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Abstract 

In this paper, we compare four typical spoken language identification (LID) 
systems. We introduce a novel acoustic segment modeling approach for the LID 
system frontend. It is assumed that the overall sound characteristics of all spoken 
languages can be covered by a universal collection of acoustic segment models 
(ASMs) without imposing strict phonetic definitions. The ASM models are used to 
decode spoken utterances into strings of segment units in parallel phone 
recognition (PPR) and universal phone recognition (UPR) frontends. We also 
propose a novel approach to LID system backend design, where the statistics of 
ASMs and their co-occurrences are used to form ASM-derived feature vectors, in a 
vector space modeling (VSM) approach, as opposed to the traditional language 
modeling (LM) approach, in order to discriminate between individual spoken 
languages. Four LID systems are built to evaluate the effects of two different 
frontends and two different backends. We evaluate the four systems based on the 
1996, 2003 and 2005 NIST Language Recognition Evaluation (LRE) tasks. The 
results show that the proposed ASM-based VSM framework reduces the LID error 
rate quite significantly when compared with the widely-used parallel PRLM 
method. Among the four configurations, the PPR-VSM system demonstrates the 
best performance across all of the tasks. 

Keywords: Automatic Language Identification, Acoustic Segment Models, 
Universal Phone Recognizer, Parallel Phone Recognizers, Vector Space Modeling 

1. Introduction 

Automatic language identification (LID) is the process of determining the language identity 
corresponding to a spoken query. It is an important technology in many applications, such as 
spoken language translation, multilingual speech recognition [Ma et al. 2002], and spoken 
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document retrieval [Dai et al. 2003]. In the past few decades, many statistical approaches to 
LID have been developed [Kirchhoff et al. 2002] [Li and Ma 2005] [Matrouf et al. 1998] 
[Nagarajan and Murthy 2004] [Parandekar and Kirchhoff 2003] [Singer et al. 2003] 
[Torres-Carrasquillo et al. 2002] [Yan and Barnard 1995] [Zissman 1996] by exploiting recent 
advances in the acoustic modeling [Singer et al. 2003] [Torres-Carrasquillo et al. 2002] of 
phone units and the language modeling of n-grams of these phones [Li and Ma 2005] 
[Parandekar and Kirchhoff 2003]. Acoustic phone models are used in language-dependent 
continuous phone recognition to convert speech utterances into sequences of phone symbols in 
a tokenization process. Then the scores from acoustic models and the scores from language 
models are combined to obtain a language-specific score for making a final LID decision 
[Zissman 1996]. 

Syllable-like units have also been studied [Nagarajan and Murthy 2004]. To further 
improve the LID performance, other information, such as articulatory and acoustic features 
[Kirchhoff et al. 2002] [Sugiyama 1991], lexical knowledge [Adda-Decker et al. 2003] [Ma et 
al. 2002] and prosody [Hazen and Zue 1994], have also been integrated into LID systems. 
Zissman [1996] experimentally showed that phonetic language models can sometimes be more 
powerful than MFCC-based Gaussian mixture models (GMMs) [Torres-Carrasquillo et al. 
2002]. Therefore the fusion of high-level features and good utilization of their statistics are 
two important research topics for LID. 

To make use of high-level features, the LID problem can be taken as consisting of two 
sub-problems, the tokenization problem and the classification problem. When the tokenization 
problem is addressed, a fundamental question that arises is whether phone definition is really 
needed to identify spoken languages. When human beings are constantly exposed to a 
language without being given any linguistic knowledge, they learn to determine the language’s 
identity by perceiving some of the speech cues in the language. It is also noteworthy that in 
human perceptual experiments, listeners with multilingual background often perform better 
than monolingual listeners in identifying unfamiliar languages [Muthusamy et al. 1994]. 
These results motivate us to look for useful speech cues for LID along the same line of a 
recently proposed automatic speech attribute transcription (ASAT) paradigm for automatic 
speech recognition [Lee 2004]. When we address the classification problem, we find that the 
strategies such as feature representation for spoken documents and classifier design principles 
have direct impacts on LID performance. 

In this paper, we adopt the acoustic segment modeling approach to address the 
tokenization problem. It is assumed that the sound characteristics of all spoken languages can 
be covered by a set of acoustic units without strict phonetic definitions, which are called 
acoustic segment models (ASMs) [Lee et al. 1998]. They can be used to decode spoken 
utterances into strings of such units. We also propose a vector space modeling approach (VSM) 
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to classifier design where the statistics of the units and their co-occurrences corresponding to 
spoken utterances are used to construct feature vectors. 

Hidden Markov modeling (HMM) [Rabiner 1989] is the dominant approach to acoustic 
modeling. A collection of ASMs is established from the bottom up in an unsupervised manner 
using HMM, and has been used to construct an acoustic lexicon for isolated word recognition 
with high accuracy [Lee et al. 1998]. In LID research, a large body of prior work in LID has 
been devoted to the PR-LM framework (the phone-recognition frontend followed by the 
language model backend) [Zissman 1996] and its variations, where phonetic units are used as 
acoustic units. This is also referred to as the phonotactic approach. The phonotactic approach 
has been shown to achieve superior performance in NIST LRE tasks especially when it is 
fused with acoustic scores [Singer et al. 2003]. In this paper, we investigate four LID system 
configurations cast in a formalism of frontend feature extraction and backend classifier, 
namely parallel phone recognizer (PPR) and universal phone recognizer (UPR) frontends, and 
n-gram language model (LM) and vector space model (VSM) backends. We show that the 
ASM-based PPR-VSM system configuration achieves the best performance across 1996, 2003 
and 2005 NIST Language Recognition Evaluation tasks. 

