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Abstract 

Recognizing transliteration names is challenging due to their flexible formulation 
and lexical coverage. In our approach, we employ the Web as a giant corpus. The 
patterns extracted from the Web are used as a live dictionary to correct speech 
recognition errors. The plausible character strings recognized by an Automated 
Speech Recognition (ASR) system are regarded as query terms and submitted to 
Google. The top N snippets are entered into PAT trees. The terms of the highest 
scores are selected. Our experiments show that the ASR model with a recovery 
mechanism can achieve 21.54% performance improvement compared with the ASR 
only model on the character level. The recall rate is improved from 0.20 to 0.42, 
and the MRR from 0.07 to 0.31. For collecting transliteration names, we propose a 
named entity (NE) ontology generation engine, called the XNE-Tree engine, which 
produces relational named entities by a given seed. The engine incrementally 
extracts high co-occurring named entities with the seed. A total of 7,642 named 
entities in the ontology were initiated by 100 seeds. When the bi-character 
language model is combined with the NE ontology, the ASR recall rate and MRR 
are improved to 0.48 and 0.38, respectively. 

1. Introduction 

Named entities [MUC 1998], which denote persons, locations, organizations, etc., are 
common foci of searchers. Thompson and Dozier [1997] showed that named entity 
recognition (NER) could improve the performance of information retrieval systems.  
Capturing named entities is challenging due to their flexible formulation and novelty. The 
issues behind speech recognition make named entity recognition more challenging on the 
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spoken level than on the written level. This paper focuses on a special type of named entities, 
called transliteration names. They describe foreign people, places, etc. Spoken transliteration 
name recognition is useful for many applications. For example, cross language image retrieval 
via spoken queries aims to employ the latter in one language to retrieve images with captions 
in another language [Lin et al. 2004]. 

In the past, Appelt and Martin [1999] adapted the TextPro system to process transcripts 
generated by a speech recognizer. Miller et al. [2000] analyzed the effects of 
out-of-vocabulary errors and the loss of punctuation on name finding in automatic speech 
recognition. Huang and Waibel [2002] proposed an adaptive method of named entity 
extraction for the meeting understanding. Chen [2003] dealt with spoken cross-language 
access to image collections. The coverage of a lexicon is one of the major issues in spoken 
transliteration name access. Recently, researchers are interested in using the Web, which 
provides a huge collection of up-to-date data, as a corpus. Keller and Lapata [2003] employed 
the Web to obtain frequencies for bigrams that are unseen in a given corpus. 

Named entities are important objects in web documents. Building named entity 
relationship chains from the web is an important task. Matsuo et al. [2004] found social 
networks of trust from related web pages. Google sets1 extracts named entity from web pages 
by inputting a few named entities. For some emerging applications like personal name 
disambiguation [Fleischman and Hovy 2004] [Mann and Yarowsky 2003], social chain 
finding [Bekkerman and McCallum 2005] [Culotta et al. 2004] [Raghavan et al. 2004], etc., 
glossary-based representations of named entities are not enough. For collecting transliteration 
names and building a bi-character language model, we propose a named entity (NE) ontology 
generation engine, called the XNE-Tree engine. This engine produces relational named entities 
by given a seed. The engine uses Google to incrementally extract high co-occurrence named 
entities from related web pages and those named entities have similar relational properties 
with the seed. In each iterative step, the seed will be replaced by its siblings or descendants, 
which form new seeds. In this way, the XNE-Tree engine will build a tree structure as follows 
with the original seed as a root. 

                                                 
1 http://labs.google.com/sets 

Seed

: Name Entity Node
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In this paper, we discuss using the Web as a live dictionary for recognizing spoken 
transliteration names and employ the fuzzy search capability of Google to retrieve relevant 
web page summaries. In section 2, we sketch the steps in our method. In section 3, we discuss 
using PAT trees to learn patterns from the Web dynamically and to correct recognition errors. 
Section 4 shows the experiments, which are the ASR model with/without the recovery 
mechanism. Section 5 presents the XNE-Tree named entity ontology engine and our 
experimental results. In section 6, we make concluding remarks. 

2. Spoken Transliteration Name Recognition System 

The spoken transliteration name recognition system shown in Figure 1 accepts a speech signal 
denoting a foreign named entity and converts it into a character string. It is composed of the 
following four major stages. Stages (1) and (2) consist of the fundamental tasks in speech 
recognition. In the Stages (3) and (4), speech-to-text errors are corrected by using the Web. 

 
Figure 1. Stage in transliteration name recognition 

(1) First, we employ the HTK2 and SRILM3 toolkits to build speech recognition models. 
For each speech signal, we use the model to get a syllable lattice. 

(2) Then, the syllable lattice is mapped into a character lattice by using a mapping table. 
The mapping table is a syllable-to-character mapping. Top-N character strings are selected from 
the character lattice by using Viterbe algorithm and a bi-character model which is trained from a 
transliteration name corpus. Such character strings will be called ASR strings in the following. 

(3) Next, each ASR string is regarded as a query and is submitted to a web search engine 
like Google. From the top-N search result, we select higher frequency patterns from a PAT tree 
structure. The PAT tree [Chien 1997] [Gonnet et al. 1992], which was derived from the Patricia 

                                                 
2 http://htk.eng.cam.ac.uk/ 
3 http://www.speech.sri.com/projects/srilm/ 
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tree, can be employed to extract word boundary and key phrases automatically. Because we 
employ the PAT tree to extract patterns, the patterns will be called PAT candidates in the 
following. A PAT tree example, �“ྏࡥዧ܌ཎྏ܌ࡥᕙཎ໨ए܌ᕙ؍�” in MS950 encoding, is 
shown in Figure 2. The circles represent semi-infinite string numbers. The number above each 
circle denotes the length, which indicates the first different bit of the character strings recorded 
in the sub-trees. In this example, the longest patterns are for �“܌ᕙ�” and �“ྏࡥ�” on nodes (7, 12) 
and (0, 5), with lengths of 33 and 34 bits, respectively. The second longest patterns are for 
 ,and �“ཎ�” on nodes (3, 7, 12), (8, 13), (1, 6) and (4, 9), with lengths of 16, 17 ”�ࡥ”� ,”�ᕙ”� ,”�܌“�
18 and 18 bits, respectively.

 Figure 2. An example of extracting longest length pattern and its frequency 

(4) Finally, the PAT candidates of all the ASR strings are merged together and ranked based 
on their number of occurrences and similarity scores. Candidates with the highest ranks are 
regarded as the recognition results for a spoken transliteration name. 

Consider the example shown in Figure 3. The Chinese speech signal is a transliteration 
name, �“ྏ܌ࡥᕙཎ�”, in Chinese, which denotes the name of the movie star �“Tom Cruise.�” 
The lattice shows different combinations of syllables. Each syllable corresponds to several 
Chinese characters. For example, �“ke�” is converted into �“܌�”, �“ਲ�”, �“ઝ�”, �“ױ�”, �“໔�”, �“ࠥ�”, 
etc. The ASR strings �“Ⴣ๕܌ᕙཎ�”, �“Ⴣ॰܌ᕙཎ�”, �“Ⴣ๕ਲᕙཎ�”, etc. are selected from the 
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character lattice. Through Google fuzzy search using the query �“Ⴣ๕܌ᕙཎ�”, some 
summaries of Chinese web pages are obtained and shown in Figure 4. Although the common 
transliteration of �“Tom Cruise�” in Chinese is �“ྏ܌ࡥᕙཎ�”, which is different from the query 
�“Ⴣ๕܌ᕙཎ�”, fuzzy matching using Google can still identify relevant snippets containing the 
correct transliteration. We will call this operation �“recognition error recovery using the Web�” 
in the following. 

   Figure 3. An example of recognizing a transliteration name: “ྏ܌ࡥᕙཎ” 
(“Tom Cruise”) 

(1) ... Կܭគৎ೽ҽǴ߾ᗋࢂ෯ۅᅇլථǵ෯ۅլᎹථǵൈݯլᎹѭ೭٤Դय़ϾǴ�… 

(2) ... ಃ 76ϩដǴլᎹථඤΠఘ໒Βޑࡋᆢষ㚊Ƕ 

(3) ... ୯ሞԯើ (4-4-2)Ǻᙦ༣ય/ࣽᅟӭґǴѲᅟ्઩Ǵଭ੝܎ሸǴݤґճ/ථࣽڶᆢڻǴ

 ႜ/լᎹථǴଭ΍ථǶۅໜǴЌϣဓǴষن

(4) ... ගଆۃёջวО෯ۅլᎹථ�“གྷఠԝ૶ޣ�”. 

(5) ... ႝቹ࿯ന࣮ڀᗺࢃܴޑ྽ฅۃߚё୷ቺୗᆶ෯ۅլᎹථԖఈӧНޑࠤᔍቃ܄ख़೹

ವឦǶ 

 Figure 4. Summaries obtained through fuzzy search for the query “Ⴣ๕܌ᕙཎ” 

In the above examples, each partial matching part is enclosed in a rectangle symbol and 
the correct transliteration name is underlined. Summaries (1), (4) and (5) mention the movie 
star �“ྏ܌ࡥᕙཎ�” (Tom Cruise) and summaries (2) and (3) mention a football star, �“܌ᕙཎ�” 
(Cruz). Figure 3 shows that PAT patterns like �“ᆣჃ܌ᕙཎ�”, �“ྏ܌ࡥᕙཎ�”, �“܌ࡥᕙཎዝ�”, 
etc. are proposed. After merging and ranking are performed, the possible recognition results 
are �“ྏ܌ࡥᕙཎ�”, �“੖ཏ܌ᕙ౿�”, �“ᆣჃ܌ᕙ౿�”, etc. 
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3. Recognition Error Recovery Using the Web 

The error recovery module tries to select higher frequency patterns from the Web search 
results and substitute the speech recognition results of Stages 1 and 2 (shown in Section 2) 
with the pattern. In this approach, Web search results obtained with an ASR string are placed 
in a PAT tree, and PAT candidates are selected from the tree. Two points are worth noting. A 
PAT candidate should occur many times in the PAT tree and should be similar to the ASR 
string. 

The frequency, Freq, of a PAT candidate can be computed easily based on the PAT tree 
structure. The similarity between a PAT candidate and an ASR string is modeled by edit 
distance, which is the minimum number of insertions, deletions and substitutions needed to 
transform one character string (ASR) into another string (PAT). The smaller number is, the 
more similar they are. The similarity score, between an ASR string and a PAT string, is the 
frequency of the PAT string minus their number of edit operations. Finally, the score of a PAT 
string relative to an ASR string is defined as follows: 

 
( , ) ( ) tan ( , )Score ASR PAT Freq PAT Dis ce ASR PAT .                    (1) 

It is computed through weighted merging of the frequency of the PAT string and by using 
the similarity between the ASR string and PAT string. This value determines if the ASR string 
will be replaced by the PAT string. In the above example, Freq(ྏ܌ࡥᕙཎ)=43 and Distance 
(Ⴣ๕܌ᕙཎ, ྏ܌ࡥᕙཎ)=2. 

4. Experimental Results 

The speech input to the transliteration name recognition system is a Chinese utterance. We 
employed 51,111 transliteration names [Chen et al. 2003] to train the bi-character language 
model discussed in Section 2. In the experiments, the test data include 50 American state 
names, 29 names of movie stars from the 31st Annual People�’s Choice Awards 
(http://www.pcavote.com), and 21 names of NBA stars from the 2005 NBA All Star Team 
(http://www.nba.com/allstar2005/). The 50 American state names are not very active on the 
Web. In contrast, the 50 names of stars are very active. The test set is different from the 
training data set, so it is an open test. Because there may be more than one transliteration for a 
foreign named entity, the answer keys are manually prepared. For example, �“Arizona�” has 
four possible transliterations in Chinese: �“ܓࠅௌ౏”, “ࠅᖵௌ౏�”, �“ܓࠅௌ߷�”, and �“ࠅᖵௌ
߷�”. On average, there are 1.9 Chinese transliterations for a foreign name in our test set. 
Appendix A lists the name test set and its answer keys. As explained in Section 2, the 
transliteration name recognition system is composed of four major stages. Stages 1 and 2 
include the fundamental speech recognition tasks, and Stages 3 and 4 comprise the error 
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recovery task. To examine the effects of these two parts, we will evaluate them separately in 
the following two subsections. 

4.1 Performance in the Error Recovery Task 
We assume that correct syllables have been identified in the speech recognition task. We 
simulate this assumption by transforming all the characters in the answer keys into syllables. 
Then, in Stage 2, we map the syllable lattice to obtain a character lattice. A total of 50 ASR 
strings are extracted from the character lattice in Stage 2 and submitted to Google. Finally, the 
best 10 PAT candidates are selected. We use the MRR (Mean Reciprocal Rank) [Voorhees 
1999] and recall rate to evaluate the performance. The MRR represents the average rank of the 
correctly identified transliteration names among in the proposed candidates and it is defined as 
follow: 

1

1 M
i

i
M R R r

M ,
                                                        (2) 

where M is the total number of test cases ; ri equals 1/ranki if ranki > 0 and ri is 0 if no answer 
is found. The ranki is the rank of the first correct answer for the ith test case. That is, if the first 
correct answer is ranked 1, then the score is 1/1; if it is ranked 2, the score is 1/2, and so on. 
The MRR value is between 0 and 1. The inverse of the MRR denotes the average position of 
the correct answer in the proposed candidate list. The higher the MRR value is, the better the 
performance is. The recall rate is the number of correct references divided by M. It indicates 
how many transliteration names are correctly recognized. 

  Table 1. Performance of models wo/with error recovery 
Models Recall MRR 

ASR only 0.79 0.50 

ASR + Web 0.90 0.88 

ASR/Pre-removed + Web 0.59 0.48 

Table 1 summarizes the experimental results obtained with models without/with the error 
recovery procedure. With the �“ASR only�” model, the top 10 ASR strings produced in Stage 2 
are regarded as answers. This model does not employ the error recovery procedure. The recall 
rate is 0.79 and the MRR is 0.50. That is, 79 of 100 transliteration names are recognized 
correctly, and they appear in the first 2 (=1/0.50) position. In contrast, the �“ASR + Web�” 
model utilizes the error recovery procedure. PAT candidates extracted from the Web are 
selected in Stage 4. The recall rate is 0.90 and the MRR is 0.88. A total of 90 transliteration 
names are recognized correctly, and they appear in the first 1.13 (=1/0.88) position on average. 
In other words, when they are recognized correctly, they are always the top 1. Compared with 
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the first model, the recall rate is increased 13.92%. As for the third model, i.e., the 
�“ASR/Pre-removed + Web�” model, we try to evaluate the error recovery ability. The correct 
transliteration names appearing in the set of ASR strings are removed. That is, all of the ASR 
strings contain at least one incorrect character. In such cases, the recall rate is 0.59 and the 
MRR is 0.48. This means that 59 transliteration names are recovered, and they appeared in the 
first 2.08 (=1/0.48) position on average. We further examine the number of errors produced by 
the �“ASR/Pre-removed + Web�” model to study the error tolerance when using the Web. Table 
2 shows the lengths of the transliteration names (in the rows), and the number of matching 
characters (in the columns). For a transliteration name of length l, the number of matching 
characters is 0 to l. Each cell denotes how many strings belong to the specific category. For 
example, before error recovery, there are 6, 25, 90, 184, and 0 strings of length 4, which have 
0, 1, 2, 3, and 4 characters matching the corresponding answer keys, respectively. After error 
recovery, there are 19, 52, 66, 62, and 106 strings of length 4, which have 0, 1, 2, 3, and 4 
characters matching the answer keys, respectively. In other words, the recovery procedure 
corrects some wrong characters. The number of 1-character (2-character) errors decreased 
from 184 (90) to 62 (66), and total number of correct strings are increased from 0 to 106. 

Table 2. Distribution before/after error recovery 
 Before Error Recovery After Error Recovery 

Number of Matching Characters Number of Matching Characters Length 
of NEs 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

2 11 23 0 - - - - 13 21 0 - - - - 

3 6 29 76 0 - - - 6 39 64 2 - - - 

4 6 25 90 184 0 - - 19 52 66 62 106 - - 

5 9 10 12 77 193 0 - 11 23 36 41 53 137 - 

6 0 0 1 8 20 39 0 0 3 19 12 7 5 22 

Table 3. Effects of error positions and string lengths 

Error Positions Length=2 Length=3 Length=4 Length=5 Length=6 Total 

Position 1 0 0 37 42 7 86 

Position 2 0 2 35 42 4 83 

Position 3 - 0 20 19 9 48 

Position 4 - - 17 24 3 44 

Position 5 - - - 14 3 17 

Position 6 - - - - 1 1 

Total 0 2 109 141 27 279 
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Table 3 shows the effects of the error position (in the rows) and the string length (in the 
columns). A total of 0, 2, 106, 137, and 22 utterances recover 1 character with length 2, 3, 4, 5, 
and 6, respectively. A total of 0, 0, 3, 4, and 5 utterances recover 2 characters with length 2, 3, 
4, 5, and 6, respectively. No utterances can recover over 3 characters. The cell denotes how 
many strings can be recovered under the specific position and length. For example, a total of 
37, 35, 20, and 17 errors for strings of length 4 appearing at positions 1, 2, 3, and 4, 
respectively, can be recovered by using the Web. In the experiments, 0% (=0/34), 1.80% 
(=2/111), 35.74% (=109/305), 46.84% (=141/301), and 39.71% (=27/68) of the strings of 
length 2, 3, 4, 5, and 6 can be recovered, respectively. The 34 is the number of the PAT 
candidates with length 2. Similarly, the 111, 305, 301, and 68 are the number of the PAT 
candidates with length 3, 4, 5, and 6. As for length, the longer strings facilitate better recovery 
than the shorter strings. Another results show that 30.82% (=86/279), 29.75% (=83/279), 
17.20% (=48/279), 15.77% (=44/279), 6.09% (=17/279), and 0.36% (=1/279) of the strings 
with incorrect character appearing at positions 1, 2, 3, 4, 5 and 6 can be recovered, 
respectively. The 279 is the number of characters on which the 100 test data. Because the 
bi-character language model proceeds from the left side to the right side, the errors occurring 
at the beginning are easier to recover than those at the end. 

4.2 Performance in the Speech Recognition Task 
The set of 100 transliteration names discussed in Section 4.1 are spoken by 2 males and 1 
female, so 300 transliteration names are recorded. We employ HTK and SRILM to get the best 
100 syllable lattices (N-Best, N=100). The TCC-300 dataset for Mandarin is used to train the 
acoustic models. There are 417 HMM models, and each one has 39 feature vectors. The 
syllable accuracy is computed as follows: (M-I-D-S)/M * 100%, where M is the number of 
correct syllables; I, D, and S denote the number of insertion, deletion, and substitution errors, 
respectively. The syllable accuracy is 76.57%. To estimate the character recovery ability, we 
consider the correct character number. The accuracy of the ASR only and ASR+Web models 
on the character level are computed as follows, respectively: 

 

11

( ) ( , )
max ( )

( )

M Length i ij i

j toKi Length i

Word TestName Distance AnsKey ASR
Word TestName

                        (3) 

and 
 

11

( ) ( , )
max ( )

( )

M Length i ij i

j toKi Length i

Word TestName Distance AnsKey PAT
Word TestName ,

                          (4) 

where M is the total test number and K is the answer key number for test name i. A total of 50 
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ASR strings are extracted from the character lattice, and the best 50 PAT candidates are 
selected. Table 4 shows the character level results. The �“ASR+Web�” model achieves 21.54% 
better performance than the �“ASR Only�” model on average. Table 5 shows the word level 
results. The �“ASR+Web�” model using error recovery procedure improves the recall rate and 
the MRR of the �“ASR Only�” model from 0.20 and 0.07 to 0.42 and 0.31, respectively. In other 
words, the average ranks of the correct transliteration names move from the 14th position 
(=1/0.07) to the 3rd position (=1/0.31) after error recovery. 

Table 4. Performance on the character level 
ASR Only (Character Level Accuracy) ASR + Web (Character Level Accuracy) 

Top 1 Top 2 Top 3 Top 4 Top 5 Top 1 Top 2 Top 3 Top 4 Top 5 

38.01% 43.34% 47.30% 49.07% 50.93% 48.18% 54.01% 55.93% 58.03% 59.48% 

Table 5. Performance on the word level 
ASR Only (Word Level) ASR + Web (Word Level) 

Recall MRR Recall MRR 

0.20 0.07 0.42 0.31 

Web fuzzy search produces useful patterns for error recovery. Our fault tolerance 
experiments show that longer transliteration names have stronger tolerance than shorter 
transliteration names and that the incorrect characters appearing at the beginning of a 
transliteration name are relatively easier to correct than those appearing at the end. Thus, the 
improvement in the character level accuracy is helpful for the recovery mechanism, and vice 
versa. 

5. Re-training the Bi-Character Language Model 

For collecting transliteration names to build a bi-character language model, we propose using 
a named entity (NE) ontology generation mechanism, called the XNE-Tree engine. Given a seed, 
the engine incrementally extracts relational named entities with the seed from related web 
pages and the output is a tree structure. Each node in the structure is a named entity (NE). 

5.1 A Named Entity Ontology Generation Engine 
Recognizing a named entity and calculating the relational property score with a seed are two 
crucial tasks. Firstly, we submit the given seed to a search engine and select the top N returned 
snippets. Then, we use the suffix tree to extract possible patterns automatically. The patterns, 
which are extracted based on the global statistic, may be impacted by the frequency variance 
of patterns with the same substrings [Yang and Li 2002]. Because our aim is to generate 
named entities, most of the max-duplicated strings can be filtered out by using a named entity 
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recognition (NER) system [Chen et al. 1998]. The NER system will re-segment a candidate 
pattern to obtain some substrings and give each substring a part of speech (POS) and a 
possible name tag. If any substring is tagged as a location, an organization, or a person by 
using an NER-POS server [Chen et al. 1998], the candidate pattern is considered to be a 
named entity. Because prepositions frequently occur before/after a named entity, the suffix 
tree approach may introduce an incorrect boundary. Thus, we filter out substrings that have a 
preposition tag. 

Secondly, we calculate a relational property score, called the Co-Occurrence 
Double-Check score (CODC, for each extracted name entity (denoted Yi) with a seed (denoted 
X). We postulate that X and Yi have a strong relationship if we can find Yi from X (a forward 
process) and find X from Yi (a backward process). The forward and backward processes form a 
double check operation. CODC(X, Y) is defined as follows: 

 
( @ ) ( @ )log

( ) ( )( , )
f Y X f X Y

f X f YCODC X Y e ,                                  (5) 

where f(X@Yi) is the total number of occurrences of X in the top N snippets when query Yi is 
submitted to the search engine. Similarly, f(Yi@X) is the total number of occurrences of Yi in 
the top N snippets for query X; f(X) is the total number of occurrences of X in the top N 
snippets for query X, and f(Y) is the total number of occurrences of Y in the top N snippets of 
query Y. In each iterative step, Yi is added to a queue when the CODC (X,Yi) value is larger 
than a threshold . Then, we get a new seed X from the queue. The CODC measure is best 
when =0.15. The overall process is shown in Figure 5.
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Figure 5. Named entity ontology generation process 



 

 

˄ˌˇ                                                       Ming-Shun Lin et al. 

5.2 Constructing a Named Entity Ontology 
When building a bi-character language model, we choose 100 seeds, which are the same 100 
utterances described in Section 4. Here, we set a condition to control generation of the 
ontology. Each initial seed can derive at most four layers, and no more than 15 children are 
allowed in the first layer. The maximum number of children of a named entity in layer i is 
bounded by the number in layer (i-1) multiplying a decreasing rate. In the experiments, we set 
the decreasing rate to be 0.7, so that at most 15, 15 0.7, 15 0.72, and 15 0.73 children can be 
expanded by a named entity in layers 0-3, respectively. We set the threshold  at 0.1. Those 
named entities with CODC scores larger than the predefined threshold are sorted, and a 
sufficient number of named entities are selected in a sequence for expansion. In this way, a 
total of 7,642 nodes are generated by the 100 seeds. We employ Touch-Graph 
(http://www.touchgraph.com) to represent the named entity ontology. Figure 6 shows an 
example by using �“ྏ܌ࡥᕙཎ�” as a seed, which is a Mandarin transliteration name of an 
actor �“Tom Cruise�”, to build an ontology. To evaluate the performance, we consider the 
following four types. 

(1) Named Entity (NE) type: In this case, the proposed candidate should be a named 
entity and should not have incorrect boundary. A personal name with a title or a first 
name with more than 4 characters is regarded as being correct. In contrast, patterns 
with a last name only are considered incorrect. 

(2) Relational property of NE (RNE) type: For those acceptable strings in (1), which 
have the same relational property with the initial seed or its parents are considered to 
be correct. The remaining nodes are incorrect. 

(3) Partial Named Entity (PNE) type: We relax the restriction on boundary errors 
specified in (1). Patterns consisting of partial named entities are regarded as being 
correct. The remaining nodes are incorrect.  

(4) Relational property of PNE (RPNE) type: For those acceptable strings in (3), which 
have the same relational property with the initial seed or its parents are considered to 
be correct. The remaining nodes are incorrect. 

Table 6 shows the performance in ontology generation. Of those 7,642 nodes, the error 
rates for the NE type, the RNE type, the PNE type, and the PRNE type are 19.60%, 34.20%, 
12.62%, and 29.82%, respectively.  

Table 6. Performance in ontology generation 
Size of Seed Size of Ontology NE RNE PNE RPNE 

100 7,642 19.60% 34.20% 12.62% 29.82% 



 

 

                An Approach to Using the Web as a Live Corpus for            ˄ˌˈ 

Spoken Transliteration Name Access 

 
Figure 6. A snapshot of the named entity ontology of “ྏ܌ࡥᕙཎ” 

 (“Tom Cruise”) 

5.3 Combining the Bi-Character Language Model with the NE Ontology 
In the previous experiments, we employed 51,111 transliteration names (BaselineTN) to build 
the bi-character language model. However, these transliteration names might not be active on 
the Web. We submitted these transliteration names to a search engine (i.e., Google). For a 
transliteration name, if the search engine does not return any web pages, we filter it out.  
Finally, we filter out 14,933 named entities and get 36,178 transliteration names (FilterTN) 
with this method. Refer to Table 6. Of the 7,642 named entities (Total-Ontology) reported by 
Xne-engine, 6,146 named entities (NE-Ontology) are of the correct NE type, and 5,023 named 
entities (RNE-Ontology) are of the correct RNE type. 

In the experiments, we consider word level accuracy only. Two basic transliteration 
name corpora, i.e., BaselineTN and FilterTN, are employed to build bi-character language 
models. In ideal case, correct syllables have been identified in the ASR (ASR_Perfect). Table 
7 shows that FilterTN is a little better than BaselineTN. We further combine FilterTN with the 
NE ontology derived by the XNE-Tree engine to perform evaluation. In this way, we employ 
the FilterTN+RNE-Ontology, FilterTN+NE-Ontology, and FilterTN+Total-Ontology to build 
bi-character language models. Table 7 summarizes the experimental results obtained with the 
language model with the NE ontology. The three models with the NE ontology outperform the 
baseline model. In particular, the NE ontology improve the recall rate and the MRR from 0.79 
and 0.50 (BaselineTN) to 0.84 and 0.55 (FilterTN+RNE-Ontology), respectively. Table 8 lists 
the results obtained using both the NE ontology and error recovery procedure. The NE 
ontology is still helpful, in particular for the recall rate. In the best case, it improves the recall 
rate from 0.90 (BaselineTN) to 0.94 (FilterTN+RNE-Ontology). In summary, the model using 
NE ontology resources, the recall rate is improved 13.92%. On comparing the 
�“FilterTN+RNE-Ontology�” model with the ASR model without the error recovery procedure 
and NE ontology resources, the recall rate is improved 18.98%. 
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Table 7. Bi-character language models with the NE ontology but without error 
recovery. 

