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Abstract 

In this paper, a bi-lingual large vocaburary speech recognition experiment based on 
the idea of modeling pronunciation variations is described. The two languages 
under study are Mandarin Chinese and Taiwanese (Min-nan). These two languages 
are basically mutually unintelligible, and they have many words with the same 
Chinese characters and the same meanings, although they are pronounced 
differently. Observing the bi-lingual corpus, we found five types of pronunciation 
variations for Chinese characters. A one-pass, three-layer recognizer was 
developed that includes a combination of bi-lingual acoustic models, an integrated 
pronunciation model, and a tree-structure based searching net. The recognizer’s 
performance was evaluated under three different pronunciation models. The results 
showed that the character error rate with integrated pronunciation models was 
better than that with pronunciation models, using either the knowledge-based or the 
data-driven approach. The relative frequency ratio was also used as a measure to 
choose the best number of pronunciation variations for each Chinese character. 
Finally, the best character error rates in Mandarin and Taiwanese testing sets were 
found to be 16.2% and 15.0%, respectively, when the average number of 
pronunciations for one Chinese character was 3.9. 

Keywords: Bi-lingual, One-pass ASR, Pronunciation Modeling 

1. Introduction 

Words can be pronounced in more than one ways according to a lexicon; i.e., they usually 
have multiple pronunciations. Words are also pronounced differently by different people, a 
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phenomenon called “pronunciation variation.” Pronunciation variation has been studied in the 
speech recognition field [Chen 1996; Cremelie 1996], and reports show that pronunciation 
variation can cause the performance of automatic speech recognizers to deteriorate if it is not 
well accounted for. A common approach to solving the pronunciation variation problem is to 
use pronunciation modeling; where multiple pronunciations are added to each lexeme in a 
lexicon in order to fit the acoustic data better. 

A Chinese character is pronounced differently in different languages which use that 
Chinese character in their writing systems. The same character may or may not have the same 
meaning in such languages. For instance, the Chinese character “窗”(window) is pronounced 
“chuang11” in Mandarin and “tang11” in Taiwanese, and these are considered to be multiple 
pronunciations in a Mandarin/Taiwanese bi-lingual lexicon. “Chuang11” is often mistakenly 
pronounced “cuang11” (the un-retroflex of “chuang11”) by native Taiwanese speakers, who do 
not have un-retroflex consonants in their language. This is a common cause of pronunciation 
variation. In the case of English, which has a more complex vowel inventory than the Han 
language family, the words “ear” and “year” are difficult for Mandarin speakers to tell apart. 
In other words, pronunciation variation is a natural and unavoidable phenomenon in a 
multi-lingual environment. 

In this world of people who are well-connected by various types of communication 
devices, multi-lingual communication is necessary, and multi-lingual speech recognition is a 
must. This paper focuses on Mandarin-Taiwanese bi-lingual large vocabulary speech 
recognition, and the framework studied here is applicable to other language combinations as 
well. 

Studies on the pronunciation variation problem have focused on two basic approaches, 
which are based on acoustic modeling or pronunciation modeling. For acoustic modeling, 
reports [Jurafsky et al. 2001] show that the triphone model can well capture variation resulting 
from phone substitution or phone reduction; other reports [Liu et al. 2003; Kam et al. 2003] 
show that well-trained triphone acoustic models can handle partial change of the 
pronunciation variation which depends on the context. 

In pronunciation modeling, entries in the pronunciation dictionary include alternative 
pronunciation variations and associated probabilities, determined through either 
knowledge-based or data-driven approaches [Kipp et al. 1996; Zeppenfeld et al. 1997; 
Wiseman et. al. 1998; Wester 2003; Polzin et al. 1998; Peters et al. 1998; Bacchiani et al. 
1999; Singh et al. 2002; Kessens 2003; Strik 2003.]. With the knowledge-based approach, 
variation information is obtained from research reports or pronunciation dictionaries. 
Techniques for obtaining the probabilities of possible pronunciation variations of a word in 
the data-driven approach include training decision trees, training an artificial network, using 
entropy, using the maximum likelihood criterion, and using the calculated phone confusion 
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matrix [Cremelie and Martens 1998; Riley et al. 1999; Kam et al. 2003; Fukada et al. 1997; 
1998; Yang et al. 2000; Holter et al. 1999; Torre et al. 1997]. Techniques that achieve higher 
scores are chosen to serve as pronunciation variation rules. 