This paper is organized as follows. In Section 2, we introduce the acoustic segment 
modeling approach. In Section 3, we discuss LID systems by studying their frontends and 
backends. In Section 4, we present the experimental results on four front-backend 
combinations. We draw conclusions in Section 5. 

2. Acoustic Segment Modeling 

A tokenizer is needed to convert spoken utterances into sequences of fundamental acoustic 
units specified in an acoustic inventory. We believe that units that are not linked to a particular 
phonetic definition can be more universal, and therefore conceptually easier to adopt. Such 
acoustic units are thus highly desirable for universal language characterization, especially for 
rarely observed languages, languages without orthographies, or languages without 
well-documented phonetic dictionary. 

A number of variants have been developed along these lines, which have been referred to 
as language-independent acoustic phone models. Hazen and Zue [1994] reported using 87 
phones from the multilingual OGI-TS corpus. Berkling and Barnard [1994a] explored the 
possibility of finding and using only those phones that best discriminate between language 
pairs. Berkling and Barnard [1994b] and Corredor-Ardoy et al. [1997] used phone clustering 
algorithms to find common sets of phones for languages. However, these systems could only 
operate when a phonetically transcribed database was available. On a separate front, a general 
effort to circumvent the need for phonetic transcription can be traced back to [Lee et al. 1998] 
on automatic speech recognition, where ASM was constructed in an unsupervised manner. 
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Some recent studies have applied this concept to LID [Sai Jayram et al. 2003]. Motivated by 
the above efforts, we propose here an ASM method for establishing a universal representation 
of acoustic units for multiple languages. 

2.1 Augmented Phoneme Inventory (API) 
Attempts have been made to derive a universal collection of phones to cover all sounds 
described in an international phonetic inventory, e.g. International Phonetic Alphabet (IPA) or 
Worldbet [Hieronymus 1994]. In practice, this is a challenging endeavor because we need a 
large collection of labeled speech samples for all languages. Note that these sounds overlap 
considerably across languages. One possible approximation approach is to use a set of 
phonemes from several languages to form a superset, called an augmented phoneme inventory 
(API) here. This idea has been explored in previous works [Berkling and Barnard 1994a] 
[Berkling and Barnard 1994b] [Corredor-Ardoy et al. 1997] [Hazen and Zue 1994]. A good 
inventory needs to phonetically cover as many targeted languages as possible. This method 
can be effective when phonemes from all targeted languages form a closed set, as studied by 
Hazen and Zue [1994]. Human perceptual experiments have also shown a similar effect, 
where listeners’ LID performance improved as their exposure to each language increased 
[Muthusamy et al. 1994]. 

This API-based tokenization approach was recently explored [Ma et al. 2005] by using a 
set of all 124 phones and 4 noise units from English, Korean, and Mandarin, and by 
extrapolating them to nine other languages in the NIST LRE tasks. This set of 128 units is 
referred to as API-I in Table 1, which is a proprietary phone set defined for the IIR-LID1 
database. Many preliminary LID experiments were conducted using the IIR-LID database and 
the API-I phone set. For example, we have explored an API-based approach to universal 
language characterization [Ma et al. 2005] and a text categorization approach to LID [Gao et 
al. 2005], which formed the basis for the vector based feature extraction approach discussed in 
the next section. To expand the acoustic and phonetic coverage, we further used another larger 
set of APIs with 258 phones, from the six languages in the OGI-TS2 multi-language telephone 
speech database. These six languages all appear in the NIST LRE tasks. This set will be 
referred to as API-II. A detailed breakdown of how the two phone sets were formed with 
phone counts for each language is given in Table 1. 

 

 

 
                                                 
1 Language Identification Corpus of the Institute for Infocomm Research 
2 http://cslu.cse.ogi.edu/corpora/corpCurrent.html 
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Table 1. The languages and phone sets of API-I & -II 
API-I Count API-II Count 

English 44 English 48 
Mandarin 43 Mandarin 39 
Korean 37 German 52 
General 4 Hindi 51 

   Japanese 32 
   Spanish 36 

Total 128 Total 258 

2.2 Acoustic Segment Model (ASM) 
The above phone-based language characterization approach suffers from two major 
shortcomings. First, a combined phone set from a limited set of multiple languages cannot 
easily be extended to cover new and rarely used languages. Second, a large collection of 
transcribed speech data is needed to train the acoustic and language phone models for each 
language. To alleviate these difficulties, a data-driven method that does not rely on exact 
phonetic transcriptions is preferred. It can be obtained by constructing consistent acoustic 
segment models (ASMs) [Lee et al. 1998] intended to cover the entire sound space of all 
spoken languages in an unsupervised manner. 

As in other types of hidden Markov modeling, the initialization of ASMs is a critical 
factor for success. Note that the unsupervised, data-driven procedure for obtaining ASMs may 
result in many unnecessary small segments because of a lack of phonetic or prosodic 
constraints, (e.g. the number of segments in a word and the duration of an ASM) imposed 
during segmentation. This problem is especially severe when segmenting a huge collection of 
speech utterances from a large population of speakers with different language backgrounds. 
The API approach uses phonetically defined units in the sound inventory. It has the advantage 
of adopting phonetic constraints in the segmentation process. By using API to bootstrap ASM, 
our approach effectively incorporates some phonetic knowledge about a few languages in the 
initialization step to guide the ASM training process as described below: 

Step 1: Carefully select a few languages, typically with large amounts of labeled data, and 
train language-specific phone models. Choose a set of J models for bootstrapping. The J models 
had better not to overlap very much according to their acoustic characteristics, and their number 
should be large enough to provide a reasonable acoustic coverage for all of the target languages. 

