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Abstract 

In this paper, a new robust wavelet-based voice activity detection (VAD) algorithm 
derived from the discrete wavelet transform (DWT) and Teager energy operation 
(TEO) processing is presented. We decompose the speech signal into four subbands 
by using the DWT. By means of the multi-resolution analysis property of the DWT, 
the voiced, unvoiced, and transient components of speech can be distinctly 
discriminated. In order to develop a robust feature parameter called the speech 
activity envelope (SAE), the TEO is then applied to the DWT coefficients of each 
subband. The periodicity of speech signal is further exploited by using the subband 
signal auto-correlation function (SSACF) for. Experimental results show that the 
proposed SAE feature parameter can extract the speech activity under poor SNR 
conditions and that it is also insensitive to variable-level of noise. 
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1. Introduction 

Voice activity detection (VAD) refers to the ability to distinguish speech from noise and is an 
integral part of a variety of speech communication systems, such as speech coding, speech 
recognition, hand-free telephony, and echo cancellation. In the GSM-based communication 
system, a VAD scheme is used to lengthen the battery power through discontinuous 
transmission when speech-pause is detected [Freeman et al. 1989]. Moreover, a VAD 
algorithm can be used under a variable bit rate of the speech coding system in order to control 
the average bit rate and the overall quality of speech coding [Kondoz et al. 1994]. Perviously, 
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Sohn et al. [Sohn et al. 1998] presented a VAD algorithm that adopts a novel noise spectrum 
adaptation by applying soft decision techniques. The decision rule is drawn from the 
generalized likelihood ratio test by assuming that the noise statistics are known a priori. Cho 
et al. [Cho et al. 2001] presented an improved version of the algorithm designed by Sohn. 
Specifically, Cho presented a smoothed likelihood ratio test to reduce the detection errors. 
Furthermore, Beritelli et al. [Beritelli et al. 1998] developed a fuzzy VAD using a pattern 
matching block consisting of a set of six fuzzy rules. Additionally, Nemer et al. [Nemer et al. 
2001] designed a robust algorithm based on higher order statistics (HOS) in the residual 
domain of the linear prediction coding coefficients (LPC). Meanwhile, the International 
Telecommunication Union-Telecommunications Sector (ITU-T) designed G. 729B VAD 
[Benyassine et al. 1997], which consists of a set of metrics, including line spectral frequencies 
(LSF), low band energy, zero-crossing rate (ZCR), and full-band energy. However, the 
common feature parameters mentioned above are based on averages over windows of fixed 
length or are derived through analysis based on a uniform time-frequency resolution. For 
example, it is well known that speech signals contain many transient components and exhibit 
the non-stationary property. The classical Fourier Transform (FT) works well for wide sense 
stationary signals but fails in the case of non-stationary signals since it applies only 
uniform-resolution analysis. Conversely, if the multi-resolution analysis (MRA) property of 
DWT [Strang et al. 1996] is used, the classification of speech into voiced, unvoiced or 
transient components can be accomplished. 

The periodic property is an inherent characteristic of speech signals and is commonly 
used to characterize speech. In this paper, the periodic properties of subband signals are 
exploited to accurately extract speech activity. In fact, voiced or vowel speech sounds have a 
stronger periodic property than unvoiced sounds and noise signals, and this property is 
concentrated in low frequency bands. Thus, we let the low frequency bands have high 
resolution in order to enhance the periodic property by decomposing only the low band in each 
level. Three-level wavelet decomposition is further divided into four non-uniform subbands. 
Consequently, the well-known “Auto-Correlaction Function (ACF)” is defined in the subband 
domain to evaluate the periodic intensity of each subband, and is denoted as the “Subband 
Signal Auto-Correlaction Function (SSACF)”. Generally speaking, the existing methods for 
suppressing noise are almost all based on the frequency domain. However, these methods 
indeed waste too much computing power in on-line work. Considering computing complexity, 
the Teager energy operator (TEO), which is a powerful nonlinear operator and has been 
successfully used in various speech processing applications [Kaiser et al. 1990],[Bovik et al. 
1993],[Jabloun et al. 1999] is applied to eliminate noise components from the wavelet 
coefficients in each subband priori to SSACF measurement. Consequently, to evaluate the 
periodic intensity of each subband signal, a Mean-Delta method [Ouzounov et al. 2004] is 
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applied in the envelope of each SSACF. First, the Delta SSACF, similar to the delta-cepstrum 
evaluation, is used to measure the local variation of each SSACF. Next, since the DSSACF is 
averaged over its length, the value of the Mean DSSACF (MDSSACF) can almost describe the 
amount of periodicity in each subband. Eventually, by only summing the values of the four 
MDSSACFs, we can apply a robust feature parameter, called the speech activity envelope 
(SAE) parameter. Experimental results show that the envelope of the SAE feature parameter 
can accurately indicate the boundary of speech activity under poor SNR conditions and that it 
is also insensitive to variable-level noise. In addition, the proposed wavelet-based VAD can be 
performed on-line. 