ASR_Perfect Only (Word Level) 
Language Model Size of TN

Recall MRR 

BaselineTN 51,111 0.79 0.50ʳ

FilterTN 36,178 0.80 0.50ʳ

FilterTN + RNE-Ontology 41,201 0.84 0.55ʳ

FilterTN + NE-Ontology 42,324 0.83 0.57ʳ

FilterTN + Total-Ontology 43,820 0.82 0.57ʳ

    Table 8. Bi-character language models with both the NE ontology and error 
recovery procedure 

ASR_Perfect + Web (Word Level) 
Language Model 

Recall MRR 

BaselineTN 0.90 0.88 

FilterTN  0.90 0.87 

FilterTN + RNE-Ontology 0.94 0.88 

FilterTN + NE-Ontology 0.93 0.88 

FilterTN + Total-Ontology 0.93 0.90 

Table 9. Combining the bi-character language model with the NE ontology 
without/with the error recovery procedure in ASR systems 

ASR Only (Word Level) ASR+Web (Word Level) 
Language Model 

Recall MRR Recall MRR 

BaselineTN 0.20 0.07 0.42 0.31 

FilterTN 0.20 0.06 0.41 0.32 

FilterTN + RNE-Ontology 0.23 0.11 0.48 0.38 

FilterTN + NE-Ontology 0.24 0.11 0.48 0.37 

FilterTN + Total-Ontology 0.24 0.12 0.47 0.39 

Table 9 summarizes the experimental results obtained with language models that use the 
NE ontology without/with error recovery procedure in the complete transliteration name ASR 
system. The system without the error recovery procedure (ASR Only), the NE ontology still 
improves the performance. Comparing the �“FilterTN+RNE-Ontology�” with BaselineTN, the 
recall rate is increased 15%. When the ASR system incorporates the error recovery procedure 
(ASR+Web), the recall rate is increased 14.28% (FilterTN+RNE-Ontology vs. BaselineTN). 
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6. Conclusions 

In this study, we employ the Web as a giant corpus to correct transliteration name recognition 
errors. Web fuzzy search produces useful patterns for error recovery. In the ideal case, we 
input the correct syllable sequences, convert them into text strings, and test the recovery 
capability by using the Web corpus. On comparing with the model without the web recovery 
procedure, the recall rate is improved 13.92%. For collecting transliteration names beforehand, 
we propose using a named entity (NE) ontology generation engine, called the XNE-Tree engine. 
The engine automatically creates named entity ontology for a given seed. In the experiments, a 
total of 7,642 named entities in the ontology were initiated by 100 seeds. After the language 
model for speech recognition combined the named entity ontology, the recall rate is improved 
18.98%. With a complete transliteration name ASR system, the error recovery experiments 
show that the recall rate is increased from 0.20 to 0.42 and the MRR from 0.07 to 0.31. When 
the RNE-Ontology is incorporated, the recall rate and the MRR is increased 0.48 and 0.38, 
respectively. Thus, we conclude that the error recovery procedure and NE ontology can 
helpful to the ASR model. 
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Appendix A 
Transliteration 

name Answer keys list Transliteration 
name Answer keys list 

ઝᢅڍࢮᢅ܌ ڍࢮ ਲᢅڍࢮ ઝᢅڍࢮ ໨ए܌ၼ؍ ໨ए܌ၼ؍ ໨ए܌ᚊ؍ ໨एਲၼ؍ 
ؗܓף ࠅ؍壂ܓף ࠅ؍壂ߺף ࠅ؍壂ܓף

 կ۸ဎฐቅ կ۸ဎᆣቅ կ۸ဎฐቅ  ࠅ؍
໨एࠅ ໨एࠅ ໨एႁ ྏ܌ࡥᕙཎ ྏ܌ࡥᕙཎ 
യ۫௅ യݦ௅ യ۫௅ ൎ؍ᚮཏ ൎ؍ᚮཏ 
ॳࢮཎף ॳࢮཎࡥྏ ףዧ܌ཎ ྏࡥዧ܌ཎ 
 ߷ဒᢅ׬ק ဒ౏ᢅ׬ק ဒ౏ᢅ׬ק

Ꮨ᜺௑ࡣᴐ* ߷ࠐᢅ׬ק ౏ࠐᢅ׬ק ᴐࡣᏘ᜺௑ ᴐ؍Ꮨፂ௑ 
ൈԯ܌߅ ൈԯ૭܌ ൈԯ܌߅ ൈರ૭܌ ๎๙᝛ၼ ๎๙᝛ၼ ๎๙Ⴞၼ ޥ๙᝛ၼ 
ᐚرࢮ ᐚױࡣ رࢮഗ⤬ ױࡣഗ⤬ ױ؍ഗ೷ ױࡣഗ೷ 
 ᐰዿڜ๙ڹ ᐰዿڜᐰዿ ಄๙ڜܓڹ ᐰዿڜሒ ۵ᢅ෻ሒ ಄๙ߺሒ ۵ᢅߺ۵ᢅ

তᢅ׬ဒ౏ তᢅ׬ဒ౏ তᢅ׬ဒ߷ 
তࠐᢅ׬౏ তࠐᢅ׬߷ ಄๙ᢅࠅড౿

಄๙ᢅࠅড౿ ܄ᢅࠅܓڹ౿ 
ᢅࠅ౿ ಄๙܄ᢅࠅ๙ڹ ড౿ᢅࠅܓڹ
 ౿܄

*୙৖ڎ ୙৖ڎ ୙৖ࡵ ৖ዿ׾യཎ ৖ዿ׾യཎ 
ფ๛ဎ ۦ๛ဎ ფ۶ဎ ფ๛ဎ ፂ࣠๕֚ཤ ፂ࣠๕֚ཤ ፂ࣠ᐰ֚ཤ ፂ࣠ᕠ֚ཤ 
ფሒ๛ ۦሒ๛ ფሒ๛ ຽ௽ᚮ፞ ຽ௽ᚮ፞ 
 ೷܌ٖࣧ ೷܌೷ ٖໃ܌ᘭ ٖໃܓࠉ ᘭمْ ᘭܓْ ᘭܓْ
 ৊ዿ್ߦڮ ৊ዿ್ߦڮ ౏ڜݬٱ ౏ڜچٱ ߷ڜچٱ ߷ڜچٱ*
໰៳ཎ ݂៳ཎ ໰៳ཎ ⢦ጆင⤬ ௻ጆင೷ ⢦ጆင೷ 
्Ⴣഗ ्Ⴣഗ ྰ࡜ࢮ௽๙ ྰ࡜ࢮ௽๙ ࡛࡜ࢮ௽๙ 
ሁ࣐ཎڜ߷ ሁ࣐ཎڜ౏ ້௽ྶߦ៳ ້௽ྶߦ៳ 
຾៳壆Ⴞ ຾៳壆Ⴞ ್៳壆Ⴞ ຾Ⴞ壆Ⴞ ๛๙ߦᅗ ๛๙ߦᅗ ๛ߦܓᅗ 
ᒱڂ ᒱڜ ڂᑥ๙ୟᇗ๙ڜᑥ๙ୟᇗ๙ 
 ዿ֛֣܌ዿ֛ ௎֣܌ᥞ ௎ܓ್ ᥞߺ್ ᥞߺ್
 ߷ௌܓࠅ ᖵௌ౏ࠅ ௌ౏ܓࠅ ߷ௌܓࠅ

 ௽࢖௽ ؒဒᐚֺ௽ ؒဒᐚ࢖ᖵௌ߷ ؒဒᐚࠅ
ؒဒ൓ֺ௽ ؒဒ൓࢖௽ 

 ᤕ࿠ ८້ᅗ ८້ᅗ؍ࣔ ᤕሒ؍ࣔ ᤕሒ؍ࣔ
യᤕۏ ߺᤕߺ യᤕߺ ਲࣥऄ੖ ਲࣥऄ੖ ઝࣥऄ੖ 
യֺ۫۫ യֺ۫۫ ᇗᐚ੖ ᇗᐚᢅ ᇗᐚ੖ 
፞Օஞ ፞Օ౏ ፞Օ߷ ፞Օஞ ୟჃ๙ं೷ ୟჃंܓ೷ ୟჃ๙ं೷ 
փؒࢮཎף փؒࢮཎף ້௽ᄵ࿭᜴ ້௽ᄵཎሼ ້௽ᄵཎ᜴ 

້௽ᄵ࿭ሼ ້௽ᄵ࿭᜴ 
ॳ್֣ࢮ ॳ್֣ࢮ *ੴ۵ࡣቯ౏ ੴ۵ࡣቯ౏ 
ሒઝჃ *಄ࠝ॔๙ᐰק הሒઝק הሒઝק ಄ࠝ॔๙ᐰ 
ᄅؒߔ୙ ᄅዧؒ୙ ᄅؒߔ୙ ৔ࣔ ৔ࣔ 
ోᖻ۫ ోᖻ۫ ংড়ᑛ؍ዿ ং܌ᑛ؍ዿ ংড়ᑛ؍ዿ 
*ᄅᕠ۫ୂ ᄅᕠ۫ୂ ້֮ᇸ࡜௽ ້֮࡜ף௽ ້֮ᇸ࡜௽ 
փဎሒ փဎሒ *ാ۫ຽ௑ᅗ

૭ ാ۫ຽ௑ᅗ૭ ാ۫ຽᆼᅗ૭ 
ోપ ోપ ਲֺؒဒ஑ ਲֺؒဒ஑ ઝֺؒဒ஑ 
঎َ঎ ঎َ঎ ֮ཎ׬௽ ֮ཎ׬௽ ֮৸׬௽ 
჋ࢮ܌๛್ ჋ࢮ܌๛್ ჋ࢮ܌๛ጆ ჋ࢮ܌

 ᔥ्ࡥ༽ ᔥ्ࡥ༽  ್ࣾ
჋೬ ჋೬ࡽ ᆼᥞ௽ݦዿ ௑ᥞ௽ݦዿ ᆼᥞ௽ݦዿ 
ᎏۄऄࠅ؍ ᎏݦऄࠅ؍ ᎏ۫ऄࠅ؍ ᎏՔՅ ೬ؒிᇯࡥཎ೬ؒிᇯࡥཎ ೬ؒ૴ᇯࡥཎ 
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 ࠅ؍
*ᢅᐚ୾ ᢅᐚ୾ ۦ଩ؗۦཤ ۦ଩ؗۦཤ ۦ଩ୗؗཤ ۦ଩۵ۦཤ 
ॳ्ۥ ॳ्ۥ ॳ्ᅖ ॳ्Ⴞ *՛ᑛ؍ዿ ՛ᑛ؍ዿ 
তሒઝה তሒઝჃ তሒઝה তሒਲჃ ݦࢮᐚဎဒՓݦࢮᐚဎဒՓ ۫ࢮᐚဎဒՓ 
 ཏࣥཎ ཏࣥཎ ۫߷ض ౏۫ض ౏۫ض
ᐚ܌៳ཎ ᐚ܌៳ཎ ൓܌៳ཎ ᇸۏཤ ᇸۏཤ 
 ᗝཏཎ ֺᕙཏཎ ֺᗝཏཎֺ הྫ הྫ*
۵፞௽ ۵፞௽ ཎڮᇸઝፂ࡛ཎڮᇸ܌ፂ࡛ ཎڮᇸઝፂ࡛ ཎڮᇸױ

ፂ࡛ 
ፂࠅ؍ٳ ፂഗࠅ؍ ፂࠅ؍ٳ ፂ؍ٳႁ ᐚ܌ᘭፂಅഗᐚ܌ᘭፂಅഗ ᐚ܌ᘭ৖ಅഗ ᐚ܌ᘭፂ

ཎഗ 
ဎฐቅ ဎᆣቅ ဎฐቅ ဎ໏ቅ ఄဎဒՓ ఄဎဒՓ ఄဎ೬ཎ 
۫ፂࠅ؍ٳ ۫ፂഗࠅ؍ ۫ፂࠅ؍ٳ ۫ፂٳ

 ؍ࣟڜຽၼ׬ ؍ࣟڜමၼ׬؍ࣟڜමၼ׬ ႁ؍
৖ཎൈ߬ ৖ཎൈ߬ ৖ཎൈᄅ ཎჃᐚᝬዿ ཎჃᐚຽዿ ཎჃᐚᝬዿ ཎჃሒᝬዿ 
ᡖ঎ࣔ ᡖ঎ࣔ ഗߺຑઝ ഗߺຑઝ 

 Εᄅ�” and߬ ”� ,”�ࡣΕ؍“� Ε୾ΕࠝΕྫΕ՛Εᴐ�” characters are not in training set andٱ“� *
�“࡛Εྰ�” differentia of frequency is too high. 
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An Empirical Study of Word Error Minimization 

Approaches for Mandarin Large Vocabulary 

Continuous Speech Recognition 

Jen-Wei Kuo , Shih-Hung Liu , Hsin-Min Wang , and Berlin Chen  

Abstract 

This paper presents an empirical study of word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition (LVCSR). First, the 
minimum phone error (MPE) criterion, which is one of the most popular 
discriminative training criteria, is extensively investigated for both acoustic model 
training and adaptation in a Mandarin LVCSR system. Second, the word error 
minimization (WEM) criterion, used to rescore N-best word strings, is 
appropriately modified for a Mandarin LVCSR system. Finally, a series of speech 
recognition experiments is conducted on the MATBN Mandarin Chinese broadcast 
news corpus. The experiment results demonstrate that the MPE training approach 
reduces the character error rate (CER) by 12% for a system initially trained with 
the maximum likelihood (ML) approach. Meanwhile, for unsupervised acoustic 
model adaptation, MPE-based linear regression (MPELR) adaptation outperforms 
conventional maximum likelihood linear regression (MLLR) in terms of CER 
reduction. When the WEM decoding approach is used for N-best rescoring, a slight 
performance gain over the conventional maximum a posteriori (MAP) decoding 
method is also observed. 

Keywords:  Broadcast News, Continuous Speech Recognition, Discriminative 
Training, Minimum Phone Error, Word Error Minimization 
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1. Introduction 

Due to advances in computer technology and the growth of the Internet, large volumes of 
multimedia content, such as broadcast news, lectures, voice mails, and digital archives 
continue to grow and fill our computers, networks, and lives. It is obvious that speech is the 
richest source of information for the large volumes of multimedia content; thus, associated 
speech processing technologies will play an increasingly important role in multimedia 
organization and retrieval in the future. Among these technologies, automatic speech 
recognition (ASR) has long been the focus of research in the speech processing community. 

Automatic speech recognition is a pattern classification task that classifies sound 
segments into different linguistic categories based on the acoustic vector sequence extracted 
from the speech signal. Traditionally, in most pattern classification applications, the goal of 
classifier design is to reduce the probability of errors by using the minimum error rate (MER) 
criterion [Duda et al. 2000]. Under this paradigm, the problems of classifier optimization are 
resolved by minimizing the expected loss over the training data directly. The zero-one loss 
function, which simply assigns no loss to a correct classification and a unit loss to an error, is 
often employed for this purpose. For example, in ASR, a hypothesized word sequence 
containing one or more word errors, or a totally different sequence, as compared to the correct 
sequence, will incur the same amount of loss. However, the most common performance 
evaluation metrics adopted in ASR often consider individual word errors, instead of merely 
counting the string-level errors. The use of the zero-one loss function leads to a mismatch 
between classifier optimization and performance evaluation. In recent years, a common 
practice in ASR has been to replace the zero-one loss function with alternative loss functions 
that consider word- or phone-level errors. In practice, such improved loss functions can be 
used in both model parameter estimation (i.e., classifier optimization) and speech decoding. 

In this paper, we present an empirical study of word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition (LVCSR). The minimum phone 
error (MPE) criterion is extensively investigated in both acoustic model training and 
adaptation; while the word error minimization (WEM) criterion is exploited to rescore N-best 
word strings. 

The remainder of the paper is organized as follows. In Section 2, the general background 
of the Bayes risk and overall risk criteria is given, and their use in ASR is explained. Section 3 
presents the application of the MPE criterion for acoustic model training, and Section 4 
describes its extension to unsupervised linear regression based acoustic model adaptation. The 
use of the WEM criterion for speech decoding is discussed in Section 5. The experiment setup 
is detailed in Section 6 and a series of speech recognition experiments is described in Section 
7. Finally, we present the conclusions drawn from the research in Section 8. 
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2. Bayes Risk and Overall Risk 

Given an acoustic vector sequence O , the goal of an ASR system is to make a decision 
( )u O  that identifies O as a certain word sequence u  from a hypothesized space hW  of 

all possible word sequences in the language. Let ( , )L u c  be the loss incurred by the decision 
( )u O , where the correct (i.e., reference) transcription is c . Actually, we have no prior 

knowledge of the correct transcription; in other words, any arbitrary word sequence s  in 

hW  could be identical to c . Consequently, for each possible decision ( )u O , the expected 
loss (or risk) is calculated as [Duda et al. 2000]: 

( | ) ( , ) ( | )
hu sR O O L u s P s OW ,          (1) 

where ( | )P s O  is the posterior probability of the word sequence s  given that the acoustic 
vector sequence O  is observed. Therefore, the Bayes decision ( )opt O  is made by 
selecting the action with the minimum expected loss, i.e., 

( ) arg min |

             arg min ( , ) ( | )
h

h
h

opt u
u

s
u

O R O O

L u s P s O
W

W
W

.             (2) 

In supervised training, on the other hand, the correct transcription of each training utterance 
O  is known, and the overall risk allR  of all possible training utterances is defined as: 

( ( ) | ) ( )all cR R O O P O dO ,                (3) 

where the integral extends over the whole acoustic space. However, in practice, we can only 
obtain the approximate overall risk Rall by summing the risks over a finite number of training 
utterances, i.e., 

( ( ) | ) ( )

( , ) ( | ) ( )

r

r
h

all c r r r
r

r r rs
r

R R O O P O

L c s P s O P OW
,               (4) 

where r
hW  and cr, respectively, denote a set of likely hypothesized word sequences and the 

reference word sequence associated with the training utterance rO ; and the distribution 
( | )rP s O  is always assumed to be governed by some underlying parametric distributions. To 

ensure that ASR is as accurate as possible, we need to design a classifier and estimate the 
parameters in ( | )rP s O  more carefully in order to minimize the overall risk Rall. By applying 
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the Bayes rule and replacing the probability ( | )rP O s  with its parameterization, ( | )rp O s , 
Eq. (4) can be expressed as: 

( , ) ( | ) ( )
( )

( | ) ( )

r
h

r
h

r rs
all r

r ru

L c s p O s P s
R P O

p O u P u
W

W
,              (5) 

where ( | )rp O s  and ( | )rp O u  are, respectively, the acoustic model likelihoods for s  
and u under the acoustic model parameter set ; and ( )P s  and ( )P u  are the respective 
language model probabilities for s  and u . The parameters of both the acoustic model and 
the language model can be estimated by minimizing Rall. However, in this study, we only 
focus on the discriminative estimation of the acoustic model parameters, and adopt the 
conventional approach for language model training. Moreover, it is assumed that the prior 
probability ( )rP O  is uniformly distributed. As a result, the overall risk becomes 

( , ) ( | ) ( )

( | ) ( )

r
h

r
h

r rs
all

r ru

L c s p O s P s
R

p O u P u
W

W
,          (6) 

and the optimal parameter set, opt , can be estimated by minimizing the overall risk of the 
training utterances 

( , ) ( | ) ( )
arg min

( | ) ( )

r
h

r
h

r rs
opt

r ru

L c s p O s P s

p O u P u
W

W
.         (7) 

To minimize the overall risk, as shown by Equations (4) to (7), the hypothesized word 
sequence with a lower loss should have a larger posterior probability, and vice versa. How to 
select an appropriate loss function ( , )L  used in the above equations remains an open 
research issue. In most pattern classification tasks, to minimize the probability of 
classification errors, the loss function is often chosen based on the minimum error rate (MER) 
criterion. This leads directly to the following symmetrical zero-one loss function [Duda et al. 
2000]: 

0 ,
( , )

1 ,
u s

L u s
u s

.                  (8) 

The loss function assigns no loss if u s , and assigns a unit loss when a classification error 
occurs. In ASR, a hypothesized word sequence that is identical to the correct transcription 
does not introduce a loss; however, a hypothesized word sequence containing one or more 
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word errors, or a totally different sequence, compared to the correct sequence, will incur the 
same unit loss. Thus, minimizing the overall risk is equivalent to minimizing the expected 
string error rate (SER) of the training utterances. Nevertheless, SER is not a sufficient metric 
for the evaluation of ASR performance because, with this metric, all incorrectly hypothesized 
word sequences are regarded as having the same cost of recognition risk. Instead, the loss 
function could be defined as the distance of the hypothesized word sequence to the correct 
transcription. For this purpose, the string edit or Levenshtein distance [Levenshtein 1966] 
associated with the word error rate (WER) can be adopted. It is believed that WER is more 
suitable than SER in reflecting differences in ASR results. Optimization using the 
Levenshtein-based loss function is often referred to as word error minimization (WEM). 

However, in complicated ASR tasks, such as LVCSR, it is impossible to perform 
optimization over the hypothesized space r

hW  of each training utterance rO  without using 
a pruning technique because such hypothesized spaces usually contain an extremely large 
number of hypothesized word sequences. Recently, some practical strategies have been 
proposed to resolve this problem. For instance, a reduced hypothesized space in the form of an 
N-best list [Schwartz and Chow 1990] or a lattice [Ortmanns 1997] can be generated for each 
training utterance by only retaining recognized hypotheses with higher probabilities. The 
optimization process can then be applied efficiently to the reduced hypothesized space. Figure 
1 illustrates an example of a word lattice. 
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Figure 1. A word lattice can efficiently encode a large number of possible 

hypothesized word sequences. 
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3. Minimum Phone Error (MPE) Training 

This section describes in detail the application of the minimum phone error (MPE) criterion to 
acoustic model training. As mentioned in the previous section, the hypothesized space r

hW  
of a given training utterance rO  can be reduced to a smaller space represented by a number 
of the most likely hypothesized word sequences associated with rO . The N-best list contains 
the N most likely sequences generated by applying the Viterbi algorithm, which has to retain 
at least N-best search hypotheses at both the HMM (Hidden Markov Model) acoustic 
model-level and word-level recombination points during the speech decoding process. For 
each hypothesized word sequence on the N-best list, it is relatively easy to compute the 
standard Levenshtein distance to the correct transcription directly. Based on this observation, 
Kaiser et al. proposed overall risk criterion estimation (ORCE) for acoustic model training 
[Kaiser et al. 2000, 2002; Na et al. 1995]. This approach takes the N-best list as the reduced 
hypothesized space to obtain training statistics, and applies the extended Baum-Welch 
algorithm [Gopalakrishnan et al. 1991; Normandin 1991] for parameter optimization. In 
experiments on the TIMIT database, the authors achieved a 21% word error rate reduction 
compared to the baseline system. However, an N-best list usually contains too much redundant 
information, i.e., two hypothesized word sequences may look very similar, which makes the 
training procedure inefficient. An alternative representation is the word lattice (or graph), 
illustrated in Figure 1, which only stores hypothesized word arcs at different segments of the 
time frames. Although it cannot be guaranteed that all word sequences generated from a word 
lattice will have higher probabilities than those not presented, it is believed that the 
approximation will not affect the performance significantly. Nevertheless, for the lattice 
structure, using the standard Levenshtein distance measure as the loss function is an issue, 
since it makes the implementation of computing the distance more complicated. Recently, two 
approaches have been proposed to deal with this problem. One focuses on how to design loss 
functions that approximate the Levenshtein distance measure, such as MPE training. The other 
concentrates on the design of algorithms to segment the word lattice so as to make the 
computation of the Levenshtein distance feasible, such as the minimum Bayes risk 
discriminative training (MBRDT) approach [Doumpiotis et al. 2003, 2004]. To efficiently 
reduce the complexity of the hypothesized space in MBRDT, a lattice segmentation algorithm 
is applied to divide the lattice into several non-overlapping components. It has been shown 
that MBRDT achieves a considerable performance improvement over the baseline system 
trained with the maximum likelihood (ML) criterion. 

The MPE training approach, which is one of the most attractive discriminative training 
techniques, tries to optimize an acoustic model’s parameters by minimizing the expected 
phone error rate. The objective function of MPE is given as [Povey 2004]: 
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( | ) ( ) ( , )
( )

( | ) ( )

r
lat

r
lat

r rs
MPE

r ru

p O s P s A c s
F

p O u P u
W

W
,         (9) 

where r
latW  is the lattice generated by the speech recognizer, used to represent a reduced 

hypothesized space of word sequences; and ( , )rA c s  is the raw accuracy of word sequence 
s , which is an approximation of the true accuracy computed globally using the standard 
Levenshtein distance. It is obvious that maximizing the objective function is equivalent to 
minimizing the expected phone error. The raw accuracy ( , )rA c s  is defined as: 

( , ) ( , )r r
q s

A c s A c q ,                    (10) 

where q  is the phone involved in s , and ( , )rA c q  is a local function used to calculate the 
raw phone accuracy of each phone q  in s . The phone accuracy is calculated locally on each 
phone arc of the word lattice, instead of globally on each hypothesized word sequence. Given 
a word arc on the word lattice, the time boundaries of the phone arcs can be determined by 
aligning the corresponding speech segment with its constituent HMM acoustic models. Figure 
2 shows the calculation of raw phone accuracy. Notice that we adopt INITIAL/FINAL units 
instead of phone units as the acoustic units in our Mandarin LVCSR system. Therefore, for 
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Figure 2. Raw phone accuracy calculation. 
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simplicity, each INITIAL or FINAL unit is regarded as a phone in the elucidation. In Figure 2, 
the raw phone accuracy of phone “au” involved in the word arc “ڇړ” is calculated in the 
following steps. First, the word arc “ڇړ” is aligned with time boundaries of a phone 
sequence to obtain the start and end time boundaries of the phone “au”. Second, for each 
phone q  in the correct transcription, we calculate the overlapped portion of “au” in time 
frames, and denote it as ( ," ")e q au . Finally, the raw phone accuracy of phone “au”, 
i.e., ( ," ")rA c au , is calculated using the following formula: 

1 2 (" ", ) if " "
( ," ") max

1 (" ", ) otherwise  r
q

e au q q au
A c au

e au q
.        (11) 

It is obvious that ( ," ")rA c au  ranges from 1 to -1+ 1/ rT , where rT  is the length of 
observation rO  in terms of the time frames. For example, if the phone arc “au” overlays at 
least one phone q  in the correct transcription with the same identity in time, “au” is 
considered to be a correct phone, i.e., ( ," ") 1rA c au . Figure 3 compares the accuracy of a 
hypothesized word sequence obtained via the approximate function discussed here and the 
exact calculation using the Levenshtein distance. 

According to Povey’s work [Povey 2004], the auxiliary function for optimizing the 
objective function of MPE in Eq. (9) is 

( )
( , ) log ( | )

log ( | )r
lat

MPE
MPE rr

q r

F
H p O q

p O qW
,       (12) 
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Figure 3. Approximate accuracy versus exact accuracy. 
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where  is the current model parameter set, q  is a specific phone arc in r
latW , 

and ( | )rp O q  is the likelihood given the phone arc q . Note that ( , )MPEH  is a 
weak-sense auxiliary function of ( )MPEF  around   with the following property: 

( ) ( , )MPE MPEF H
.          (13) 

In other words, both the objective and auxiliary functions have the same derivative with 
respect to  when they are evaluated at the current estimate . For simplicity, we only 
consider the MPE-based estimation of mean vectors and covariance matrices in HMMs. The 
state transition probabilities and mixture weights trained by the ML criterion remain 
unchanged. As a result, in this study, the final auxiliary function for MPE training is expressed 
as: 

( , ) ( ) log ( ( ), , )
q

r
qlat

t e
rMPE r

MPE q qm r m mr
t s mq

g t N o t
W

,     (14) 

where qs  and qe  represent the start and end times of the phone arc q , respectively; m  is 
the mixture index of the acoustic models; m  and m  are, respectively, the mean vector 
and covariance matrix for mixture m ; ( )r

qm t  is the occupation probability for mixture m  
on q ; ( )ro t  is the observation vector at time t ; and rMPE

q  represents ( )
log ( | )

MPE

r

F
p O q

 
in Eq. (12), which can be expressed as: 

, ,

,

( | ) ( ) ( , ) ( | ) ( )
( )

log ( | ) ( | ) ( ) ( | ) ( )

( | ) ( ) ( , ) ( | ) ( )

( | ) ( )

r r
lat lat

r r
lat lat

r
lat

r
lat

r r r
v q v u q uMPE

r r r
u q u u

r r r
v u

r
u

p O v P v A v s p O u P u
F

p O q p O u P u p O u P u

p O v P v A v s p O u P u

p O u P u

W W

W W

W

W

,

( | ) ( )

r
lat

r
lat

q u

r
u

p O u P u
W

W

.   (15) 

In Eq. (15), ,
( | ) ( )

( | ) ( )

r
lat

r
lat

r
u q u

r
u

p O u P u

p O u P u
W

W

 is the occupation probability of phone arc q ; 

,

,

( | ) ( ) ( , )

( | ) ( )

r
lat

r
lat

r r
v q v

r
u q u

p O v P v A v s

p O u P u
W

W

 is the weighted average accuracy of hypothesized word sequences 
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in r
latW  that include q ; and 

( | ) ( ) ( , )

( | ) ( )

r
lat

r
lat

r r
v

r
u

p O v P v A v s

p O u P u
W

W

 is the weighted average accuracy of all 

hypothesized word sequences in r
latW . All three quantities can be calculated efficiently.  

Since maximizing the weak sense auxiliary function with respect to  does not 
guarantee an increase in the objective function, the auxiliary function is augmented with an 
extra smoothing function ( , )smooth

EBg  to moderate the parameter update and prevent 
extreme parameter values being estimated. The following is an example of a smoothing 
function: 

1 1( , ) log(| |) ( ) ( ) ( )
2

smooth Tm
EB m m m m m m m m

m

D
g tr ,    (16) 

where mD  is a per-mixture level controlling constant. Note that ( , )smooth
EBg  is deemed a 

log-Gaussian prior distribution with a differential value of zero with respect to  when it is 
evaluated at the current estimate . Therefore, the differentials of the augmented auxiliary 
function with respect to m  and m  are computed as shown, respectively, in the following 
equations: 

1 1( ( , ) ( , ))
( ) ( ) ( )

q

r
qlat

smmoth t e
rMPE rMPE EB
q qm m r m m m m mr

t sqm

g g t o t D
W

, 

(17) 

1
( ( , ) ( , )) 1 1( ) ( ) ( )

2 2

( )( )
2

q

r
qlat

smooth t e TrMPE r TMPE EB
q qm m r m r mr

t sqm

T T Tm
m m m m m m

g g t o t o t

D
W .

                                                                  (18) 

Next, by completing the differentiations and equating the above equations to zero, the 
following Extended Baum-Welch (EB) update formulae [Normandin 1991] are derived: 

 

( ) ( )

( )

q

r
qlat

q

r
qlat

t e
rMPE r
q qm r m mr

t sq
m t e

rMPE r
q qm mr

t sq

t o t D

t D

W

W

,        (19) 
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( ) ( ) ( )

( )

q

r
qlat

q

r
qlat

t e
rMPE r T T
q qm r r m m m mr

t sq T
m m mt e

rMPE r
q qm mr

t sq

t o t o t D

t D

W

W

.   (20) 

Moreover, to incorporate the ML estimate and smooth the update, the so-called 
I-smoothing technique [Povey and Woodland 2002] is employed to provide a better estimate. 
I-smoothing is also regarded as a prior distribution for smoothing the auxiliary function, where 
the mode of the distribution is the same as the estimate obtained by ML training. The update 
equations thus become: 

( ) ( ) ( )

( )

q

r
qlat

q

r
qlat

t e
rMPE r MLm
q qm r m m mr MLt sq m

m t e
rMPE r
q qm m mr

t sq

t o t D O

t D

W

W

,     (21) 

2( ) ( ) ( ) ( )

( )

q

r
qlat

q

r
qlat

t e
rMPE r T T MLm
q qm r r m m m m mr MLt sq m T

m m mt e
rMPE r
q qm m mr

t sq

t o t o t D O

t D

W

W

,  

(22) 

where m  is a constant, and ML
m , ( )ML

m O , and 2( )ML
m O  are further expressed, 

respectively, as: 

( )ML r ML
m mr

t
t ,                (23) 

( ) ( ) ( )ML r ML
m m rr

t
O t o t ,           (24) 

and 

2( ) ( ) ( ) ( )ML r ML T
m m r rr

t
O t o t o t .              (25) 
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In each of the above equations, ( )r ML
m t  is the ML occupation probability for mixture m . 