Step 2: Use these J models to decode all training utterances in the training corpora. Assume 
the recognized sequences are “true” labels. 

Step 3: Force-align and segment all utterances in the training corpora, using the available set 



 

 

164                                                     Bin Ma and Haizhou Li 

of labels and HMMs. 

Step 4: Group all segments corresponding to a specific label into a class. Use these segments 
to re-train an HMM. 

Step 5: Repeat steps 2-4 several times until convergence is achieved. 

In this procedure, we jointly optimize the J models as well as the segmentation of all 
utterances. This is equivalent to the commonly adopted segmental ML and k-means HMM 
training algorithm [Rabiner 1989] which adopt iterative optimization of segmentation and 
maximization. We have found that API-bootstrapped ASMs are more stable than the randomly 
initialized ASMs. It outperformed API by a big margin in the 1996 NIST LRE task as reported 
in [Ma et al. 2005]. The detailed results will be given in section 4.1. 

With an established acoustic inventory obtained using the ASM method, we can tokenize 
any given speech utterance to obtain a token sequence T̂ , in a form similar to a text-like 
document. Note that ASMs are trained in a self-organized manner. We may not be able to 
establish a phonetic lexicon using ASMs and translate an ASM sequence into words. However, 
as far as LID is concerned, we are more interested in consistent tokenization than in the 
underlying lexical characterization of a spoken utterance. The self-organizing ASM modeling 
approach offers the key property that it does not require the training speech data to be directly 
or indirectly phonetically transcribed. 

Comparing the API and ASM methods, we find that the API method has better 
linguistic/phonetic grounding, while the ASM method is more acoustically oriented. Instead of 
using a bottom-up approach to derive purely acoustically oriented ASM units in an 
unsupervised manner, we use API to bootstrap the units. 

The main difference between API and ASM lies in the relaxation of phone transcription 
for segmentation. In API, phone models are trained according to manually transcribed phone 
labels, while in ASM, segmentation is done in iterations using automatic recognition results. 
In this way, ASM gains two advantages: (i) it allows us to adjust a set of API phones from a 
small number of selected languages towards a larger set of targeted languages; (ii) ASMs can 
be trained on acoustic data similar to that used for the LID task, thus potentially minimizing 
the mismatch between the test data and the APIs that were trained on a prior set of 
phonetically transcribed speech data. 

3. Frontend and Backend Formulations 

In this section, we will first briefly discuss prior works cast in the formalism of phone 
recognition (PR) and phone-based language modeling (LM). Then, we will propose our phone 
recognition frontend based on ASM acoustic modeling and our backend of vector space 
modeling for language classification. Note that the ASMs are no longer the phonemes defined 
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in Table 1. For easy reference, we will continue to refer to the ASM tokenization process as 
phone recognition (PR). 

3.1 PPR-LM Configuration 
A typical LID system is illustrated in Figure 1, which shows a collection of parallel phone 
recognizers (PPR frontend) that serve as voice tokenizers, referred to as the frontend. A 
frontend converts spoken utterances into sequences of token symbols, or spoken documents. It 
is followed by a set of n-gram phone language models (LM) that impose constraints on phone 
decoding and provide language scores. The LM pool converts an input spoken utterance into a 
vector of interpolated LM scores. The language models and the classifier are referred to as the 
backend. The backend classifier models a spoken language using a collection of training 
samples, in the form of LM score vectors. 

Figure 1. Block diagram of a PPR-LM LID system 

Generally speaking, a probabilistic language classifier can be formulated as follows. 
Given a sequence of feature vectors O of length τ , 1 2{ , ..., }O o o oτ= , we can express the a 
posteriori probability of language l using Bayes Theorem as follows: 

( ) ( ),

( | ) ( | ) ( ) / ( )

            | , | ( ) / ( )AM LM
f f l

T

P l O P O l P l P O

P O T P T P l P Oλ λ
∀

=

= ∑ ,                   (1) 

where T is a candidate token sequence, and AM
fλ is the acoustic model for the f-th phone 

recognizer, while ,
LM
f lλ  is the l-th language model for the f-th phone recognizer. Now we can 

apply the maximum a posteriori decision rule as follows: 

PR-1: Chinese 

PR-2: English 

PR-F: French 

LM-L: French 

LM-1 … LM-L

LM-L: French 

LM-1 … LM-L

LM-L: French 

LM-1 … LM-L

Spoken utterance 

PPR-Frontend LM-Backend

  Lang-1 

   Lang-L 

   Lang-2 
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( ) ( ),
,

ˆ arg max | , | ( ) / ( )AM LM
f f l

Tf l
l P O T P T P l P Oλ λ

∀
= ∑ ,              (2) 

where the first term on the right hand side of (2) is the probability of O given T and its 
acoustic model AM

fλ , the second term is the language probability of T given the language 
model ,

LM
f lλ , and the last term is the prior probability P(l), which is often assumed to be equal 

for all languages. The observation probability, P(O), is not a function of the language and can 
be removed from the optimization function. 