This paper is organized as follows. Section 2 describes the proposed algorithm based on 
DWT and TEO. In addition, the proposed robust feature parameter is also discussed. Section 3 
evaluates the performance of the proposed algorithm and compares it with that of other 
wavelet-based VAD algorithms and ITU-T G.729B VAD. Finally, Section 4 presents 
conclusions. 

2. The Proposed Algorithm Based on DWT and TEO 

In this section, each part for the proposed VAD algorithm is discussed in turn. 

2.1 Discrete Wavelet Transform 
The wavelet transform (WT) is based on time-frequency signal analysis. This wavelet analysis 
adopts a windowing technique with variable-sized regions. It allows the use of long time 
intervals when we want more precise low-frequency information, and shorter regions where 
we want high-frequency information. It is well known that speech signals contain many 
transient components and exhibit the non-stationary property. When we make use of the MRA 
property of the WT, better time-resolution is needed in the high frequency range to detect the 
rapid changing transient component of a signal, while better frequency resolution is needed in 
the low frequency range to track slowly time-varying formants more precisely. Through MRA 
analysis, the classification of speech into voiced, unvoiced or transient components can be 
accomplished. An efficient way to implement this DWT using filter banks was developed in 
1988 by Mallat [Mallat 1989]. 

In Mallat’s algorithm, the j -level approximations jA  and details jD  of the input 
signal are determined by using quadrature mirror filters (QMF). Figure 1 shows that the 
decomposed subband signals A  and D  are the approximation and detail parts of the input 
speech signal obtained by using the high-pass filter and low-pass filter, implemented with the 
Daubechies family wavelet, where the symbol ↓2 denotes an operator of downsampling by 2. 
In fact, a voiced or vowel speech sound has more significant periodicity than an unvoiced 
sound on noise signal. Thus, the periodicity of a subband signal can be exploited to accurately 
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extract speech activity. In addition, the periodicity is almostly concentrated in low frequency 
bands, so we let the low frequency bands have high resolution in order to enhance the periodic 
property by decomposing only low bands in each level. Figure 2 employed the used structure 
of three-level wavelet decomposition. By using DWT, we can divide the speech signal into 
four non-uniform subbands. The wavelet decomposition structure can be used to obtain the 
most significant periodicity in the subband domain. 

 

 
Figure 1. Discrete wavelet transform (DWT) using filter banks 

 
 
 

 
Figure 2. Structure of three-level wavelet decomposition 

2.2 Teager Energy Operator 
It has been observed that the TEO can enhance the discriminability between speech and noise 
and further suppress noise components from noisy speech signals [Jabloun et al. 1999]. 
Compared with the traditional noise suppression approach based on the frequency domain, the 
TEO based noise suppression can be more easily implemented through the time domain. 
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In continuous-time, the TEO is defined as 

2[ ( )] [ ( )] ( ) ( )c s t s t s t s tψ = − , 

where ( )s t  is a continuous-time signal and s ds dt= . In discrete-time, the TEO can be 
approximated by 

 2[ ( )] ( ) ( 1) ( 1)d s n s n s n s nψ = − + − ,                                          (1) 

where ( )s n  is a discrete-time signal. 

