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Abstract 

This paper presents an investigation on the use of explicit statistical duration 
models for Cantonese connected-digit recognition. Cantonese is a major Chinese 
dialect. The phonetic compositions of Cantonese digits are generally very simple. 
Some of them contain only a single vowel or nasal segment. This makes it difficult 
to attain high accuracy in the automatic recognition of Cantonese digit strings. 
Recognition errors are mainly due to the insertion or deletion of short digits. It is 
widely admitted that the hidden Markov model does not impose effective control 
on the duration of the speech segments being modeled. Our approach uses a set of 
statistical duration models that are built explicitly from automatically segmented 
training data. They parametrically describe the distributions of various absolute and 
relative duration features. The duration models are used to assess recognition 
hypotheses and produce probabilistic duration scores. The duration scores are 
added with an empirically determined weight to the acoustic score. In this way, a 
hypothesis that is competitive in acoustic likelihood, but unfavorable in temporal 
organization, will be pruned. The conventional Viterbi search algorithms for 
connected-word recognition are modified to incorporate both state-level and 
word-level duration features. Experimental results show that absolute state duration 
gives the most noticeable improvement in digit recognition accuracy. With the use 
of duration information, insertion errors are much reduced, while deletion errors 
increase slightly. It is also found that explicit duration models are more effective 
for slow speech than for fast speech. 
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1. Introduction 

In the past two decades, automatic speech recognition (ASR) has advanced to a high 
performance level. The state-of-the-art technology predominantly uses hidden Markov models 
(HMM), which provide a nicely formulated framework for the modeling of speech signals. 
This framework is amenable to a set of mathematically rigorous algorithms for the estimation 
of model parameters and pattern classification. For ASR, an HMM consists of a number of 
states that are arranged into a left-to-right topology. The states can be thought of as a sequence 
of acoustic targets that constitute a speech segment. The output probability density functions 
(pdf) associated with individual states describe the spectral variability in the realization of 
these targets. The temporal structure is reflected mainly in the evolution of the states, which is 
governed by state transition probabilities. 

It is widely acknowledged that an HMM does not impose effective control on the 
duration of the speech segment being modeled. HMM-based ASR systems frequently make 
errors. A significant portion of these recognition errors exhibit unreasonable time durations or 
duration proportions. For the task of connected-digit recognition in various languages in 
particular, a lot of errors are due to the insertion of short digits [Dong and Zhu 2002; Kwon 
and Un 1996]. The problem is extremely severe with noise-corrupted speech [Yang 2004]. 

Connected-digit recognition has many useful applications that often require very high 
recognition accuracies. Despite its limited vocabulary size, it is not straightforward to attain 
the desired performance level because the combination of digits is unrestricted. Knowledge 
sources like lexical constraints and word-level language models are not applicable in this case. 
Therefore, it becomes particularly important to fully exploit the information embedded in the 
acoustic signals. Other than the spectral features, prosodic features, like pitch and duration, 
can be considered. 

In this paper, we focus on the use of duration information for Cantonese connected-digit 
recognition. Our approach uses a set of statistical duration models that are built explicitly from 
automatically segmented training data. The duration models are used to assess the recognition 
hypotheses, based on the measured duration at the either state or the model levels. As a result, 
a probabilistic duration score is generated and added with an empirically determined weight to 
the conventional acoustic score. In this way, a hypothesis that is competitive in acoustic 
likelihood, but unfavorable in temporal organization, is pruned. 

 There have been many studies on explicit duration modeling for ASR. Recognition 
performance can be improved to various extents. The most commonly used duration features 
include whole-model duration [Lee et al. 1989], absolute state duration [Russell and Moore 
1985; Levinson 1986] and normalized (relative) state duration [Rabiner 1989; Power 1996]. 
The design of duration models has been application-dependent. In most cases, parametric 
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distributions have been used so that each duration model can be represented by a few 
parameters. 