The exact computation in (2) involves summing over all possible token sequences. In 
practice, it can be approximated by finding the most likely phone sequence ˆ

fT , for each 
phone recognizer f, using the Viterbi algorithm: 

( )ˆ arg max | ,
f

AM
f f

T B
T P O T λ

∈
= ,                                  (3) 

where fB  is the set of all possible token sequences from the f-th phone recognizer. As such, 
a solution to (2) can be approximated as follows: 

( ) ( ),
,

ˆ ˆ ˆarg max log | , log |AM LM
f f f f l

f l
l P O T P Tλ λ⎡ ⎤≈ +⎢ ⎥⎣ ⎦

.              (4) 

We assume that the F parallel language-dependent acoustic phone models can be used 
to approximate the acoustic space of L languages. After a spoken utterance is decoded by the 
F recognizers, it needs to be evaluated by a set of F L×  language models to establish 
comparability. The system formulated by (3) and (4) is known as parallel PRLM, or P-PRLM 
[Zissman 1996]. In this paper, it will be referred to as PPR-LM to identify its PPR frontend 
and LM backend. 

3.2 UPR-LM Configuration 
In prior works, researchers also looked into a language-independent phone recognizer with a 
set of universal acoustic units, or phones that are common to all languages. The formulations 
of (3) and (4) can be simplified as a two-step optimization: 

( )ˆ arg max log | , AM

T B
T P O T λ

∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
,                              (5) 

( )ˆ ˆarg max log | LM
l

l A
l P T λ

∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
,                                  (6) 

where B is the set of all possible token sequences for all languages. The acoustic probability 
on the right hand side of (5) is now the same for all competing languages. Only a 
language-specific score on the right hand side of (6) is used for score comparison to select the 
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identified language. As such, the PPR-LM system can be simplified as the UPR-LM system 
with a universal phone recognition (UPR) frontend as shown in Figure 2. 

Figure 2. Block diagram of a UPR-LM LID system 

A number of UPR-LM systems have been proposed along these lines, such as the ALI 
system [Hazen and Zue 1994], the single-language PRLM system [Zissman 1996], and the 
language-independent phone recognition approach [Corredor-Ardoy et al. 1997]. However, 
the training of phone sets in these systems requires phonetic transcription of all training 
utterances. 

In this paper, we propose a new way of training the set of universal acoustic units using 
the ASM approach described in Section 2.2, where acoustic models are trained in a 
self-organized and unsupervised manner. This provides two obvious advantages: (1) the 
unsupervised strategy allows the frontend to adapt easily to new languages without the need 
for phonetic transcription; (2) the universal acoustic units can be flexibly partitioned into 
subsets to work for the parallel phone recognition (PPR) frontend as shown in Figure 1. 

3.3 Vector Space Modeling for Language Classification 
Vector space modeling (VSM) has become a standard tool in Information Retrieval (IR) 
systems since its introduction decades ago [Salton 1971]. It uses a vector to represent a text 
document. One of the advantages of the method is that it allows the discriminative training of 
classifiers over the document vectors. We can derive the distance between documents easily as 
long as the vector attributes are well defined characteristics of the documents. Each coordinate 
in the vector reflects the presence of the corresponding attribute. 

Inspired by the idea of document vectors in text categorization research, we would like to 
investigate a new concept of the LID classifier, using vector space modeling. A spoken 
language will always contain a set of high frequency function words, prefixes, and suffixes, 
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LM-1: Chinese  
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which are realized as acoustic unit substrings in spoken documents. Individually, these 
substrings may be shared across languages. Collectively, the pattern of their co-occurrences 
discriminates one language from another. 

Suppose that the sequence of feature vectors O is decoded into a sequence ofΩ  acoustic 
units 1

ˆ { ,..., ,..., }T t t tπ Ω= , where each unit is drawn from the universal ASM inventory of J 
models in a UPR frontend, 1 2{ , ,... }Jt w w wπ ∈ . One is able to establish a high-dimensional 
salient feature vector which is language independent, where all of its elements are expressed 
as the n-gram probability attributes 1 1( | ,... )n np w w w − =  1 1 1 1( | ,..., )n n np t w t w t wπ π π− − + −= = = . 
Its dimension is equal to the total number of n-gram patterns needed to highlight the overall 
behavior of an utterance: 

( )1 2 1 3 1 2( ),..., ( | ),..., ( | , ),...p w p w w p w w wλ= .                             (7) 

The vector λ is also called a bag-of-sounds (BOS) vector [Li and Ma 2005], which represents 
a spoken utterance in a document vector in a same way as in text-based document vector 
representation [Gao et al. 2005] [Salton 1971]. The vector space modeling approach evaluates 
the goodness of fit, or score function, using a vector-based distance, such as an inner product: 

( )ˆ L M T
l lP T λ λ ω∝ ⋅ ,                                      (8) 

where lω is a language-dependent weight vector with dimension equal to λ  , with each 
component representing the contribution of its individual n-gram probability to the overall 
language score. The spoken document vector in (7) is high dimensional in nature as high order 
n-gram patterns are included. This makes it suitable for discriminative feature extraction and 
selection. 

For the PPR frontend, the sequence of feature vectors O is decoded into F independent 
sequences of acoustic units. A BOS vector fλ can be derived from each sequence in the same 
way as in (7) for each phone recognizer. A grand BOS vector is, therefore, constructed by 
concatenating the F vectors fλ  to represent the input spoken utterance. With multiple 
tokenizers, we hope that the grand BOS vector will describe the input spoken utterance in a 
greater detail. 

