number of hypothesized word sequences. Recently, some practical strategies have been 
proposed to resolve this problem. For instance, a reduced hypothesized space in the form of an 
N-best list [Schwartz and Chow 1990] or a lattice [Ortmanns 1997] can be generated for each 
training utterance by only retaining recognized hypotheses with higher probabilities. The 
optimization process can then be applied efficiently to the reduced hypothesized space. Figure 
1 illustrates an example of a word lattice. 
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Figure 1. A word lattice can efficiently encode a large number of possible 

hypothesized word sequences. 
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3. Minimum Phone Error (MPE) Training 

This section describes in detail the application of the minimum phone error (MPE) criterion to 
acoustic model training. As mentioned in the previous section, the hypothesized space r

hW  
of a given training utterance rO  can be reduced to a smaller space represented by a number 
of the most likely hypothesized word sequences associated with rO . The N-best list contains 
the N most likely sequences generated by applying the Viterbi algorithm, which has to retain 
at least N-best search hypotheses at both the HMM (Hidden Markov Model) acoustic 
model-level and word-level recombination points during the speech decoding process. For 
each hypothesized word sequence on the N-best list, it is relatively easy to compute the 
standard Levenshtein distance to the correct transcription directly. Based on this observation, 
Kaiser et al. proposed overall risk criterion estimation (ORCE) for acoustic model training 
[Kaiser et al. 2000, 2002; Na et al. 1995]. This approach takes the N-best list as the reduced 
hypothesized space to obtain training statistics, and applies the extended Baum-Welch 
algorithm [Gopalakrishnan et al. 1991; Normandin 1991] for parameter optimization. In 
experiments on the TIMIT database, the authors achieved a 21% word error rate reduction 
compared to the baseline system. However, an N-best list usually contains too much redundant 
information, i.e., two hypothesized word sequences may look very similar, which makes the 
training procedure inefficient. An alternative representation is the word lattice (or graph), 
illustrated in Figure 1, which only stores hypothesized word arcs at different segments of the 
time frames. Although it cannot be guaranteed that all word sequences generated from a word 
lattice will have higher probabilities than those not presented, it is believed that the 
approximation will not affect the performance significantly. Nevertheless, for the lattice 
structure, using the standard Levenshtein distance measure as the loss function is an issue, 
since it makes the implementation of computing the distance more complicated. Recently, two 
approaches have been proposed to deal with this problem. One focuses on how to design loss 
functions that approximate the Levenshtein distance measure, such as MPE training. The other 
concentrates on the design of algorithms to segment the word lattice so as to make the 
computation of the Levenshtein distance feasible, such as the minimum Bayes risk 
discriminative training (MBRDT) approach [Doumpiotis et al. 2003, 2004]. To efficiently 
reduce the complexity of the hypothesized space in MBRDT, a lattice segmentation algorithm 
is applied to divide the lattice into several non-overlapping components. It has been shown 
that MBRDT achieves a considerable performance improvement over the baseline system 
trained with the maximum likelihood (ML) criterion. 

The MPE training approach, which is one of the most attractive discriminative training 
techniques, tries to optimize an acoustic model’s parameters by minimizing the expected 
phone error rate. The objective function of MPE is given as [Povey 2004]: 
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( | ) ( ) ( , )
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where r
latW  is the lattice generated by the speech recognizer, used to represent a reduced 

hypothesized space of word sequences; and ( , )rA c s  is the raw accuracy of word sequence 
s , which is an approximation of the true accuracy computed globally using the standard 
Levenshtein distance. It is obvious that maximizing the objective function is equivalent to 
minimizing the expected phone error. The raw accuracy ( , )rA c s  is defined as: 