HMM based speech recognition is formulated as a process of searching for the optimal 
path among many possibilities. The optimality is measured in terms of the path’s accumulated 
probability or likelihood. With the duration models, the conventional probabilistic path score 
can be modified to include the duration scores. Unlike the acoustic likelihood, duration scores 
are not computed on a short-time frame basis. There may be cases in which, when a path 
extension decision is made, some of the competing paths involve duration scores and others do 
not. Thus, the search is only sub-optimal. Examples of such sub-optimal methods can be found 
in [Power 1996]. 

In this work, we adopt the one-pass approach and aim for an optimal search. The 
conventional Viterbi search algorithm for connected-word recognition is modified to facilitate 
the incorporation of explicit duration models at both the state and the model levels. The 
effectiveness of different duration features is evaluated through recognition experiments. 

In the next section, a brief introduction to the Cantonese dialect is given and the task of 
Cantonese connected-digit recognition is described. Baseline recognition performance is also 
presented. Statistical modeling of various types of duration features is described in Section 3. 
The ways of integrating duration models into the speech recognition processes are explained 
in Section 4. Experimental results are presented and discussed in Section 5. Conclusions are 
given in Section 6. 

2. Cantonese Connected-Digit Recognition 

2.1 About Cantonese 
Cantonese is one of the major dialects of Chinese. It is the mother tongue of over 60 million 
people in Southern China and Hong Kong. Like Mandarin, Cantonese is a monosyllabic and 
tonal language. A Cantonese utterance is considered a string of monosyllabic sounds. Each 
Chinese character is pronounced as a single syllable that carries a specific tone. A character 
may have multiple pronunciations, and a syllable typically corresponds to a number of 
different characters. As shown in Table 1, each Cantonese digit is pronounced as a 
monosyllable sound. 
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Table 1. Phonetic transcriptions of the 10 Cantonese digits 

Digit IPA LSHK 

0 lIN ling4 

1 jåt jat1 

2 ji ji6 

3 sam saam1 

4 sei sei3 

5 N ng5 

6 lUk luk6 

7 tshåt cat1 

8 pat baat3 

9 kåu gau2 

2.2 Baseline System 
Our baseline system for Cantonese connected-digit recognition was trained with the CUDIGIT 
database, which is part of a whole series of Cantonese spoken language corpora developed at 
the Chinese University of Hong Kong [Lee et al. 1998a]. CUDIGIT is a collection of 
Cantonese digit strings. The data collected were all read speech. Speakers were prompted with 
onr digit string at a time, with Chinese characters and Arabic digits displayed in parallel on a 
computer screen. The recordings were carried out in a closed quiet room using a high-quality 
microphone. The speech signal was sampled at 16 kHz. The database contains an exhaustive 
permutation of digit strings from one to four syllables long. There are also randomly generated 
strings that are of 7, 8, and 16 digits long. A total of 25 male and 25 female speakers were 
recorded. Each speaker spoke about 570 digit strings. 

 For the acoustic models of the baseline system, the training data included 11,387 
utterances from 20 male speakers. In addition, 2,847 utterances from the other 5 male speakers 
in CUDIGIT were reserved as development data, which were used as the estimation of the 
weighting factor for the duration models (see Section 5.1). 

The utterances for performance evaluation were from a different database, which was 
recently collected for speaker recognition research. It contains Cantonese digit strings 
recorded under the same acoustic conditions as CUDIGIT. About 900 utterances from 5 male 
speakers were used in this study. In terms of the total number of digit occurrences, the amount 
of the evaluation data is similar to the development data. 
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Feature extraction was done with a 20-msec Hamming window and 10-msec window 
overlapping. 32 nonlinearly spaced (Mel-scale) filter banks were used to cover the bandwidth 
of 8 kHz and the first 12 cepstral coefficients were computed. Each feature vector had 39 
components, including the 12 Mel-Frequency Cepstral Coefficient (MFCC), log-energy, and 
their first and second order derivatives. Cepstral liftering was applied to the cepstral 
coefficients. 