Let us consider a speech signal ( )s n  degraded by uncorrelated additive noise ( )u n , the 
resulting signal is shown below: 

 ( ) ( ) ( )y n s n u n= + .                                                       (2) 

The Teager energy of the noisy speech signal [ ( )]d y nψ  is given by 

 [ ( )] [ ( )] [ ( )] 2 [ ( ), ( )]d d dy n s n u n s n u nψ ψ ψ ψ= + + ,                               (3) 

where [ ( )]d s nψ  and [ ( )]d u nψ  are the Teager energy of the discrete speech signal and the 
additive noise, respectively. The subscript d  means the “discrete.” [ ( ), ( )]d s n u nψ  is the 
cross- dψ  energy of ( )s n  and ( )v n , such that 

 [ ( ), ( )] ( ) ( ) 0.5 ( 1) ( 1) 0.5 ( 1) ( 1)d s n u n s n u n s n u n s n u nψ = − − ⋅ + − + ⋅ − ,              (4) 

where the symbol ⋅  denotes the inner product. Since ( )s n  and ( )u n  are zero mean and 
independent, the expected value of the cross- dψ  energy is zero. Thus, Eq.(5) can be derived 
from Eq.(3) as shown below: 

 { } { } { }[ ( )] [ ( )] [ ( )]
d d d

E y n E s n E u nψ ψ ψ= + .                                   (5) 

Experimental results show that the Teager energy of the speech is much higher than that 
of the noise. Thus, compared with { }[ ( )]dE y nψ , { }[ ( )]dE u nψ  is negligible as shown by 

 { } { }[ ( )] [ ( )]d dE y n E s nψ ψ≈ .                                             (6) 

2.3 Subband Signal Auto-Correlation Function (SSACF) 
The definition of the “Auto-Correlation Function (ACF)” used to measure the self-periodic 
intensity of subband signal sequences is shown below: 

 
0

( ) ( ) ( ),   0,1,......
p k

n
R k s n s n k k p

−

=
= + =∑ ,                                     (7) 

where p  is the length of ACF and k  denotes the shift of the sample. 
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In this subsection, the ACF will be defined in the subband domain and called the 
“Subband Signal Auto-Correlation Function (SSACF).” It can be derived from the wavelet 
coefficients on each subband following TEO processing. 

Figure 3 displays that the waveform of the normalized SSACFs ( (0) 1R = ) of each 
subband, respectively. It is observed that the SSACF of voiced speech has more obvious peaks 
than that of unvoiced speech and white noise does. In addition, for unvoiced speech, the ACF 
has more intense periodicity than white noise does, especially in the 3A  subband. 

 
Figure 3. Examples of normalized SSACF for voiced speech, unvoiced speech and 

white noise 

2.4 Mean of the absolute values of the DSSACF (MDSSACF) 
To evaluate the periodic intensity of subband signals, a Mean-Delta method is applied here to 
each SSACF. First, a measure similar to delta cepstrum evaluation is used to estimate the 
periodic intensity of the SSACF, namely, the “Delta Subband Signal Auto-Correlation 
Function (DSSACF),” as shown below: 

 
2

( )
( )

M

m M
M M

m M

mR k m
R k

m

=−

=−
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=

∑

∑
,                                              (8) 
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where MR  is the DSSACF over an M -sample neighborhood. 

For a particular frame, it is computed by using only the frame’s SSACF (intra-frame 
processing), while the delta cepstrum is computed by using cepstrum coefficients from 
neighboring frames (inter-frame processing). It is observed that the DSSACF value is almost 
similar to the local variation over the SSACF. 

Second, the delta of the SSACF is averaged over an M -sample neighborhood MR , 
where the mean of the absolute values of the DSSACF (MDSSACF) is given by 

 
1

0

1 ( )
bN

M M
kb

R R k
N

−

=
= ∑ ,                                                 (9) 

where bN  indicates the length of the subband signal. 

Figure 4 shows that the SAE feature parameter is developed by summing the four 
MDSSACF values. Each subband can provide information for extracting voice activity 
precisely. It is found that the SAE feature parameter accurately indicates the boundary of 
speech activity under -5dB factory noise. 

 
Figure 4. The development of the SAE feature parameter with and without 

band-decomposition 



 

 

94                                            Bing-Fei Wu and Kun-Ching Wang 

2.5 Block Diagram of the Proposed Wavelet-Based VAD 

 
Figure 5. Block diagram of the proposed wavelet-based VAD 

A block diagram of the proposed wavelet-based VAD algorithm is displayed in Figure 5. For a 
given level j , the wavelet transform decomposes the noisy speech signal into 1j +  
subbands corresponding to wavelet coefficients sets, ,

j
k nw . In this case, for level 3j = , 

 3
, { ( ),3},    1.... ,  1....4k mw DWT s n n N k= = = ,                                (10) 

where 3
,k mw  denotes the thm  coefficient of the thk  subband. N  denotes the window 

length. The decomposed length of each subband is 2kN . If 1k = , 3
1,mw  corresponds to 

the 1thD  subband signal. 