I-smoothing can also be considered as an interpolation between the MPE estimate and the ML 
estimate. As m , it performs like ML training. On the other hand, it behaves purely as 
MPE training when 0m . Basically, the technique provides better results when the value 
of m  is properly chosen (e.g., we adopted a setting of 10m  in our experiments). 
Recently, it has been verified that using the statistics of MMI (Maximum Mutual Information) 
training in I-smoothing can further improve the estimate [Zheng and Stolcke 2005; Povey et al. 
2005]. 

Finally, let us examine the quantity rMPE
q  in more detail. To simplify the discussion, 

we adopt the following equations: 

,
( | ) ( )

( | ) ( )

r
lat

r
lat
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where ( )rc q  is the weighted average phone accuracy of hypothesized word sequences that 
involve q ; and r

avgc  is the weighted average phone accuracy of all hypothesized word 
sequences in r

latW . It is clear that the three main statistics must be gathered by applying the 
forward-backward algorithm to the word lattice [Povey 2004]. Note that the term ( )r r

avgc q c  
reflects the difference in the weighted average phone accuracy between the word sequences 
containing arc q and all word sequences in the lattice. As ( )r r

avgc q c , no training statistics 
are contributed to phone arc q in MPE training. Positive contributions are made to arc q if 

( )rc q  is greater than r
avgc , i.e., if phone arc q is more accurate than the average. Conversely, 

if ( )rc q  is smaller than r
avgc , negative contributions are made to arc q and thus show the 

discrimination. For a reasonable combination of acoustic model likelihoods and language 
model probabilities, it is necessary to restrict the acoustic likelihoods by introducing an 
exponential scaling factor. The scaling factor is empirically set depending on the task at hand; 
in our experiments, we adopted a value of 1/12. Alternatively, a word unigram language 
model constraint can be used to improve the generalization capabilities of such discriminative 
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training. 

4. MPE-based Linear Regression (MPELR) Adaptation 

Acoustic model adaptation, which is one of the most important topics in ASR, tries to 
eliminate some of the spoken and environmental variations between the training and test sets. 
However, it is a challenging task to adjust the large number of acoustic model parameters 
when only a very small amount of data is available for model adaptation. To ensure a more 
reliable estimation of acoustic model parameters, transformation-based approaches have been 
developed to adapt the acoustic model indirectly by using a set of affine transforms, such as 
the maximum likelihood linear regression (MLLR) adaptation [Leggetter and Woodland 1995]. 
Similarly, word or phone error minimization approaches can be used to estimate the 
transformation matrices. Among these approaches, we focus on MPE-based linear regression 
(MPELR) adaptation [Wang and Woodland 2004], which obtains the transformation matrices 
by using the MPE criterion. 

As in typical MLLR adaptation, Gaussian components are first clustered into several 
regression classes. Components in the same class share the same transformation matrix. The 
Gaussian mean vectors are transformed by: 

m k m k k mA b W ,                (29) 

where the subscript k  is the class index; k k kW b A  is a ( 1)d d  transformation 
matrix; and 1

TT
m m  is the ( 1d )-dimensional extended mean vector based on the 

current estimate. Meanwhile, the covariance matrices can be updated by [Gales and Woodland 
1996] 

1T
m m k mL H L ,                 (30) 

where kH  is the linear transformation matrix to be estimated for the class k , and mL  is 
the Cholesky factor of 1

m . Hereafter, for simplicity, the subscript k  representing the 
cluster index is omitted. Based on Eq. (14), the auxiliary function can be derived as: 

1({ , },{ , }) ( ) log ( ( ); , )
q

r
qlat

t e
MPE T

MPE q qm m m m
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g W H W H t N o t W L HL
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.   (31) 

Like MPE training, described in Section 3, the auxiliary function in Eq. (31) can be further 
augmented with an extra smoothing function ({ , },{ , })smooth

EBWg W H W H  to derive a more 
reliable estimation of the transformation matrices. This is usually given by: 
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where ( )tr  is the standard matrix trace operation. After differentiating the auxiliary function 
with respect to W  and setting it to zero, we get the following closed-form solution: 
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The above equation can be solved row-by-row using the Gaussian elimination method to 
obtain the re-estimation formula for the transformation matrix of mean vectors. The 
re-estimation formula for the transformation matrix of covariance matrices can be derived in a 
similar way. 

Again, to improve the generalization of the test set, extra prior information, such as the 
ML statistics, can be considered. Therefore, the final auxiliary function employed in this paper 
is augmented with the following smoothing function: 

1( , ) ( ) log ( ( ); , )I smooth ML Tm
m m m mMLm tm

g W H t N o t W L HL .     (34) 

5. Word Error Minimization (WEM) Decoding 

Given a speech utterance, the standard maximum a posteriori (MAP) decoding approach tries 
to output the hypothesized word sequence with the highest posterior probability. Actually, by 
substituting a zero-one loss function into Eq. (2), the MAP decoding formula can be derived. 
This implies that the MAP decoding approach is based on minimizing the string error rate 
(SER). Thus, it only provides suboptimal results when the ASR performance is measured in 
terms of the word error rate (WER) or the character error rate (CER). Hence, replacing the 
zero-one loss function in Eq. (2) with the Levenshtein distance measure leads to the WEM 
decoding approach, which finds the hypothesized word sequence with the minimum WER or 
CER. However, as mentioned in Section 3, a direct implementation of WEM decoding with 
the word lattice is complicated because there is still no efficient algorithm for computing the 
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Levenshtein distance between any two possible word sequences in the word lattice. To make 
the implementation of the WEM decoding approach feasible, we initially employ an N-best 
list of hypothesized word sequences. The WEM decoding approach can then be applied 
explicitly by choosing the hypothesized word sequence with the minimum expected risk 
[Stolcke et al. 1997]. The decision formula can thus be expressed as: 

NestNest
Nest

( | ) ( )
( ) arg min ( , )

( | ) ( )opt
s Nu N

v N

p O s p sO L u s
p O v p v

,      (35) 

where u , s , and v  are hypothesized word sequences in the N-best list. Similar ideas have 
been proposed recently by Mangu et al. [Mangu et al. 2000] and Goel and Byrne [Goel and 
Byrne 2000]. As an alternative, a novel optimal Bayes decision (OBC) approach for word 
lattice rescoring has been developed [Chien et al. 2006]. It also provides a promising 
framework for WEM decoding. 

6. Experiment Setup 

In this section, we describe the large vocabulary continuous speech recognition system and the 
speech and text data used in this paper. 

6.1 Front-End Signal Processing 
Front-end processing was performed with the HLDA-based (Heteroscedastic Linear 
Discriminant Analysis) data-driven Mel-frequency feature extraction approach, and then 
processed by MLLT (Maximum Likelihood Linear Transformation) transformation for feature 
de-correlation. In addition, utterance-based feature mean subtraction and variance 
normalization were applied to all the training and test materials. 

 

Table 1. Detailed statistics of the training and test sets. 
Training set Test set 

Gender Total 
length 
(sec) 

Total 
Syllables #Speakers

Total 
length 
(sec)

Total 
Syllables #Speakers

#Speakers 
in the 

training and 
test sets 

Male 46,001.3 66 1,301.4 9 9 

Female 46,007.2
545,732

111 3,914.0
26,219

23 13 
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6.2 Speech Corpus and Acoustic Model Training 
The speech corpus consisted of approximately 198 hours of MATBN (Mandarin Across 
Taiwan Broadcast News) Mandarin television news content [Wang et al. 2005], which was 
collected by Academia Sinica and the Public Television Service Foundation of Taiwan 
between November 2001 and April 2003. All the speech materials were manually segmented 
into separate stories, each of which was spoken by one news anchor, several field reporters, 
and interviewees. Some stories contained background noise, speech, and music. All 198 hours 
of speech data was accompanied by corresponding orthographic transcripts, of which about 25 
hours of gender-balanced speech data of the field reporters collected from November 2001 to 
December 2002 was used to bootstrap the acoustic training. The training set consisted of 
545,732 syllables and the average length of a word was 1.65 characters. Another set of data, 
1.5 hours in length, collected during 2003 was reserved for testing. Due to the limited number 
of distinct field reporters in the corpus, some test data belonged to the training field reporters. 
The test set consisted of 26,219 syllables and the average word length was also 1.65 characters. 
Table 1 shows the detailed statistics of the training and test sets. 

The acoustic models chosen for speech recognition were a silence model, 112 
right-context-dependent INITIAL models, and 38 context-independent FINAL models. Each 
INITIAL model was represented by an HMM with 3 states, while each FINAL model had 4 
states. Note that gender-independent models were used. The Gaussian mixture number per 
state ranged from 2 to 128, depending on the amount of training data. The acoustic models 
were first trained using the ML criterion and the Baum-Welch updating formulae. The 
MPE-based and MMI (Maximum Mutual Information)-based [Povey and Woodland 2002] 
acoustic model training approaches were further applied to acoustic models pre-trained by the 
ML criterion. Unigram language model constraints were used to collect the training statistics 
from the word lattices for these two training approaches. For MPE training, both silence and 
short-pause labels were involved in the calculation of the raw phone accuracy of the 
hypothesized word sequences. 

6.3 Lexicon and N-gram Language Modeling 
Initially, the recognition lexicon consisted of 67K words. A set of about 5K compound words 
was automatically derived using forward and backward bigram statistics and added to the 
lexicon to form a new lexicon of 72K words. The background language models used in this 
experiment were trigram and bigram models, which were estimated according to the ML 
criterion using a text corpus consisting of 170 million Chinese characters collected from the 
Central News Agency (CNA) in 2001 and 2002 (the Chinese Gigaword Corpus released by 
LDC). The N-gram language models were trained with Katz back-off smoothing technique 
using the SRI Language Modeling Toolkit (SRILM) [Stolcke 2000]. 



 

 

            An Empirical Study of Word Error Minimization Approaches for        ˅˄ˊ 

Mandarin Large Vocabulary Continuous Speech Recognition 

6.4 Speech Recognition 
The speech recognizer was implemented with a left-to-right frame-synchronous Viterbi 
tree-copy search and a lexical prefix tree of the lexicon. For each speech frame, a beam 
pruning technique, which considered the decoding scores of path hypotheses together with 
their corresponding unigram language model look-ahead scores and syllable-level acoustic 
look-ahead scores [Chen et al. 2005], was used to select the most promising path hypotheses. 
Moreover, if the word hypotheses ending at each speech frame had higher scores than a 
predefined threshold, their associated decoding information, such as the word start and end 
frames, the identities of current and predecessor words, and the acoustic score, were kept to 
build a word lattice for further language model rescoring. We used the word bigram language 
model in the tree search procedure and the trigram language model in the word lattice 
rescoring procedure. 

7. Experiment Results and Discussions 

Now, a series of experiments performed to assess speech recognition as a function of the 
acoustic training and adaptation approaches, as well as the speech decoding approaches will 
be presented. 
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Figure 4. Recognition results, in terms of the CER, for three systems trained on  

ML, MMI, and MPE criteria, respectively. 
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Table 2. Recognition results of the acoustic model training and unsupervised 
adaptation approaches 

 INITIAL/FINAL Error Rate 
(%) 

Character Error Rate (%) 

ML 13.56 23.78 
(ML+) MPE 11.12 20.77 

 (ML+) MPE + MLLR 10.94 20.45 
 (ML+) MPE + MPELR 10.82 20.29 

7.1 Experiments on MPE Acoustic Model Training 
The acoustic models of the baseline system were first trained using the ML criterion with 10 
iterations of Baum-Welch updating. Then, MPE training (with an optimum setting of 10m ) 
was applied to the ML-trained acoustic models. In the implementation, we calculated the raw 
accuracy of each INITIAL/FINAL, instead of each phone, i.e., we had actually performed 
Minimum INITIAL/FINAL Error training, not Minimum Phone Error training, in the 
Mandarin LVCSR system. While evaluating the ASR performance, neither the silence nor the 
short-pause labels were included in the calculation of CER. MMI training was also performed 
for comparison with MPE training. As mentioned previously, for both MPE and MMI training, 
unigram language model constraints were imposed when collecting the training statistics from 
the word lattices. The results for acoustic model training are shown in Figure 4. We observe 
that the ML-trained baseline system (at the 10th iteration) yields a CER of 23.78%. On the 
other hand, both MMI and MPE work very well, providing a great boost to the acoustic 
models initially trained by ML. The acoustic models trained by MPE consistently outperform 
those trained by MMI across all training iterations. In summary, the MPE-trained acoustic 
models achieve a relative CER reduction of 12.66% (at the 10th iteration) over those trained 
by ML. Moreover, as shown in Table 2, the improvements are consistent. The 
INITIAL/FINAL model error rate is reduced from 13.56% (baseline, ML training only) to 
11.12% (at the 10th MPE training iteration). The 18% relative error rate reduction 
demonstrates the effectiveness of the Minimum INITIAL/FINIAL Error training approach, 
and the improvement in the acoustic models leads to a 3% absolute reduction in CER (from 
23.78% to 20.77%). The use of statistical linguistic rules in MPE training still plays an 
important role in re-weighting the occupancy statistics, especially in an LVCSR system. In our 
previous work [Kuo 2005], it was found that much of the CER improvement was lost without 
embedding the language weight. 

The question thus arises: What makes MPE superior to MMI? In Eq. (7), if the 
summation operator over all training utterances is replaced by the product operator and the 
loss function is the zero-one function in Eq. (8), one gets the following MMI criterion: 
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which maximizes the logarithmic product of the posterior probabilities of the reference 
transcriptions. The use of the zero-one loss function implies that MMI tends to minimize the 
sentence error rate. Hence, it is reasonable to say that MMI is inferior to MPE in terms of 
CER. 

7.2 Experiments on Unsupervised MPELR Acoustic Model Adaptation 
In this subsection, we evaluate the performance of the MPE-based unsupervised acoustic 
model adaptation approach. In these experiments, utterance-based unsupervised adaptation 
was used. First, each test utterance was decoded using the MPE-trained acoustic models. Then, 
after the forward-backward stage to gather sufficient statistics, the acoustic models were 
adapted according to the recognized transcriptions. All the Gaussian components of the HMM 
acoustic models were clustered into three broad phonetic regression classes (i.e., INITIAL, 
FINAL, and Silence) in advance. Only the mean vectors of each Gaussian component were 
adapted because it has been found that adapting the mean vectors alone yields the most 
improvement [Gales and Woodland 1996]. Unsupervised MLLR adaptation was performed as 
the baseline. In the experiment results presented in Table 2, comparing Row 4 (MPE + MLLR) 
to Row 3 (MPE), we observe that the CER can be reduced from 20.77% to 20.45%, which 
indicates that MLLR adaptation can, to some extent, effectively mitigate the degradation of 
ASR performance caused by different acoustic variations. Row 5 of Table 2 gives the error 
rate obtained by MPELR adaptation. This result, 0.16% improvement in terms of CER, shows 
that MPELR is slightly better than MLLR. One possible reason for the insignificant 
improvement over MLLR is the use of a weak-sense auxiliary function. As a result, the 
convergence speed of MPE-based techniques is not as fast as the strong-sense auxiliary 
function used in ML-based techniques. In contrast, the advantage of MPE is that it tries to 
achieve a lower error rate when over-training is encountered. This is why MPE training is 
performed after ML training and not for bootstrapping the initial models. Similarly, MPELR 
adaptation can be performed after MLLR adaptation. However repeated on-line adaptation 
causes the decoding phase to become tardy, which is why it is only performed once in the 
online stage. 
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Table 3. Recognition results (CERs) for N-best list WEM rescoring. 
 CER (%) 

MPE + MPELR 20.29 
MPE + MPELR + WEM 20.23 

50-best Error Rate 17.82 
Lattice Error Rate 10.12 

7.3 Experiments on WEM Decoding 
For each test utterance, an N-best list of hypothesized word sequences was first generated 
from the word lattice. We limited the number of hypothesized word sequences included in the 
N-best list to 50, and the Levenshtein distance was calculated in terms of character units. The 
experiment results are shown in Table 3. From Row 3 (MPE + MPELR + WEM), one 
observes that, with the best set of acoustic models, WEM only achieves a slight reduction of 
0.06% in CER compared to that obtained by conventional MAP decoding, as shown in Row 2. 
Row 5 (Lattice Error Rate) provides the information regarding the lattice error rate [Ortmanns 
et al. 1997], which is the best achievable lower boundary, by rescoring on the current word 
lattice. This can be computed by finding the best hypothesized word sequence with the 
minimum Levenshtein distance to the reference transcription from the corresponding word 
lattice. On the other hand, Row 4 (50-best Error Rate) gives the lower boundary of the best 
character error rate for the top 50 hypotheses with the highest scores, which is the true best 
achievable lower bound in our implementation. From the experiment results, the WEM 
algorithm seems to achieve an almost imperceptible improvement of about 0.06%. The most 
likely explanation is that there is a defect in the approximation of the posterior distribution. In 
addition, the WEM algorithm decides the word sequence with the highest posterior probability 
in most situations [Schlüter et al. 2005]. For the above reasons, we consider that the 
improvement in CER accuracy is insignificant. 

8. Conclusions 

In this paper, we have investigated the following word error minimization approaches for 
Mandarin large vocabulary continuous speech recognition: 1) the MPE criterion used in 
acoustic model training and adaptation; and 2) the WEM criterion in speech decoding. Unlike 
conventional techniques, these two approaches try to minimize the expected word error, rather 
than the string-level error. Experiments on the MATBN corpus demonstrate that MPE training 
can significantly improve a system initially trained with the ML criterion. Likewise, MPELR 
adaptation can significantly reduce the CER for the unsupervised adaptation task. This result 
is superior to that obtained by conventional MLLR adaptation. Finally, N-best rescoring using 
the WEM criterion achieves a slight improvement over traditional MAP decoding. We are 
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currently conducting an in-depth investigation of the WEM approaches to language modeling 
[Kuo and Chen, 2005], as well as their comparison and integration with other approaches. 
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Sense Extraction and Disambiguation for  

Chinese Words from Bilingual Terminology Bank 

Ming-Hong Bai , , Keh-Jiann Chen  and Jason S. Chang  

Abstract 

Using lexical semantic knowledge to solve natural language processing problems 
has been getting popular in recent years. Because semantic processing relies 
heavily on lexical semantic knowledge, the construction of lexical semantic 
databases has become urgent. WordNet is the most famous English semantic 
knowledge database at present; many researches of word sense disambiguation 
adopt it as a standard. Because of the success of WordNet, there is a trend to 
construct WordNet in different languages. In this paper, we propose a methodology 
for constructing Chinese WordNet by extracting information from a bilingual 
terminology bank. We developed an algorithm of word-to-word alignment to 
extract the English-Chinese translation-equivalent word pairs first. Then, the 
algorithm disambiguates word senses and maps Chinese word senses to WordNet 
synsets to achieve the goal. In the word-to-word alignment experiment, this 
alignment algorithm achieves the f-score of 98.4%. In the word sense 
disambiguation experiment, the extracted senses cover 36.89% of WordNet synsets 
and the accuracy of the three proposed disambiguation rules achieve the accuracies 
of 80%, 83% and 87%, respectively. 

Keywords: Word Alignment, Word Sense Disambiguation, WordNet, EM 
Algorithm, Sense Tagging. 

1. Introduction 

Using lexical semantic knowledge to solve natural language processing problems has been 
getting popular in recent years. Especially for word sense disambiguation, the semantic 
lexicon plays a very important role. However, all semantic approaches depend on knowledge 
of some well established semantic lexical databases which provide semantic information of 
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words, such as the different senses of a word, the synonymous or hyperonymy relation 
between words, etc. 

WordNet is a famous semantic lexical database which owns rich lexical information. 
[Miller 1990]. It not only covers a large set of vocabularies but also establishes a complete 
taxonomic structure for word senses. Synonymous word senses are grouped into synsets. 
These synsets are further associated by semantic relations, including hypernyms, hyponyms, 
holonyms, meronyms, etc. The WordNet has been applied to a wide range of applications, 
such as word sense disambiguation, information retrieval, computer-assisted language 
learning, etc. It has apparently become the de facto standard for English word senses now. 

Because of the success of WordNet, there is a universally shared interest in construction 
of WordNet-like and WordNet-embedded lexical databases in different languages. One of the 
most famous projects is EuroWordNet (EWN). Its goal is to construct a WordNet-like system 
containing several European languages. Since constructing a WordNet for a new language is a 
difficult and labor intensive task, using the resources of WordNet to speed up the construction 
has begun a new trend. Many researchers, such as [Atserias et al. 1997], [Daude et al. 1999] 
and [Chang et al. 2003], have tried to associate WordNet synsets to other languages 
automatically with appropriate translations from bilingual dictionaries. The limitation of using 
bilingual dictionaries as mapping tables for translation equivalences between two languages is 
the narrow scopes of the dictionaries, since dictionaries usually contain prototypical 
translations only. For example, the first sense of word "plant" in WordNet is "plant, works, 
industrial plant"; it was translated as "GongChang"(ՠᐗ) in a Chinese-English bilingual 
dictionary. However, in actual text, it may be also translated as "Chang"( ᐗ ), 
"GongChang"(ՠ໱), "ChangFang"(ᐗࢪ), "suo"(ࢬ, such as ‘power plant’/࿇ሽࢬ), etc. 
Various translations, obviously, add complexity and difficulty to map word senses into 
WordNet synsets. 

Instead of using bilingual dictionaries, we adopt a bilingual terminology bank as the 
semantic lexical database. The latter includes various compound words, in which a word in a 
different compounding structure may have different translations, thus there are more 
translation candidates which can be chosen. A bilingual terminology bank has not only helped 
to avoid the problem of the limited scope of prototypical translations made by common 
bilingual dictionaries, but has also helped to disambiguate word senses by various translations 
and collocations [Diab et al. 2002], [Bhattacharya 2004]. Nevertheless, using bilingual 
terminology banks has to face two main challenges: Firstly, we have to deal with the problem 
of word-to-word alignment for multi-words terms. Secondly, we have to solve the problem of 
sense ambiguity of the English translation. The approaches for solving these two problems are 
the major focuses of the paper. 

The rest of paper is divided into four sections. Section 2 introduces the resources of this 
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paper. Section 3 describes the methodology. Experimental setup and results will be addressed 
in Section 4. A conclusion is provided in Section 5 along with directions for future research. 

2. Resources 

In this study, we use two dictionaries as the resources to extract semantic information: 

a) The Bilingual Terminology Bank from NICT [NICT 2004] 

b) A English-Chinese dictionary [Proctor 1988] 

The Bilingual Terminology Bank from NICT contains 63 classes of terminologies, with a 
total of 1,046,058 Chinese terms with their English translations. Among them, 629,352 terms 
are compounds, which is about 60 percent of the total. The English-Chinese dictionary 
contains 208,163 words which are used as a supplement. We also adopt WordNet 2.0 as the 
medium for sense linking. Figure 1 shows some sample entries of the Bilingual Terminology 
Bank from NICT. 

English  Chinese  Class 

succulent stem ۚᔆ๓ Botany 

common base current gain ٥ഗሽੌᏺ墿 Electrical Engineering 

sliding brush ᄶ೯ሽࠧ Naval Architecture 

point of increase ᏺଖរ Mathematics 

group carry ۯၞิګ Computer Science 

swine fever ᓼᒅ Animal Science 

light measurements ٠ၦྒྷ Metrology 

reductional grouping ਩ۥ᧯྇ᑇ։ᆢ Botany 

oil film strength ईᓂൎ৫ Metrology 

normalized quadrature spectrum ᑑᄷ֏؄։ᢜ Meteorology 
Figure 1. sample entries of the Bilingual Terminology Bank from NICT. 

In English, a compound is usually composed of words and blanks; the latter being a 
natural boundary to separate words. On the contrary, in Chinese there are no blanks in 
compound words, so we need to segment words before applying word alignment algorithms. 
In this paper, we adopt the CKIP Chinese Word Segmentation System, which was developed 
by the CKIP group of Academia Sinica [CKIP 2006]. 

3. Methodology 

The algorithm can be divided into the following two steps: 

1. Find the word to word alignment for each entry in the terminology bank, 
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2. Assign a synset to the Chinese word sense by resolving the sense ambiguities of its aligned 
English word. 

The first step is to find all possible English translations for each Chinese word, which 
make it possible to link Chinese words to WordNet synsets. Since the English translation may 
be ambiguous, the purpose of second step is to employ a word sense disambiguation algorithm 
to select the appropriate synset for the Chinese word. For example, the term pair (water tank, 
ֽ ᑒ ) will be aligned as (water/ֽ tank/ᑒ ) in the first step, so the Chinese word ᑒ can 
be linked to WordNet synsets by its translation tank. But tank has five senses in WordNet as 
follows: 

 tank_n_1: an enclosed armored military vehicle, 

 tank_n_2: a large vessel for holding gases or liquids, 

 tank_n_3: as much as a tank will hold, 

 tank_n_4: a freight car that transports liquids or gases in bulk, 

 tank_n_5: a cell for violent prisoners. 

The second step is applied to select the best sense translation. In the following 
subsections, we will describe the detail algorithm of word alignment in section 3.1 and word 
sense disambiguation in section 3.2. 

3.1 Word Alignment 
For a Chinese term and its English translation, it is natural to think that the Chinese term is 
translated from the English term word for word. So, the purpose of word alignment is to 
connect the words which have a translation relationship between the Chinese term and its 
English portion. In past years, several statistical-based word alignment methods have been 
proposed. [Brown et al. 1993] proposed a method of word alignment which consists of five 
translation models, also known as the IBM translation models. Each model focuses on some 
features of a sentence pair to estimate the translation probability. [Vogel et al. 1996] proposed 
the Hidden-Markov alignment model which makes the alignment probabilities dependent on 
the alignment position of the previous word rather than on the absolute positions. [Och and 
Ney 2000] proposed some methods to adjust the IBM models to improve alignment 
performance. 

The word alignment task in this paper only focuses on the term pairs of a bilingual 
terminology bank. Since the length of a term is usually far less than a sentence, some features, 
such as word position, are no longer important in the task. In this paper, we employ the IBM-1 
model, which only focuses on lexical generating probability, to align the words of a bilingual 
terminology bank. 
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3.1.1 Modeling Word Alignment 
For convenience, we follow the notion of [Brown et al. 1993], which defines word alignment 
as follows: 

Suppose we have a English term e = e1,e2,…,en where ei is an English word, and its 
corresponding Chinese term c = c1,c2,…,cm where cj is a Chinese word. An alignment from e to 
c can be represented by a series a=a1,a2,…,am where each aj is an integer between 0 and n, 
such that if cj is partial (or total) translation of ei , then aj = i and if it is not translation of any 
English word, then aj=0. 

For example, the alignments shown in Figure 2 are two possible alignments from English 
to Chinese for the term pair (practice teaching, ඒᖂ ኔ฾), (a) can be represented by a=1,2 
while (b) can be represented by a=2,1. 

 
(a)                                  (b) 

Figure 2. two possible alignments from English to Chinese for the term pair 
(practice teaching, ඒᖂ ኔ฾). 

In the word alignment stage, given a pair of terms c and e, we want to find the most 
likely alignment a=a1,a2,…,am , to maximize the alignment probability P(a|c,e) for the pair. 
The formula can be represented as follows: 

ˆ arg max ( | , )P
a

a a c e ,                    (1) 

where â  is the best alignment of the possible alignments. Suppose we already have lexical 
translation probabilities for each of the lexical pairs, then, the alignment probability P(a|c,e) 
can be estimated by means of the lexical translation probabilities as follows: 

1

( , | )( | , ) ( | ) / ( | )
( | ) j

m
j a

j

PP P c e P
P

a c ea c e c e
c e

. 

The probability of c given e, P(c|e), is a constant for a given term pair (c,e), so formula 1 
can be estimated as follows: 
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1
ˆ arg max ( | )

j

m
j a

j
P c e

a
a .               (2) 

For example, the probability of the alignment shown in Figure 2 (a) can be estimated by: 

     P(c1|e1)P(c2|e2) 

= P( ඒᖂ | practice) P( ኔ฾ | teaching) 

= 0.000480 x 1.14x10-13 =5.48x10-17. 

While (b) can be estimated by: 

P(c1|e2)p(c2|e1) 

= P( ඒᖂ | teaching)P( ኔ฾ | practice ) 

= 0.6953 x 0.0940 = 0.0654. 

In this example, the probability of alignment (b) is larger than (a) in Figure 2. So the 
alignment (b), (ඒᖂ/teachingኔ฾/practice), is a better choice than (a), (ඒᖂ/practiceኔ฾
/teaching), for the term pair (practice teaching, ඒᖂ ኔ฾). The remaining problem of this 
stage is how to estimate the translation probability p(c|e) for all possible English-Chinese 
lexical pairs. 

3.1.2 Translation Probability Estimation 
The method of our translation probability estimation uses the IBM model 1 [Brown et al. 
1993], which is based on the EM algorithm [Dempster et al. 1977], for maximizing the 
likelihood of generating the Chinese terms, which is the target language, given the English 
portion, which is the source language. Suppose we have an English term e and its Chinese 
translation c in the terminology bank T; e is a word in e, and c is a word in c. The probability 
of word c given word e, P(c|e), can be estimated by iteratively re-estimating the following EM 
formulae: 

Initialization: 

1( | )
| |

P c e
C

;                                      (3) 

E-step: 

1
( , ; ) ( | , ) ( , ) ( , )

j

m
j a

j
Z c e , P c c e e

a
c e a c e ,                           (4) 

1

'1
' '

( | )( , | )( | , )
( ', | ) ( | )

j

j

m
j aj

m
j aj

P c ePP
P P c e

a a

a c ea c e
a c e

;                   (5) 
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M-step: 

| | ( ) ( )
1
| | ( ) ( )

1

( , ; , )
( | )

( , ; , )

T t t
t

T t t
t

v C

Z c e
P c e

Z v e

c e

c e
.         (6) 

In the EM training process, we initially assume that the translation probability for any 
Chinese word c given English word e, P(c|e), is uniformly distributed as in formula 3, where C 
denotes the set of all Chinese words in the terminology bank. In the E-step, we estimate the 
expected number of times that e connects to c in the term pair (c,e). As in formula 4, we sum 
up the expected counts of the connection from e to c over all possible alignments which 
contain the connection. Formula 5 is the detailed definition of the probability of an alignment 
a given (c,e). Usually, it is hard to evaluate the formulae in E-step. Fortunately, it has been 
proven [Brown et al. 1993] that the expectation formulae, 4 and 5, can be merged and 
simplified as follows: 

1
( , ; ) ( | , ) ( , ) ( , )

j

m
j a

j
Z c e , P c c e e

a
c e a c e  

11

'1
'

( | ) ( , ) ( , )

( | )

j j

j

m m
j a j ajj

m
j aj

P c e c c e e

P c e
a

a

 

1, 0,

1 001

( | ) ( | )
( , ) ( , )

( | )
j i

m n
m nj ij c c i e e

j im n j ij iij

P c e P c e
c c e e

P c e
 

1 00

( | ) ( , ) ( , )
( | )

m n
j in j iii

P c e c c e e
P c e

.                        (7) 

 After merging and simplifying, as formula 7, the E-step becomes very simple and 
effective for computing. 