Each Cantonese digit was modeled by a whole-word HMM. The HMM had 6 left-to-right 
connected states. There was no state-skipping transition. Each state was associated with a 
mixture of 8 Gaussian distributions. Diagonal covariance matrices were assumed. There were 
also a six-state “silence” model and a one-state “sp” model for the non-speech signal. The 
baseline recognition performance is given in Table 2. 

Table 2. Baseline performance for Cantonese connected-digit recognition 

Digit accuracy Deletions Substitutions Insertions 

95.09% 82 116 418 

2.3 Discussion 
As shown in Table 2, insertions and deletions accounted for over 80% of the recognition 
errors. It must also be noted that 68.2% of the insertion and deletion errors were due to the 
digits “2” and “5” [Zhu 2005]. The phonetic compositions of Cantonese digits are generally 
very simple. This makes it difficult to attain high accuracy in the automatic recognition of 
Cantonese digit strings. For example, the digit “2” can be regarded as a single vowel segment. 
When this digit is repetitively spoken in a continuous utterance, the boundaries between them 
tend to be blurred because the signal’s spectrum remains virtually unchanged. This will cause 
deletion and insertion errors in speech recognition. Moreover, “2” is phonetically very similar 
to the coda part of the digit “4”. It is easily confused with this coda, and recognition errors 
will occur. 

Figure 1 shows the spectrogram of an example utterance. It contains the digit string “22” 
during the period of 0.5 – 0.81 sec. There is no observable spectral discontinuity that signifies 
the boundary between the two digits. Similarly, in the example shown in Figure 2, the coda of 
digit “4” is likely to be recognized as an inserted “2”. 
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Another problematic digit is “5”, which can be approximated as a single nasal segment. 
Like “2”, if the digit “5” is uttered repetitively in a continuous utterance, the spectral cues are 
not sufficient for detecting the digit boundaries. It is easily confused with the nasal codas of 
the digits “0” and “3.” 

Although the duration of a digit is affected by many different factors, it by no means has 
an unlimited range of variation, especially in those applications where the speaking style and 
the speaking rate are relatively stable. In the cases in which repetitive “2” or “5” segments are 
merged or a single segment is split, the durations of the recognized digit segments usually 
deviate much from their nominal values. Similar argument can be made when the string “42” 

“4”
Figure 2. Spectrogram of an utterance that contains the digit “4” 

“22”

Figure 1. Spectrogram of an utterance that contains the digit string “22” 
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is recognized as a single digit “4” or vice versa. Prior knowledge about digit durations would 
be helpful to correct such errors. In addition to the absolute duration, relative duration features, 
e.g. the ratio between the duration of certain state(s) and that of the whole digit, are also useful. 
These features reflect the regularity that governs possible internal adjustments among the 
sub-components of a digit segment. In the next section, the statistical modeling of both 
absolute and relative duration features is discussed. 

3. Duration Modeling for Cantonese Digits 

3.1 Duration Features 
Duration can be measured and modeled at segments of various lengths. The measurements of 
duration information are referred to as duration features. In an HMM-based system, HMMs 
are used to model and segment speech signals. In our baseline system, each Cantonese digit 
was modeled by a whole-word HMM. Given a digit string, the durations of individual digits 
were given directly by the model-level segmentation. State durations were derived from the 
state-level time alignment. 

Both state duration and model duration have been found to be useful for speech 
recognition, but their effectiveness varies across applications. It was reported that the use of 
the relative state duration (with respect to the model duration) leads to better recognition 
performance than the use of the absolute state and model durations [Power 1996]. 