Term weighting [Bellegarda 2000] is widely used to render the value of the attribute in a 
document vector by taking into account the frequency of occurrence of each attribute. It is 
interesting to note that attribute patterns which often occur in a few documents but not as often 
in others provide high indexing power for these documents. On the other hand, patterns which 
occur very often in all documents possess little indexing power. This desirable property has 
led to the development of a number of term weighting schemes, such as tf-idf, that are 
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commonly used in information retrieval [Salton 1971], natural language call routing [Kuo and 
Lee 2003], and text categorization [Gao et al. 2004]. We adopt the standard tf-idf term 
weighting scheme in this paper. 

Note that the variations [Berkling and Barnard 1994a] [Corredor-Ardoy et al. 1997] 
[Hazen and Zue 1994] [Zissman 1996] of LM backend systems proposed in prior works used 
cross-entropy or perplexity based language model scores, which are based on similarity 
matching, for language classification decision-making. The VSM can be seen as an attempt to 
enhance the discrimination power offered by n-gram phonotactic information. 

3.4 VSM-Backend 
With the universal ASM acoustic units in place, any spoken utterance can now be tokenized 
with a set of “key terms” so that their patterns and statistics can be used to discriminate 
between individual spoken documents. The given collection of spoken documents in the 
training set from a particular language forms the same language category. LID can be 
considered the process of classifying a spoken document into some pre-defined language 
categories. An unknown testing utterance to be identified can be represented as a query vector, 
and LID can then be performed as in text document classification [Joachims 2002]. We can 
then utilize any classifier learning technique, such as support vector machine [Sebastiani 2002] 
or artificial neural network [Haykin 1994], developed by the text categorization community to 
design language classifiers. An LID system with the VSM-backend is shown in Figure 3 for 
the PPR frontend and in Figure 4 for the UPR frontend. The VSM-backend takes as inputs 
n-gram statistics in the form of document vectors. The backend structure remains the same for 
both the UPR and PPR frontends, so long as we can represent the voice tokenizations from the 
PPR/UPR frontend in document vectors. With the document vectors from the training 
database, the backend groups training document vectors into language classes. 
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Figure 3. Block diagram of a PPR-VSM LID system 
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Figure 4. Block diagram of a UPR-VSM LID system 

3.5 Classifiers in VSM-Backend 
There are many ways to reduce the dimension of the document vectors and to enhance the 
discriminative ability, such as by applying latent semantic indexing (LSI). In this paper, we 
propose to use a set of output scores from an array of support vector machines (SVMs) as the 
dimension-reduced vector for the final classifier. For each of L target languages, we have a 
number of high dimensional training vectors as shown in (7). An SVM is a 2-way classifier 
used to partition the high dimensional vector space. We construct an SVM between each of the 
language pairs. As a result, we obtain ( 1) / 2L L× −  pair-wise SVM classifiers for the L target 
languages. For each input utterance, an output score is generated from each of the pair-wise 
SVM classifiers, resulting in a vector of ( 1) / 2L L× − dimensions that represent 

( 1) / 2L L× − pair-wise language discriminative scores, called a discriminative vector. The 
linear kernel is adopted for the SVMs in the SVMlight V6.01 tool3 implementation. In this 
way, each language category can be represented by a Gaussian mixture model (GMM) which 
is trained on the discriminative vectors of the training utterances. The GMM classifiers are 
built as part of the VSM-backend for decision-making. At run-time, the VSM-backend 
identifies the language of a spoken document in language recognition/detection trials and 
verifies the language identity of a spoken document in language verification trials. 

To summarize, we have discussed an LID paradigm of two frontend options for voice 
tokenization, PPR or UPR, and two backend options, LM or VSM. The PPR-LM and 
UPR-LM configurations were well studied in the previous works. However, a systematic 
comparison among the PPR-LM, UPR-LM, PPR-VSM and UPR-VSM configurations has not 
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been made. Thus, we conducted a comparative study over the four combinations of frontends 
and backends based on ASM acoustic units. 

4. Experiments 

We followed the experiment setup in the NIST Language Recognition Evaluation (LRE) tasks4. 
The tasks were intended to establish a baseline of performance capability for language 
recognition of conversational telephone speech. The evaluation was carried out on recorded 
telephony speech in 12 languages, Arabic, English, Farsi, French, German, Hindi, Japanese, 
Korean, Mandarin, Spanish, Tamil, and Vietnamese, for the 1996, 2003 NIST LRE tasks, and 
in 7 languages, English, Hindi, Japanese, Korean, Mandarin, Spanish, and Tamil for the 2005 
NIST LRE task. 

In this paper, training sets for building models came from two corpora, namely: (i) the 
6-language OGI-TS database with English, German, Hindi, Japanese, Mandarin, and Spanish; 
and (ii) the 12-language LDC CallFriend5 database. The OGI-TS database was only used to 
bootstrap the acoustic models of an initial set of phones. It consists of telephone speech with 
phonetic transcriptions. In addition, the CallFriend database was used for full fledged ASM 
acoustic modeling, backend language modeling and classifier design. It contains telephone 
conversations in the same 12 languages that are in the 1996 and 2003 NIST LRE tasks, but 
without phonetic transcriptions. The two databases are independent of each other. 