In the M-step, we re-estimate the translation probability, P(c|e). As shown in formula 6, 
we sum up the expected number of connections from e to c over the whole bank divide by the 
expected number of c. 

The training process will count the expected number, E-step, and re-estimate the 
translation probability, M-step, iteratively until it has converged. 

For instance, as the example shown in Figure 2, the English term e= practice teaching 
and Chinese term c=ඒᖂ ኔ฾ are given. Assume the total number of Chinese words in the 
terminology bank is 100,000. Initially, the probabilities of each translation are as follows: 
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P( ඒᖂ | practice) = 1
| |C

= 0.00001,     P( ඒᖂ | teaching) = 1
| |C

= 0.00001, 

P( ኔ฾ | practice) = 1
| |C

= 0.00001,    P( ኔ฾ | teaching) = 1
| |C

= 0.00001. 

In E-step, we count the expected number for all possible connections in the term pair: 

Z( ඒᖂ , practice; e, c ) = ( | )
( | ) ( | )

P practice
P practice P teaching

ඒᖂ

ඒᖂ ඒᖂ
= 0.5, 

Z( ඒᖂ , teaching; e, c ) = ( | )
( | ) ( | )

P teaching
P practice P teaching

ඒᖂ

ඒᖂ ඒᖂ
= 0.5, 

Z( ኔ฾ , practice; e, c ) = ( | )
( | ) ( | )

P practice
P practice P teaching

ኔ฾

ኔ฾ ኔ฾
= 0.5, 

Z( ኔ฾ , teaching; e, c ) = ( | )
( | ) ( | )

P practice
P practice P teaching

ኔ฾

ኔ฾ ኔ฾
= 0.5. 

In M-step, we first count the global expected number of each translation by summing up 
the expected number of each data entry over the whole term bank: 

| | ( ) ( )

1
( , ; , )

T t t

t
Z practiceඒᖂ e c =0.7, 

| | ( ) ( )

1
( , ; , )

T t t

t
Z teachingඒᖂ e c = 43.72, 

| | ( ) ( )

1
( , ; , )

T t t

t
Z practiceኔ฾ e c = 5.37, 

| | ( ) ( )

1
( , ; , )

T t t

t
Z teachingኔ฾ e c = 0.95. 

After the global expected number of each translation has been counted, we can 
re-estimate the translation probabilities by means of the expected numbers: 

P( ඒᖂ | practice) = 
| | ( ) ( )

1
| | ( ) ( )

1

( , ; , )

( , ; , )

T t t
t

T t t
v C t

Z practice

Z v practice

ඒᖂ e c

e c
= 0.7

110.67
= 0.00632, 

P( ඒᖂ | teaching) = 

| | ( ) ( )

1
| | ( ) ( )

1

( , ; , )

( , ; , )

T t t

t
T t t

v C t

Z teaching

Z v teaching

ඒᖂ e c

e c
= 43.72

121.88
= 0.35871, 
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P( ኔ฾ | practice) = 

| | ( ) ( )

1
| | ( ) ( )

1

( , ; , )

( , ; , )

T t t

t
T t t

v C t

Z practice

Z v practice

ኔ฾ e c

e c
= 5.37

110.67
= 0.04852, 

P( ኔ฾ | teaching) = 

| | ( ) ( )

1
| | ( ) ( )

1

( , ; , )

( , ; , )

T t t

t
T t t

v C t

Z teaching

Z v teaching

ኔ฾ e c

e c
= 0.95

121.88
= 0.00779. 

The training process will count the expected number and re-estimate the translation 
iteratively until it has converged. There are some translation probabilities estimated in this 
experiment shown in Figures 3-6. 

English Chinese P( c | e ) 

water ֽ 0.599932  

water ֽ0.048781 ۯ  

water ֽ։ 0.011677  

water 0.011427 ֽش  

water چՀֽ 0.010800  

water ֽᚘ 0.009310  

water ֽၦ 0.007905  

water ֽጥ 0.007640  

water 0.007471 ۯ  

water ֽ૿ 0.006704  

Figure 3. translation probabilities for water. 

 

 
English Chinese P( c | e ) 

tank ᑒ 0.292606  

tank ឵ 0.176049  

tank ᘍ 0.077515  

tank ᒣ 0.034325  

tank ֽ 0.025067  

tank ෈ 0.018411  

tank ֽᑒ 0.016570  

tank 0.016157 ۃ  

tank ᧾ 0.015687  

tank ֽᒣ 0.012206  

Figure 4. translation probabilities for tank. 
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English Chinese P( c | e ) 

practice ᒭ฾ 0.163636  

practice ኔ฾ 0.093320  

practice ዝ฾ 0.058102  

practice ኔ೭ 0.056980  

practice ᖙ0.051331 ܂  

practice ᚌ0.042036 ߜ  

practice ܂ᄐ 0.038144  

practice ֱऄ 0.036161  

practice ኔ0.034805 ܂  

practice ኔᎾ 0.025800  

Figure 5. translation probabilities for practice. 

English Chinese P( c | e ) 

teaching ඒᖂ 0.698757  

teaching ඒᖂऄ 0.137614  

teaching ඒ0.045780 ޗ  

teaching ໢ց 0.015502  

teaching ඒࠠ 0.010315  

teaching ඒᖄ 0.007246  

teaching ඒᄎ 0.007246  

teaching ඒ඄ 0.007246  

teaching ඒಝ 0.007246  

teaching ඒ 0.007246  

Figure 6. translation probabilities for teaching. 

3.1.3 Imposing Alignment Constraints 
As was mentioned in Section 3.1.1, the goal of word alignment is to find the best alignment 
candidate to maximize the translation probability of a term pair. However, in real situations 
there are some problems that have to be solved: 

1. Cross connections: assume there is a series of words, cj,cj+1,cj+2 in a Chinese term, if cj and 
cj+2 connect to the same English word while cj+1 connects to any other word, we call this 
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alignment contains a cross connection. There is an example of cross connection shown in 
Figure 7. The Chinese word ீ is more likely to connect to examination shown in Figure 8. 

 
Figure 7. example of cross connection, ீ and ەᇢ connected to examination 

while ؆ connected to external. 

 ᇢە ؆ ீ 

external 1.4x10-7 0.575537 5.3x10-9 
examination 5.2x10-6 5.2x10-6 0.172751 
Figure 8. example of cross connection: the translation probabilities of the 

example, it shows that ீ is more likely to connect to examination. 

2. Function words: in word alignment stage, function words are usually ignored except when 
they are part of compound words. For example, Figure 9, of is a part of a compound which 
can not be skipped, while in Figure 10, of can be skipped.  

 
Figure 9. of is part of compound. 

 
Figure 10. of is not part of compound. 

In order to solve this problem, two constraints are imposed on the alignment algorithm. 
Formula 1 is altered by using a cost function instead of probability, defined as follows: 

arg min ( )cost
a

a a ,            (8) 
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where cost function is given by: 

    

1

,  
  connects  to any word 

cos t( ) ,     and  is a function word
   and  is not part of compound 

log( ( | ))
j

i i

i

i
k

j a
j

if cross_connection( )  true
if a c

c
c

p c e else

a

a .            (9) 

The cross connection function is used to detect the cross connection in an alignment 
candidate. If a cross connection is found, the alignment candidate will be assigned a large cost 
value. The function was given by: 

1 2,   and 
_ ( )

,
i i i itrue if a a a a

cross connection
false else

a  .         (10) 

3.1.4 Connection Directions 
There are two connection directions in word alignment: from Chinese to English, (where 
Chinese is the source language while English is the target language), and from English to 
Chinese. The alignment method of the IBM models has a restriction; a word of target language 
can only be connected to exactly one word of the source language. This restriction causes two 
words in the source language not to be able to connect to a word in the target language. 

For example, in Figure 11, for alignment from Chinese to English, cedar should be 
connected to both ຳ and ࣪, but the model does not allow the connection in this direction. 
Figure 12 is another example of the same problem from English to Chinese. 

 
Figure 11. cedar can not be connected by both ຳ and ࣪ in this direction. 
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Figure 12.ᆄ֧ڶԺ can not be connected by both universal and gravitation in 

this direction. 

In order to solve this problem, the alignments of these two directions are merged using 
the following steps: 1. Align from Chinese to English. Each word of an English compound 
will be connected by the same Chinese word in this step which will be treated as an alignment 
unit in the next step. 2. Align from English to Chinese. Each word of a Chinese compound will 
be connected to the same English unit, a word or merged compound, in this step. 

For example, universal gravitation was merged in step 1 while ຳ and ࣪ were not 
merged in the same step, as shown in Figure 13. In step2, ຳ and ࣪ were merged and 
universal gravitation will be treated as a unit in the same step, as shown in Figure 14. 

 
Figure 13. ຳ and ࣪ were not merged in step 1 while universal gravitation 

was merged in the same step. 

 
Figure 14. step 2, ຳ and ࣪ were merged in step 2 and universal gravitation 

was treated as a unit in the same step. 

After these two steps, all of the compounds in each language will be merged. Figure 15 
shows some examples of word alignment in these experiments. 
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English Term Chinese Term Alignment 

evaporation tank ፣࿇ ᑒ evaporation/፣࿇ tank/ᑒ 

wind-wave tank ଅ௡ ֽᑒ wind-wave/ଅ௡ tank/ֽᑒ 

wave tank ं௡ ֽᑒ wave/ं௡ tank/ֽᑒ 

volumetric tank ၦ ֽᒣ volumetric/ၦ tank/ֽᒣ 

curve of learning ᖂ฾ ڴᒵ curve/ڴᒵ of/ learning/ᖂ฾ 

exchange of students ᖂس ٌང exchange/ٌང of/ students/ᖂس 

practice teaching ඒᖂ ኔ฾ practice/ኔ฾ teaching/ඒᖂ 

wall cloud ႆ ᛥ wall/ᛥ cloud/ႆ 

gas mixture ෗ٽ ௛᧯ gas/௛᧯ mixture/෗ٽ 

air choke valve ॴ ௛ Ꮊ air/௛ choke/ॴ valve/Ꮊ 

Figure 15. some examples of word alignment. 

3.2 Sense Tagging 
When we tag Chinese words with WordNet senses, if the translation of a word has only one 
sense, a monosemous word, it can be tagged with that sense directly. If the translation has 
more than one sense, we should use a disambiguation method to get the appropriate sense. In 
past years, a lot of word sense disambiguation (WSD) methods have been proposed, including 
supervised, bootstrapping, and unsupervised. Supervised and bootstrapping methods usually 
resolve an ambiguity in the collocations of the target word, which implies that the target word 
should be in a complete sentence. These are not appropriate for this project’s data. When some 
statistical based unsupervised methods are not accurate enough, they will add too much noise 
to the results. For the purpose of building a high quality dictionary, we tend to use a high 
precision WSD method which should also be appropriate for a bilingual term bank. We 
employ some heuristic rules, which are motivated by [Atserias et al. 1997], described as 
follows: 

Heuristic 1. 

If ei is a morpheme of e then pick the sense of ei, say sj, which contains hyponym e. 

This heuristic rule works for head morphemes of compounds. For example, as shown in 
figure 16, the term pair (water tank, ֽ ᑒ ) is aligned as (water/ֽ tank/ᑒ ). There are 
five senses for tank. The above heuristic rule will select tank-2 as the sense of tank/ᑒ 
because there is only one sense of water tank and the sense is a hyponym of tank-2. In this 
case, the sense of water tank can be tagged as water tank-1 and tank can be tagged as tank-2. 
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Figure 16. water tank-1 is a hyponym of tank-2. 

Heuristic 2. 

Suppose the set {e1,e2,…,ek} contains all possible translations of Chinese word c, 

Case 1: If {e1,e2,…,ek} share a common sense st, then pick st as their sense. 

Case 2: If one element of the set {e1,e2,…,ek}, say ei, has a sense st which is the 
hypernym of synsets corresponding to the rest of the words. We say that they nearly share the 
same sense and pick st as the sense ei, pick the corresponding hyponyms as the sense of the 
rest of words. 

An example of case 1 is the translations of ᆬᔏ߫, {bicycle, bike, wheel}, which are a 
subset of a synset. This means that the synset is the common sense of these words and we can 
pick it as the words’ sense. An example of case 2, as shown in figure 17, is the translations of 
ॾᇆ዁, {signal, signal flag, code flag}, although these words do not exactly share the same 
sense, one sense of signal is the hypernym of signal flag and code flag. This means that they 
nearly share the same sense; we pick the hypernym, signal-1, as the sense of signal and the 
corresponding hyponyms as the sense of signal flag and code flag.  

 
Figure 17. the translations of ॾᇆ዁, {signal, signal flag, code flag}, are nearly 

share the same sense. 

Heuristic 3. 

If some of the translations of c are tagged in the previous steps and the results show that the 
translations of c is always tagged with the same sense, we think c to have mono sense, so 
pick that sense as the sense of untagged translations. 

signal_flag-1

signal-1 

code_flag-1 

water tank-1… 

tank-2 

… 
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In the previous steps, many Chinese-English pairs have been tagged with WordNet 
senses. In these tagged instances, we found that some Chinese words were always tagged with 
the same synset, although they may have many different English translations, and these 
English words may be ambiguous themselves. The untagged translations of the Chinese word 
can be tagged with the same synset. 

For example, as shown in Figure 18, ं߻໲ has many different translations and some 
of them are ambiguous in WordNet, (groin has 3 senses in WordNet). In fact, those seemingly 
different senses tagged by previous steps actually are indexed by the same synset in WordNet, 
so we guess thatं߻໲ has mono sense and will be tagged the same synset for all instances. 

Chinese word English word Sense 

 ໲ breakwater breakwater-1ं߻

 ໲ groin groin-2ं߻

 ໲ groyne groyne-1ं߻

 ໲ mole mole-5ं߻

 ໲ bulwark bulwark-3ं߻

 ໲ seawall seawall-1ं߻

 ໲ jetty jetty-1ं߻
Figure 18. the possible translations of ं߻໲ and its sense tagged by the 

previous steps. 

4. Experiments 

In the experiment of word alignment, we extract 840,187 English-Chinese translation pairs 
which contain 445,830 Chinese word types and 318,048 English word types. On average, each 
Chinese word has 1.88 English translations while each English word has 2.64 Chinese 
translations. 

In word sense disambiguation, 124,752 Chinese words were linked to 42,589 WordNet 
synsets, which contain 165,775 (Chinese word, synset) translation pairs. On average, each 
Chinese word was discovered to have 1.33 senses in terms of WordNet synsets. In the 
following subsection, we will evaluate the performance of the word alignments and WSD 
results. 

4.1 Results of Word Alignment 
In order to evaluate the performance of word alignment, we randomly select 500 term pairs 
from a terminology bank and align them manually as the gold standard, As single-morpheme 
terms do not need to be aligned, compound words were considered only. We follow the 
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evaluation method defined by [Och and Ney 2000], which defined precision, recall and 
alignment error rate (AER) as follows: 

 recall = | |
| |

A S
S

, 

 precision = | |
| |

A P
A

, 

 AER = | | | |1
| | | |

A S A P
A S

, 

where S denotes the annotated set of sure alignments, P denotes the annotated set of possible 
alignments, and A denotes the set of alignments produced by the alignment method. 

The results are shown in Table 1. The recall and precision figures show that the word 
alignment results are quite accurate. As we expected, the word alignment in phrases is much 
easier and accurate than in complete sentences. Note that the f-scores of word alignment tasks 
in complete sentences, even the current state-of-the-art alignments for naturally related 
languages such as English and French, are still less than 95 [Blunsom et al. 2006]. 

Table 1. the performance of our word alignment method. 
recall precision  f-score AER  
98.2 98.6 98.4 1.6 

Table 2. typical errors of word alignment. 
Error Type Error Samples  

Word Segmentation 

half-wave/ת length/ं९ criterion/ᄷঞ 
spiral/ᝅඝ coal/ᅁᖲ cleaner/ੑ 
american/۫ ginseng/੉೶ 
second/٦ wind/س௛ 
microlen/პຘᢴᢎ coupler/ٽᕴ 
atomic/଺՗౨ energy/ၸ 

transliteration san/ᆣ઺ julian/ຑڜ 

asymmetric translation navigation/౰۩೶ە star/ਣ 

abbreviation double/ III/܌್܌ڮᑷு֘ᚨᕴ 

The main alignment errors are caused by the following reasons as shown in Table 2. The 
first error type was caused by the errors of word segmentation. For example, ۫੉೶ should 
be segmented as ۫੉ ೶ instead of ۫ ੉೶ and س٦௛ should be segmented as س٦ 
௛ instead of س ٦௛. The second error type was the mapping of transliterations which is a 
different type of word alignment. The third type was caused by the asymmetric translation of 
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the data. For example, in the term pair (navigation star, ౰۩ ೶ە ਣ), the Chinese word ೶
 has no appropriate mapping in the English portion. The fourth type was caused by ە
abbreviation which is also a difficult problem in regards to word alignment. 

4.2 Result of Word Sense Disambiguation 
Since the goal of these experiments is to build a Chinese WordNet automatically, we 
concerned more with the quality of WSD than the quantity. To evaluate the accuracy of these 
heuristic rules, we randomly selected 200 sense tagged words for each heuristic rule and 
checked the sense of each word manually. The accuracy rate of WSD results are defined as 
follows: 

accuracy rate = # of  selected words with correct sense
# of selected words

. 

The accuracy of each heuristic rule is shown in Table 3. It shows that the accuracy of 
heuristic rules is all over 80 %. Note that, in the lexical sample tasks of Senseval 3 [Mihalcea 
et al. 2004], the precision of the best supervised WSD methods is less than 73%, the 
unsupervised methods are even worse. Furthermore, these methods depend highly on the 
contexts of target words, which is not suitable in these experiments. These are the reasons why 
we use the heuristic rules instead of conventional WSD methods. 

Table 3. Disambiguation accuracy of each heuristic rule. 
 # words #words with correct sense accuracy rate 
Heuristic 1 200 160 80.0 % 
Heuristic 2 200 167 83.5 % 
Heuristic 3 200 174 87.0 % 

We also concerned with how many WordNet senses can be linked with Chinese words. 
There are two coverage rates, defined as follows: 

coverage rate of word-sense pairs = # of word sense pairs are linked
# of word sense pairs in WordNet

, 

coverage rate of synsets = # of synsets are linked
# of synsets in WordNet

. 

In the WSD steps, 484,771 tokens are tagged with WordNet synsets, in which 54,654 
distinct word-sense pairs are contained. In other words, there are 54,654 distinct word-sense 
pairs which are linked with any Chinese word. The coverage of word-sense pairs and synsets 
are shown in Table 4. The synset coverage of heuristic rule 3 is not listed in the table, because 
it just tags the Chinese words which have been disambiguated in the previous steps and does 
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not link any Chinese word with new synset. The table shows that the coverage of word-sense 
pairs in WordNet 2.0 is 26.9% and the coverage of synsets is 36.89 %. 

Table 4. the coverage of each heuristic rule in WordNet 2.0. 

 #tokens  #word-sense 
pairs 

word-sense pair   
coverage  #synsets synset  

coverage 
monosemous  
word 370,991 48,623 23.94 % 39,953 34.61 % 

Heuristic 1 29,422 4,211 2.07 % 3,452 2.99 % 
Heuristic 2 29,311 2,050 1.00 % 1,685 1.46 % 
Heuristic 3 81,734 1,931 0.95 %     -    - 
Total 484,771 54,654 26.90 % 42,589 36.89 % 

It seems the coverage of the experiments is too low. One possible reason is that most of 
the synsets in WordNet are infrequent. To prove this phenomenon, we use the frequencies of 
each sense provided by WordNet, which are the occurrence frequencies for each synset in the 
SemCor Corpus. As per analysis, there are 115,423 synsets in WordNet 2.0, but only 28,688 
(24.8%) synsets appear in the SemCor. It shows that most of the senses are low frequency 
senses in WordNet. 

Another issue is that, the coverage is contributed mostly by monosemous words. About 
17% of words are ambiguous in WordNet. It seems that there is still room to improve. 

5. Conclusions and Future Researches 

In this paper, we propose a methodology to extract Chinese-English translation pairs from a 
large-scale bilingual terminology bank, and link the translation pairs to WordNet synsets. We 
faced two problems in this study: 1. Word-to-word alignment for each entry in the 
terminology bank, which helps to extract corresponding English translations for each Chinese 
word. 2. Word sense disambiguation, which helps to select the appropriate sense when the 
English translation of a Chinese word is ambiguous. 

The evaluation of the experiments shows that the f-score of word alignment archives 
98.4%. In the word sense disambiguation stage, the word-sense pairs extracted from the 
terminology bank cover 26.9% of WordNet word-sense pairs. Also, the distinct senses cover 
36.89% of WordNet synsets. The accuracy of the three heuristic rules achieves 80%, 83 %, 
and 87 %. 

A bilingual terminology bank provides some advantages over a bilingual parallel corpus 
for extracting information. For example, we can extract more Chinese-English translation 
pairs through the various appearances of a word which is contained in different compounds. 
The other advantage is that most of compound words in terminology bank are composed of 
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only 2-3 words, which results in the word alignment accuracy of a terminology bank being 
much higher than a bilingual corpus. 

In the future we will try to use some other word sense disambiguation methods to 
increase the coverage of words and senses in WordNet and to extract more information from 
terminology bank. 
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A Probe into Ambiguities of  

Determinative-Measure Compounds 

Shih-Min Li , , Su-Chu Lin , Chia-Hung Tai , and Keh-Jiann Chen  

Abstract 

This paper aims to further probe into the problems of ambiguities for automatic 
identification of determinative-measure compounds (DMs) in Chinese and to 
develop sets of rules to identify DMs and their parts of speech. It is known that 
Chinese DMs are identifiable by regular expressions. DM rule matching helps one 
solve word segmentation ambiguities, and parts of speech help one improve sense 
recognition and part-of-speech tagging. In this paper, a deep analysis based on 
corpus data was studied. With analyses of error identification and disambiguation 
of DM compounds, the authors classified three types of ambiguities, i.e. word 
segmentation, sense, and pos ambiguities. DM rules are necessary complements to 
dictionaries and helpful to resolve word segmentation ambiguities by applying 
resolution principles and segmentation models. Sense and pos ambiguities are also 
expected to be resolved by different approaches during postprocessing. 

Keywords: Ambiguities, Word Segmentation Ambiguities, Sense Ambiguities, 
Part-of Speech Ambiguities, Determinative-Measure Compounds 

1. Introduction 

To a speaker of English, one of the most striking features of the Mandarin noun phrase is the 
classifier. A classifier is a word that must occur with a number and/or a demonstrative, or 
certain quantifiers before the noun [Li and Thompson 1981]. Furthermore, Li and Thompson 
[1981] assert that any measure word can be a classifier, so the combination of demonstrative 
and/or number or quantifier plus a classifier or a measure is defined as a classifier phrase or a 
measure phrase. For example, san ge in san ge ren ‘three people’ (ԿଡԳ), zhe zhan in zhe 
zhan deng ‘this lamp’ (ຍᅨᗉ),  ji jian in ji jian yifu ‘a few / how many garments’ (༓۪ٙ
ࣚ), liu li in liu li lu ‘six miles of road’ (քߺሁ), na jin in na jin yangrou ‘that tael of lamb’ 

                                                 
 Institute of Information Science, Academia Sinica, Taipei 

 E-mail: {shihmin, jess}@hp.iis.sinica.edu.tw; {glaxy, kchen}@iis.sinica.edu.tw 
 Graduate Institute of Linguistics, National Chengchi University, Taipei 

 E-mail: 95555501@nccu.edu.tw 



 

 

˅ˇˉ                                                          Shih-Min Li et al. 

 and ji gang in ji gang cu ‘a few / how many vats of vinegar’ (༓બᔩ) are (ۚےְ߷)
classifier phrases / measure phrases, which are regarded as Determinative-Measure (DM) 
compounds in Chao [1968]. A determinative (D) and a measure normally make a compound 
with unlimited versatility and form a transient word of no lexical import [Chao 1968]. 
Although the demonstratives, numerals, and measures may be listed exhaustedly, their 
combination is inexhaustible. It is impossible to list thoroughly all combinations of DMs in 
dictionaries. Therefore, it requires a representational model to express DM compounds in 
Chinese NLP. 

In Chinese, word segmentation, sense, and pos (i.e. part-of-speech) ambiguities 
commonly occur in certain constructions of DMs or DM-like structures. For examples: 

 

(1)  Կଡִ堿ⲯऱᔭഇၦ 

a. sange      yuebingpu        de    xiaoshouliang 

three-M  moon-cake store   DE   sales volume 

three moon-cake stores’ sales volume 

b. sangeyue      bingpu  de    xiaoshouliang 

three-M months  cake store  DE   sales volume 

the cake store’s three-month sales volume 

 

 ټڼ࠷  (2)

a. qu     ciming 
choose  this-M 

        choose this one (person) 
b. qu     ci  ming 

name   this name 
       name it this name 
 

(3)  ԲԼնڣऱᐉுΕඈၷΕ࿛ৱ 

a. ershiwunian   de  shenhe  paidui  dengdai 
twenty five-M   DE   examine  line up  wait 

       examining, lining up and waiting in the year of twenty five 
b. ershiwunian  de  shenhe  paidui  dengdai 

     twenty five-M   DE   examine  line up  wait 
       examining, lining up and waiting for twenty five years 
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The DM compound sange in example (1) modifies moon-cake stores as well as months. 
The string sangeyuebingpu can be segmented into either sange yuebingpu or sangeyue bingpu, 
which has word segmentation ambiguity. In example (2), ming functions either as a measure 
or as a noun. Although example (2) has two meanings and is sense ambiguous, the roles 
assigned to ciming in (2a) and (2b) are both the goal. In example (3), ershiwunian is a time 
referent, and it can either be a time point specifying the event-time of the verb or denote the 
period of time delimitating the time length of the event. In Sinica Treebank, no matter whether 
ershiwunian behaves as a time point or a time length, ershiwunian is tagged as a unit. When 
ershiwunian behaves as a time point, its pos is Ndaad and semantic role is time1. Furthermore, 
when ershiwunian behaves as a time length, its pos is DM and semantic role is duration. 
However, according to CKIP’s word segmentation standard of Sinica Corpus, the temporal 
and locative DM structures are combined together when the meaning of the structure is not 
obtained from the composition of the components of the structure. Therefore, the temporal 
DM ershiwunian in (3a) is combined as a unit and tagged as Nd in Sinica Corpus while that in 
(3b) is segmented into two units, i.e. ershiwu and nian, and tagged as Neu and Nf individually. 
Therefore, example (3) has pos ambiguity. The different degrees of ambiguities are shown in 
examples (1) to (3). 

In this paper, we examine and analyze Mandarin Chinese DMs in Sinica Corpus and 
Sinica Treebank. In section 3, we introduce the regular expression approach to identify DMs 
and their poses. In section 4, we make a study of the structures and ambiguities of DMs, and 
then try to analyze and disambiguate these DMs. Section 5 is for implementation and 
evaluation. 

2. Literature Review 

To deal with DMs, first one must give a proper definition to DMs. Thus, one can delimit the 
scope of the discussion. There are numerous discussions on determinatives as well as 
measures, especially on the types of measures.2 The classification of measures is beyond the 
scope of this paper. To avoid confusion between classifiers and measures, one must pay 
attention to the relation between them. Tai [1994] asserts that in the literature on general 
grammar as well as Chinese grammar, classifiers and measures words are often treated 
together under one single framework of analysis. Chao [1968] treats classifiers as one kind of 
measure. In his definition, a measure is a bound morpheme which forms a DM compound with 

                                                 
1 All the symbols such as Ndaad will be defined in the appendix of this paper. 
2 Chao [1968] and Li and Thompson [1981] detect measures and classifiers. He [2000] traces the 

diachronic names of measures and mentions related literature on measures. The dictionary of measures 
pressed by Mandarin Daily News Association and CKIP [1997] lists all the possible measures in 
Mandarin Chinese. 
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one of the determinatives enumerated above [Chao 1968]. Classifiers are defined as 
‘individual measures’, which is one of the nine kinds of measures. As was mentioned in the 
section of introduction, Chao considers that determinatives are listable and measures are 
largely listable so D and M can be defined by enumeration, and that DM compounds have 
unlimited versatility. However, Li and Thompson [1981] blend classifiers with measures. 
They conclude that, not only does a measure word generally not take a classifier, but also any 
measure word can be a classifier. In Tai’s opinion [1944], in order to better understand the 
nature of categorization in a classifier system, it is not only desirable but also necessary to 
differentiate classifiers from measure words. These studies on the distinction between 
classifiers and measures are not very clear-cut. In this paper, we discuss ambiguities of DMs 
in NLP as well as adopt the CKIP DM rules and symbols of poses, and therefore inherit the 
definition of determinative-measure compounds (DMs) in Mo et al. [1991]. Mo et al. define a 
DM as the composition of one or more determinatives together with an optional measure. The 
definition of Mo et al. is used to apply to NLP and somewhat different from traditional 
linguistics definition. 