In this study, both the absolute state duration and the absolute digit duration were 
investigated. As for the relative duration features, the relative state duration (with respect to 
the digit duration) and the so-called tail part ratio were used. The tail part ratio measures the 
relative duration of the tail part of a digit. The tail part is defined to cover the last two states of 
an HMM. The tail part ratio can be considered a variation of normalized state duration. From 
the baseline recognition results, it is observed that the tail part corresponds roughly to the last 
phonetic unit of the digit. As mentioned in Section 2.3, the two mono-phone digits, i.e., “2” 
and “5”, are easily confused with the tail part of other digits. When the tail part is deleted or 
prolonged, the tail part ratio becomes unreasonable. 

3.2 Statistical Modeling 
In [Russell and Moore 1985], Poisson distribution was used to model state duration. While the 
model is simple to estimate (only one free parameter), it is not generally applicable because it 
demands that the variance be equal to the mean. It was found that Gaussian and Gamma 
distributions are more appropriate [Levinson 1986]. In [Gadde 2000], a mixture of Gaussian 
distributions was used to model multivariate duration features. In [Burshtein 1995], it was 
shown that Gamma distribution fits the empirical data better than the Gaussian distribution for 
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Duration (frame) 

Figure 3. Distribution for the absolute digit duration for the digit “0” 

both state and model durations. In [Dong and Zhu 2002], it was also found that duration 
models using Gamma distributions are superior to other parametric distributions in terms of 
speech recognition accuracy. 

Figure 3 shows the empirical distribution of the absolute duration of digit “0” as well as 
the corresponding Gamma fit. The empirical distribution was obtained through supervised 
segmentation (also known as forced alignment) of the training data in CUDIGIT. It can be 
seen that the Gamma distribution fits the empirical measurements quite well. This is also true 
for all other digits [Zhu 2005]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each HMM state, there is one distribution for absolute state duration and one 
distribution for relative state duration to be modeled. Thus, the total number of state duration 
distributions is 120. More than 70% of these empirical distributions can be approximated quite 
well as Gamma functions [Zhu 2005]. The distributions that do not fit well have complicated 
shapes, e.g., multi-modal. Similar observations are made concerning the modeling of relative 
state duration. For simplicity, uni-modal Gamma distribution is used in all state duration 
models. 

 As for the tail part ratios, the empirical distributions can all be nicely modeled with 
uni-modal Gamma functions. One of the examples is given in Figure 4. 
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Figure 4. Distribution of the tail part ratio for the digit “0” 
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3.3 Training of Duration Models 
In this study, Gamma distribution was used for the statistic modeling of duration features. 
Ther training of a duration model refers to the process of estimating the parameters of the 
Gamma distribution from segmented training utterances. Given a large amount of training 
utterances, manual segmentation at the word (digit) level is not realistic, let alone at the state 
level. Supervised automatic segmentation can be done with a set of acoustic models (HMMs) 
that are trained beforehand. This is referred to as the multi-pass training approach. 

To obtain a truly optimal solution, the parameters of duration models must be estimated 
jointly with the HMM parameters, because they depend on each other [Russell and Moore 
1985; Levinson 1986]. This one-pass approach is computationally expensive. Moreover, it is 
not applicable when sophisticated duration features, like relative state duration, are being 
modeled. Experimental results also showed that multi-pass training can be just as effective as 
one-pass training in terms of recognition performance [Rabiner 1989]. In this study, the 
duration models were trained through the multi-pass approach. 

In summary, for our study regarding Cantonese connected-digit recognition, explicit 
duration models were established for the absolute digit duration, the absolute state duration, 
the relative state duration, and the tail part ratio. Each duration model was represented by a 
Gamma distribution, which was trained with CUDIGIT training data through the multi-pass 
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approach. In the subsequent discussion, the abbreviations in Table 3 are used to refer to the 
different duration features. 

Table 3. Different duration features 

AD Absolute digit duration 

AS Absolute state duration 

RS Relative state duration 

TR Tail part ratio 

4. Integrating Duration Models into Speech Recognition 

As described earlier, the problem of connected-word recognition concerns the search for an 
optimal word string among many possibilities. The search space is formed by the HMM states, 
and a word string is in this way essentially a path connected by the states. The basic idea 
behind incorporating duration models into the search process is to make the duration 
probabilities contributive to the path probability. The challenge is to ensure that each path 
extension decision is optimal, considering that the duration probability is computed in a 
different time scale from the acoustic probability. 