( , ) ( , )r r
q s

A c s A c q
∈

′= ∑ ,                    (10) 

where q  is the phone involved in s , and ( , )rA c q′  is a local function used to calculate the 
raw phone accuracy of each phone q  in s . The phone accuracy is calculated locally on each 
phone arc of the word lattice, instead of globally on each hypothesized word sequence. Given 
a word arc on the word lattice, the time boundaries of the phone arcs can be determined by 
aligning the corresponding speech segment with its constituent HMM acoustic models. Figure 
2 shows the calculation of raw phone accuracy. Notice that we adopt INITIAL/FINAL units 
instead of phone units as the acoustic units in our Mandarin LVCSR system. Therefore, for 
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Figure 2. Raw phone accuracy calculation. 
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simplicity, each INITIAL or FINAL unit is regarded as a phone in the elucidation. In Figure 2, 
the raw phone accuracy of phone “au” involved in the word arc “好在” is calculated in the 
following steps. First, the word arc “好在” is aligned with time boundaries of a phone 
sequence to obtain the start and end time boundaries of the phone “au”. Second, for each 
phone q′  in the correct transcription, we calculate the overlapped portion of “au” in time 
frames, and denote it as ( ," ")e q au′ . Finally, the raw phone accuracy of phone “au”, 
i.e., ( ," ")rA c au′ , is calculated using the following formula: 

1 2 (" ", ) if " "
( ," ") max

1 (" ", ) otherwise  r
q

e au q q au
A c au

e au q′

′ ′− + =⎧
′ = ⎨ ′− +⎩

.        (11) 

It is obvious that ( ," ")rA c au′  ranges from 1 to -1+ 1/ rT , where rT  is the length of 
observation rO  in terms of the time frames. For example, if the phone arc “au” overlays at 
least one phone q′  in the correct transcription with the same identity in time, “au” is 
considered to be a correct phone, i.e., ( ," ") 1rA c au′ = . Figure 3 compares the accuracy of a 
hypothesized word sequence obtained via the approximate function discussed here and the 
exact calculation using the Levenshtein distance. 

According to Povey’s work [Povey 2004], the auxiliary function for optimizing the 
objective function of MPE in Eq. (9) is 
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( , ) log ( | )
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∂
∑ ∑
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Figure 3. Approximate accuracy versus exact accuracy. 
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where λ  is the current model parameter set, q  is a specific phone arc in r
latW , 

and ( | )rp O qλ  is the likelihood given the phone arc q . Note that ( , )MPEH λ λ  is a 
weak-sense auxiliary function of ( )MPEF λ  around λ λ=   with the following property: 

( ) ( , )MPE MPEF H

λ λ λ λ

λ λ λ
λ λ= =

∂ ∂
=

∂ ∂
.          (13) 

In other words, both the objective and auxiliary functions have the same derivative with 
respect to λ  when they are evaluated at the current estimate λ . For simplicity, we only 
consider the MPE-based estimation of mean vectors and covariance matrices in HMMs. The 
state transition probabilities and mixture weights trained by the ML criterion remain 
unchanged. As a result, in this study, the final auxiliary function for MPE training is expressed 
as: 

( , ) ( ) log ( ( ), , )
q

r
qlat

t e
rMPE r

MPE q qm r m mr
t s mq

g t N o tλ λ γ γ µ
=

=∈
= Σ∑ ∑ ∑ ∑

W
,     (14) 

where qs  and qe  represent the start and end times of the phone arc q , respectively; m  is 
the mixture index of the acoustic models; mµ  and mΣ  are, respectively, the mean vector 
and covariance matrix for mixture m ; ( )r

qm tγ  is the occupation probability for mixture m  
on q ; ( )ro t  is the observation vector at time t ; and rMPE

qγ  represents ( )
log ( | )

MPE

r

F
p O qλ λ λ

λ

=

∂
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in Eq. (12), which can be expressed as: 
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In Eq. (15), ,
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in r
latW  that include q ; and 

( | ) ( ) ( , )

( | ) ( )

r
lat

r
lat

r r
v

r
u

p O v P v A v s

p O u P u

λ

λ

∈

∈

∑

∑
W

W

 is the weighted average accuracy of all 

hypothesized word sequences in r
latW . All three quantities can be calculated efficiently.  