As for ambiguity, Crystal [1991] specifies that the general sense of ambiguity is a word 
or sentence which expresses more than one meaning. The most widely discussed type of 
ambiguity in recent years has been grammatical (or structural) ambiguity. In the structure new 
houses and shops, it could be analysed either as new [houses and shops] (i.e. both are new) or 
[new houses] and shops (i.e. only the houses are new). Furthermore, according to Crystal’s 
assertion, ambiguity which does not arise from the grammatical analysis of a sentence, but is 
due solely to the alternative meanings of an individual lexical item, is referred to as lexical 
ambiguity, e.g. I found the table fascinating (= ‘object of furniture’ or ‘table of figures’). 
Moreover, the definition of structural and lexical ambiguities can be referred to Prins [2005]. 
Prins mentions if one restricts his or her attention to the syntax in texts, then one may focus on 
ambiguity in two forms. The first is lexical ambiguity, the second is structural ambiguity. 
Lexical ambiguity arises when one word can have several meanings. Structural ambiguity 
arises when parts of a sentence can be syntactically combined in more than one way. Prins 
believes humans can resolve most ambiguity, of both types, without even being consciously 
aware of the alternatives. The remaining ambiguity, of which we are aware, is resolved when 
knowledge about the world is used in combination with what is known about the linguistic 
context of the ambiguity to arrive at the most likely analysis. Jurafsky and Martin [2000] 
define ambiguity as a sentence or words which can have more than one parse. Deciding which 
category a word belongs to can be solved by part-of-speech tagging. Deciding what sense a 
word has can be solved by word sense disambiguation. Resolutions of part-of-speech and 
word sense ambiguities are two important kinds of lexical disambiguation [Jurafsky and 
Martin 2000]. Furthermore, structural ambiguity occurs when the grammar assigns more than 
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one possible parse to a sentence. Structural disambiguation / syntactic disambiguation can be 
addressed by probabilistic parsing. Three particularly common kinds of structural ambiguity 
are attachment ambiguity, coordination ambiguity, and noun-phrase bracketing ambiguity 
[Jurafsky and Martin 2000]. In the following analysis, we find that Prins’ division of 
ambiguity into structural ambiguity and lexical ambiguity is not enough to deal with 
ambiguities in NLP. One must apply Jurafsky and Martin’s classification to obtain more 
detailed discussion on ambiguities of DMs in NLP. Word segmentation ambiguity caused by 
different segmentation of words is a kind of structural ambiguity. With the same word 
segmentation, that string of words may still be ambiguous because the string may either have 
more than one meaning or have different parts of speech, semantic roles and functions. 
Therefore, weone have sense ambiguity and pos ambiguity, which are the two subtypes of 
lexical ambiguities of DMs. 

3. Regular Expression Approach for Identifying DMs 

In this section, we introduce the regular expression approach to identify different types of 
DMs, their representational rules and their poses. Since this paper focuses on the DM defined 
in Mo et al., which is the composition of one or more determinatives together with an optional 
measure, the DM structure includes prototypical DMs, variant forms of DMs (e.g. the ellipsis 
of the determinative and the insertion of an adjective into a DM3), reduplicative forms of DMs 
(e.g. the reduplication of ‘M’, ‘DM’ or ‘AM’), and forms of the numeral yi preceding the 
reduplicative measures (e.g. ‘yiMM’ (ԫ MM) and ‘yiAM’ (ԫ AM)). Due to the infinite of the 
number of possible DMs, Mo et al. [1991] proposed identification of DMs by regular 
expression before parsing as part of their morphological module in NLP. For example, when 
the DM compound is the composition of one determinative, e.g. numerals in (4), rules (5a), 
(5b) or (5c) will first apply, and then rules (5d), 5(e) or (5f) will apply to compose complex 
numeral structures, and finally rules (5g) will apply to generate the pos Neu of numeral 
structures. From the processes of regular expression, the numerals 534 and 319 in (4) are 
auto-tagged as Neu. 

 

(4)  ቔᚐ534Գ319ګݙၢհள 

guli           wubaisanshisi        ren    wancheng   
encourage  five hundred thirty four  person  accomplish   
sanbaiyishijiu              xiang   zhi    lu 
three hundred and nineteen   village  DE   travel 
encourage 534 persons to accomplish the travel around 319 villages 

                                                 
3 The insertion of an adjective into a DM has the form of ‘yiAM’. 
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(5)  a. NO1   = {Ϥ,ԫ,Բ,ࠟ,Կ,؄,ն,ք,Ԯ,Զ,԰,Լ,֥,֓,ۍ,Տ,ᆄ,Ꮩ,٢,ሿ,༓}; 

        b. NO2   = {໸,၁,೶,ᆥ,ٔ,ຬ,ੀ,ம,߇,ਕ,ש,ࠒ,ᆄ,Ꮩ,٢,ሿ,༓}; 

        c. NO3  = {Ѿ,ѿ,Ҁ,ҁ,҂,҃,҄,҅,҆,ѽ,ۍ,Տ,ᆄ,Ꮩ,٢}; 

        d. IN1    -> { NO1*, NO3*} ; 

        e. IN2    -> NO2* ; 

        f. IN3    -> {IN1,IN2} {ڍ,塒,ࠐ,༓} ({ᆄ,Ꮩ,٢}) ; 

        g. Neu    -> {IN1,IN2,IN3,IN4,IN5,DN} ; 

 

Regular expression approach also applies in dealing with ordinal numbers, decimals, and 
fractional numbers. The ordinal number diyi in (6) applies rules (9) and (5g) so that it is 
regarded as a unit and tagged as Neu. Rules (10) and (5g) apply to decimals such as sandianyi 
in (7). Therefore, decimals are viewed as one unit and tagged as Neu. Depending upon the 
forms of fractional numbers, rules (11a) or (11b) apply to fractional numbers like sanfenzhiyi 
in (8) and are treated as single units. Then, after application of rules (11a) or (11b), rule (11c) 
applies to the fractional numbers. Thus the fractional numbers are tagged as Neqa. 

 

(6)  ೗ᖂ๬੒೯խ֨รԫᄎᤜ৛ၲ״ 

jia  xveshu    huodung  zhongxin  diyi  hueiyishi    zhaokai 

at   academic  activity   center   first   auditorium  convene 

convene at the first auditorium in the Center for Academic Activities 

 

(7)  ൓։ڶ׽Կរԫ 

defen zhiyou   sandianyi 

point  only  three point one 

get only 3.1 points 

 

(8)  ࿛࣍ਢԫֲऱԿ։հԫ 

dengyu shi   yiri   de  sanfenzhiyi 

equal  SHI one day DE  one third 

is equal to one day of third 
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(9)  IN5     -> {ร} {IN1,IN2} ; 

 

(10) DN    -> IN1 {Θ,΢,͊,Η,រ} IN1 ; 

 

(11) a. FN1    -> (IN1 {জ}) IN1 {ߚП,ü,ˋ} {IN1,DN} ({ᔋ,ᔅ}) ; 

b. FN2    -> {DN,IN1} {ˁ}; 

c. Neqa    -> {NE5a,WQ,QQ,DQ1,DQ2,PQ,FN1,FN2,FN3,NOP3,RD13} ; 

 

Below, DM structures of classes are also rule design and poses are identified by rule 
types. 

 

 ԫఄڣഏ՛ն࣑֮ؑק (12)

*a. beishi      wenchang       guoxiao        wunian     yiban 

      Taipei City  Wen-Chang  elementary school   five-M     one-M 

          b. beishi       wenchang      guoxiao           wunianyiban 

      Taipei City   Wen-Chang  elementary school   Fifth Grade Class One 

      the Fifth Grade Class One in Taipei Wen Chang Elementary school 

 

(13) a. CNP     -> IN1 {ڣ} {IN1,ON} {ఄ} ; 

b. Ncb      -> {NC1,NC2,NC3,CNP,DSP1} ; 

 

DM rules will generate/identify ambiguous DM compounds, e.g. (12). If nian and ban 
are regarded as measures, wunianyiban is segmented into two DMs, i.e. wunian ‘five years’ 
and yiban ‘one run’, like (12a). Therefore, when identifying DMs treated as classes, one has to 
apply the resolution principles and two DM rules (13a) and (13b). Then, classes in schools 
such as (12b) are viewed as a single unit, and the noun phrase wunianyiban is restricted to be a 
unit with the pos Ncb. The word segmentation algorithm will reduce semantic anomalies 
resulting from possible parses of sentences. 

When dealing with addresses, especially indicating the floor, number, alley, lane, section 
and neighbourhood, we also adopt a regular expression approach for identification. The 
following instances show the same forms with different segmentation between DMs and 
addresses. 
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(14) ֲছᔢ۟ؑק؀ॾᆠሁԿ੄ԮᇆԿᑔհԫ 

riqian     qian  zhi  taibeishi  xinyilu  sanduan   qihao  sanlouzhiyi 

a few days ago  move  to  Taipei City  XinYi Rd.  Sec. 3   No. 7   3F-1 

a few days ago, moved to 3F-1, No. 7, XinYi Rd., Sec. 3, Taipei 

 

(15) ۩ᆖৠؑ९ێߺڜ໮৥ԫհԫѽԲᇆழ 

xing  jing   pingshi     changanli     zhuweixiang  yizhiyilingerhao  shi 

Go through  Pingtung City  Changan Village  Zhuwei Lane  No. 1-102  as 

when going through No. 1-102, Zhuwei Lane, Changan Village, Pingtung City 

 

(16) a. NC1     -> IN1 {ᔣ,৥,ݫ,੄,ᇆ,ᑔ}; 

b. NC2     -> IN1 {ᑔ,ᇆ} {հ,Ё} IN1 ; 

c. NC3     -> IN1 {հ,Ё} IN1 {ᇆ} ; 

  

Normally, DMs such as sanlouzhiyi and yizhiyilingerhao are segmented into several units. The 
former is segmented into three units, i.e. sanlou ‘the third floor’, zhi ‘DE’ and yi ‘one’ while 
the latter is segmented into three units, i.e. yi ‘one’, zhi ‘DE’ and yilingerhao ‘No. 102’. 
However, according to CKIP Technical Report 96-01 (1996: 50), the determinative measure 
structures expressing time and location will be combined together as a unit. The reason why 
the locative DMs are combined is because the first joint principle of segmentation stipulates 
that when the meaning of a string of words is not obtained from the composition of these 
components, this string should be segmented as a unit. Consequently, in (14), DM rule (16a) 
applies to sanduan and qihao, and DM rule (16b) applies to sanlouzhiyi. In (15), 
yizhiyilingerhao applies DM rule (16c). Then sanduan, qihao, sanlouzhiyi and 
yizhiyilingerhao are all processed by the application of DM rule (13b). Thus sanduan, qihao 
and sanlouzhiyi in (14) and yizhiyilingerhao in (15) are all segmented as a single unit and 
tagged as Ncb, not DM, in Sinica Treebank. 

To deal with the reduplicative measures, e.g. ‘yiMM’ (ԫ MM) and ‘MM’ (MM), we also 
adopt a context-sensitive regular expression to identify them. For example, zhongzhong in (17) 
and yizhangzhang in (18) are regarded as a single unit. First, the context-sensitive DM rule (19) 
is applied, where two measure words in MM are restricted to be equal, and then rule (11c), so 
the form of reduplicative measures with a preceding optional yi is tagged as Neqa. 
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(17) ጟጟംᠲ 

zhongzhong  wenti 

all kinds of  question 

all sorts of questions 

 

(18) ԫ്്௧໴ 

yizhangzhang haibao 

sheets of     poster 

sheets of posters 

 

(19) RD13    -> ({ԫ}) M M ; 

 

From the examples and rules illustrated above, one knows that the regular expression 
approach helps people identify certain DMs. However, DMs still have ambiguities. 

4. Ambiguities of DMs 

The adoption of DMs rules really improves the recall of recognition, but one still has to 
resolve segmentation, sense, and pos ambiguities of DMs as shown in the preceding examples 
in Section 1. 

4.1 Word Segmentation Ambiguities of DMs 
There are two types of word segmentation ambiguities, i.e. covering ambiguities and 
overlapping ambiguities. 

 

Type1: Covering ambiguities 

(20) ԫࣚᢐ༉ߠய 

a. yi      fuyao      jiu   jianxiao 

one  take medicine  then  take effect 

       Every time when he takes medicine, the illness is completely cured. 

b. yifu      yao     jiu   jianxiao 

one-M  medicine  then  take effect 

       One dose is effective. 
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 ଚ୮؄ՑԳה (21)

*a. tamen  jia    si    kou    ren 

        they  family  four  mouth  person 

b. tamen  jia    sikou    ren 

        they  family  four-M   person 

        Their family has four members. 

 

Covering ambiguities are always associated with sense ambiguities, since different 
segmentations result in different sense interpretations. Goh et al. [2005] mention that the 
covering ambiguity is defined as follows: For a string w = xy, x  W, y  W, and w  
W. As almost any single character in Chinese can be considered a word, the above definition 
reflects only those cases where both word boundaries .../xy/... and .../x/y/... can be found in 
sentences. Example (20) is ambiguous in its meaning and has two different segmentations. 
When fu functions as a verb, fuyao is segmented as a unit, and the meaning of (20) is (20a). 
When fu functions as a measure, yifu is tagged as DM, and the meaning of (20) is (20b). 
Because the combinations of determinatives and measures are countless, DMs such as yifu 
won’t be listed in the CKIP dictionary. Different word segmentation will bring structural 
ambiguities forth. Another segmentation ambiguity exists in the ellipsis of the determinatives. 
In (21), kou is sense ambiguous in that it functions as a noun or as a measure. When kou 
behaves as a noun in (21a), the sentence is semantically anomalous and syntactically 
ungrammatical. Only when kou functions as a measure, will the sentence (21b) be 
well-processed. 

 

Type 2: Overlapping ambiguities 

(22) ԫۭۭఇ堸঴ 

a. yichuan chuanzhu shipin 

one-M  beads  accouterment 

        one string of beads 

b. yichuanchuan   zhushipin 

several strings  beady crystal 

        several strings of beady crystals 
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(23) ააᝑԱԫଡִॽऱਚࠃ 

a. mama  jiang  le   yige    yueliang  de  gushi 

mother  tell  LE  one-M   moon   DE  story 

Mother told a story about the moon. 

b. mama  jiang  le   yige    yue   liang    de  gushi 

mother  tell  LE  one-M  month  Liang  DE  story 

Mother had told for a month about Liang’s story. 

 

(24) รԫ੔ኙ։Կຝ։ 

a. diyi  paiduei  fen   san    bufen 

first  party  divide  three   part 

The first party is divided into three sections. 

b. diyipai       dueifen    san    bufen 

first group  dichotomize  three   part 

The first group dichotomized into three parts. 

 

Goh et al. [2005] state that overlapping the ambiguity is defined as follows: For a string w = 
xyz, both w1 = xy  W and w2 = yz  W hold. Mo et al. [1991] list a resolution principle to 
reduce word segmentation ambiguity. The principle asserts if ambiguous word breaks occur 
between the words in the lexicon and the DMs, the words in the lexicon should have higher 
priority to get the shared characters. Therefore, (22a), (23a) and (24a) have higher priority to 
(22b), (23b) and (24b), individually. 

According to the above discussions, to resolve word segmentation ambiguities, we 
propose the following resolution principles which were implemented in the word segmentation 
system of Ma and Chen [2003]. 

a) DM compounds are expressed and matched by regular expressions. 

b) Lexical words have higher precedence than DM compounds (cf. 22, 23, 24). 

c) Longest matching principle (i.e. 9, 10, 11, 13, 16, 19): a long DM has higher 
precedence than a short DM (cf. 6, 7, 8, 12 14, 15, 17, 18). 

d) Covering ambiguities are resolved by collocation context (cf. 20, 21). 

The word segmentation ambiguity is caused by different possible segmentations. 
Although the above examples have ambiguities, after the application of the resolution 
principles, the ambiguous segmentation is resolved and the correct segmentation has higher 
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priority. 

4.2 Sense Ambiguities of DMs 
Senses and semantic functions of DMs are sometimes related to the types of measures. The 
sense of certain types of DMs can be identified by types of measures. However, as usual, some 
DMs have ambiguous senses. Their ambiguity resolution is almost equivalent to word sense 
disambiguation. Therefore, context sensitive rules and collocation bi-grams are suitable 
information for resolving sense ambiguities. Methods for word sense disambiguation are also 
applicable for DMs. 

As mentioned in Section 3, we have adopted a regular expression approach for 
identifying structures denoting addresses. For example, DM rule (16a) is applied to segment 
yiduan, bahao, and yilou in (25) as single units, and each of them is tagged as Ncb. However, 
in (26), hao and duan are both measures specifying the fixed amount or quantity of the road, 
so yiyiqihao and yiduan are both tagged as DM. Examples (25) and (26) have sense 
ambiguities during the processes of DM recognition, so they will be automatically segmented 
as (25a) and (25b) as well as (26a) and (26b), individually. According to CKIP Technical 
Report 96-01 (1996), locative DMs are combined so that one can disambiguate (25) and (26). 
Then, the correct segmentations (25b) and (26b) are resumed according to their contexts. 

 

(25) ᢅཎ壂ሁԫ੄Զᇆԫᑔ 

 *a. luosifulu      yiduan  bahao     yilou 

          Roosevelt Rd.  one-M  eight-M  first floor 

        b. luosifulu      yiduan  bahao     yilou 

      Roosevelt Rd.  Sec. 1   No. 8    first floor 

      1 F, No. 8, Roosevelt Rd., Sec. 1 

 

(26) ᥆࣍ѾѾ҄ᇆֆሁऱԫ੄ 

 *a. shuyu  yiyiqihao  gonglu  de  yiduan 

      belong  No. 117   road   DE  Sec. 1 

b. shuyu    yiyiqihao gonglu  de  yiduan 

      belong   117-M   road   DE  one-M 

      belong to a part of the 117th road 
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Similar to dealing with addresses, sense ambiguities occur when one refers to 
percentages. One can adopt two forms to represent percentage, i.e. Chinese characters in (8) 
and mathematical symbols in (27). Regular expression approach can help one identify word 
segmentation ambiguity existing in (8). The form of the mathematical symbols has sense 
ambiguity, which can refer to either percentage like (27) or a time point like (28). Without any 
context, the symbol “ѾѽЯѿѾ” can be identified either as a fractional number and read as 
“ershiyifenzhishi” (ԲԼԫ։հԼ ‘ten over twenty one’) with the pos Neqa or as a time point 
and read as “shiyueershiyiri” (10ִ 21ֲ ‘Oct. 21’) with the pos Ndabd whose semantic role 
is time. Besides, the form of mathematical symbols is also used to refer to another kind of time 
point, such as (29). To reduce such kinds of sense ambiguities caused by mathematical 
symbols, DM rules (30a), (30b), (31a) and (31b) exist. DM rules (30a) and (30b) apply to the 
forms of mathematic symbols like (27) tagged as Neqa (numbers), while DM rules (31a) and 
(31b) apply to forms like (29) tagged as Nd (time point). Although DM rules (30) and (31) 
help disambiguate sense ambiguities between forms of mathematic symbols denoting 
percentage and time points such as (27) and (29), one still has to have context to make (27) 
and (28) distinguishable. 

 

(27) ҁѽ։ऱ۾ԱѿЯҀ 

sishifen de   zhan   le  sanfenzhier 

40-M  DE  occupy LE  two-thirds 

Those of forty points occupy two-thirds. 

 

(28) ѾѽЯѿѾ٤ၲ״ೃጻሁՠ܂՛ิรԿڻᄎᤜ 

shiyuershiyiri zhaokai quan  yuan   wanglu  gongzuo xiaozu disanci huiyi 

Oct. 21   convene whole faculty  network  work  group  third  conference 

convene the third conference of the network group on Oct. 21 

 

(29) 2005Я06Я30ޓᄅ 

2005Я06Я30 gengxin 

June 30, 2005  update 

update on June 30, 2005 
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(30) a. NE5a    -> {NE2}  {—,Я} {NE2}  ; 

         b.  Neqa    -> {NE5a,WQ,QQ,DQ1,DQ2,PQ,FN1,FN2,FN3,NOP3,RD13} ; 

 

(31) a. NE5b   -> {NE2}  {Ϋ,Я} {NE2} {Ϋ,Я} {NE2} ; 

b. Nd     -> {Ndabe,NE5b,ND3,ND5} 

 

Take Chao’s [1968] example to help disambiguate ambiguities similar to those between (27) 
and (28). As Chao discusses, the form Guangxu sanshisinian (٠ፃԿԼڣ؄) can be either 
the phrase ‘the thirty-fourth year of Guangxu (i.e., 1908)’ or the sentence ‘Guangxu’s reign 
was thirty-four years [long].’ Chao believes that, in most cases, the context will resolve the 
ambiguity. The following examples in Sinica Corpus have similar ambiguities to those Chao 
mentions. 

 

(32) ᆖመ׬ཎᄑԿԼڣऱอएհ৵ 

jingguo  kasichu  sanshinian  de  tongzhi   zhihou 

after    Castro   30-M      DE  governance  afterward 

after Castro’s thirty-year governance 

 

(33) ԿԼڣટΔᒲ᜔ߏၷ༚ټإ੡࿔ᤞ᜔ቸ 

sanshinian      qiu   qisi   zongdui  fu  zhengmingwei  shuijingzongtuan 

the year of thirty  autumn anti-smuggling  team  again  rectify   tax 
policemen team 

In the autumn in the year of thirty, the anti-smuggling team is rectified to the tax 
policemen team. 

 

Examples (32) and (33) have the same temporal phrase sanshinian, but their senses, functions 
and roles are different. The temporal phrase in (32) denotes a time length and is tagged as DM. 
The semantic role of sanshinian in (32) is duration. However, sanshinian in (33) indicates a 
time point and is tagged as Ndaad, whose semantic role is time. Even though example (33) 
omits either a Chinese reign title or Mingguo (اഏ) preceding sanshinian, we still know 
sanshinian is a specific time, not a period, from the context. When the measures nian ‘year’ 
 and ri ‘day’ (ֲ) are preceded by numerals, the temporal phrases always have sense (ڣ)
ambiguities. We have two tricks to differentiate between time points and time lengths. If DMs 
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denote time points, they are usually preceded by key words of Mingguo, the Christian era like 
Gongyuan (ֆց) and Xiyuan (۫ց), or a Chinese reign title such as Guanxu (٠ፃ), 
Qianlong (೓ၼ), Tianbao (֚ᣪ), Jiajing (ቯ壃) and so on. When DMs are preceded by these 
key words, they are tagged as Ndaad (i.e. a time point). Another trick that helps one to 
recognize DMs as time points is their neighbouring temporal phrases. Time points, not time 
lengths, are usually combined with two or three co-occurring temporal phrases, e.g. 
erlinglingwunian liuyue (2005ڣ 6ִ ‘June 2005’), liuyue sanshiri (6ִ 30ֲ ‘June 30’), 
erlinglingwunian liuyue sanshiri (2005ڣ 6ִ 30ֲ ‘June 30, 2005’), etc. The two tricks 
mentioned above and context will help one reduce some ambiguities of phrases and 
mathematical symbols specifying time. 

In conclusion, sense ambiguity resolution of DMs is almost equivalent to word sense 
disambiguation. Therefore, context sensitive rules and collocation bi-grams are suitable 
information for resolving sense ambiguities. Methods for word sense disambiguation are also 
applicable here. 

4.3 POS Ambiguities of DMs 
Here, we first discuss ambiguities about temporal adverbs to illustrate pos ambiguities and 
possible resolution methods. The temporal phrases in (34) and (35) are regarded either as time 
points or as time lengths. These temporal phrases have the same strings and word 
segmentation but have different parts of speech, semantic roles and functions. As is known, in 
Chinese a folktale, a woman called Wang Baochuan (׆ᣪລ) went through 18 years of 
hardship for her husband’s turning back home. In Mainland China, the Tiananmen Square 
massacre occurred in 1989. Therefore, the semantic roles of the temporal phrases shibanian in 
(34) and bajiunian in (35) will be labelled as duration and time individually. The pos of the 
former is DM while that of the latter is Ndaad. The reason for making different assignments of 
semantic roles is concerned with logical interpretation of sense collocations according to 
common sense and the real world knowledge. 

 

 ښऱેڣ18 (34)

shibanian  de   kushou 

18-M    DE  wait bitter 

wait bitter for eighteen years 
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 ݼऱ֘ڣ89 (35)

bajiunian     de   fankang 

the year of 89  DE   revolt 

the revolt in the year of 89 

 

When detecting DMs in Sinica Corpus and Sinica Treebank, one finds some interesting 
examples. The verb phrases (36) and (37) have the same lexical items except for their linear 
word order. The pos of the DM structure in (36) is DM whose semantic role is duration while 
that in (37) is Ndaad whose semantic role is time. It seems that different positions of temporal 
DMs will affect the meanings of sentences. Therefore, we briefly reviewed the data in Sinica 
Treebank. The totality of the semantic role time of NPs and of PPs following a verb is close to 
that of the semantic role duration. But the totality of the semantic role time of NPs and of PPs 
preceding a verb is much more than that of duration. The statistics indicate that temporal DMs 
preceding verbs mostly function as time. Another problem with assignment of semantic role to 
a similar structure is illustrated by (38) and (39). The DM structure in (38) is tagged as DM 
and assigned the semantic role duration while, in (39), it is tagged as Ndaad and assigned the 
semantic role time. This kind of pos ambiguity has relation to situation types. The situation 
type of fuxing in (38) is an Activity while that of panxing in (39) is an Achievement. The 
feature [̈́Durative]4 of the events causes differences. As for the pos ambiguity of yixia, yixia 
in (40) means ‘for a while’, which is tagged as Nddc and assigned the role of duration. 
However, yixia in (41) means ‘once’, which is tagged as DM and assigned the role of 
frequency. Nevertheless, yixia in (42) is POS ambiguous and has two senses. One is tagged as 
Nddc and means ‘for a while’ while another is tagged as DM and means ‘once’. The former is 
labelled as duration and the latter is assigned as frequency. Equal to the cause of differences 
between (38) and (39), the ambiguities in (42) are due to situation types. 

 

(36) ᘣਙԿԼԶڣ 

qinzheng     sanshibanian 

hole the reins of government   38-M 

hold the reins of government for 38 years 

 

 

                                                 
4 More detailed discussion about situation types can be referred to Smith [1991]. 
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(37) ԿԼԶڣᘣਙ 

sanshibanian    qinzheng 

the year of 38  hold the reins of government 

hold the reins of government in the year of 38 

 

 ऱࣚ٩ڣ34 (38)

sanshisinian  de     fuxing 

     34-M  DE  serve a sentence 

serve a sentence for 34 years 

 

 ٩ܒऱڣ34 (39)

sanshisinian   de   panxing 

the year of 34  DE  sentence 

sentence a person in the year of 34 

 

(40) ㄝ៥ϔϟ 

deng wo   yixia 

wait  I  for a while 

wait for me for a while 

 

(41) ኿הԫՀ 

Qiao   ta  yixia 
strike  he  one-M 
strike him once 
 

(42) নהԫՀ 

a. yao  ta   yixia 
bite  he   for a while 

 bite him for a while 
b. yao  ta   yixia 

bite  he   one-M 
bite him once 
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Semantic role assignment is not an easy task, since it requires world knowledge as well as 
linguistic knowledge. In You and Chen [2004], they identify parameters of determining 
semantic roles and propose an instance-based approach to resolve ambiguities. They adopt 
dependency decision making and example-based approaches. Semantic roles are determined 
by four parameters, including syntactic and semantic categories of the target word, case 
markers, phrasal head, and sub-categorization frame and its syntactic patterns. The 
refinements of features extraction, canonical representation for certain classes of words and 
dependency decisions improve role assignment. To assign the semantic roles of DMs, the 
above parameters are further refined as the features of relative positions and situation types. 

The examples above show that ambiguities are unavoidable when one deals with DMs. In 
addition to the typical DMs, some related structures like reduplicative DMs, numerals, the 
ellipsis of measures, etc. are also topics for discussion. During DM processing, certain DMs 
are ambiguous to automatic identification in word segmentations, senses as well as poses. 
Here, yi dian (ԫរ) is taken as an example. 

 

 ԫរ૞௽ܑࣹრڶ (43)

you   yidian   yau    tebie    zhuyi 

have  one-M  should  special  attention 

There is a point very important for attention. 

 

(44) ϔ咲ᖗᛣԴ㽕ᬊϟ 

yidian  xinyi  ni    yao     shouxia 

little  regard  you  should  receive 

You must receive my little thanks. 

 

(45) ԫរႃٽ 

yidian         jihe 

one o’clock  assemble 

assemble at one o’clock 

 

(46) ዦॽԫរ 

piaoliang  yidian 
beautiful  a little 
a little bit beautiful 
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 ԫរݶ (47)

a. kuai     yidian 

nearly  one o’clock 

        nearly one o’clock 

b. kuai  yidian 

fast   a little 

      more quickly 

 

(48) ኬԫរ 

man   yidian 

slow   a little 

more slowly 

    

The phrase yidian functions as a pronoun and tagged as DM in (43), functions as a quantitative 
determinative modifying xinyi and tagged as Neqa in (44), functions as a time noun and 
tagged as Ndabe in (45), and functions as a post-verb adverb of degree and tagged as Dfb in 
(46). While in (47), yidian has sense ambiguities depending upon context. In addition, yidian 
in (47a) and (48) is pos ambiguous. For another example, qi (ದ) functions as a measure in 
both siqi anjian (؄ದூٙ) and yiqi mingan (ԫದࡎூ). In fongyun siqi (ଅႆ؄ದ) and yiqi 
sikao (ԫದ৸ە), siqi and yiqi are tagged as VA11 and Dh individually. However, in yiqi 
fanan (ԫದحூ) and fanan siqi (حூ؄ದ), the DMs yiqi and siqi are ambiguous. It is 
obvious that the ambiguities of DMs are complex and that a DM compound can have more 
than one classification of ambiguities. 

No matter whether the ambiguity is from word segmentation, sense, or pos, the 
prescription of resolution principles and DM rules are helpful in disambiguating DMs. Besides, 
the neighbouring morphemes and context are other tricks in reducing ambiguities. 
Furthermore, pos ambiguities are concerned with common sense, and the resolution features 
also include positions of temporal DMs and situation types. Such ambiguities have to be 
reduced by the application of parameters of context vector models. 