In addition to the pronunciation variation within a word, substantial variation occurs 
across word boundaries [Finke et al. 1997; Fukada et al. 1998; Kessens et al. 1999.]. Due to 
the mono-syllabic nature of Mandarin and Taiwanese, pronunciation variation is complex, and 
we can identify five types of variation: (1) one orthography with pronunciation variation; (2) 
colloquial/literate switching; (3) tone sandhi; (4) one orthography with multiple 
pronunciations; (5) one pronunciation with multiple orthography. The first three types of 
variation occur in mono-lingual environment, while the last two occur in bi-lingual 
environments. Details will be given in Section 3. 

The goal of this study was to construct a Mandarin/Taiwanese bi-lingual large vocabulary 
speech recognizer. We implemented a one-pass recognizer based on a bi-lingual acoustic 
model, an integrated pronunciation model, and a word searching net with tree-structured nodes. 
Most of the state-of-the-art speech recognizers, for either Western or Oriental languages, are 
implemented with the one-pass search strategy [Odell 1994; Aubert 1999; Hagen 2001]. In the 
acoustic modeling, one phonemic inventory called ForPA (Formosa Phonetic Alphabet) is 
used to transcribe bi-lingual corpora. [Lyu et al. 2004] According to this inventory, the 
acoustic models for similar sounds across languages are shared. In addition, we use an 
algorithm based on a decision tree to cluster similar acoustic models by means of the 
maximum likelihood criterion. In the pronunciation modeling, we integrate knowledge-based 
and data-driven approaches. If only the knowledge-based approach is adopted, some variation 
in the speech corpus can not be covered at all, while if only the data-driven approach is 
employed, the variation for each new corpus has to be determined. However, the more 
variations for each word there are in the searching net, the more the recognition time and 
confusability will increase. To limit the number of pronunciation variations for each Chinese 
character, we adopt a score based on the relative frequency ratio and choose the best average 
number of pronunciation variations. Furthermore, the tree-structured net directly uses each 
Chinese character as a searching node, which is also a new trial in the ASR field of Chinese 
languages. 

This paper is organized as follows. Section 2 states the problem. Section 3 represents the 
proposed framework, which includes acoustic modeling, pronunciation modeling, and a 
searching net. In section 4, we report experimental results and analyze three different 
pronunciation models using a bi-lingual testing set. The final section is a summary. 
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2. Problem Statements 

In recent decades, most of the speech recognition research related to the Chinese (also called 
the “漢” Han) language family has focused on Mandarin speech [Lee 1998; Liao et al. 2000]. 
Relatively few studies have focused on other languages [Lyu et al. 2000; Gau et al. 2000]. In 
this paper, we consider two languages in this language family, i.e., Mandarin and Taiwanese, 
simultaneously within the same framework of speech recognition. In Taiwan, Mandarin 
Chinese is the official language, and Taiwanese is the mother tongue of about three quarters of 
the population. Quite a few people speak Mandarin with an accent that is strongly influenced 
by Taiwanese, and when they speak Taiwanese, they mix in words from Mandarin. It appears 
that people in Southern China do much the same. If successful, we expect that this framework 
will work well for other combinations of Chinese languages. 

In the Mandarin Chinese speech recognition system, a typical syllable decoder is 
implemented by searching a 3-layer network consisting of an acoustic model layer, a lexical 
layer, and a grammar layer, as shown in Figure 1. After the optimal syllable sequence or the 
syllable lattice is determined by the decoder, a syllable-to-character converter is applied to 
handle the homonym issue for the final text output, as shown in Figure 2. This framework 
works well and has long been used by the speech communication community. To generalize 
the system so as to incorporate more than one language, a straightforward approach is to 
extend the system with more acoustic models, more entries in the pronunciation dictionary, 
and more paths in the searching net. However, this will lead to the following difficulties: 

Figure 1. A 3-layer grammar searching net for syllable decoding 

Figure 2. The syllable-to-character converter 

1. In the case of multi-syllabic words such as “國家” (country), people rarely use Mandarin 
pronunciation for part of the word and Taiwanese pronunciation for the other part. It is, thus, 
impractical to generate all instances of all possible bi-lingual pronunciation variations of each 
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character in a word for a recognition network. Doing so will not only unnecessarily enlarge 
the searching space but also increase the time spent on decoding. 