Since maximizing the weak sense auxiliary function with respect to λ  does not 
guarantee an increase in the objective function, the auxiliary function is augmented with an 
extra smoothing function ( , )smooth

EBg λ λ  to moderate the parameter update and prevent 
extreme parameter values being estimated. The following is an example of a smoothing 
function: 

1 1( , ) log(| |) ( ) ( ) ( )
2

smooth Tm
EB m m m m m m m m

m

D
g trλ λ µ µ µ µ− −⎡ ⎤= − Σ + − Σ − + Σ Σ⎣ ⎦∑ ,    (16) 

where mD  is a per-mixture level controlling constant. Note that ( , )smooth
EBg λ λ  is deemed a 

log-Gaussian prior distribution with a differential value of zero with respect to λ  when it is 
evaluated at the current estimate λ . Therefore, the differentials of the augmented auxiliary 
function with respect to mµ  and mΣ  are computed as shown, respectively, in the following 
equations: 
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                                                                  (18) 

Next, by completing the differentiations and equating the above equations to zero, the 
following Extended Baum-Welch (EB) update formulae [Normandin 1991] are derived: 
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Moreover, to incorporate the ML estimate and smooth the update, the so-called 
I-smoothing technique [Povey and Woodland 2002] is employed to provide a better estimate. 
I-smoothing is also regarded as a prior distribution for smoothing the auxiliary function, where 
the mode of the distribution is the same as the estimate obtained by ML training. The update 
equations thus become: 
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where mτ  is a constant, and ML
mγ , ( )ML

m Oθ , and 2( )ML
m Oθ  are further expressed, 

respectively, as: 

( )ML r ML
m mr

t
tγ γ= ∑ ∑ ,                (23) 

( ) ( ) ( )ML r ML
m m rr

t
O t o tθ γ= ∑ ∑ ,           (24) 

and 

2( ) ( ) ( ) ( )ML r ML T
m m r rr

t
O t o t o tθ γ= ∑ ∑ .              (25) 
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In each of the above equations, ( )r ML
m tγ  is the ML occupation probability for mixture m . 

I-smoothing can also be considered as an interpolation between the MPE estimate and the ML 
estimate. As mτ → ∞ , it performs like ML training. On the other hand, it behaves purely as 
MPE training when 0mτ → . Basically, the technique provides better results when the value 
of mτ  is properly chosen (e.g., we adopted a setting of 10mτ =  in our experiments). 
Recently, it has been verified that using the statistics of MMI (Maximum Mutual Information) 
training in I-smoothing can further improve the estimate [Zheng and Stolcke 2005; Povey et al. 
2005]. 

Finally, let us examine the quantity rMPE
qγ  in more detail. To simplify the discussion, 

we adopt the following equations: 
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where ( )rc q  is the weighted average phone accuracy of hypothesized word sequences that 
involve q ; and r

avgc  is the weighted average phone accuracy of all hypothesized word 
sequences in r

latW . It is clear that the three main statistics must be gathered by applying the 
forward-backward algorithm to the word lattice [Povey 2004]. Note that the term ( )r r

avgc q c−  
reflects the difference in the weighted average phone accuracy between the word sequences 
containing arc q and all word sequences in the lattice. As ( )r r

avgc q c= , no training statistics 
are contributed to phone arc q in MPE training. Positive contributions are made to arc q if 

( )rc q  is greater than r
avgc , i.e., if phone arc q is more accurate than the average. Conversely, 

if ( )rc q  is smaller than r
avgc , negative contributions are made to arc q and thus show the 

discrimination. For a reasonable combination of acoustic model likelihoods and language 
model probabilities, it is necessary to restrict the acoustic likelihoods by introducing an 
exponential scaling factor. The scaling factor is empirically set depending on the task at hand; 
in our experiments, we adopted a value of 1/12. Alternatively, a word unigram language 
model constraint can be used to improve the generalization capabilities of such discriminative 
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training. 

4. MPE-based Linear Regression (MPELR) Adaptation 

Acoustic model adaptation, which is one of the most important topics in ASR, tries to 
eliminate some of the spoken and environmental variations between the training and test sets. 
However, it is a challenging task to adjust the large number of acoustic model parameters 
when only a very small amount of data is available for model adaptation. To ensure a more 
reliable estimation of acoustic model parameters, transformation-based approaches have been 
developed to adapt the acoustic model indirectly by using a set of affine transforms, such as 
the maximum likelihood linear regression (MLLR) adaptation [Leggetter and Woodland 1995]. 
Similarly, word or phone error minimization approaches can be used to estimate the 
transformation matrices. Among these approaches, we focus on MPE-based linear regression 
(MPELR) adaptation [Wang and Woodland 2004], which obtains the transformation matrices 
by using the MPE criterion. 