5. Implementation and Evaluation 

We randomly chose 2035 sentences (11697 word tokens) from Sinica Treebank as our 
development set. In total, 545 tokens of the development data are processed by the revised 
DM rules (as shown in the appendix). Among the 545 tokens, 504 tokens are correctly 
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segmented, and 443 tokens are correctly pos tagged. The segmentation accuracy of the 
development data is 92.5%, the tag accuracy of the development data is 81.3%, and the tag 
accuracy with the correct segmentation of the development data is 88.0%. Contrastively, the 
segmentation accuracy and tag accuracy of the development set processed by the original DM 
rules are both lower than those applied the revised DM rules. The segmentation accuracy is 
84.2%, and the tag accuracy is 71.0%. Then, to test the accuracy of the revised DM rules, we 
randomly chose 2111 sentences (12209 word tokens), which have no overlap with the 
development set, from Sinica Treebank as the testing set. In total 564 tokens of the testing data 
were processed using the revised DM rules. Among those 564 tokens, 508 tokens were 
correctly segmented, and 424 tokens were correctly pos tagged. By application of the revised 
DM rules, the segmentation accuracy of the testing data is 90.1%, the tag accuracy of the 
testing data is 75.2%, and the tag accuracy with the correct segmentation of the testing data is 
83.5%. Contrastively, processed by the original DM rules, the segmentation accuracy and the 
tag accuracy of the testing data is 77.8% and 60.3% individually. Table 1 is the evaluation 
result. 

Table 1. Accuracy of Development data and Testing data 

development set testing set data 
 
accuracy 

2035 sentences 
(11697 word tokens) 

2111 sentences 
(12209 word tokens) 

segmentation 
accuracy 84.2% 77.8% original 

DM rules 
tag accuracy 71.0% 60.3% 

segmentation 
accuracy 92.5% 90.1% 

tag accuracy 81.3% 75.2% revised 
DM rules tag accuracy 

with correct 
segmentation 

88.0% 83.5% 

Table 1 shows that both segmentation accuracy and tag accuracy of development set and of 
testing set processed by the revised DM rules are higher than those processed by the original 
DM rules, although the segmentation accuracy, tag accuracy and tag accuracy with correct 
segmentation of the testing set are a little bit lower than those of the development set. 

After data analysis, we found that there were several reasons for inaccurate results. The 
most crucial factor resulting in inaccuracy is ambiguity, including word segmentation 
ambiguities, sense ambiguities and pos ambiguities. The word segmentation ambiguities, 
sense ambiguities, and pos ambiguities caused 11%, 32.4% and 27.2% of errors, respectively. 
For example, (49a) and (50a) are correct sentences. The contrastive sentences (49b) and (50b) 
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have errors in word segmentation ambiguities. Sentences (51b) and (52b) have errors in sense 
ambiguities, which are contrastive to the correct ones (51a) and (52a). Sentences (53b) and 
(54b) have errors in pos ambiguities. The total percentage of errors caused by ambiguities is 
about 70.6%. 

 

(49) a. ߫޳(Na)ʳ ʳ(D)ױ լ(D)ʳ ਢ(SHI)ʳ ԫଡ(DM)ʳ Գ(Na)ʳ ʳ(D)ࢬ ࿇ࣔ      

(VC)ʳ ऱ(T) 

            qiche     ke      bu    shi        yige      ren   suo  faming  de 

            automobile  should  NEG SHI  one-M  person  that which  invent DE 

            Automobiles are not invented by one person. 

 *b. ߫޳(Na)ʳ ʳ(D)ױ լ(D)ʳ ਢ(SHI)ʳ ԫ(Neu)ʳ ଡԳ(Nh)ʳ ʳ(D)ࢬ ࿇ࣔ
(VC) ऱ(DE) 

        qiche    ke      bu      shi     yi   geren    suo     faming  de 

        automobile  should  NEG SHI  one  individual  that which  invent DE 

 

(50) a. ڶԫڻ(DM)ʳ ૞(VE)ʳ ʳ(VC)ܕ ֵ(Na)ʳ ழ(Ng) 

       youyici  you    pau  mu   shi 

       once   should  shave wood  as 

       once when shaving wood 

*b. ڶ(V_2)ʳ ԫ(Neu)ʳ ૞(A)ʳڻ ʳ(Na)ֵܕ ழ(Ng) 

        you   yi     ciyou     pau   mu   shi 

       have  one  secondary  shave  wood  as 

 

(51) a. ຟ(D)ʳ ʳ(V_2)ڶ ԫ੄(DM)ʳ ტԳ(VH)ʳ ऱ(DE)ʳ ਚࠃ(Na) 

       dou  you   yiduan    ganren     de   gushi 

       all  have   one-M  heart-stirring  DE    story 

       all have one heart-stirring story 

          *b. ຟ(D)ʳ ʳ(V_2)ڶ ԫ੄(Nc)ʳ ტԳ(VH)ʳ ऱ(DE)ʳ ਚࠃ(Na) 

        dou  you   yiduan    ganren      de   gushi 

         all  have   Sec. 1   heart-stirring  DE   story 
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(52) a. ܀(Cbb)ʳ Ո(D)ʳ ʳ(VC)נב ᑇۯ(DM)ʳ ໌ᄐ(Nv)ʳ ٣ၞ(Na)ʳ ᣪ၆(VH)ʳ     

ऱ(DE) ࡎس(Na)ʳ ֗(Caa)ʳ ჾ؈(VJ)ʳ Ѿҁਮ(DM)ʳ ଆᖲ(Na)ʳ ऱ(DE)ʳ

ኰ࿀(VH)ʳ  Ꮭ(Na)ז

            dan  ye   fuchu shuwei  chuangye   xianjin   baoguei  de  shengming 

            but  also  pay  several-M  pioneering  precursor  valued  DE    life 

        ji  sunshi   shisijia   feiji    de  cantong  daijia 

           and  lose   14-M  airplane  DE   cruel   cost 

  but also pay several pioneering precursors’ valued lives and suffer the cruel 
costs of losing fourteen airplanes 

         *b.܀(Cbb)ʳ Ո(D)ʳ ʳ(VC)נב ᑇۯ(A)ʳ ໌ᄐ(VA)ʳ ٣ၞ(VH)ʳ ᣪ၆(VH)ʳ
ऱ(DE) ࡎس(Na)ʳ ֗(Caa)ʳ ჾ؈(Na)ʳ Ѿҁਮ(DM)ʳ ଆᖲ(Na)ʳ ऱ
(DE)ʳ ኰ࿀(VH)ʳ  Ꮭ(Na)ז

             dan  ye   fuchu shuwei  chuangye  xianjin  baoguei  de  shengming 

             but  also  pay  several-M   digital  precursor  valued  DE    life  

ji  sunshi shisijia   feiji    de  cantong  daijia 

           and  lose   14-M  airplane  DE   cruel   cost 

 

(53) a. 10ִ(Nd)ʳ 5ֲ(Nd) 

       shiyue wuri 

       Oct.   fifth 

       Oct. 5 

*b. 10ִ(Nd)ʳ 5ֲ(DM)  

       shiyue  wuri 

       Oct.   five-M 

 

(54) a. ኙ࣍(P)ʳ ԮԼ԰ڣ(Nd)ʳ ʳ(Nd)ึڣ ᑻ८(Na) 

       dueiyu  qishijiunian  nianzhong  jiangjin 

       about  the year of 79  year-end   bonus 

       about the year-end bonus in the year of 79 

*b. ኙ࣍(P)ʳ ԮԼ԰ڣ(DM)ʳ ʳ(Nd)ึڣ ᑻ८(Na) 

         dueiyu  qishijiunian  nianzhong  jiangjin 

       about     79-M     year-end   bonus 
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Other than errors in ambiguities, there are four kinds of errors bringing about inaccuracy. 
The first kind of errors is a result of the segmentation model (a Hidden Markov Model). In 
HMM, there are several possible paths, including the correct one. However, the result chosen 
was not the correct one. For example, (55a) and (55b) are the possible paths in HMM. For the 
result, the inaccurate one (55b) was chosen. The error of (56b) is also due to HMM. The 
percentage of errors made by HMM is 10.3%. 

 

(55) a. ڃუ(VE)ʳ ದ(Di)ʳ ԲԼڣ(DM)ʳ ছ(Ng)ʳ ऱ(DE)ʳ  (Na)ࠃ࢓

       hueixiang  qi  ershinian  qian    de   wangshi 

       recall    ASP   20-M   before  DE    past 

       recall the past twenty years ago 

*b. ڃუದ(VE)ʳ ԲԼ(Neu)ʳ ʳ(Nf)ڣ ছ(Ng)ʳ ऱ(DE)ʳ  (Na)ࠃ࢓

         hueixiangqi  ershi  nian  qian    de   wangshi 

       recall      twenty   M  before  DE    past 

 

(56) a. քԼքᄣ(DM)ʳ ழ(Ng) 

       liushiliusuei  shi 

       66 years old  as 

       as 66 years old 

*b. քԼք(Neu)ʳ ᄣ(Nf)ʳ ழ(Ng) 

        liushiliu  suei  shi 

        66      M   as 

 

The second kind of errors is because different contexts cause different tagging. In Sinica 
Treebank, one or more determinatives together with an optional measure will constitute a DM. 
However, certain determinatives and measures are tagged differently than usual because of the 
context. In (57a), liangsanmiaozhong (ࠟԿઞᤪ ‘two and three seconds’) is composed of 
liangmiaozhong ‘two seconds’ and sanmiaozhong ‘three seconds’. The measure miaozhong 
‘second’ is shared by determinatives liang ‘two’ and san ‘three’. What is in (57c) is the tree 
structure of (57a). Both liang and san are tagged as Neu, and miaozhong is tagged as Nf. In 
(58a), qibayue (ԮԶִ ‘July and August’) is composed of qiyue ‘July’ and bayue ‘August’. 
The diagram (58c) is the bracketed tree diagram of (58a). From the context, one knows that qi 
in (58a) is not the numeral ‘seven’ but a month ‘July’ so qi is tagged as Nd not Neu. The 
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percentage of errors resulting from contexts is 8.8%. 

 

(57) a. ຍ(Nep)ʳ ৎႨ(Na)ʳ অ਍(VJ)ʳ ࠟ(Neu)ʳ Կ(Neu)ʳ ઞᤪ(Nf) 

  zhe  zishi  baochi liang  san  miaozhong 

  this  pose   keep  two  three  M 

  This pose is keeping for two and three seconds. 

*b. ຍ(Nep)ʳ ৎႨ(Na)ʳ অ਍(VJ)ʳ ࠟԿઞᤪ(DM) 

   zhe  zishi  baochi liangsanmiaozhong 

   this  pose  keep   two-three-M 

     c. S(theme:NP(quantifier:Nep:ຍ|Head:Nac:ৎႨ)|Head:VJ1:অ਍ 

      |duration:DM(Head:Neu(Head:Neu:ࠟ|Head:Neu:Կ)|Head:Nfg:ઞᤪ)) 

 

(58) a. ҄(Nd)ʳ Ε(Caa)ʳ ִ҅(Nd)ʳ ੡(VG)ʳ Հ֑(Nd)ʳ ҁរ(Nd)ʳ ۟(Caa)ʳ  

       ҁ រ(Nd) Ҁѽ։(Nd) 

    qi     bayue   wei  xiawu    sidian      zhi     sidian    sanshifen 

seven  August  is  afternoon  four o’clock  to  four o’clock  thirty 
minutes 

    In July and August, it is from four to four-thirty o’clock. 

*b. ҄(Neu)ʳ Ε(PAUSECATEGORY)ʳ ִ҅(Nd)ʳ ੡(P)ʳ Հ֑(Nd)ʳ ҁរ
(DM)ʳ ۟(Caa)ʳ ҁរ(DM)ʳ Ҁѽ։(DM) 

      qi     bayue   wei  xiawu    sidian  zhi  sidian   sanshifen 

     seven  August  is  afternoon  four-M  to  four-M  thirty minutes 

     c.  S(theme:NP(Head:Ndabc(DUMMY1:Ndabc:҄|Head:Caa:Ε
|DUMMY2:Ndabc:8ִ))|Head:VG2:੡|range:NP(property:Ndabe:Հ֑
|Head:NP(DUMMY1:NP(Head:Ndabe:  ҁរ)|Head:Caa:۟
|DUMMY2:NP(property:Ndabe:ҁរ|Head:Ndabe:Ҁѽ։)))) 

 

The third kind of errors occurs when there is only one measure without any other 
determinatives, e.g. (59b) and (60b). The percentage of errors in one measure is 8.1%. The 
error in wrong tagging of one measure is because of the training data from Sinica Corpus. A 
sole measure is tagged as Nf in Sinica Corpus, but in Sinica Treebank it is viewed as a DM 
structure and tagged as DM. Therefore, a sole measure always has incorrect pos. This kind of 
error has to be dealt with during postprocessing. 
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(59) a. ່२(Nd)ʳ ᦫࠩ(VE)ʳ Ա(Di)ʳ ଡ(DM)ʳ ᙹԳᦫፊ(VH)ʳ ऱ(DE)ʳ  

ਚࠃ(Na) 

       zueijin tingdao le   ge  hairentingwen de  gushi 

       recent  hear  LE  M    shocking   DE  story 

       recently hear one shocking story 

*b. ່२(Nd)ʳ ᦫࠩ(VE)ʳ Ա(Di)ʳ ଡ(Nf)ʳ ᙹԳᦫፊ(VH)ʳ ऱ(DE)ʳ  
ਚࠃ(Na) 

            zueijin tingdao le   ge  hairentingwen de  gushi 

        recent  hear  LE  M    shocking   DE  story 

 

(60) a. ڶ(V_2)ʳ ឍ(DM)ʳ ࿳ߜ(VH)ʳ ऱ(DE)ʳ ֨(Na) 

       you  ke   shanliang   de    xin 

       have  M  kindhearted  DE  heart 

       is kindhearted 

*b. ڶ(V_2)ʳ ឍ(Nf)ʳ ࿳ߜ(VH)ʳ ऱ(DE)ʳ ֨(Na) 

        you  ke   shanliang   de    xin 

        have  M  kindhearted  DE  heart 

 

The last kind of error is because of unknown word identification such as (61) and (62). The 
unknown words in (61b) and (62b) are not identified correctly, so errors occur. The percentage 
of errors in unknown words is 2.2%. 

 

(61) a. ᓴ(Nh)ʳ ʳ(VE)ߢ ՚(DM)ʳ ౻(Na)ʳ ֨(Na) 

       shei  yan  cun   cao   xin 

       who  say  inch  grass  heart 

       children like grass (cannot pay their parents back) 

*b. ᓴ(Nh)ʳ ʳ(VE)ߢ ՚౻(Na)ʳ ֨(Na) 

         shei  yan  cuncao   xin 

        who  say  grass  heart 
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(62) a. ໴(VC)ʳ ൓(DE)ʳ Կ(Neu)ʳ ਞ(Nd)ʳ ᄇ(Na) 

       bao      de   san    chun    huei 

       pay back  DE  three  spring  sunshine 

       pay parents back 

*b. ໴൓Կਞᄇ(VH) 

         baodesanchunhuei 

        pay back 

 

In our implementation and evaluation, the accuracy of segmentation, of tag, and of tag 
with correct segmentation of the development set processed by the revised DM rules are 
higher than those processed by the original DM rules. Through application of the revised DM 
rules, the segmentation accuracy, tag accuracy and tag accuracy with correct segmentation of 
the testing set are a little bit lower than those of the development set. The percentage of 
ambiguities causing inaccuracy is 70.6% while the total percentage of other factors is 29.4%. 
The high proportion of ambiguity shows that, although a regular expression approach was 
used in applying DM rules to deal with DMs, eventually, ambiguity is the most crucial issue 
one must confront. Therefore, the application of resolution principles, of DM rules, of context 
sensitive rules, of collocation bi-grams and of parameters of context vector models are 
necessary to help one disambiguate. Language reflects the human view of the world.  
Differing personal world knowledge may result in different explanations of sentences. Some 
reduction of ambiguities of DMs depends upon the human’s common sense knowledge. 

6. Conclusion 

DMs are not a closed set, so one has to apply DM rules during the process of automatic 
identification of DMs. By observing Sinica Treebank, we had developed a set of regular 
expression rules to identify DMs and their parts of speech. Thus, all DM candidates can be 
matched and classified by regular expression rules. However, due to segmentation, pos and 
sense ambiguities of DMs, DM rules are necessary complements to dictionaries and helpful to 
resolve ambiguities by applying resolution principles and segmentation models. Sense and pos 
ambiguities are also expected to be resolved by different approaches during post-processing 
by applying context sensitive rules, collocation bi-grams and parameters of context vector 
models. 
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Appendix. CKIP’s DM Phrase Structure Rules 
Abbreviation   Term 

 A   adjectives 

 DD   demonstrative determinatives 

 DESC  the adjectives that occur in the middle of a DM compound 

 DFa   pre-verbal degree adverbs 

 Dfb   post-verbal degree adverbs 

 Dh   manner adverbs 

DM   determinative-measure compounds 

 DQ   quantitative determinatives denoting degree 

 DS   definite specific determinatives 

 M   measure words 

 NC   place nouns 

Ncb    common place nouns 

 Nd   time nouns 

 Ndaad  time nouns indicating years 

 Ndabd  time nouns indicating days that are circular 

 Nddc   time nouns indicating future 

Neqa   quantitative determinatives 

 Neu   numeral determinatives 

 Nf   measures 

NO   numeral determinatives 

 ON   ordinal numerical determinatives 

 OS   ordinal specific determinatives 

 PNM   post nominal modifiers 

 PQ   quantitative determinatives denoting par relation 

 QO   interrogative quantitative determinatives 

 WQ   quantitative determinatives denoting totality 

 VA11       active intransitive motion verbs 
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NO1     = {Ϥ,ԫ,Բ,ࠟ,Կ,؄,ն,ք,Ԯ,Զ,԰,Լ,֥,֓,ۍ,Տ,ᆄ,Ꮩ,٢,ሿ,༓} ; 

 

NO2     = {໸,၁,೶,ᆥ,ٔ,ຬ,ੀ,ம,߇,ਕ,ש,ࠒ,ᆄ,Ꮩ,٢,ሿ,༓} ; 

 

NO3     = {Ѿ,ѿ,Ҁ,ҁ,҂,҃,҄,҅,҆,ѽ,ۍ,Տ,ᆄ,Ꮩ,٢} ; 

           

NO3a    = {ۍ,Տ,ש,ࠒ,ᆄ,Ꮩ,٢} ; 

 

ON      = {ظ,Ԭ,ׇ,ԭ,ؙ} ; 

 

NC      = {ഏ,ઊ,ڠ,ᗼ,ၢ,ޘ,᠜,ᔣ,ߺ,ಷ,೴,ీ,৥,ݫ,੄,ᇆ,چ,ဩ,ᑔ,▭,ؑ,੊,ຝ,׹,ᓰ,ೃ,
ઝ,ߓ,్,ै,৛,ᨚ} ; 

 

Ndabe    = {堚ඣ,ରඣ,ڰඣ,ڰՂ,ඡՂ,Ղ֑,խ֑,Հ֑,ඣၴ,֑ၴ,ඡၴ,࡙ת,֑࡙,ඣ,֑,ඡ,
ເඡ,෡࡙,ᾠ֑,՗ழ,ժழ,ഫழ,׮ழ,߭ழ,գழ,֑ழ,آழ,عழ,߸ழ,کழ,َ
ழ} ; 

            

ND      = {პઞ,᠖ઞ,ઞ,ઞᤪ,։,։ᤪ,ࠥ,ࠥᤪ,រ,រᤪ,រڍᤪ,ڲ,ޓ,ધ,ᔚ,֚,ֲ,ၜ,ࡌ,៖
ਈ,ٝڣ,ڣ,ࡱ,ሉ,ᇆ,ඡ,മ,ၜࡌ,ڣࡌ,ڣᄣ,ᄎ,ᄎࠝ,ೄ,׈,ᔘ,ڣཚ} ; 

            

ND2     = {ழ,׈ધ,ڣ৫,ִ,ִٝ,ೄ՗,ᖂཚ,ᖂזڣ,ڣ,Հ՗} ;  

 

DESC    = {Օ,՛,ᖞ} ; 

 

PNM     = {ڍ,塒,נ,תᙰ,ړ༓,ၲ؆,ᖞ,إ,๺,ߩ,հڍ} ; 

           

Nfa      = {ނ,ء,ᡰ,ຝ,ਲ਼,ݩ,๠,ཚ,᤾,໱,ں,ື,ങ,ሐ,ቅ,ᙍ,គ,ར,ᐏ,ᚾ՗,ᚾ,৞,༏,࿇,։,
ٝ,ࣚ,ଡ,௅,௅ࠝ,ጥ,۩,֪,ٙ,୮,ਮ,࠴,ࠠ,ᆏ,ࡻ,؁,ጮ,൴,ᕪ,ೋ,༇,ᅨ,്,ࣤ,֭,
ᑏ,༑,׽,௓,މ,Ḿ,ၗ,Ց,ལ,ཱི,ড়,ᔖ,ศ,ׂ,ᔚ,࣭,૿,॰,ኟ,ࢬ,֐,ᘌ,஛,ଈ,ଊ,᦭,
ᙰ,ය,९ය,؀,ፕ,஧,ഘ,ࢅ,ឍ,ஆ,ঞ,ۯ,࠺,ݠ,ٚ,ם,଄,ᆺ,ࢪ,ᦛ,ఄ,୉,տ,Մ,ټ,
ႈ,ದ,ၴ,ᒧ,ᠲ,ڃ,ै,ࢵ,ؾ} ; 

 

Nfb     = {ຏ,Ց,ቅ,ᒌ,ݝ,྾} ; 
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Nfc     = {ኙ,ᠨ,ࡲ,྾,ค,塊,۩,٨,ߪ,९٨ߓ,٨,ඈ,९ඈ,೫,ב,୚,࿝,ۭ,९ۭ,඀,ᚥ,ޅ,ࢪ,
ิ,ጢ,ᆘ,த,ᆢ,઼,ோ,ቴឡ,ຝ,ጟ,ᣊ,ᑌ,ᑌࠝ,੔,ሁ,ᡐ,ᆵ,ّ,ኃ,ޔ,ᜀ,ஂ,ᦤ,ฮ,ۥ,
ป,ហ,ၷ,ᦝ,ڤ,ᓒ,ႈ} ; 

 

Nfd     = {ࠄ,։,։ࠝ,ቸ,ഔ,ऐ,⩧,ᐽ,ނ,ै,ᦡ,ޫ,ೄ,Ց,Ցࠝ,ࢳ,Ⴧ,ዠ,᥏,൹,ࣄ,ᐋ,ૹ,൅,ኲ,
९ኲ,९ኲࠝ,ኲࠝ,ᆏ,ᆏࠝ,९ᆏ,९ᆏࠝ,੄,੄ࠝ,९੄,९੄ࠝ,࿭,࿭ࠝ,រ,រࠝ,
ׂ,ᜐ,ຝٝ,ຝ։,ᰛ,غ,֐,ၸ,᭪,ं,ሐ} ; 

 

Nfe     = {ฏ,ฏ՗,ܚ,ܚ՗,ᒣ,ᒣ՗,឵՗,ᡝ,ᡝ՗,ᤃ,ᤃ՗,ᜁ,ᜁ՗,᣷՗,ࠝץ,ץ,๳,๳ࠝ,ۃ
՗,෿,ද,ᦫ,᧾,៪,ઇ,᝹,ᦨ,ᒌ,ᅹ,ࣦ,Վ,Վ՗,ೲ,ྏೲ,࿟,ᖜ,෿՗,ද՗,᧾՗,៪՗,
ઇ՗,᝹՗,ᦨ՗,ᒌ՗,ࣦ՗,࿟՗,ᖜ՗,᨞࿞,ޟ,ޟ՗,ಁೲ,໹,ઉ,࿞,ᗗ,᝼,બ} ; 

 

Nff     = {ߪ,ᙰ,ᜭ,Ꮧ՗,Ꮿ,ߚ՗,֫,ᆬ,ோ՗,ೃ՗,چ,ৢ՗,ۃ,࿺,୮՗} ; 

 

Nfg     = {ֆᵏ,ֆ՚,ֆ։,ֆ֡,ֆՁ,ֆ֧,ֆߺ,ؑ֡,ֆ᠖,ᛜທ֡,ܢ,ٹ,؀֡,ᒘ,େ,௪,௧
௪,↩,⭰,֡,ߺ,᠖,՚,Ձ,ۏ,ᵏ,ᵏۏ,௧େ,௧ߺ,૎֡,૎ߺ,૎ܢ,૎՚,ۏડ,֡ۏ,
პۏ,ශۏ,૎ٹ,૎େ,ڣ٠,ֆఋ,ֆຸ,ؑఋ,ᛜທఋ,ࡓ,ఋ,։,ظ,ຸ,ֱؓֆߺ,ؓ
ֱֆ֡,ֱؓ֡,ֱؓֆ։,ֱؓ૎େ,૎ఋ,ֆ܌,ֆְ,ֆᕲ,ְؑ,؀ࠟ,؀ְ,ְֲ,
ఝ׹,ఝཎ,ᒓ,ֆᖜ,ֆᘝ,ֆࠟ,ࢮ܌,ְ,ࠟ,ᙒ,ᕲ,܌,૎ᒓ,૎ࠟ,ֆᙒ,ශ܌,ශ։,ֆ
ශ,܌ש,ֆᐽ,ֆ֒,ؑ֒,ᛜທ֒,؀֒,ֲ֒,ఝ׹,঴ๅ,ࠗף,፠ۘڤ,ֆ֯,ֆف,
ֆऺ,ֆٽ,ֆՎ,֯,ශ֒,ڏ,ڏ௽,ڏዿ,ֱم,ۏֱمᵏֱم,ۏֆ։,ֱمֆ՚,م
ֱֆ֡,ֱمֆֱم,ߺ૎֡,ف,ක,۫۫,ߡ,ֻ,ց,Ⴝ,Ⴧ,ח٣,ᗝֺ,ऄ૴,ऄி,ᙃ
Փ,್܌,᠘,૎᠘,ભց,ঁՓ,ࢮߺ,ֲց,ֲႽ,Ը,ؚ,ח,ፁ,᨞,Օ᨞,ྡྷۘ,Տ׬ש,׬,
ᛠرש,٠,Տر,ٗ௽,್Ժ,ዿ௑,ر௽,׬,رሁש,܌್,׬,ߺ᎒,Տ᎒,٢᎒,᎒,᎒
౿,ۯց,๕ۘ,ᑛࡥ,ऄࢮร,ڜഛ,։ߺࡺ,ߦ,პߺࡺ,ශߺࡺ,ශڜഛ,ශۏ,ශ֣,ሒ
 ; {ᄣ,к,ंࡌ,ቅׄ,ڂ

 

Nfh     = {࿓,܂,։,ᵏ,ශ,࿭,໮,ਐ,ွૻ,৫,ၲ,ၲ८,ᜤ,ஃ,ள,ቸ,ᛜ,ٔ,ఄ,ඈ,ຑ,෺,ं,ٽڃ,
 ; {ै,ڻ,ၸ,ኹ,࿛,ป,ੌ,ཧ,ᜢ,މ

 

Nfi     = {৫,ᔚ,ڻ,ڃ,ሙ,ᔉ,Հ,Հࠝ,ᔡ,྾,ᜢ,ᜢࠝ,᥼,എ,എࠝ,ו,ނ,ޡ,ᤚ,ቅ,ᣂ,֫,֫ࠝ,
ᆬ,༳,֣༳,ஜ,ஜᙰ,ณ,Ց,Ը,ዕ,ዕ՗,ࣨ,ࣨ՗,ᠮ,ᠮ՗,ཧ,ཫ,ཫ՗,ೄ,ಾ,ᒢ,ዓ,ዓ
 ; {ป,ٽڃ,ህ,ಖ,ڴ,ࡌ,భ,໱,ؿ
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M       = Nfa & Nfb & Nfc & Nfd & Nfe & Nfg & Nfh & Nfi & ND ; 

 

TPNM   = {ڍ,ת,๺,ᖞ,إ} ; 

 

WQ     = {ԫ,٤,የ,ᖞ,ګ,ԫ֊,ڶࢬ} ; 

 

QQ      = {֟ڍ,ૉե,༓ڍ} ; 

 

DFa     = {ৰ,஧,ࢡ,ట,ړ,ᄕ,የ,٦,ޓ,ື,່,֜,᭕,ڍ,ജ,ॺൄ,ฆൄ,Լ։,֠ࠡ,ڶរ,ฃ੡,࿑
პ,ֺለ,լՕ,መ։,መٝ,ຍᏖ,߷Ꮦ} ; 

 

DQ1    = {ڍ,๺ڍ,๺๺ࠄړ,ࠄڶ,ڍڍ,༓๺,ڶऱ,֟๺,ڍᑇ,֟ᑇ,Օڍᑇ,௠ת,լ֟,ຝ։,
ԫຝ։,ຝٝ,ଡނ} ; 

 

DQ2     -> DFa {ڍ,֟} ; 

 

PQ      = {ת,ૉե,ڶऱ} ; 

 

DD      = {ຍ,߷,ୌ}; 

 

OS      = {Ղ,Հ,ছ,৵,ᙰ,ڻ,أ,ଈ,ਬ,ٵ,׼} ; 

 

DS      = {ء,၆,ඏ,չᏖ,⅄,壆,۶,ܑ,ல} ; 

 

IN1     -> { NO1*,NO3* } ; 

 

IN2     -> NO2* ; 

 

IN3     -> {IN1,IN2} {ڍ,塒,ࠐ,༓} ({ᆄ,Ꮩ,٢}) ; 

 

IN3a    -> NO3a* ;  
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IN4     -> {Ղ} IN3a ; 

 

IN5     -> {ร} {IN1,IN2} ; 

 

DN      -> IN1 {Θ,΢,͊,Η,រ} IN1 ; 

 

NE5a    -> {IN2}  {Ϋ,Я} {IN2} ; 

 

NE5b     -> {IN2}  {Ϋ,Я} {IN2} {Ϋ,Я} {IN2} ; 

 