2. Generating multiple pronunciation lexicons efficiently is not a trivial task. 

3. The language model for mixed languages is hard to estimate. 

4. When new acoustic features like tones are added to the system, all 3 layers in syllable 
decoding and in the syllable-to-character converter should be modified. This also is not a 
trivial task. 

3. Our Approach 

Unlike some conventional approaches, which divide the recognition task into syllable 
decoding and character decoding, our proposed approach adopts a one-stage searching 
strategy, as shown in Figure 3, which decodes the acoustic feature sequence X directly to 
obtain the desired character sequence C*, no matter what languages are spoken. The decoding 
equation is, thus, as follows: 

* ( ) arg max ( | ).
C

C X P C X=                                            (1) 

In this framework, character decoding can be implemented by searching in a three-layer 
network composed of an acoustic model layer, a lexical layer, and a grammar layer, as shown 
in Figure 4. There are at least 2 critical differences between our framework and the 
conventional one. 1) In the lexicon layer, character-to-pronunciation mapping can easily 
incorporate multiple pronunciations caused by multiple languages, including Japanese, Korean, 
and even Vietnamese, which also use Chinese characters. 2) In the grammar layer, characters 
instead of syllables are used as nodes in the searching net. Under this ASR structure, we do 
not care which language the user speaks. No matter whether the language is Taiwanese, 
Mandarin or a mixture of them in one sentence, the ASR outputs the Chinese character only. 
This makes it language independent! 

As in other multi-lingual researches [Young et al. 1997; Waibel 2000], determining how 
to efficiently and easily combine two languages in the acoustic and pronunciation models is 
very important. In the following two subsections, we will describe various approaches to 
integrating these two models in order to improve the recognition performance of ASR 
systems. 

 

 
Figure 3. One-stage searching strategy for Chinese speech recognition 
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Figure 4. A unified 3-layer framework for multi-language Chinese speech 
recognition 

3.1 Unified Bi-lingual Acoustic Modeling 
It has been shown that the performance of acoustic models trained by combined speech 
database from multiple languages is better than that of models trained with speech data from a 
single language [Liu et al. 2003; Lyu et al. 2002]. For this reason, we use ForPA, which is an 
inventory of phoneme symbols, to transcribe the corpus of the two languages discussed here. 
Table 1 shows the statistical information of the phonemic inventory in different phonetic 
levels. 

Table 1. The statistic information of all Mandarin (M) and Taiwanese (T) linguistic 
units in four levels: the numbers of Tonal Syllables (NTS), Initials (NI), Tonal 
Finals (NTF), and context-dependent Initial/tonal Finals (NCDIF). ∩and∪ 
mean intersection and union, respectively. 

 M T M∪T M∩T 
NTS 1288 2878 3519 647
NI 17 19 22 14

NTF 295 225 416 104
NCDIF 1656 3496 4374 778

Sounds in different languages that are transcribed using the same phonemic symbols in 
ForPA share the same speech material. Combining two languages in this manner reduces the 
number of syllables by 21%. In order to easily integrate tone information, we used the 
context-dependent Initial and tonal Final as acoustic units, and trained these models by sharing 
the data which belonged to the same acoustic unit. Then, a divisive clustering algorithm was 
used to create context querying decision trees using four question sets, including an Initial set, 
a tonal Final set, the set of language properties, and a tonal information set. The above 
clustering approach could achieve significant improvement compared to previous results [Lyu 
et al. 2003]. 
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Furthermore, in order to more efficiently merge the similar part of the sound for one 
phoneme or triphone model in both languages, we used a tying algorithm based on a decision 
tree to cluster the HMM models by using the maximum likelihood criterion [Liang et al. 1998; 
Lyu et al. 2002]. For the question sets, we used phonetic knowledge to design a total of 63 
questions, including 10 language-dependent questions, 11 common questions, 28 Initial 
questions, and 14 Final questions. Then, the tree grew and split as we chose the optimal one 
among all the questions to maximize the increase in the likelihood scores or the decrease in 
uncertainty. Finally, the convergence condition was set to halt the growth of the decision tree. 
The acoustic model used in the experiment depended on the different splitting and 
convergence criteria adopted. 