As in typical MLLR adaptation, Gaussian components are first clustered into several 
regression classes. Components in the same class share the same transformation matrix. The 
Gaussian mean vectors are transformed by: 

m k m k k mA b Wµ µ ξ= + = ,                (29) 

where the subscript k  is the class index; k k kW b A= ⎡ ⎤⎣ ⎦  is a ( 1)d d× +  transformation 
matrix; and 1

TT
m mξ µ⎡ ⎤= ⎣ ⎦  is the ( 1d + )-dimensional extended mean vector based on the 

current estimate. Meanwhile, the covariance matrices can be updated by [Gales and Woodland 
1996] 

1T
m m k mL H L− −Σ = ,                 (30) 

where kH  is the linear transformation matrix to be estimated for the class k , and mL  is 
the Cholesky factor of 1

m
−Σ . Hereafter, for simplicity, the subscript k  representing the 

cluster index is omitted. Based on Eq. (14), the auxiliary function can be derived as: 
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Like MPE training, described in Section 3, the auxiliary function in Eq. (31) can be further 
augmented with an extra smoothing function ({ , },{ , })smooth

EBWg W H W H  to derive a more 
reliable estimation of the transformation matrices. This is usually given by: 
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where ( )tr ⋅  is the standard matrix trace operation. After differentiating the auxiliary function 
with respect to W  and setting it to zero, we get the following closed-form solution: 
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The above equation can be solved row-by-row using the Gaussian elimination method to 
obtain the re-estimation formula for the transformation matrix of mean vectors. The 
re-estimation formula for the transformation matrix of covariance matrices can be derived in a 
similar way. 

Again, to improve the generalization of the test set, extra prior information, such as the 
ML statistics, can be considered. Therefore, the final auxiliary function employed in this paper 
is augmented with the following smoothing function: 

1( , ) ( ) log ( ( ); , )I smooth ML Tm
m m m mMLm tm

g W H t N o t W L HL
τ

γ ξ
γ

− − −= ∑ ∑ .     (34) 

5. Word Error Minimization (WEM) Decoding 

Given a speech utterance, the standard maximum a posteriori (MAP) decoding approach tries 
to output the hypothesized word sequence with the highest posterior probability. Actually, by 
substituting a zero-one loss function into Eq. (2), the MAP decoding formula can be derived. 
This implies that the MAP decoding approach is based on minimizing the string error rate 
(SER). Thus, it only provides suboptimal results when the ASR performance is measured in 
terms of the word error rate (WER) or the character error rate (CER). Hence, replacing the 
zero-one loss function in Eq. (2) with the Levenshtein distance measure leads to the WEM 
decoding approach, which finds the hypothesized word sequence with the minimum WER or 
CER. However, as mentioned in Section 3, a direct implementation of WEM decoding with 
the word lattice is complicated because there is still no efficient algorithm for computing the 
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Levenshtein distance between any two possible word sequences in the word lattice. To make 
the implementation of the WEM decoding approach feasible, we initially employ an N-best 
list of hypothesized word sequences. The WEM decoding approach can then be applied 
explicitly by choosing the hypothesized word sequence with the minimum expected risk 
[Stolcke et al. 1997]. The decision formula can thus be expressed as: 

NestNest
Nest

( | ) ( )
( ) arg min ( , )

( | ) ( )opt
s Nu N

v N

p O s p s
O L u s

p O v p v
α

∈ −∈ −
∈ −

= ∑
∑

,      (35) 

where u , s , and v  are hypothesized word sequences in the N-best list. Similar ideas have 
been proposed recently by Mangu et al. [Mangu et al. 2000] and Goel and Byrne [Goel and 
Byrne 2000]. As an alternative, a novel optimal Bayes decision (OBC) approach for word 
lattice rescoring has been developed [Chien et al. 2006]. It also provides a promising 
framework for WEM decoding. 