In the OGI-TS database, there is less than 1 hour of speech in each language. In the 
CallFriend database, each of the 12 language databases consists of 40 telephone conversations 
with each lasting approximately 30 minutes, giving a total of about 20 hours per language. In 
language modeling, each conversation in the training set is segmented into overlapping 
sessions, resulting in about 12,000 sessions for each of three durations per language. These 
three durations are 3 seconds, 10 seconds, and 30 seconds. The 1996 NIST LRE evaluation 
data consists of 1,503, 1,501, and 1,492 sessions for 3 seconds, 10 seconds, and 30 seconds 
respectively. The 2003 NIST LRE evaluation data consist of 1,200 sessions per duration. The 
2005 NIST LRE evaluation data consist of 3,662 sessions per duration. 

4.1 Frontend Acoustic Modeling 
Our early research on API and ASM [Ma et al. 2005] showed the following: 

(1) The ASM frontend outperformed the API frontend when followed by the VSM backend; 

                                                 
4 http://www.nist.gov/speech/tests/index.htm 
5 See http://www.ldc.upenn.edu/. The overlapping between the CallFriend database and the 1996 LRE 

data was removed from the training data as suggested in http://www.nist.gov/speech/tests/index.htm 
for the 2003 evaluation. 
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In the language identification task on the 12 languages in the 1996 NIST LRE evaluation data 
(30 seconds only), 128 API units were trained with the API-I phone set by using the IIR-LID 
database, and 128 ASM units were further obtained based on the bootstrapping of APIs using the 
CallFriend database. With the UPR-VSM setup using the BOS vectors containing both unigram 
and bi-gram, an error rate of 13.9% was achieved with ASMs, while the error rate with APIs was 
19.2%. 

 (2) Higher ASM coverage, with a larger ASM inventory and higher order n-gram (trigram), 
improved the LID performance; 

Under the same experiment setups as in (1), we investigated the effects of the acoustic 
coverage by clustering the 128 ASM units into 64 and 32 ASMs according to acoustic similarity. 
Table 2 compares the acoustic and linguistic coverage achieved using 32, 64, and 128 AMS 
units, and by using unigram, bi-gram, and trigram. It shows that these reduced-sized ASM units 
greatly impaired the discrimination power of the ASM systems. We needed a reasonable number 
of ASM units that was large enough in order to cover the sound variation in all of the languages. 

Table 2. Comparison of acoustic and linguistic coverage 

Error Rate (%) 32-ASM 64-ASM 128-ASM 

Unigrams 40.1 26.7 22.3 

Bigrams 32.6 18.6 13.9 

Trigrams 27.9 NA NA 

 (3) Note that the initialization of acoustic model has a strong impact on the resulting models 
in HMM training. Apparently, API phone models provide good initialization for ASM models. 

In the following experiments, we used phonetically labeled OGI-TS corpus to train 
API-II phones, as shown in Table 1. 

For each utterance, 39-dimensional features consisting of 12 MFCCs and normalized 
energy, plus their first and second order time derivatives were extracted for each frame. 
Utterance based cepstral mean subtraction was applied to the features to remove channel 
distortion. A two-step modeling approach was adopted. First, the language dependent 
phonemes in API-II were trained language by language based on the phonetic training 
database. Each phoneme was modeled with an HMM of 3 states. The resulting 258 API-II 
phonemes were then used to bootstrap 258 ASM models. The 258 ASM models were further 
trained based on the 12 language CallFriend database in an unsupervised manner as described 
in Section 2.2. The average segment lengths of the 258 ASM models based on the CallFriend 
database ranged from 33 ms to 150 ms. 
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4.2 Backend Classifier 
First, the 15-language/dialect6 training data in the CallFriend database was tokenized to 
obtain a collection of text-like phone sequences from each of the 6 tokenizers. We computed 
PPR-LM scores based on the resulting phone sequences. We trained up to 3-gram phone LMs 
for each PPR-LM tokenizer-target language pair, resulting in 15 6 90× =  LMs. For each input 
utterance, 90 interpolated scores were derived to form a vector. In this way, the training 
utterances could be represented by a collection of 90-dimension score vectors. Similarly, for 
UPR-LM, we trained up to 3-gram phone LMs for each of the target languages, resulting in 15 
LMs. The training utterances were then represented by a collection of 15-dimension score 
vectors. Both PPR-LM and UPR-LM shared the same LM backend design, which adopted the 
framework of PR-LM. The low dimension score vectors could be modeled by the Gaussian 
Mixture Model (GMM) [Torres-Carrasquillo et al. 2002]. 

Next, we will discuss the VSM backend classifier [Li and Ma 2005]. The VSM backend 
first converted the text-like tokenization sequences into BOS vectors as discussed in Section 
3.3. Then the BOS vectors were further processed by the support vector machines to derive 

( 1) / 2L L× − dimensional discriminative vectors. For a frontend of 6 languages, English, 
Mandarin, Japanese, Hindi, Spanish and German, there were 258 phonemes in total. In the 
case of UPR, we derived a BOS vector containing both mono-phones and bi-phones with 
66,822 (= 2582 + 258) elements. In the case of PPR, we derived a BOS vector with 11,708 (= 
482 +392 +522 +512 +322 +362 +48 +39 +52 +51 +32 +36) elements. The BOS vectors were then 
reduced to a discriminative vector of 105 15 14 / 2= ×  dimensions for an evaluation task 
involving 15 target languages. In this study, both LM score vectors and BOS discriminative 
vectors were modeled by the GMM classifier. 