 In the conventional Viterbi algorithm [Ney 1984], the problem of searching for an 
optimal complete path can be decomposed into many sub-problems at the frame level. The 
sub-problem at a particular frame t is to find the optimal partial path extended to each 
legitimate state. Let ( , , )t v j  denote the optimal partial path extended to state j of model v and 
at frame t. The accumulated path score is denoted by ( , , )L t v j . The sub-problem at frame t 
can be solved given the solutions to the sub-problems at 1t − , i.e., the immediately preceding 
frame. The path extension algorithm is explained as follows: 

1) If the path is extended to the first state of an HMM, the predecessor can be the last state of 
any HMM or the current state itself. The path extension is done by,  

( ) ( ){ } ( ), 1 11 1, ,1 max 1, , , ( 1, ,1)N N t
u

L t v L t u N a L t v a b o= − × − × ×＋ ,              (1) 

where N is the number of states in the model and , 1N Na +  is the probability of exit from 
state N. Here we assume that all HMMs have the same number of states. 

2) For a path extended to state j of a model, where 1j ≠ , we have 

 ( ) ( ) }{ ( )
 or
1

, , max 1, , ij j t
i j
i j

L t v j L t v i a b o
=
= −

= − × × .                              (2) 

That is, the predecessor can be either state j itself or state j-1 of the same HMM, because we 
have assumed there is no state skipping. 
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The path extension is performed with a step size of one frame. To incorporate the 
duration model scores, the path extension needs to cover a longer time span. For state-level 
duration features, it should cover the time span of an HMM state. For word-level features, it 
should cover the span of a model. 

4.1 Incorporation of State-Level Duration Model 
For state-level duration features, the duration scores can only be computed if there is a state 
transition. In this case, the notion of path extension is defined differently. The step size of the 
path extension is a state instead of a frame. The path extension stretches from the beginning 
frame of one state to the beginning frame of another state. The state duration is a variable that 
affects the path extension decision. 

Let ( , , )t v j  denote the optimal partial path that extends to state j of model v at frame t, 
and ( , , )L t v j  be the corresponding accumulated path score. Accordingly, the path extension 
algorithms are modified as follows: 

1) When the path gets to the first state of an HMM, its predecessor can be the last state of any 
other HMM. For each possible predecessor ( , , )t d u N− , the duration score , ( )u ND d  is 
computed, where d  is the duration of staying at state N . , ( )u ND d  is incorporated into 
the path extension decision as 

( ) ( ) ( )

min max

, 1, 1, , l max , , ( ) ( )
w

u N tu t d t
N N N

d d d

L t v L t d u N a b o D d b oτ
τ− < <

+

≤ ≤

= − × × × ×
⎧ ⎫⎡ ⎤∏⎨ ⎬⎣ ⎦ ⎭⎩

,     (3) 

where dmax and dmin are the upper and lower bounds, respectively, of the state duration value, 
and w is an empirically determined weighting factor that controls the relative contribution of 
the duration scores. 

2) For the path extension from state 1j −  to state j  of an HMM, where 1j ≠ , we have 

( ) ( ) ( )
min max

1, 1 , 1, , max , , 1 ( ) ( )
w

j j j u j j t
d d d t d t

L t v j L t d v j a b o D d b oτ
τ

− − −
≤ ≤ − < <

= − − × × × ×
⎧ ⎫⎡ ⎤∏⎨ ⎬⎣ ⎦ ⎭⎩

,    (4) 

In this case, all competing path extensions are from state 1j −  to state j . They differ 
from each other in terms of the time instant at which the extension occurs, which is 
specified by the value of d . 