6. Experiment Setup 

In this section, we describe the large vocabulary continuous speech recognition system and the 
speech and text data used in this paper. 

6.1 Front-End Signal Processing 
Front-end processing was performed with the HLDA-based (Heteroscedastic Linear 
Discriminant Analysis) data-driven Mel-frequency feature extraction approach, and then 
processed by MLLT (Maximum Likelihood Linear Transformation) transformation for feature 
de-correlation. In addition, utterance-based feature mean subtraction and variance 
normalization were applied to all the training and test materials. 

 

Table 1. Detailed statistics of the training and test sets. 
Training set Test set 

Gender Total 
length 
(sec) 

Total 
Syllables #Speakers

Total 
length 
(sec)

Total 
Syllables #Speakers

#Speakers 
in the 

training and 
test sets 

Male 46,001.3 ≤ 66 1,301.4 9 9 

Female 46,007.2
545,732

≤ 111 3,914.0
26,219

≤ 23 ≥ 13 
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6.2 Speech Corpus and Acoustic Model Training 
The speech corpus consisted of approximately 198 hours of MATBN (Mandarin Across 
Taiwan Broadcast News) Mandarin television news content [Wang et al. 2005], which was 
collected by Academia Sinica and the Public Television Service Foundation of Taiwan 
between November 2001 and April 2003. All the speech materials were manually segmented 
into separate stories, each of which was spoken by one news anchor, several field reporters, 
and interviewees. Some stories contained background noise, speech, and music. All 198 hours 
of speech data was accompanied by corresponding orthographic transcripts, of which about 25 
hours of gender-balanced speech data of the field reporters collected from November 2001 to 
December 2002 was used to bootstrap the acoustic training. The training set consisted of 
545,732 syllables and the average length of a word was 1.65 characters. Another set of data, 
1.5 hours in length, collected during 2003 was reserved for testing. Due to the limited number 
of distinct field reporters in the corpus, some test data belonged to the training field reporters. 
The test set consisted of 26,219 syllables and the average word length was also 1.65 characters. 
Table 1 shows the detailed statistics of the training and test sets. 

The acoustic models chosen for speech recognition were a silence model, 112 
right-context-dependent INITIAL models, and 38 context-independent FINAL models. Each 
INITIAL model was represented by an HMM with 3 states, while each FINAL model had 4 
states. Note that gender-independent models were used. The Gaussian mixture number per 
state ranged from 2 to 128, depending on the amount of training data. The acoustic models 
were first trained using the ML criterion and the Baum-Welch updating formulae. The 
MPE-based and MMI (Maximum Mutual Information)-based [Povey and Woodland 2002] 
acoustic model training approaches were further applied to acoustic models pre-trained by the 
ML criterion. Unigram language model constraints were used to collect the training statistics 
from the word lattices for these two training approaches. For MPE training, both silence and 
short-pause labels were involved in the calculation of the raw phone accuracy of the 
hypothesized word sequences. 

6.3 Lexicon and N-gram Language Modeling 
Initially, the recognition lexicon consisted of 67K words. A set of about 5K compound words 
was automatically derived using forward and backward bigram statistics and added to the 
lexicon to form a new lexicon of 72K words. The background language models used in this 
experiment were trigram and bigram models, which were estimated according to the ML 
criterion using a text corpus consisting of 170 million Chinese characters collected from the 
Central News Agency (CNA) in 2001 and 2002 (the Chinese Gigaword Corpus released by 
LDC). The N-gram language models were trained with Katz back-off smoothing technique 
using the SRI Language Modeling Toolkit (SRILM) [Stolcke 2000]. 
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6.4 Speech Recognition 
The speech recognizer was implemented with a left-to-right frame-synchronous Viterbi 
tree-copy search and a lexical prefix tree of the lexicon. For each speech frame, a beam 
pruning technique, which considered the decoding scores of path hypotheses together with 
their corresponding unigram language model look-ahead scores and syllable-level acoustic 
look-ahead scores [Chen et al. 2005], was used to select the most promising path hypotheses. 
Moreover, if the word hypotheses ending at each speech frame had higher scores than a 
predefined threshold, their associated decoding information, such as the word start and end 
frames, the identities of current and predecessor words, and the acoustic score, were kept to 
build a word lattice for further language model rescoring. We used the word bigram language 
model in the tree search procedure and the trigram language model in the word lattice 
rescoring procedure. 