The main difference between the LM and the VSM backend classifier lies in the 
representation of the document vector. In LM backend, the document vector is characterized 
by interpolated LM scores, while in VSM backend, the document vector is derived from 
outputs of support vector machines, which introduce discriminative ability between language 
pairs. If we see the LM backend as a likelihood-based classifier, then the VSM backend is a 
discrimination-motivated classifier. 

4.3 Four LID Systems 
We have discussed two different frontends, PPR and UPR, and two different backends, LM 
and VSM. To gain insight into the behavior of each of the frontends and backends, it is 
desirable to investigate the performance of each of the four combined systems as shown in 

                                                 
6 In the 12-language CallFriend database, English, Mandarin, and Spanish have two dialects, 

respectively. 
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Figure 5, namely, PPR-LM, PPR-VSM, UPR-LM, and UPR-VSM, where the PPR/UPR 
frontends are built on a set of universal ASMs. 

Without loss of generality, we deployed the same 258-ASM with two different settings.  
First, the 258 ASMs were arranged in a 6-language PPR frontend. They were redistributed 
according to their API-II definitions into 6 languages. Second, they were lumped together in a 
single UPR frontend. The training of the 258-ASM was discussed in Section 2.2. We used the 
GMM classifier in the LM backend and VSM backend, in which we trained 512-mixture 
GMMs to model the desired language and to model all its competing languages, and reported 
the equal error rates (EER%) between false-alarm and miss-detect. 

 

 

 

Figure 5. Block diagram of four combinations of frontends and backends 

The UPR-VSM system follows the block diagram of the language-independent acoustic 
phone recognition approach [Ma et al. 2005]. PPR-LM was implemented as in [Zissman 1996]. 
The LM backend uses trigrams to derive phonotactic scores. The results for the 1996, 2003 
and 2005 NIST LRE tasks are shown in Tables 3, 4, and 5, respectively. In Table 6, we also 
report the execution times for the 2003 NIST LRE task obtained in terms of the 
real-time-factor (xRT) with an Intel Xeon 2.80 GHz CPU. 

Before discussing results, we will examine the effects of the combined frontends and 
backends. In the combined systems, there are two unique frontend settings, PPR and UPR. 
PPR converts an input spoken utterance into 6 spoken documents using the parallel frontend, 
while UPR converts an input into a single document. However, there are four unique LM and 
VSM backend settings. The LM in PPR-LM and that in the UPR-LM are different; the former 
has 15 6× n-gram language models, while the latter only has 15 language models. In other 
words, the former LM classifier is more complex, with a larger number of parameters, than the 
latter. The VSM in PPR-VSM and the VSM in UPR-VSM have different levels of complexity 
as well. The former VSM processes vectors with 11,708 dimensions, while the latter processes 
those with 66,822 dimensions, as discussed in Section 4.2. The vectors in PPR-VSM and 
UPR-VSM are shown in Figure 6. 

 

PPR 
Frontend 

UPR 
Frontend 

LM 
Backend 

VSM 
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Although the dimensionality of V-PPR is lower than that of V-UPR, V-PPR is 6 times as 
dense as V-UPR, resulting in more complex support vector machine partitions (SVM) [Vapnik 
1995]. In other words, the VSM classifier in the PPR-VSM is more complex than that in 
UPR-VSM. In terms of the overall classifier backend complexity, we rank the four systems 
from high to low as follows: PPR-VSM, PPR-LM or UPR-VSM, and UPR-LM. 

Table 3. EER% comparison of 4 systems on 1996 NIST LRE 
System 30-second 10-second 3-second 

PPR-VSM 2.75 8.23 21.16 
PPR-LM 2.92 8.39 18.61 
UPR-VSM 4.87 11.18 22.38 
UPR-LM 6.78 15.90 27.20 

Table 4. EER% comparison of 4 systems on 2003 NIST LRE (without Russian) 
System 30-second 10-second 3-second 

PPR-VSM 3.62 10.36 21.25 
PPR-LM 4.54 11.31 20.37 
UPR-VSM 6.33 13.35 24.30 
UPR-LM 10.24 19.23 30.28 

Table 5. EER% comparison of 4 systems on 2005 NIST LRE (all 7-language 
trials, without German) 

System 30-second 10-second 3-second 
PPR-VSM 5.78 12.48 24.23 
PPR-LM 6.76 12.48 22.48 
UPR-VSM 9.10 16.80 26.52 
UPR-LM 13.71 22.40 30.89 

Table 6. Execution time comparison on 2003 NIST LRE (Real-Time-Factor of 
30-sec trials) 
System Frontend Backend Total 

PPR-VSM 0.7xRT 0.01xRT 0.71xRT 
PPR-LM 0.7xRT 0.03xRT 0.73xRT 
UPR-VSM 0.3xRT 0.001xRT 0.301xRT 
UPR-LM 0.3xRT 0.02xRT 0.32xRT 
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6(a) A 11,708 dimensional vector from 6 PPRs (V-PPR) 

PR-1 PR-2 PR-6

UPR

6(b) A 66,822 dimensional vector from the UPR (V-UPR)
Figure 6. Two different spoken document vectors in PPR-VSM and UPR-VSM 

Summarizing the results obtained in the three NIST LRE tasks, we have the following 
findings: 

(i) The VSM backend demonstrates a clear advantage over the LM backend for the 30-second 
and 10-second trials. This can be easily explained by the fact that VSM models are designed to 
capture phonotactics over the context of the whole spoken document. As a result, VSM favors 
longer utterances which provide richer long span phonotactic information. 