FN1     -> (IN1 {Ծ}) IN1 {։հ,Ϋ,Я} {IN1,DN} ({ൎ,இ}) ; 

 

FN2     -> {DN,IN1} {и} ; 

 

FN3     -> {IN1} {ګ} ({IN1,PNM}) ; 

 

FN      = FN1, FN2, FN3 ; 

            

NA1     -> IN1 {్ڣ} ; 

 

NC1     -> IN1 {ᔣ,৥,ݫ,੄,ᇆ,ᑔ} ; 

 

NC2     -> IN1 {ᑔ,ᇆ} {հ,Ё} IN1 ; 

 

NC3     -> IN1 {հ,Ё} IN1 {ᇆ} ; 

 

ND1     -> {IN1,ຍ,߷) ND ; 

 

ND3     -> IN1 ND2 ; 

 

ND4     -> IN1 ND ( PNM,TPNM ); 
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ND5     -> {ຍ,߷} {ழ,ೄ՗,Հ՗}; 

 

ONP     -> ON M ; 

 

NOP1    -> IN1 (DESC) ({ת}) M ; 

 

NOP2    -> DESC (ת) M ; 

 

NOP3    -> IN1 PNM ; 

 

NOP4    -> M (PNM) ; 

 

NOP5    -> {IN3,DN,FN,ᠨ} M ; 

 

NOP     -> {FN,NOP1,NOP3,NOP4,NOP5} ; 

 

WQP     -> WQ M ; 

 

WQP     -> WQ Nff ; 

 

WQP     -> {ᖞᖞ,የየ} NOP1 ; 

 

QQP     -> QQ NOP4 ; 

 

DQP1    -> {ړ༓} {NOP1,NOP2,NOP4} ; 

 

DQP2    -> {DQ1,DQ2} M ; 

 

DQP     -> {DQP1,DQP2} ; 
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PQP1    -> {ᑇ} {NOP1,NOP2,NOP4} ; 

 

PQP2    -> PQ NOP4 ; 

 

PQP     -> {PQP1,PQP2} ; 

 

XQP     -> {WQP,QQP,DQP,PQP} ; 

 

CNP     -> IN1 {ڣ} {IN1,ON} {ఄ} ; 

 

DSP1    -> {ה} {ഏ,ઊ,ڠ,ᗼ,ၢ,ޘ,᠜,ᔣ,ߺ,ಷ,೴,ీ,৥,ݫ,੄,ᇆ,چ,ᑔ,▭,ؑ,੊} ; 

 

DSP2    -> {ᇠ} {NOP,PQP} ; 

 

DSP3    -> DS M ; 

 

DSP     -> {DSP1,DSP2} ; 

 

OSP1    -> {ร} NOP1 ; 

 

OSP2    -> {ޢ} {XQP,NOP,DSP2} ; 

 

OSP2    -> {ٺ} {XQP,NOP,DSP2} ; 

 

OSP2    -> {ດ} M ; 

 

OSP3    -> {׼؆,२,ല२} {PQP,NOP1,NOP5} ; 

 

OSP4    -> OS {NOP,PQP} ; 

 

DDP1    -> DD {WQP,DQP,PQP,NOP,NOP2} ; 
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DDP2    -> {ڼ} {OSP1,NOP} ; 

 

OSP     -> {OSP1,OSP2,OSP4} ; 

 

OHSP    -> ({ࠡ،,ࠡה,ࠡ塒}) {ٚ۶} {NOP1,DSP} ; 

 

HOSP    -> ({ٚ۶}) {ࠡ،,ࠡה,ࠡ塒} {XQP,DDP1,OSP,NOP,ONP} ; 

 

STDM    -> IN1 {ઞ} IN1 ; 

 

RNOP1   -> IN1 (DESC) M ; 

 

RNOP2   -> {ת} M ; 

 

RNOP3   -> {DESC,ګ} M ; 

 

RD13    -> ({ԫ}) M M ;  

 

Nac     -> {NA1} ; 

 

Ncb     -> {NC1,NC2,NC3,CNP,DSP1} ; 

 

Neqa    -> {WQ,QQ,DQ1,DQ2,PQ,FN1,FN2,FN3,NOP3,RD13} ; 

 

Neqb    -> {PNM,TPNM} ; 

 

Nep     -> {DD} ; 

 

Nes     -> {OS,DS} ; 
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Neu     -> {IN1,IN2,IN3,IN4,IN5,DN} ; 

 

Nd      -> {Ndabe,ND3,ND5} 

 

DM     ->{ND1,ND4,ONP,NOP1,NOP2,NOP4,NOP5,XQP,DSP,OSP,DDP1,DDP2,DSP3,ST 
DM,RNOP1,RNOP2,RNOP3}; 
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Tonal Errors of Japanese Students Learning Chinese:  

A Study of Disyllabic Words 

Ke-Jia Chang , Li-Mei Chen  and Nien-Chen Lee  

Abstract 

To foreigners, how to manage tone is the greatest challenge in learning Chinese. 
What causes foreign students to be unable to distinguish different tones is the 
phonological system of their native language. The accent in standard Japanese 
(Tokyo dialect) is distributed in the pitch change within each syllable, and the first 
syllable must be the opposite of the second in accent. The discrepancy between the 
tonal production of Japanese students learning Chinese and that of Chinese native 
speakers was investigated in this study. It is found that the two Japanese students in 
this study made the most frequent mistakes in reading Chinese disyllabic words 
when the first syllable was tone 2 or tone 3, and the tonal errors were mostly found 
in disyllabic words with tone combinations of 2-1, 2-4, and 3-4. We also found that 
in Group B (2-1, 2-2, 2-3, 2-4), whatever the original tones were, the two subjects 
always mispronounced them as 2-3. This is primarily attributed to the fact that, in 
Japanese, only one pitch peak is allowed in disyllabic compounds. 

Keywords: Japanese Students Learning Chinese, Disyllabic Words, Tonal Errors 

1. Introduction 

One of the most distinct features of Chinese is tone, in which each syllable has its own fixed 
tone, including both high-low distinctions and rising-falling variations. The acoustic 
characteristics of tones are mainly determined by pitch value. Tones are relatively defined. 
This so called “relativity” is the stability of pitch within the pitch range of an individual 
speaker. 
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Some educators have suggested that Chinese learners could compensate for their tonal 
errors by practicing monosyllabic words. Yet, in actual classroom settings, it is found that the 
practice of tone combination is more important, especially that of disyllabic words. This is 
because both the learners and teachers often neglect the collaborative pattern of tones in 
spontaneous speech, such as the rules of tone sandhi and the patterns of tone combination. 
Language teaching should aim at a definite goal, and the teaching of tone combination ought 
to be focused on disyllabic words [Zhu 1997]. Zhu’s argument is grounded in the following 
two reasons. First, almost all combination patterns of monosyllabic words in spontaneous 
speech are included in disyllabic words. Therefore, disyllabic words could be regarded as the 
foundation. Second, modern Chinese is mostly made up of disyllabic words. Practicing 
disyllabic words could solve most problems in tone combinations. 

The changes of Chinese tone in connected speech pose a serious problem to Chinese 
learners. It is also found in classroom settings that Japanese students often stumble in 
communication because of their tonal errors. This paper studies the phenomenon of tonal 
errors in disyllabic words made by Japanese students learning Chinese, particularly in finding 
which tones these errors mostly occur in. It also investigates the negative transfer effect of the 
Japanese accent in learning Chinese tones by Japanese students, for the purpose of making 
certain contributions to Chinese pronunciation pedagogy. 

2. Literature Review 

2.1 The Phonetic Features of Chinese and Japanese 
In Chinese, each syllable has its fixed tone. The high and low, falling and rising pitches 
depend on the vibration rate of the vocal cords (Figure 1). The constitution of Chinese tone is 
not determined only by pitch level, but also by transition patterns. There is a level tone, a 
rising tone, a falling tone, and a falling-rising tone which are caused by change in pitch. In 
addition to pitch, the intensity and duration of sound are also relevant to the make-up of the 
tone. Intensity indicates the weight or strength of a sound. For instance, the neutral tone in 
Chinese is related to sound intensity. The easiest and the most effective way to transcribe and 
record tones is the system of tone-letter proposed by [Chao 1968]. It classifies tone pitch into 
five degrees, and divides a perpendicular line into four parts to signify the particular location 
of the tone pitch on the scale. The low, mid-low, middle, mid-high, and high pitches are 
indicated by the numbers 1 to 5 respectively. The accurate tone-letter of each tone is 
represented by the high and low pitch, the rising and falling pitch, or the fluctuation of pitch. 
In a Chinese disyllabic phrase, the tones of the first and the second words are compromised for 
the sake of being euphonious [Wu 1992]. It is natural to make the pitch in the second syllable 
lower than that in the first. Take a disyllabic word with two rising pitches for example, the 
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second rising pitch turns into low-rising (Figure 2). In a disyllabic word with two falling 
pitches, both syllables are lower due to the mutual influence of these two falling pitches 
(Figure 3). 

Figure 1. Frequency of calibration 

 

 
            Nian                                Nian 

Figure 2. Word of tone 2-2 (ڣڣ, year-year) pronounced by the Chinese native 
speaker. (The blue line signifies tone.) 

 
      Jheng                                   Jh 

Figure 3. Word of tone 4-4 (ਙए, politics) pronounced by the Chinese native 
speaker. 

In Japanese phonetic features, accent bears the closest relationship to Chinese tone. 
There are two types of accents in the languages of the world [Hiroshi 2003]. One is “stress 
accent”, which uses the intensity of sounds to differentiate various lexical items. The other is 
“pitch accent”, which uses the pitch of sounds to distinguish one word from another. Japanese 
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is classified as pitch accent language (termed as “accent” in the following sections). 
According to several researchers [Wang 1997; Jun 2001], the Japanese accent can be 
classified into two types--flat and non-flat. Wang also mentioned that some moras in Japanese 
must be pronounced with high pitch, and some with low pitch. “Mora” in Japanese means the 
duration of a sound. The accent in Japanese displays in the mora instead of in the syllable. For 
example, the word “shinbun” (news) has two syllables but four moras. 

The difference between flat and non-flat type lies in the existence of the accent. The 
accent means there is a transition from high to low pitch in a word. The flat type does not have 
the accent whereas the non-flat type does. Falling type can also be classified into three 
patterns—H-L, L-H-L, and L-H. In the Compact Japanese-Chinese Dictionary [Liu et al. 
2002], pitch change is illustrated by Ϩ, , , , ,  at the end of the word. Ϩ means 
that the first mora is pronounced with low pitch and the remaining moras are produced with 
high pitch, which may spread to the subsequent auxiliary. This is the flat type, such as hashi 
(chopsticks), and tomodachi (friend).  means the first mora is pronounced with high pitch 
whereas the subsequent with low pitch. This tone falls into the H-L pattern, such as neko (cat). 

 means that the first mora is pronounced with low pitch, the second with high pitch, and the 
subsequent with low pitch, including the following auxiliary. The words composed of two 
moras in this tone belong to the L-H pattern, while those composed of three or more moras 
belong to the L-H-L pattern, such as kawa (river) and nomimono (beverage).  means the 
first mora is pronounced with low pitch, the second and the third with high pitch, and the 
subsequent as well as the following auxiliary with low pitch. Words composed of three moras 
of this tone fall into the L-H pattern, while those composed of more than four moras belongs 
to the L-H-L pattern, such as otoko (man) and mizuumi (lake).  means that the first mora is 
pronounced with low pitch, the second to fourth with high pitch, and the subsequent with low 
pitch. Words composed of four moras in this tone belong to the L-H pattern, while those 
composed of five or more moras follow the L-H-L pattern, such as otouto (junior brother) and 
watashibune (ferry boat).  means the first mora is pronounced with low pitch, the second to 
the fifth with high pitch, and the subsequent mora with low pitch. In this tone, words with five 
moras belong to the L-H pattern, while those composed of six or more moras use the L-H-L 
pattern, such as oshougats (New Year) and tansangasu (carbon dioxide). 

According to the patterns stated above, the accent in standard Japanese (Tokyo dialect) 
has the following characteristics. First, there can only be one part with high pitch in a word 
(with one mora or several consecutive moras). Second, the pitches of the first and the second 
moras must differ. If the first mora is pronounced with high pitch, the second one must be with 
low pitch. In the same way, if the first is with low pitch, the second must be with high pitch. 
Third, the pitch change in the first and third tones in Chinese does not occur in the Japanese 
accent. 
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The Japanese accent and Chinese tone seem to be represented by pitch change. In 
Japanese, the accent is represented in the pitch change of each mora within a word. The basic 
component is a mora. However, in Chinese, tone is displayed in the pitch change within each 
syllable. The basic unit is a morpheme. There are four basic tones in Chinese (except for the 
neutral tone)—the high-level tone, mid-rising tone, low-falling tone, and high-falling tone. In 
terms of tone values, they are marked as 55, 35, 214, and 51 respectively (Table 1). 

Table 1. The diacritics in the system of tone-letter designated by [Chao 1968] 

tone types Yinping 
(High-level) 

Yangping 
(mid-rising) 

Shangsheng 
(falling-rising)

Qusheng 
(high-falling) 

tone values 55 35 214 51 
examples m  má m  mà 
duration mid-short mid-long longest shortest 

     

 

2.2 The Tonal Errors of Japanese Students Learning Chinese 
There are three common errors made by Japanese students in learning Chinese [Zhu 
1994]—flat tone, mispronunciation of multi-syllabic words, and stress of the neutral tone. 
Many Japanese students of Chinese pronounce disyllabic words in Chinese with rising-falling 
tones, regardless of their original tones, such as changing “chun1fong1” (spring breeze) to 
“chun2fong1” (pure breeze), and changing “fang1bian4” (convenient) to “fang2biang4” (room 
convenient). The cause of this mispronunciation is related to the “euphonic change” in 
Japanese. Whatever the original pitch pattern is, when two words are combined into one 
lexical item, only the L-H-L pattern is allowed. For example, the original pitch of “waseda” 
belongs to the H-L pattern while that of “daigaku” (university) the L-H pattern. When these 
two words are combined, the pitch of “wasedadaigaku” (Waseda University) turns into the 
L-H-L pattern. This is because in Japanese, there cannot be two pitch changes in one word, 
which means that only one pitch peak is allowed in Japanese compounds. 

It is very difficult for Japanese students to distinguish tone 3 from tone 4, tone 2 from 
tone 3, and tone 2 from tone 4 in Chinese [He 1997]. They easily mistake tone 3 for tone 2. 
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3. Methodology 

3.1 Subjects 
The subjects in this study were two Japanese students with a basic-intermediate level in 
Chinese. Both of them were from the Chinese Learning Center in National Sun Yat-sen 
University and had studied Chinese for three to six months. Subject X had better Chinese 
ability than subject Y. There was another subject Z, whose native language is Chinese, serving 
as the control group in this study. All subjects were required to read out the disyllabic words 
listed in the word chart in the same manner. 

3.2 Procedure 
This study is divided into three parts. The first part is to make real-life interviews so as to 
collect natural data to supplement the word chart. The second is to ask the subjects to read out 
the disyllabic words in the word chart. In order to maintain the objectivity of this research, the 
word chart is divided into two lists, A and B, in which the contents are completely the same 
with only different arrangement of the order. The design of the word chart primarily follows 
that of [Zhu 1997]. 

3.3 Design of Word Chart 
There are four tones in Chinese. If all four tones are arranged into disyllabic words, sixteen 
combination pairs are retrieved. Including the neutral tone, there are twenty possible 
combination pairs. In this study, these twenty pairs are divided into five groups--A, B, C, D, 
and E. The number 1, 2, 3, 4, 5 represent the high pitch, rising pitch, falling-rising pitch, 
falling pitch, and neutral tone, respectively, as illustrated below. 

 

AΚ1-1Ε1-2Ε1-3Ε1-4 

BΚ2-1Ε2-2Ε2-3Ε2-4 

CΚ3-1Ε3-2Ε3-3Ε3-4 

DΚ4-1Ε4-2Ε4-3Ε4-4 

EΚ1-5Ε2-5Ε3-5Ε4-5 

 

To avoid expectation of a pattern from the subjects, each group in the word chart has 
been rearranged. The word chart has been supplemented with Chinese phonetic symbols 
(bpmf) and all the disyllabic words listed come from basic vocabulary. Before the recording, 
the subjects were familiarized with the demo word chart with no time limit, and were not 
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informed of the correct pronunciation. During the formal recording, if the subjects made any 
mistakes, they were allowed to self-correct with assistance from others prohibited. The third 
part of this experiment was to ask Chinese native speakers to take auditory tests and pick up 
the tonal errors of subject X and subject Y. The tonal errors were analyzed with the phonetic 
analysis software PRAAT. 

3.4 Methods of Analysis 
First, we identified the tonal errors made by subject X and Y in pronouncing these five groups 
of sounds (A, B, C, D, E), and judged which subject had the most errors. Then, we 
investigated the ratio of tonal errors of these two Japanese subjects in each group of sounds to 
draw a comparison to the tone production of Chinese native speakers. 

4. Results and Discussion 

4.1 Ratio of Tonal Errors 
From Table 2 we can see that the tonal errors of Subjects X and Y are mostly concentrated in 
the sounds in Groups B and C. In other words, they are mostly compounds consisting of a first 
syllable that is tone 2 or tone 3. 

Table 2. Ratio of tonal errors of subjects X and Y 
Second 
Syllable 

      

First 
syllable 

 1 2 3 4 5(E) 

Subjects X Y X Y X Y X Y X Y 
1(A) 0.333 0.333 0.2 0 0.3 0.3 0.149 0.285 0.2 0.2 
2(B) 0.4 0.8 0.25 0.75  0 0.5 0.4 1 0.667 0.333 
3(C) 0.375 0.375 0.286 0.625  0 0.5 0.4 0.8 0.25 0.75 
4(D) 0.333   0 0.333  0 0.167 0 0.2 0.4 0 0 

Since the two subjects do not have the exactly same Chinese background, the ratio of 
tonal errors is compared with their individual average number. The ratio of tonal errors of 
subject X is 0.336 on average whereas that of subject Y is 0.4. Therefore, for subject X the 
ratio of tonal errors of more than 0.33 is high, while for subject Y 0.4. In the sounds of Group 
C (3-3), the ratio of tonal errors of subject Y appears high, which may imply that the subject 
has not been fully acquainted with the rules of tone sandhi. 
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Table 3. Ranking of ratio of errors in subjects X and Y 
Ranking of ratio of errors in subject X Ranking of ratio of errors in subject Y 
1. 2-5  1. 2-4 
2. 2-4Ε3-4Ε2-1 2. 3-4Ε2-1 

 3. 3-5Ε2-2 

 4. 3-2 

 5. 2-3Ε3-3 

Although it is hard to see the similarity in distribution from the ranking of the two 
subjects’ ratio of tonal errors (Table 3), two interesting phenomena are found. First, by 
comparing their high ratio of tonal errors, it is shown that there is overlap in 2-1, 2-4, and 3-4. 
Second, the ratio of errors of 2-3 and 3-3 are the same in both subjects. The similarity of the 
results obtained from these two groups is mainly contributed to the fact that the tone sandhi of 
3-3 is 2-3. However, the ratio of errors of subject Y in pronouncing 3-3 reaches as high as 0.5, 
which indicates that he has not yet fully managed the tone sandhi rules. What follow in the 
next section are individual tonal errors in each tone combination group. 

4.2 Tonal Errors in Each Group 
Table 4. Error patterns of Group A in Subject X 

Standard 1-1 1-2 1-3 1-4 

Mispronunciation 1-4 2-2 2-3 4-4 

Table 5. Error patterns of Group A in Subject Y 
Standard 1-1 1-2 1-3 1-4 

4-2 --- 1-3/(1-2) 1-1 
Mispronunciation 

   1-1 

In Group A, we discover the error pattern of “rising falling tone” in the corpus of subject X, in 
which 1-2 and 1-3 are mispronounced as 2-2 and 2-3, respectively (Table 4). It is also found 
both subjects often mispronounce the first tone as the second or the fourth, as was indicated as 
a common error made by Japanese students [Chao 2003]. Subject Y always mispronounces 
1-4 as 1-1 (Table 5). It is assumed that the subject is unable to articulate the fourth tone while 
the pitch of the first syllable remains as the first tone (Figures 4 and 5). 
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Chejhan (Subject Y) 1-4          1-1(mispronounced) 

Figure 4. Mispronunciation of “chejhan” (߫ీ, train station) by subject Y 

 
Figure 5. Pronunciation of “chejhan” (߫ీ, train station) by the Chinese native 

speaker 
Table 6. Error patterns in Group B in Subject X 
Standard 2-1 2-2 2-3 2-4 

1-1 2-3 --- 1-4 
Mispronunciation 

1-1(2-2) 3-1(2-1)  1-4 

Table 7. Error patterns in Group B in Subject Y 
Standard 2-1 2-2 2-3 2-4 

1-1 1-1 1-2/(1-3) 1-4 
2-3 1-1/(2-2) 1-3 1-4 

 1-2/(2-2)  2-3/(2-4) 
 1-2  1-4 
 1-2   

Mispronunciation 

 2-1   

In the sounds of Group B, both subject X and Y mispronounce tone 2 as tone 1 (Tables 6 
and 7), but with lower pitch than that of the native speaker. It is also found that the tone of the 
second syllable is mispronounced as well. In the sounds of Group B, there are four sounds of 
which the first syllable is correctly uttered but the second is mispronounced (if the rectified 
productions are not taken into account). For example, 2-2 is mispronounced as 2-3 by subject 
X and 2-1 as 2-3 by subject Y, 2-2 as 2-1 and 2-4 as 2-3. According to the findings above, 
both subjects make frequent errors in mispronouncing the sounds in Group B as 2-3. This is 
because in the Japanese accent only one pitch peak is allowed in a word, and after a high pitch 
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there will only come a low pitch. It is rather difficult for Japanese students to maintain high 
pitch after the end of the second tone in 2-1 (Figures 6 and 7). 

 
Meihua (Subject Y) 2-1          2-3 (Mispronunciation) 

Figure 6. Mispronunciation of “meihua” (මक़, rosette) by subject Y 

 
Figure 7. Pronunciation of “meihua” (මक़, rosette) by the Chinese native speaker 

Table 8. Error patterns in Group C in Subject X 
Standard 3-1 3-2 3-3 3-4 

2-1 3-1 ---- 2-1 
4-1 3-3/(2-3)  2-4 Mispronunciation 

1-1/(2-1)    

Table 9. Error patterns in Group C in Subject Y 
Standard 3-1 3-2 3-3 3-4 

4-1 2-3 1-3 2-1 

1-1 1-2 1-3 2-4/(2-3)/
1-3 

1-1 1-1/1-2 1-3 2-1 
 2-1  1-4 

Mispronunciation 

 2-2/1-1   

In Group C, tone 3 of the first word is often mispronounced as tone 1 or tone 2 (Tables 8 
and 9). Judging from the ratio of zero error of subject Y in pronouncing 3-3, the subject can 
completely manage the tone sandhi rules for the third tone. Similarly, it is found that subject X 
also has a ratio of errors of zero in pronouncing 2-3. As for subject Y, this subject’s ratios of 
tonal errors are both 0.5 in pronouncing 3-3 and 2-3, which indicates the subject has not yet 
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been fully acquainted with the tone sandhi rules of the third tone. From Figures 8 and 9, one 
can see that the Chinese native speaker has a longer duration of 21 in pronouncing 214 of the 
sound “jhu” (self), whereas the duration of 14 is rather short. On the contrary, Japanese 
students have longer duration of 14 in pronouncing 214 whereas that of 21 is very short. As a 
result, it sounds like tone 2. 

 
Jhujian (Subject X) 3-4          2-4(Mispronunciation) 

Figure 8. Mispronunciation of “jhujian” (ߠ׌, self opinion) by subject X 

 
Figure 9. Pronunciation of “jhujian” (ߠ׌, self opinion) by the Chinese native 

speaker 
Table 10. Error patterns in Group D in Subject X 
Standard 4-1 4-2 4-3 4-4 
Mispronunciation 1-1 ---- 1-3 1-4 

Table 11. Error patterns in Group D in Subject Y 
Standard 4-1 4-2 4-3 4-4 

--- 2-1 --- 1-4 
Mispronunciation 

   4-1 

Group D has the lowest ratio of tonal errors, many of which are zero (Tables 10 and 11). 
Subject X mispronounces tone 4 of the first word as tone 1 most frequently, in keeping with 
what Zhu had proposed that this mispronunciation bears the features of rising-falling pattern. 
Since the tone value of the neutral tone is determined by the tone of the preceding syllable, it 
will be discussed in another section. 
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4.3 Ratio of Tonal Errors in Group E 
Table 12. Error patterns in Group E in Subject X 
Standard 1-5 2-5 3-5 4-5 
Mispronunciation 2-5 2-1 2-5 ---- 

Table 13. Error patterns in Group E in Subject Y 
Standard 1-5 2-5 3-5 4-5 

2-5 1-5 2-5 ---- 
 3-5 1-5  Mispronunciation 
  1-5  

Zhu has mentioned that neutral tone is often dealt with as tone sandhi in phonetic analysis as 
its tone values are determined by the tone in the preceding syllable. After tone 1 and tone 2, 
the pitch value of the neutral tone is 31; after tone 3, the pitch value is 4; after tone 4, the pitch 
value is 1. The duration of neutral tone is, in general, shorter. Although the pitch of the neutral 
tone is usually light and short, it is not invariable. The pitch of neutral tone is always changed 
according to what the end of preceding syllable is. A common error of subjects X and Y is the 
mispronunciation of 1-5 as 2-5 (Tables 12 and 13). In the following section, the researchers 
will investigate the discrepancy between Chinese native speakers and Japanese students of 
Chinese in pronouncing the neutral tone in disyllabic words. 

 When the first syllable is tone 1, it is found that the Japanese student has a greater 
degree of descent than that of the Chinese native speaker (Figures 10 and 11). 

 
Jiejhe (Subject A) 1-5          2-5(Mispronunciation) 

Figure 10. Mispronunciation of “jiejhe” (൷ထ, next) by subject X 

 
Figure 11. Pronunciation of “jiejhe” (൷ထ, next) by the Chinese native speaker 
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In “men” of “Renmen”, it is found that the Chinese native speaker pronounces the word 
with short duration whereas the Japanese student prolongs the word with the neutral tone 
(Figures 12 and 13). 

 
Renmen (Subject X) 2-5           2-1(Mispronunciation) 

Figure 12.Mispronunciation of “renmen” (Գଚ, people) by subject X 

 
Figure 13. Pronunciation of “renmen” (Գଚ, people) by the Chinese native 

speaker 

While the Chinese native speaker is pronouncing “paole”, the native speaker makes a 
slight rise in tone at the end of the second syllable. As for the Japanese student, the first sound 
is mispronounced as tone 2. Therefore, the tone shape is displayed with a descending curve 
(Figures 14 and 15). 

 
Paole (Subject X) 3-5           2-5 

Figure 14. Mispronunciation of “paole” (ၒԱ, have run) by subject X 



 

 

˅ˌˇ                                                        Ke-Jia Chang et al. 

 
Figure 15. Pronunciation of “paole” (ၒԱ, have run) by the Chinese native 

speaker 

In the following example, it was also found that the Japanese student pronounced the 
second syllable with excess high pitch (Figures 16 and 17). 

 
Na me (Subject X) 4-5          1-5(Mispronunciation) 
Figure 16. Mispronunciation of “na me” (߷Ꮦ, so) by subject X 

 
Figure 17. Pronunciation of “na me” (߷Ꮦ, so) by the Chinese speaker 

5. Conclusion 

This study focuses only on disyllabic words. In Japanese, there are tone variations and 
euphonic changes in words of more than two syllables. A rising-falling pattern was proposed 
[Zhu 1994] based on the pitch change of Japanese students and it was argued that regardless of 
the original pitch in Japanese, new compounds are always of Low-High-Low tones. The tonal 
errors of the two Japanese students in this current study are also similar to this pattern because 
of the negative transfer from the students’ mother tongue. 

The tonal errors made by both subjects X and Y concentrated primarily in Groups B and 
C. The mispronunciation is mostly on words with first syllable of tone 2 or tone 3. Most of the 
errors are in 2-1, 2-4, and 3-4 tone combinations. Moreover, the ratio of tonal errors of 2-3 and 



 

 

Tonal Errors of Japanese Students Learning Chinese: A Study of Disyllabic Words    ˅ˌˈ 

3-3 are completely identical in these two subjects. From the tonal errors in Group C, the 
researchers found that the two students are confused with tone 3, tone 2, and tone 1. 

In teaching Chinese tones, it is suggested that teachers could start from the pronunciation 
and listening comprehension of disyllabic words, instead of merely concentrating on drilling 
students using monosyllabic words. Teachers could first familiarize the learners with tone 
combinations by practicing tone variations in disyllabic words. In class, visual demonstrations 
such as graphs, gestures, and animated films could be utilized to help students understand tone 
variations. Generally speaking, whatever Chinese proficiency the students might have, they 
still cannot precisely distinguish different tones. Therefore, teachers should emphasize more 
on practicing contrastive tones to get students acquainted with the tone combinations in 
disyllabic words. 

The authors only discuss the tonal errors of two subjects in this study. It is suggested that, 
in future study of related issues, more Japanese and Chinese subjects should be included to 
make the experimental results more representative. Moreover, tests on perceptual distinction 
could be added in further studies to obtain a more complete picture of the acquisition of 
Chinese tones. 

Since the functions of Chinese tone and Japanese pitch accent differ, by means of 
contrastive analysis one can help teachers pay special attention to those tones Chinese learners 
frequently get confused, so as to make the learners fully acquainted with correct tone 
production in various tone combinations. 

References 

Chao, L.- J., “Special Phonetic Instruction in Chinese to Japanese Students,” Journal of 
Yunnan Normal University, 1(3), 2003, pp. 66-67. 

Chao, Y. R., A Grammar of Spoken Chinese, Berkeley: University of California Press, 1968. 
He, P., “Studies in Basic Phonetic Instruction in Chinese to Japanese Students,” Language 

Teaching and Linguistic Studies, 3, 1997, pp. 49-50. 
Hiroshi, W., “The Theory of Japanese Stress and Phonetic Categorization,” Journal of Wu 

Feng Institute of Technology, 11, 2003, pp. 283-286. 
Jun, S., “Problems and Solutions of Japanese Learning Chinese Tones,” Proceedings of the 

International Symposium in Teaching Chinese to Japanese Students, 172. Peking: 
Chinese Social Science, 2001. 