7. Experiment Results and Discussions 

Now, a series of experiments performed to assess speech recognition as a function of the 
acoustic training and adaptation approaches, as well as the speech decoding approaches will 
be presented. 
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Figure 4. Recognition results, in terms of the CER, for three systems trained on  

ML, MMI, and MPE criteria, respectively. 
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Table 2. Recognition results of the acoustic model training and unsupervised 
adaptation approaches 

 INITIAL/FINAL Error Rate 
(%) 

Character Error Rate (%) 

ML 13.56 23.78 
(ML+) MPE 11.12 20.77 

 (ML+) MPE + MLLR 10.94 20.45 
 (ML+) MPE + MPELR 10.82 20.29 

7.1 Experiments on MPE Acoustic Model Training 
The acoustic models of the baseline system were first trained using the ML criterion with 10 
iterations of Baum-Welch updating. Then, MPE training (with an optimum setting of 10mτ = ) 
was applied to the ML-trained acoustic models. In the implementation, we calculated the raw 
accuracy of each INITIAL/FINAL, instead of each phone, i.e., we had actually performed 
Minimum INITIAL/FINAL Error training, not Minimum Phone Error training, in the 
Mandarin LVCSR system. While evaluating the ASR performance, neither the silence nor the 
short-pause labels were included in the calculation of CER. MMI training was also performed 
for comparison with MPE training. As mentioned previously, for both MPE and MMI training, 
unigram language model constraints were imposed when collecting the training statistics from 
the word lattices. The results for acoustic model training are shown in Figure 4. We observe 
that the ML-trained baseline system (at the 10th iteration) yields a CER of 23.78%. On the 
other hand, both MMI and MPE work very well, providing a great boost to the acoustic 
models initially trained by ML. The acoustic models trained by MPE consistently outperform 
those trained by MMI across all training iterations. In summary, the MPE-trained acoustic 
models achieve a relative CER reduction of 12.66% (at the 10th iteration) over those trained 
by ML. Moreover, as shown in Table 2, the improvements are consistent. The 
INITIAL/FINAL model error rate is reduced from 13.56% (baseline, ML training only) to 
11.12% (at the 10th MPE training iteration). The 18% relative error rate reduction 
demonstrates the effectiveness of the Minimum INITIAL/FINIAL Error training approach, 
and the improvement in the acoustic models leads to a 3% absolute reduction in CER (from 
23.78% to 20.77%). The use of statistical linguistic rules in MPE training still plays an 
important role in re-weighting the occupancy statistics, especially in an LVCSR system. In our 
previous work [Kuo 2005], it was found that much of the CER improvement was lost without 
embedding the language weight. 

The question thus arises: What makes MPE superior to MMI? In Eq. (7), if the 
summation operator over all training utterances is replaced by the product operator and the 
loss function is the zero-one function in Eq. (8), one gets the following MMI criterion: 



 

 

            An Empirical Study of Word Error Minimization Approaches for        219 

Mandarin Large Vocabulary Continuous Speech Recognition 

( | ) ( )
arg max log

( | ) ( )r
h

r
MMI

r ru

p O s p s
p O u p u

λ

λ λ
λ

∈
= ∑

∑ W
,        (36) 

which maximizes the logarithmic product of the posterior probabilities of the reference 
transcriptions. The use of the zero-one loss function implies that MMI tends to minimize the 
sentence error rate. Hence, it is reasonable to say that MMI is inferior to MPE in terms of 
CER. 