(ii) The system performance highly correlates with the complexity of the system architectures. 
This can be seen in Tables 3, 4, and 5, which show that PPR-VSM achieved the best result with 
an EER of 2.75%, 3.62%, and 5.78% in the 30-second 1996, 2003 and 2005 NIST LRE tasks, 
respectively, followed by PPR-LM, UPR-VSM, and UPR-LM. Note that we can increase the 
system complexity by using more PPRs. We expect that more PPRs will improve the PPR-VSM 
system performance further. 

(iii) Although PPR-LM outperformed UPR-VSM in general, the UPR frontend was superior 
in computational efficiency during run-time operation over the PPR frontend. In Table 6, we 
find that the systems with the UPR frontend ran almost 60% faster than those with the PPR 
frontend. 

As a general remark, ASM-based acoustic modeling not only offers an effective 
unsupervised training procedure and hence, low development cost, but also efficient run-time 
operation as in the case of the UPR frontend. More importantly, it delivers outstanding system 
performance. VSM is the choice for the backend when longer utterances are available, while 
PPR-VSM delivers the best result in the comprehensive benchmarking for 30-second test 
condition. 
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4.4 Overall Performance Comparison 
LID technology has gone through many years of evolution. Many results have been published 
in the literature for the 1996 and 2003 NIST LRE tasks. They provide good benchmarks for 
new technology development. Here, we summarize some recently reported results. 

For the sake of brevity, we only compare results obtained in the 30-second tests, which 
represent the primary condition of interest in the NIST LRE tasks. Systems 1, 2, and 3 in 
Table 7 were trained and tested on the same databases. Therefore, the results can be directly 
compared. They are extracted from Tables 3 and 4. We also cite two results from recent 
reports [Gauvain et al. 2004] [Singer et al. 2003] as references. Table 7 shows that the 
performance of PPR-VSM system is among the best in the 1996 and 2003 NIST LRE tasks. 

Ma et al. [2005] reported that the API-bootstrapped ASM outperformed API phone 
models in the LID task. This paper extends our previous work through comprehensive 
benchmarking, which produced further findings and validated the effectiveness of the 
proposed VSM solution. The systems reported in this paper contributed to the ensemble 
classifier that participated in the 2005 NIST LRE representing IIR site. 

The proposed VSM-based language classifier compares phonotactic statistics from 
spoken documents. We have not explored the use of acoustic scores resulting from the 
tokenization process. It was reported that combining information of acoustic scores along with 
phonotactic statistics produced good results [Corredor-Ardoy et al. 1997] [Singer et al. 2003] 
[Torres-Carrasquillo et al. 2002]. Furthermore, fusion of phonotactic statistics at different 
levels of resolutions also improved overall performance [Lim et al. 2005]. We have good 
reason to expect that fusion among our 4 combinative systems, or between our systems and 
other existing methods, including GMM tokenizer [Torres-Carrasquillo et al. 2002], will lead 
to further improvements. 

Table 7. EER% Benchmark on 30-second 1996/2003 NIST LRE 
 System 1996 LRE 2003 LRE 

1 PPR-VSM 2.75 3.62 
2 PPR-LM 2.92 4.54 
3 UPR-VSM 4.87 6.33 
4 Phone Lattice [Gauvain et al. 2004] 3.20 4.00 
5 Parallel PRLM [Singer et al. 2003] 5.60 6.60 

5. Conclusion 

We have studied the effects of frontends and backends in the LID system. In the following, we 
summarize our findings. (1) A vector space modeling (VSM) backend consistently 
outperformed the LM backend in the combination tests; (2) The PPR-VSM system 
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configuration demonstrated superior performance across all of the primary tasks (30-second 
tests); (3) The UPR frontend was effective in run-time operation. 

In this study, we formulated both LM backend and VSM backend classifiers as a vector 
classification problem. The traditional LM backend applies similarity based approach to the 
vector representation of spoken documents. The VSM backend represents spoken documents 
using discriminative vectors derived from the outputs of support vector machines. We 
achieved EERs of 2.75% and 3.62% in the 30-second 1996 and 2003 NIST LRE tasks 
respectively with the PPR-VSM system. These are some of the best reported results for a 
single LID classifier. The VSM backend was also successfully implemented in IIR’s 
submission to 2005 NIST LRE. The good results can be credited to the enhanced 
discriminatory ability of the VSM backend. 

Exploring the bag-of-sounds spoken document vectors using the bigram statistics of 
ASM acoustic units, we found that one of the advantages of the VSM method is that it can 
represent a document with heterogeneous attributes (a mix of unigram, bigram, etc). Inspired 
by the feature reduction results, we believe that the bag-of-sounds vector can be extended to 
accommodate trigram statistics and acoustic features as well. 

We have successfully treated LID as a text categorization application with the topic 
category being the language identity itself. The VSM method can be extended to other spoken 
document classification tasks as well, for example, multilingual spoken document 
categorization by topic. We are also interested in exploring other language-specific features, 
such as syllabic and tonal properties. It is quite straightforward to incorporate specific salient 
features and examine their benefits. Furthermore, some high-frequency, language-specific 
words can also be converted into acoustic words and included in an acoustic word vocabulary, 
in order to increase the indexing power of these words for their corresponding languages. 
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