Liu, W.- S., J.-S. Ma, Y.- H. Tzeng, S.- K. Li, J.-J. Huang, and S.- S. Wang, Compact 
Japanese-Chinese Dictionary, Taipei: Tashin, 2002. 

Wu, Z.- J., Introduction to the Phonetics of Modern Chinese, Peiking: Chinese Language 
Teaching, 1992. 



 

 

˅ˌˉ                                                        Ke-Jia Chang et al. 

Wang, S.- Y., “Japanese Tone and Pronunciation,” Foreign Languages in Fujian, 2, 1992, pp. 
24-26. 

Zhu, C., “Contrastive Experiments on the Suprasegmental Features of Chinese and Japanese,” 
Journal of East China University, 1, 1994, pp. 85-86. 

Zhu, C., The Strategies of Foreign Students for the Phonetic Learning in Chinese. Peking: 
Language, 1997. 

 



 

Computational Linguistics and Chinese Language Processing 

Vol. 11, No. 3, September 2006, pp. 297-314                                ˅ˌˊʳ

 The Association for Computational Linguistics and Chinese Language Processing 

[Received March 21, 2006; Revised October 11, 2006; Accepted October 16, 2006] 

Performance Analysis and Visualization of 

Machine Translation Evaluation 

Jianmin Yao , Yunqian Qu+, Qiang Lv+,  

Qiaoming Zhu+, and Jing Zhang  

Abstract 

Automatic translation evaluation is popular in development of MT systems, but 
further research is necessary for better evaluation methods and selection of an 
appropriate evaluation suite. This paper is an attempt for an in-depth analysis of the 
performance of MT evaluation methods. Difficulty, discriminability and reliability 
characteristics are proposed and tested in experiments. Visualization of the 
evaluation scores, which is more intuitional, is proposed to see the translation 
quality and is shown as a natural way to assemble different evaluation methods. 

Keywords: Machine Translation, Performance, Analysis, Visualization, Clustering, 
Natural Language Processing 

1. Introduction 

Machine translation (MT) evaluation activities have accompanied MT research and system 
development. The ALPAC report [ALPAC 1966], which has greatly influenced machine 
translation research activities, is the first historical MT evaluation activity. With new 
developments in natural language processing technology coming in the 1990s, the black-box 
evaluation has been instantiated by the methodology of DARPA [Doyon et al. 1998], which 
measures fluency, accuracy, and informativeness on a 5-point scale. The ISLE Project takes an 
approach that focuses on how an MT system serves the follow-on human processing rather 
than on what it is unlikely to do well [ISLE 2000]. 

Since manual evaluation is labor-intensive and time-consuming, many researchers are 
making efforts towards reliable automatic MT evaluation methods. A problem is that the 
methods cannot be characterized by precision and recall as in other natural language 
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processing activities such as POS tagging or phrase identification. A new quality system is 
necessary. 

This paper aims for performance analysis and better illustration of machine translation 
evaluation, which can help developers know about the improvement in the quality of their 
system, and help users easily distinguish between MT systems. Section 2 reviews related 
research in the MT field and its evaluation. Section 3 studies the metrics and experiments for 
comparison of MT evaluation methods. Section 4 proposes an algorithm for visualizing the 
MT system quality, and draws a dendrogram for the systems by clustering. A conclusion is 
given in the last section. 

2. Related Work 

MT evaluation had not been a very powerful aid in machine translation research until 
automatic evaluation methods were broadly studied. Now, different heuristics are employed 
for automatic MT evaluation. This section gives a brief review of the main automatic MT 
evaluation methods and studies on the performance of these methods. 

2.1 Automatic Evaluation Methods 
Some automatic methods focus on specific syntactic features for translation evaluation. [Jones 
and Galliers 1993] utilizes linguistic information such as the balance of parse trees, N-grams, 
semantic co-occurrence, and other information as indicators of translation quality. A balanced 
tree was a negative indicator of Englishness, probably because English is right-branching. 
Other factors are also utilized in translation evaluation for their indication of the language 
quality. [Brew and Thompson. 1994], whose criteria involve word frequency, POS tagging 
distribution and other text features, compares human rankings and automatic measures to 
decide the translation quality. These linguistic features are extracted as a reflection of the 
overall translation quality. 

Another type of evaluation method involves comparison of the translation result with 
human translations. [Keiji et al. 2001] evaluates the translation output by measuring the 
similarity between the translation output and translation answer candidates from a parallel 
corpus. [Yasuhiro et al. 2001] uses multiple edit distances to automatically rank machine 
translation output by translation examples. While the IBM BLEU method [Papineni et al. 
2001] and the NIST MT evaluation [NIST 2002] compare MT output with expert reference 
translations in terms of the statistics of word N-grams. [Melamed et al. 2003] adopts the 
maximum matching size of the translation and the reference as the similarity measure for the 
score. [Niben and Och 2000] scores a sentence on the basis of scores of translations in a 
database with the smallest edit distance. [Yokoyama et al. 1999] proposes a two-way MT 
based evaluation method, which compares output Japanese sentences with the original 
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Japanese sentence for word identification, the correctness of the modification, the syntactic 
dependency and the parataxis. 

Another path of MT evaluation is based on test suites. A weighted average of the scores 
for separate grammatical points is taken as the score of the system. The typological test covers 
vocabulary size, lexical capacity, phrase, syntactic correctness, etc. [Yu 1993] designs a test 
suite consisting of sentences with various test points. [Guessoum and Zantout 2001] proposes 
a semi-automatic evaluation method of the grammatical coverage machine translation systems 
via a database of unfolded grammatical structures. [Koh et al. 2001] describes their test suite 
constructed on the basis of fine-grained classification of linguistic phenomena. 

2.2 Performance of an Automatic Evaluation Method 
The ISLE has made some efforts to develop a specification of performance for the MT 
evaluation methods [ISLE 2000]. A list of the desiderata demands that at least the measure: 1) 
must be easy to define, clear, and intuitive; 2) must correlate well with human judgments 
under all conditions, genres, domains, etc.; 3) must be �‘tight�’, exhibiting as little variance as 
possible across evaluators, or for equivalent inputs; 4) must be cheap to prepare; 5) must be 
cheap to apply; 7) should be automated, if possible. These criteria give a broad coverage of the 
characteristics of the evaluation methods, but further work is needed to measure them in a 
consistent and objective way. 

[Popescu-Belis 1999] argues that the MT evaluation metrics should have its upper limit, 
lower limit, and should be monotonic in quality measure. The above measures are qualitative 
attributives of MT evaluation methods. If it can further be automated, it will help the 
researchers find a much easier and consistent way to compare different systems. 

Only recently, researchers began quantitative studies. Some recent works include [Forner 
and White 2001] on the correlation between intelligibility and fidelity and noun compound 
translation. [Papineni et al. 2001] and [Melamed et al. 2003] study the correlation between 
human scoring and automatic evaluation results. After DARPA took the BLEU method as the 
evaluation method for MT systems, the correlation between human and machine translation 
evaluation has become a standard criterion of MT quality scoring, though many researchers 
are arguing against its efficacy. 

On the whole, methodological study of automatic evaluation methods has just started and 
needs to be further deepened. This paper is an attempt to refine the correlation measures and 
justify their usage in machine translation evaluation. The following section aims for a proposal 
of some criteria of the performance of MT evaluation measures, which will give linguists a 
better understanding of the MT evaluation task and its results. 
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3. MT Evaluation Performance Analysis 

Up to now, the analysis of MT evaluation methods has remained a preliminary comparison of 
human and automatic scores. Further study is important to propose better evaluation measures 
and better understanding of the automatic evaluation results. This paper is an endeavor to 
provide more details of MT evaluation methods. A list of quantitative measures on basis of 
education measurement theory [Wang 2001] is proposed in section 3.1, and experimental 
study of the measures is made in section 3.2. 

3.1 MT Evaluation Performance Metrics 

3.1.1 Consistency and Reliability 
Reliability is the most important issue in MT evaluation. Correlation is often utilized for 
description of the consistency between different score results as by various MT evaluation 
methods or test suites, as follows: 

2 2 2 2
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,                             (1) 

where aX  and bX  refer to scores of the two MT evaluation results; n is the number of test 
questions in the test suite; ttr  is the consistency between the two test results. If the scores are 
rank-based, reliability can be calculated by Spearman rank correlation as 

2
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6
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r ,                                                        (2) 

where D  is the difference between ranks of the same test by different evaluators; n  is the 
sample size. 

 The correlation coefficient between the automatic results and the human results shows 
the reliability of the automatic evaluation method. On the other hand, if the correlation is 
between two automatic results, it shows consistency between the two methods, thus, also 
showing whether they can compensate for each other. 

3.1.2 Discriminability 
The discriminability of an MT evaluation method reflects the ability to distinguish between 
minor differences in translation qualities. For a test with higher discriminability, a better 
system should be scored higher, and vice-versa. The MT evaluation result should be 
fine-grained so that even small changes in the translation quality could be correctly shown. 
The discriminability of a test can be calculated on the basis of the MT evaluation result, as 
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follows: 
( ) /( )H LD X X H L .                                                (3) 

In the equation, /H LX X  is the score for the best/worst system; /H L  is highest/lowest 
possible score of the test. 

 
3.1.3 Difficulty 
The difficulty refers to the degree of the difficulty of the test, which has a great influence on 
the test result. The difficulty of the test changes the distribution, discriminability, and 
dispersion of the scores. For example, if the test is so difficult that none of the systems outputs 
the right answer, one cannot distinguish between systems via the MT evaluation result. This is 
also the case if the test is too easy. The difficulty of the test questions can be calculated as 

( ) /( )P X L H L .                                                   (4) 

In the equation, X  is the average score of the systems, while H/L is the highest/lowest 
possible score for the test. The difficulty of the test question is closely interrelated with the 
discriminability, efficacy, and other characteristics of the evaluation. According to education 
measurement theory, a difficulty of around 0.5 is helpful for discriminating the systems to be 
scored [Wang 2001]. 

In the section above, a proposal of performance metrics for MT evaluation measures and 
the proposal�’s test suite has been given. These metrics help in analyzing the efficacy of the 
evaluation methods. The next section gives some experimental examples of the evaluation 
performance, which verifies the metrics mentioned above. 

3.2 Experiments on MT Evaluation Performance 

3.2.1 Test of Consistency, Discriminability and Difficulty 
Since the MT evaluation performance metrics proposed in section 3.1 are 
language-independent, they can be applied to evaluation results in any language. The open 
source of human evaluation results in [Darwin 2001] on eight English-to-Japanese MT 
systems is taken for analysis in this section. The authors of this paper do research on the open 
source evaluation results for two reasons: it is available to any researcher, and thus is easier to 
duplicate the experiment and analysis; also, the open source data is appropriate in data size 
and reliability and saves time for more manual work. In the experiment in [Darwin 2001], two 
evaluators score 8 systems on a 5-point scale showing intelligibility and accuracy. The 
experimental setup and details are listed in the appendix following this paper. Based on the 
measures proposed in the last section, this paper�’s authors make an analysis of the 
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characteristics of the MT evaluation results. 

The first experiment is to test the consistency between MT evaluation results from 
different measures (accuracy and intelligibility), different evaluators, and different test suites. 
According to equation (1) and (2), based on the data in Table A1 and A2 in the appendix, one 
gets the correlation coefficients in Table 1, which shows the correlation coefficients for the 
MT evaluation results. 

In Table 1, rows 1 and 2 show a consistency between MT evaluation results by metrics of 
intelligibility and accuracy. Rows 3 to 5 show consistency between two human evaluators A 
and B. Rows 6 to 8 show consistency between MT evaluation results by the same evaluator A 
on different parts of the 300 hundred sentences. 

Table1. The correlation coefficients for the MT evaluation results achieved from 
different evaluation measures of intelligibility and accuracy), different 
evaluators (named as A and B) and various test suites (3 parts of 300 
sentences). 

Item1 Item2 Other conditions Correlation 
option Correlation 

Intelligibility Accuracy Overall average scores Pearson 0.998 
Intelligibility Accuracy Overall average scores Spearman 1.000 
Evaluator A Evaluator B Intelligibility for all 300 sentences Pearson 0.991 
Evaluator A Evaluator B Accuracy for all 300 sentences Pearson 0.998 
Evaluator A Evaluator B Accuracy for all 300 sentences Spearman 0.994 
Sent#1-100 Sent#101-200 Intelligibility evaluator A Pearson 0.964 
Sent#1-100 Sent#201-300 Intelligibility evaluator A Pearson 0.968 
Sent#101-200 Sent#201-300 Intelligibility evaluator A Pearson 0.945 

From the definition in section 3.1, one knows that correlation between different human 
evaluation results is an upper bound of automatic MT evaluation performance. Correlation 
with a human evaluation also reflects the reliability of the automatic evaluation result. As seen 
in Table 1, all correlation coefficients are higher than 0.9, which is a strong hint of consistency. 
First, the correlation coefficient between intelligibility and accuracy are 0.998 and 1.000, 
respectively. This reminds researchers that the two metrics have quite similar scores, and a 
researcher may just measure one and know the other by regression analysis. Second, the 
coefficient is also high for correlation between different evaluators and different parts of the 
test suite, which shows that scores from both evaluators and from different sentences agree 
with each other on the whole. This is also the case for automatic measures. From previous 
study, one knows that some automatic evaluation methods are highly correlated with human 
evaluation, for example, a correlation of around 0.99 for BLEU and NIST [NIST 2002]. GTM 
(General Text Matching) claims a 0.8 level which is better than BLEU on the same test suite 



 

 

      Performance Analysis and Visualization of Machine Translation Evaluation     ˆ˃ˆ 

[Melamed et al. 2003]. The difference between [Melamed et al. 2003] and [NIST 2003] gives 
researchers a strong signal that consistency is a key factor, but not the only one, in MT 
evaluation performance. 

Another key issue seen from Table 1 is that rows 6 to 8 have a lower correlation 
coefficient than the rows above. It reminds the researchers that different metrics, such as 
intelligibility and accuracy, different evaluator A and B, as in the experiments, have a higher 
correlation coefficient than the same evaluator on different test suites with the same MT 
evaluation measure of intelligibility. Thus, the difficulty and size of the test suite is another 
key factor in MT evaluation. The following is further analysis of the influence of test suites. 

3.2.2 Influence of the Test Suite 
For the different parts of the test suite, the researchers have the discriminability and difficulty 
of intelligibility calculated using equations (3) and (4), which can give one a hint of the reason 
for their influence on the MT evaluation results. 

Table 2. Discriminability and difficulty of test suites with intelligibility by different 
evaluators. The 300 sentences in the test suite are divided into 3 parts and 
evaluated with intelligibility separately. 

Sentences Evaluator Discriminability Difficulty 
1-100 A 0.23 0.50 
1-100 B 0.31 0.44 
101-200 A 0.23 0.56 
101-200 B 0.31 0.62 
201-300 A 0.24 0.43 
201-300 B 0.34 0.53 
All 300 A 0.23 0.50 
All 300 B 0.32 0.53 

From Table 2, one can see that different parts of a test set may have different difficulty 
and discriminability levels. Since all evaluation tasks need better discriminability capability, 
the evaluator needs to pick out proper test sentences for the evaluation task. Taking evaluator 
A as an example, the difficulty of different parts of the test suites are 0.50 for sentences 1-100, 
0.56 for sentences 101-200, and 0.43 for sentences 201-300. The different difficulty levels led 
to different correlation coefficients between different parts of the test suites. For example, 
sentences 101-200 and 201-300 differ greatly in difficulty, and the difference in correlation 
coefficients is also lower in Table 1 (only 0.945). Another factor found in Table 2 is that the 
results of evaluators A and B have different discriminability, the former about 0.23, and the 
latter 0.32. That means their evaluation score has a different distribution style. In fact, this 
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phenomenon has a vital influence on the correlation coefficient of two evaluation results, 
which is highly related to the evaluation result. 

The above study of the evaluation performance is made on a public-available Japanese 
test suite. One does have to notice that the evaluation performance measures are 
language-independent, which ensures the applicability of the method to the Chinese language, 
or other language pairs. 

To study other performance measures, a test on a Chinese suite is made below. 

As described above, besides the difficulty and discriminability, another key factor for the 
test suite is the size. The larger the size of the test suite, the more stable and reliable the MT 
evaluation result becomes. Taking the popular automatic evaluation methods of BLEU and 
GTM as example, the influence of the size of the test suite, i.e. the number of sentences it 
contains, is tested using the 863 National High-tech Program MT evaluation corpus. This 
corpus is widely used for the evaluation of MT systems in mainland China. The corpus 
contains 1019 sentences. An experiment was carried out on the BLEU and GTM methods to 
test the influence of the size of a test suite for an English-to-Chinese translation system. The 
result is shown in Figure 1. 

When the test suite is small, i.e. there is small number of sentences in the test suite, the 
MT evaluation score fluctuates violently. While when the test suite contains more than 80 
sentences, the fluctuation becomes less violent and goes flat after 400 sentences. Figure 1 
shows that the two methods have similar tendencies, which shows that they have similar 
demands of the test suite size. 
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Figure 1. MT evaluation score changes with the increasing of sentence in the test 

corpus. The score stabilizes when the corpus contains more than 400 
sentences. The experiment is made on an English-to-Chinese MT system. 

Another aspect of the influence of the size of test suite can be revealed by the number of 
reference translations in NIST and BLEU evaluation. To get a higher quality of evaluation 
result, the BLEU and NIST methods can have multiple reference translations. Figure 2 shows 
the influence of the number of reference translations on BLEU and NIST evaluation results. 
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(a) NIST word model (b) NIST character model 
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(c) BLEU word model (d) BLEU character model 

Figure 2. Evaluation results with different number of reference translations by (a) 
NIST word model, (b) NIST character model, (c) BLEU word model and 
(d) BLEU character model for 6 English-Chinese MT systems. The word 
model calculates the MT evaluation scores in terms of Chinese words, 
while the character model is in terms of Chinese characters. 

The BLEU and NIST evaluations are implemented with two different language models: 
The character model, which takes Chinese characters as unit of scoring, while the word model 
takes the Chinese word as the unit. The Chinese sentences are segmented into words by a 
Chinese segmentor (which was developed at Harbin Institute of Technology, 
http://ir.hit.edu.cn). In BLEU and NIST evaluation, one can see that the scores go up with the 
increasing number of reference translations. Compared to the character model, the word model 
scores saturate faster with an increasing number of references, which means it has a lower 
demand for references. This is also the case for the BLEU models. A possible reason for this 
phenomenon is that a word is not easy to be matched in extra-translation reference, while new 
characters come out even after a big number of references. This experiment gives researchers 
a hint that synonyms can improve the performance of similarity-based MT evaluation methods 
such as BLEU and NIST. 
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4. Visualization of MT evaluation scores and system clustering 

MT evaluation has been extensively studied in recent years. However, the various MT 
evaluation methods just render a score for each system or translation sentence. The score 
scales also vary among methods. The BLEU and GTM score has a value between 0 and 1. 
NIST has a lower bound of 0 with no upper bound. The manual evaluation of fidelity and 
accuracy usually has discrete quality levels. This makes it quite ambiguous to understand the 
meanings of the scores. This section intends to make it easier to understand the MT evaluation 
scores by visualizing the scores of evaluation results. 

4.1 Visualization of MT Evaluation Scores 
The BLEU and NIST evaluation methods have been popular in MT evaluation research. This 
research project makes MT evaluation experiments using these methods for a better 
understanding of the result. The MT evaluation data is visualized in the diagram as shown in 
Figure 4. Figure 4 exhibits the MT evaluation results with the test suite of 1019 sentences 
selected from the 863 National High-tech Program MT Evaluation corpus for machine 
translation, as introduced in section 3.2. Four systems are evaluated with the BLEU method. 
The diagram is produced with the algorithm in Figure 3. 

Algorithm: Visualization of system scores by plotting lines in a diagram  
1:      INPUT: ˧Ч̎˧˼ˍʳ̇ ˧˼ʿʳ̇ʳ˼̆ʳ˴ʳ̇̅˴́̆˿˴̇˼̂́ʳ˵̌ʳˠ˧ʳ̆̌̆̇˸̀ʳˠ˧˦˼̐ 
2:      //Process the MT translation and get the BLEU scores 
3:      For each machine translation system MTSi do 
4:      For each translation t Ti by machine translation systems MTSi do 
5:         Score{t} {sti| sti is the BLEU score of the translation ti} 
6:      End for 
7:      //Plot a line of the BLEU scores for each MT system 
8:      Score{t} Score{t}{the BLEU scores sorted in ascending order} 
9:      For i=1 to |T| {number of items in the translation set T} do 
10:        Plot a point (i,sti) in the diagram 
11:     End for 
12:     End for 
13:     Output: a diagram in which every MT system is presented with a curve 

Figure 3. Algorithm: Visualization of system scores by plotting lines in a diagram 
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(a) BLEU 1-gram 

 
(b) BLEU 3-gram 

 
(c) BLEU 5-gram 

Figure 4. Machine translation evaluation scores of 4 MT systems on 1019 sentences 
with (a) 1-gram, (b) 3-gram and (c) 5-gram BLEU method. Each line 
manifests the quality performance of a MT system. A line on the left and 
upper stands for a system with higher translation quality. 
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Figure 4 is the diagram from the algorithm for visualization of system scores, in which 
each system is represented by a line drawn according to the scores of the translations. From 
the lines of MT systems, one can draw the following conclusions about the MT evaluation 
performance. 1) The longer the N-gram, the more difficult the test is, and the lower the scores 
obtained by MT systems. The lines in the diagram shift to the right side when the N-gram 
shifts from unigram to 5-gram. The leftmost line represents the performance of the best system. 
2) The gap between the lines changes with the difficulty of the test. As seen in the Figure 4(a) 
of the unigram scores, the lines representing systems #2, #3, and #4 are very near to each other, 
while the gap becomes much larger between the trigram lines in Figure 4(b). This is because 
the difficulty of the test influences the discriminability of the evaluation. 

The visualization method is based on NIST, BLEU or a similar MT evaluation score, but 
is more intuitional and easier to understand. On the one hand, the evaluation is not only 
presented for the whole system, but also each translation; on the other hand, the tendency of 
the lines manifests the quality characteristics of MT systems, while the gap represents the 
difference. From the diagram, one can directly see the difficulty and discriminability of the 
MT evaluation. This has fully taken advantage of the diagrams over pure numbers. 

4.2 System Clustering Based on Various MT Evaluation Scores 
The above section presents a diagram presenting the evaluation scores of the MT systems, 
which shows the translation quality of several systems. To make the quality difference clearer, 
system clustering is utilized for visualizing the distances of MT systems in respect to 
translation quality in this section. This process involves calculating the distances of translation 
quality, as shown in the algorithm of Figure 5. 

The MT systems are evaluated by several manual and automatic evaluation methods. The 
evaluation methods are: F-measure of intelligibility and accuracy, error typology scoring ET 
as in [Guessoum and Zanout 2001], separate linguistic points as in [Yu 1993], BLEU word 
model, NIST word model, language model probability, edit distance and DICE coefficient as 
in [Yao et al. 2002]. As different evaluation methods have different value scopes, the scores as 
in step 3 to step 9 of the algorithm have been normalized. After the normalization, the value of 
MT scores varies between 0~1. The normalized scores are shown in Table 3. The clustering 
dendrogram is shown in Figure 6. 

The methods introduced in this experiment are as follows: 1) F-measure is the F1 
measure, which integrates the manual metrics of intelligibility and fidelity. 2) ET is a 
weighted sum of scores from different Types of Errors. 3) SLP comes from the automatic 
scoring based on a Separate Language Points, which measures different linguistic phenomena 
based on a human-edited test suite. 4) BLEUW and NISTW is the BLEU/NIST score 
measured on Chinese word model, which takes words instead of characters as the unit of 
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comparison. 5) LM is the score from a language model, specifically a bi-gram model in this 
article. 6) EDist is a score from edit distance between the translation and the reference. 7) 
DICE is a score based on the DICE coefficient of the translation and the reference. 

Algorithm: Similarity histogram-based incremental MT system clustering 

1: INPUT: Score{MTSi} {sco_mti| BLEU scores of translations by MTSi } 

2: // Normalize the MT BLEU scores 

3: For each machine translation system MTSi do  

4: max{sco_mti} sco_mti{the maximum BLEU score in Score{MTSi} 

5: min{sco_mti} sco_mti{the minimum BLEU score in Score{MTSi} 

6: For each sco_mti do 

7: 
_ min{ _ }_

max{ _ } min{ _ }
sco mti sco mtisco mti

sco mti sco mti
 

8: End for 

9: End for 

10: //Similarity histogram-based incremental MT system clustering 

11: L Empty list{Cluster list} 

12: For each MT system mts do 

13: For each cluster c in L do 

14: HRold = HRc 

15: Simulate adding mts to c 

16: If (HRnew  HRold) OR ((HRnew > HRmin) AND (HRold Њ �– Hrnew < )) then 

17: Add mts to c 

18: End if 

19: End for 

20: If mts was not added to any cluster then 

21: Create a new cluster c 

22: Add  mts to c 

23: Add c to L 

24: End if 

25: End for 

26: Output: a histogram of MT systems 
Figure 5. Similarity histogram-based incremental MT system clustering 
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Table 3. Normalized scores of MT systems by various MT evaluation methods. The 
scores are obtained with various MT evaluation methods that have different 
score scopes. The scores are normalized for system clustering. 

MTS F-measure ET SLP BLEUW NISTW LM EDist DICE 

MTS#1 1.00 0.92 1.00 1.00 1.00 1.00 0.92 1.00 

MTS#2 0.84 1.00 0.85 0.78 0.78 0.46 1.00 1.00 

MTS#3 0.60 0.71 0.45 0.22 0.24 0.18 0.23 0.27 

MTS#4 0.44 0.71 0.20 0.22 0.15 0.14 0.69 0.80 

MTS#5 0.16 0.38 0.10 0.00 0.00 0.00 0.00 0.00 

MTS#6 0.00 0.00 0.00 0.11 0.03 0.11 0.08 0.20 

 
Figure 6. Cluster chart and distance between clusters of 6 MT systems. Systems are 

clustered according to their quality difference. 

The cluster chart in the dendrogram in Figure 6 is a clear representation of the machine 
translation system quality. As seen from this dendrogram, the systems MTS#5 and MTS#6 are 
very similar to each other and are clustered first. The MTS#1 and MTS#2 have a second 
smallest difference. After MTS#3 and MTS#4 are clustered as one, the clustering goes on, and 
all the systems cluster into a binary tree. This clustering dendrogram is an easy way for a clear 
presentation of MT system quality based on ensemble of various evaluation scores. 

5. Conclusion 

This paper is an effort towards MT evaluation performance analysis and better rendering of 
MT evaluation results. After a general framework is proposed for the description of MT 
evaluation measure and the test suite, some instances are given including whether the 
automatic measure is consistent with human evaluation, whether MT evaluation results from 
various measures or test suites are consistent, whether the content of the test suite is suitable 
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for performance evaluation, the degree of difficulty of the test suite and its influence on the 
MT evaluation, the relationship of MT evaluation result significance and the size of the test 
suite, etc. For better clarification of the framework, a visualization method is introduced for 
presenting the results. The MT evaluation performance analysis can help a lot in designing test 
suites for different MT evaluation methods. The visualization method, on the one hand, gives 
an intuitive representation of the quality difference of MT systems; on the other hand, it is an 
easy way to assemble of the different evaluation results. 
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Appendix 
This section presents the human evaluation results from [Darwin 2001] on eight 
English-to-Japanese MT systems. Two popular metrics are used in the human evaluation: 
intelligibility and accuracy. The evaluators score the systems on a 5 point scale. 

Table A1. Overall English-to-Japanese Average Scores (Possible Score from 1 to 5 
Points). 

Metrics EJsys-1 EJsys-2 EJsys-3 EJsys-4 EJsys-5 EJsys-6 EJsys-7 EJsys-8 

Intelligibility 2.33 3.39 3.42 3.32 3.00 3.01 3.11 2.87 

Accuracy 2.42 3.60 3.62 3.45 3.13 3.15 3.27 2.99 

 
Table A2. E-to-J Average Scores by Evaluator A and B (phase by phase), the column 

“I” lists intelligibility scores, and A column lists accuracy scores. 

EJsys-1 EJsys-2 EJsys-3 EJsys-4 EJsys-5 EJsys-6 EJsys-7 EJsys-8 Test Suite 

I A I A I A I A I A I A I A I A 

Sent#1-100(A) 2.38 2.62 3.25 3.56 3.30 3.54 3.14 3.48 3.10 3.29 2.97 3.26 3.08 3.33 2.81 3.04 

Sent#101-200(A) 2.67 2.83 3.53 3.87 3.58 3.91 3.32 3.65 3.17 3.45 3.17 3.53 3.33 3.69 3.14 3.43 

Sent#201-300(A) 2.11 2.41 3.02 3.54 3.05 3.61 3.01 3.40 2.67 3.06 2.71 3.02 2.65 3.07 2.56 2.86 

All 300(A) 2.39 2.62 3.27 3.66 3.31 3.69 3.16 3.51 2.98 3.27 2.95 3.27 3.02 3.36 2.84 3.11 

Sent#1-100(B) 1.91 1.76 3.15 3.08 3.08 2.98 3.08 2.87 2.73 2.55 2.78 2.65 2.83 2.75 2.48 2.39 

Sent#101-200(B) 2.65 2.60 3.86 3.86 3.89 3.90 3.74 3.60 3.32 3.29 3.42 3.35 3.59 3.53 3.31 3.22 

Sent#201-300(B) 2.25 2.29 3.50 3.66 3.61 3.77 3.60 3.68 3.03 3.15 3.02 3.09 3.20 3.25 2.89 2.97 

All 300(B) 2.27 2.22 3.50 3.53 3.53 3.55 3.47 3.38 3.03 3.00 3.07 3.03 3.21 3.18 2.89 2.86 

 



 

 

ˆ˄ˇ                                                         Jianmin Yao et al. 

 