In TEO processing, 

 3 3
, ,[ ],   k=1...4k m d k mt wψ= .                                              (11) 

The SSACF is derived from the Teager energy of noisy speech as follows: 

 3 3
, ,[ ]k m k mR R t= ,                                                       (12) 

where [ ]R ⋅  denotes the auto-correlation operator. 

Next, the DSSACF is given by 

 3 3
, ,[ ]k m k mR R= ∆ ,                                                      (13) 

where [ ]∆ ⋅  denotes the Delta operator. 
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Then, the MDSSACF is obtained by 

 3 3
,[ ]k k mR E R= .                                                        (14) 

where [ ]E ⋅  indicates the mean operator. 

Finally, the SAE feature parameter is obtained by 

 
4 3

1
k

k
SAE R

=
= ∑ .                                                        (15) 

2.6 A VAD Decision Based on Adaptive Thresholding 
In order to accurately determine the boundary of voice activity, the VAD decision is usually 
made through thresholding. To estimate the time-varying noise characteristics accurately, in 
this subsection, an adaptive threshold value is derived from the statistics of the SAE feature 
parameter during a noise-only frame, and the VAD decision process recursively updates the 
threshold by using the mean and variance of the values of the SAE parameters. We compute 
the initial noise mean and variance with the first five frames, assuming that the first five 
frames contain noise only. We then compute the thresholds for the speech and noise as follows 
[Gerven et al. 1997]: 

 s n s nT µ α σ= + ⋅ ,                                                     (16) 

 n n n nT µ β σ= + ⋅ ,                                                     (17) 

where sT  and nT  indicate the speech threshold and noise threshold, respectively. Similarly, 

nµ  and nσ  represent the mean and variance of the values of the SAE parameters, 
respectively. 

The VAD decision rule is defined as follows: 

 
if  ( ( ) )   ( )=1
else if  ( ( ) )   ( )=0;
else  ( )= ( 1).

s

n

SAE t T VAD t
SAE t T VAD t

VAD t VAD t

>

<

−

                                        (18) 

If the detection result shows a noise period, the mean and variance of the values of the 
SAE are updated by as follows: 

 ( ) ( 1) (1 ) ( )n nt t SAE tµ γ µ γ= ⋅ − + − ⋅ ,                                      (19) 

 2 2( ) [ ] [ ( )]n buffer mean nt SAE tσ µ= − ,                                     (20) 



 

 

96                                            Bing-Fei Wu and Kun-Ching Wang 

 2 2 2[ ] ( ) [ ] ( 1) (1 ) ( )buffer mean buffer meanSAE t SAE t SAE tγ γ= ⋅ − + − ⋅ .               (21) 

Here, 2[ ] ( 1)buffer meanSAE t −  is a mean of the buffer of the SAE value during a 
noise-only frame. We then update the thresholds by using the updated mean and variance of 
the values of the SAE parameters. Figure 6 displays the VAD decision, based on the adaptive 
threshold strategy. It is clearly seen that the boundary of voice activity has been accurately 
extracted. The two thresholds are updated during voice-inactivity but not during 
voice-activity. 

 
Figure 6. Adaptive thresholding strategy for extracting the boundary of  

voice activity 

3. Simulation Results 

The proposed wavelet-based VAD algorithm operates on a frame-by-frame basis (frame size = 
256 samples/frame, overlapping size = 64 samples, 8M = , 5sα = , 1nβ = −  and 

0.95γ = ). The results of speech activity detection were obtained under three kinds of 
background noise, which included white noise, car noise, and factory noise, taken from the 
Noisex-92 database [Varga et al. 1993]. The speech database contained 60 speech phrases (in 
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Mandarin and in English) spoken by 32 native speakers (22 males and 10 females), sampled at 
8000 Hz and linearly quantized at 16 bits per sample. The two probabilities of correctly 
detecting speech frames, csP , and falsely detecting speech frames, fP , were the ratio of the 
correct speech decision to the total number of hand-labeled speech frames and the ratio of the 
false speech decision or false noise decision to the total number of hand-labeled frames used 
to objectively measure performance of these three VADs. 