7.2 Experiments on Unsupervised MPELR Acoustic Model Adaptation 
In this subsection, we evaluate the performance of the MPE-based unsupervised acoustic 
model adaptation approach. In these experiments, utterance-based unsupervised adaptation 
was used. First, each test utterance was decoded using the MPE-trained acoustic models. Then, 
after the forward-backward stage to gather sufficient statistics, the acoustic models were 
adapted according to the recognized transcriptions. All the Gaussian components of the HMM 
acoustic models were clustered into three broad phonetic regression classes (i.e., INITIAL, 
FINAL, and Silence) in advance. Only the mean vectors of each Gaussian component were 
adapted because it has been found that adapting the mean vectors alone yields the most 
improvement [Gales and Woodland 1996]. Unsupervised MLLR adaptation was performed as 
the baseline. In the experiment results presented in Table 2, comparing Row 4 (MPE + MLLR) 
to Row 3 (MPE), we observe that the CER can be reduced from 20.77% to 20.45%, which 
indicates that MLLR adaptation can, to some extent, effectively mitigate the degradation of 
ASR performance caused by different acoustic variations. Row 5 of Table 2 gives the error 
rate obtained by MPELR adaptation. This result, 0.16% improvement in terms of CER, shows 
that MPELR is slightly better than MLLR. One possible reason for the insignificant 
improvement over MLLR is the use of a weak-sense auxiliary function. As a result, the 
convergence speed of MPE-based techniques is not as fast as the strong-sense auxiliary 
function used in ML-based techniques. In contrast, the advantage of MPE is that it tries to 
achieve a lower error rate when over-training is encountered. This is why MPE training is 
performed after ML training and not for bootstrapping the initial models. Similarly, MPELR 
adaptation can be performed after MLLR adaptation. However repeated on-line adaptation 
causes the decoding phase to become tardy, which is why it is only performed once in the 
online stage. 
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Table 3. Recognition results (CERs) for N-best list WEM rescoring. 
 CER (%) 

MPE + MPELR 20.29 
MPE + MPELR + WEM 20.23 

50-best Error Rate 17.82 
Lattice Error Rate 10.12 

7.3 Experiments on WEM Decoding 
For each test utterance, an N-best list of hypothesized word sequences was first generated 
from the word lattice. We limited the number of hypothesized word sequences included in the 
N-best list to 50, and the Levenshtein distance was calculated in terms of character units. The 
experiment results are shown in Table 3. From Row 3 (MPE + MPELR + WEM), one 
observes that, with the best set of acoustic models, WEM only achieves a slight reduction of 
0.06% in CER compared to that obtained by conventional MAP decoding, as shown in Row 2. 
Row 5 (Lattice Error Rate) provides the information regarding the lattice error rate [Ortmanns 
et al. 1997], which is the best achievable lower boundary, by rescoring on the current word 
lattice. This can be computed by finding the best hypothesized word sequence with the 
minimum Levenshtein distance to the reference transcription from the corresponding word 
lattice. On the other hand, Row 4 (50-best Error Rate) gives the lower boundary of the best 
character error rate for the top 50 hypotheses with the highest scores, which is the true best 
achievable lower bound in our implementation. From the experiment results, the WEM 
algorithm seems to achieve an almost imperceptible improvement of about 0.06%. The most 
likely explanation is that there is a defect in the approximation of the posterior distribution. In 
addition, the WEM algorithm decides the word sequence with the highest posterior probability 
in most situations [Schlüter et al. 2005]. For the above reasons, we consider that the 
improvement in CER accuracy is insignificant. 

8. Conclusions 

In this paper, we have investigated the following word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition: 1) the MPE criterion used in 
acoustic model training and adaptation; and 2) the WEM criterion in speech decoding. Unlike 
conventional techniques, these two approaches try to minimize the expected word error, rather 
than the string-level error. Experiments on the MATBN corpus demonstrate that MPE training 
can significantly improve a system initially trained with the ML criterion. Likewise, MPELR 
adaptation can significantly reduce the CER for the unsupervised adaptation task. This result 
is superior to that obtained by conventional MLLR adaptation. Finally, N-best rescoring using 
the WEM criterion achieves a slight improvement over traditional MAP decoding. We are 
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currently conducting an in-depth investigation of the WEM approaches to language modeling 
[Kuo and Chen, 2005], as well as their comparison and integration with other approaches. 
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