The above formulation is referred to as the 3-dimensional optimal decoder, because the 
token ( , , )t v j  has three elements. As seen in Eqs. (3) and (4), each possible path extension 
involves the computation of ( )i

t d t
b oτ

τ− < <
∏ . If the paths are evaluated individually, there are a 

lot of duplicated computations. To alleviate this problem, the search algorithm is 
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re-formulated. A new dimension “d” is introduced into the path token. The token ( , , , )t v j d  
refers to a path that has stayed at state j in HMM v for d frames at frame t. Equations (3) and 
(4) can be written as 

 ( ) ( ) }{ ( )

min max

, 1 , 1, ,1,1 max 1, , , ( )
w

N N u N tu

d d d

L t v L t u N d a D d b o+

≤ ≤

= − × × ×⎡ ⎤⎣ ⎦ ,           (5) 

( ) ( ) }{ ( )
min max

1, , 1, , ,1 max 1, , 1, ( )
w

j j u j j t
d d d

L t v j L t v j d a D d b o− −
≤ ≤

= − − × × ×⎡ ⎤⎣ ⎦ ,          (6) 

( ) ( ) ( ), , , 1, , , 1 j tL t v j d b oL t v j d= ×− − .                                   (7) 

Such a 4-dimensional formulation is equivalent to the decoding framework in [Gu et al. 
1991]. The computation cost of this decoder is dmax times that of the baseline decoder. 

4.2 Incorporation of Word-Level Duration Models 
To incorporate word-level duration scores, the step size of a path extension is defined to be a 
word (an HMM). A path extension is from the beginning frame of one word to that of another 
word. Let ( , )t v  denote the optimal partial path that extends to HMM v at frame t, and let 

( , )L t v  be its path score. The path extension decision is obtained as follows: 

 ( ) ( ) [ ] }{
min max

, max , ( , , 1) ( ) w
uu

d d d

L t v L t d u warp u t d t D d

≤ ≤

= − × − − × ,                (8) 

where ( , , 1)warp u t d t− −  is the probability that the sub-sequence of feature vectors from t-d to 
t-1 is generated by HMM u, and dmax and dmin are the upper and lower bounds, respectively, of 
a word duration. ( )uD d  is the word-level duration score given by HMM u. It can be 
contributed by one or more duration features, including AD, RS, and TR as described in 
Section 3.1. For RS, it is assumed that the relative durations of individual states are 
independent of each other and the overall duration score is given by the multiplication of the 
probabilities obtained at all states. 

Similar to the state-level case, the 4-dimensional formulation of the above algorithm is 
given as 

 ( ) ( ) [ ] }{ ( )

min max

, 1 1, ,1,1 max 1, , , ( ) w
N N u tu

d d d

L t v L t u N d a D d b o+

≤ ≤

= − × × × ,            (9) 
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         ( ) ( ) }{ ( )
 or

1

, , , max 1, , , 1 ij j ti j

i j

L t v j d L t v i d a b o
=

= −

= − − × × ,                         (10) 

where ( , , , )t v j d  refers to a path that has stayed at state j of HMM v for d frames. The 
computation cost of this decoder is dmax times that of the baseline. Since word duration is 
much larger than state duration, the computation load of integrating word-level duration 
features is much heavier than that with state-level features. Such a 4-dimensional formulation 
is equivalent to the decoding framework in [Kwon and Un 1996]. 

5. Experimental Results and Discussion 

5.1 Effectiveness of Different Duration Features 
Experiments on Cantonese connected-digit recognition were carried out to evaluate the use of 
different duration features and their combinations. In all the experiments, the acoustic models 
were the same as those in the baseline system. The features and weights in the experiments are 
listed in Table. It is observed that the acoustic scores produced by the HMMs have a much 
wider dynamic range than the duration scores. Therefore, the effect of duration models tends 
to be overshadowed by that of HMM. In this work, a positive weighting factor w is used to 
balance the situation. For each of them, the weighting factor w for the duration scores was 
empirically determined from the development data (see Section 2.2). Different values of 
weights were tested and the one with the best results are shown as in Table 4. The values of 
dmax are 15 and 80 for state-level and word-level models, respectively. 