Table 1 compares the performance of the proposed wavelet-based VAD, the 
wavelet-based VAD proposed by Chen et al. [Chen et al. 2002], and the ITU standard G.729B 
[Benyassine et al. 1997] under three types of noise and three specific SNR values: 30,10, and 
-5dB. From this table, it can be seen that in terms of the average correct and false speech 
detection probability, the proposed wavelet-based VAD is superior to Chen’s VAD algorithm 
and G.729B VAD over all three SNRs under various types of noise. Table 2 shows the 
computing time of the three VAD algorithms, where Matlab was used on a Celeron 2.0G CPU 
PC to process 138 frames of a speech signal. It is found that the computing time consists of the 
time needed for feature extraction, and the voice activity decision process. The computing 
time of Chen’s VAD was nearly twelve times longer than that of proposed VAD. We attribute 
the computing time of Chen’s VAD to five-level wavelet decomposition. Its feature parameter 
is based on 17 critical-subbands, using the perceptual wavelet packet transform (PWPT). And 
after, wavelet reconstruction is required in Chen’s approach. In our approach, however, we 
only divide four subbands using wavelet transform and do not waste extra computing time on 
wavelet reconstruction. 

Table 1. Performance of the proposed wavelet-based approach, Chen’s 
wavelet-based approach [9] and G.729B VAD 

Noise Conditions cSP (%) fP (%) 

Type SNR(dB) Proposed 
VAD 

Chen’s 
VAD 

G.729B 
VAD 

Proposed 
VAD 

Chen’s 
VAD 

G.729B 
VAD 

30 99.1 97.3 92.1 6.2 6.9 7.3 
10 97.3 96.1 86.5 8.6 9.3 16.3 Car 

Noise 
-5 92.6 93.5 72.3 10.5 10.9 21.5 

30 96.9 97.2 96.9 7.6 10.3 9.1 
10 93.1 94.1 82.3 8.8 13.2 18.9 Factory 

Noise 
-5 87.2 85.6 70.7 10.9 15.4 26.4 

30 99.1 97.2 98.4 1.3 1.9 2.0 

10 98.5 98.1 86.3 1.5 1.8 3.6 White 
Noise 

-5 93.2 92.9 60.5 1.6 2.3 3.3 

Average 95.22 94.67 82.89 6.33 8 12.04 
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Table 2. The computing time required by the three VAD algorithms 

VAD type Feature Extraction Processing Voice Activity Decision 
G.729B 0.048 s 0.023 s 
Chen’VAD 4.126 s 0.098 s 
Proposed VAD 0.23 s 0.12 s 

Figure 7 shows the performance of the proposed VAD for an utterance produced 
continuously under variable-level noise. We decreased and increased the level of background 
noise and set the SNR value to 0 dB. Compared with the envelope of the VAS parameter, it is 
observed that the envelope of the SAE parameter was more robust against the variable 
noise-level and able to extract the exact boundary of the voice activity. This can be mainly 
attributed to the fact that the value of each MDSSACF depends on the amount of variation of 
the ACF, not on the energy level of the signal. 

 

 
Figure 7. The effects of variable noise-level on the proposed SAE parameter and 

Chen’s VAS parameter for a noisy speech sentence consisting of 
continuous words 
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4. Discussion 

Compared with Chen’s wavelet-based VAD, our experimental results shows that the proposed 
wavelet-based VAD algorithm is more suitable for on-line work. In terms of complexity, 
Chen’s wavelet-based VAD algorithm [Chen et al. 2002] requires five-level wavelet 
decomposition to decompose the speech signal into 17 critical-subbands by using PWPT. In 
addition, it uses more extra computing time to complete wavelet reconstruction. In tests with 
non-stationary noise, it was found that each MDSSACF depends only on the amount of 
variation of the normalized ACF, not on the energy level of the signal, so the envelope of the 
proposed SAE feature parameter is insensitive to variable-level noise. Conversely, in Chen’s 
wavelet-based method, the VAS feature parameter closely depends on the subband energy, so 
the achieved performance is poor under variable-level noise. 
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