Table 4. List of duration features and the respective weights for duration scores 
Duration features w 

State-level AS 3 
AD 6 
RS 4 
TR 4 
AD+RS 6, 2 

Word-level 

AD+TR 6, 4 

In addition, an experiment was performed using the word insertion penalty method, 
which is commonly used to reduce insertions [Huang et al. 2001]. The penalty value was also 
determined empirically from the development data. 

The experimental results are given in Table 5. In all cases, the recognition accuracy is 
improved compared with the baseline system. The most significant improvement is 2.36% in 
terms of digit accuracy, which is attained by using the absolute state duration. The 
performance improvement results mostly from the reduction in insertion errors, and the 
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substitution errors also decreased. Meanwhile, more deletion errors are produced. The use of 
the word insertion penalty method can also improve recognition accuracy. However, it is not 
as effective as the explicit duration models. 

Table 5. Recognition performance with different duration features 
Method of duration control Accuracy Deletions Substitutions Insertions 

Baseline 95.09% 82 116 418 
State-level AS 97.45% 105 88 127 

AD 96.70% 132 100 182 
RS 96.74% 98 108 203 
TR 96.11% 81 100 308 
AD+RS 97.22% 142 90 116 

Word-level 

AD+TR 97.24% 133 90 124 
Insertion penalty 96.37% 124 117 215 

The absolute state duration (AS) gives a better recognition performance than any of the 
word-level features. Since the incorporation of a state-level duration model requires much less 
computation, it is more preferable than the word-level duration models. 

Among the three word-level features, the relative state duration (RS) is the most effective, 
while the tail part ratio (TR) gives little improvement. The combined use of word-level 
features, e.g., AD+RS and AD+TR, attains a similar performance to AS. This implies that RS 
and TR carry certain complementary information to AD. 

5.2 The Effect of the Speaking Rate 
It is obvious that duration features depend greatly on the speaking rate. We divided the 
evaluation utterances evenly into three categories based on their speaking rates. The speaking 
rate was defined based on normalized word duration as described in [Lee et al. 1998b]. For 
each category, a set of speaking-rate dependent duration models were built. 

Table 6 shows the recognition performance for each speaking rate category. It is noted 
that the use of duration models is most effective for slow utterances, though improvement is 
observed in all categories. 

Table 6. Recognition accuracy (%) for different speaking rates 
Method of duration control Fast Medium Slow 

Baseline 96.19% 94.79% 93.57% 
State-level AS 96.77% 97.96% 97.40% 

AD+RS 96.45% 97.70% 97.40% 
Word-level 

AD+TR 96.42% 97.89% 96.92% 
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6. Conclusions 

HMM does not give effective control over duration. For speech recognition tasks in which 
high-level linguistic constraints are not applicable, the duration of speech segments is a useful 
cue that supplements the conventional spectral features. In this work, we have shown how 
duration features can be used to improve the accuracy of Cantonese connected-digit 
recognition. 

 Among all of the duration features investigated, the absolute state duration gave the 
most noticeable performance improvement. A similar level of performance was also achieved 
with the combined use of absolute digit duration and relative state duration. With the use of 
duration information, insertion errors were much reduced, while deletion errors increased 
slightly. The reduction in insertion errors is particularly critical for Cantonese speech 
recognition because many of the short syllables in Cantonese are likely to be inserted if there 
is no duration control. Our experimental results also revealed that explicit duration models 
were more effective for slow speech than fast speech. 

To incorporate duration models into the speech recognition process, the standard Viterbi 
search algorithm has to be modified. To ensure that the search is optimal, a larger step size for 
path extension is needed so as to accommodate the long time-span required for computing the 
duration scores. This leads to a significant increase in the computation load. To reduce the 
computation load, a sub-optimal search can be considered. 
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