3.2 Pronunciation Modeling 
The pronunciation model plays an important role in the Chinese character-based ASR engine 
[Liu et al. 2003; Huang et al. 2000]. It not only provides more choices during decoding if the 
speaker exhibits variations in pronunciation but also handles various speaking styles [Lyu et al. 
2004]. As mentioned above, one Chinese character has more than two pronunciations in the 
combined phonetic inventory of Mandarin and Taiwanese. The factors of accent and regional 
migration can influence the pronunciation or speaking style of speakers too. Therefore, we 
identify the most common pronunciation variations in Taiwan in Table 2. 

In Table 2, we list the five pronunciation variations that the Mandarin-Taiwanese 
bi-lingual recognizer can handle. Take the Chinese character "走" as an example. It is 
pronounced as "zau51" in Taiwanese and means "to run" but is pronounced "zou21" in 
Mandarin and means "to walk." 

On the other hand, the total number of pronunciations in the pronunciation model for the 
decoding process is also important, because the more pronunciations are included in the 
lexicon, the more time the decoding process will take, and the less accurate of the ASR results 
will be [Strik et al. 1999]. The pronunciation variations will generate both improvements and 
deterioration in the ASR system, so previous research tried to find the optimal method to 
efficiently control the average pronunciation variations for one word in one language 
[Kesssens et al. 2003]. Our task is harder than that which deals with only one language. The 
reason is that one Chinese character must be mapped to at least two pronunciation variations, 
so cross-language confusion increases. In the following sections, we will propose two 
different methods, knowledge-based and data-driven methods, for obtaining rules of 
pronunciation variation. 
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Table 2. The five types of pronunciation variation rules in linguistic and 
phonological levels: 1. one orthography with pronunciation variations 
(OOPV); 2. colloquial literate switching (CLS) 3. tone sandhi (TS); 4. one 
orthography with multiple pronunciation (OOMP); 5. one pronunciation 
with multiple orthographies (OPMO). Other symbols and their meanings 
are: Chinese character (CC); Taiwanese or Mandarin pronunciations in 
literate style (TPL, MPL); Taiwanese or Mandarin Chinese character in 
colloquial style (TCC, MCC). The number [Yuen Ren Chao] following 
each syllable represents the tone patterns. e.g., zong51 means the syllable 
has a high-falling tone. 

Within-language 
(1) CC Base form Surface form 

精彩 jing55 cai21 jin55 cai21 

老師 lau21,shii55 lau21 sii55 
OOPV 

直的 dit55 e11 di55 e11 
(2) MCC MP TCCL TPL TCCC TPC 

今天 Jin55-ten55 今天 gim33-ten55 今仔日 gin33-na55-lit55 CLS 

明天 ming35-ten55 明天 bhing33-ten55 明仔載 mi33-a55-zai11 
(3) CC MP, isolated MP, connected TP, isolated TP, connected

TS 總統府 zong21,tong21 fu21 zong35-tong35-fu21 zong51,tong51 , hu51 zong55-tong55-hu51

 
Cross-language 

(4) CC TP MP 

走 zau51 zou21 

雨 u51,ho33 yu21 
OOMP 

行 giann15,hing15,hang15 sing35,hang35 
(5) Pronunciation TCC MCC 

jia55-dan51 [這裡]等 加蛋 OPMO 

gau55-gai51 九[次] 高鈣 

3.2.1 Knowledge-Based Method 
As in [Wester et al. 2003], information about pronunciation can be derived from knowledge 
sources, such as pronunciation dictionaries hand-crafted by linguistic experts or extracted 
from the literature. In this approach, a pronunciation variation rule is simply the multiple 
pronunciations that appear in the lexicon for the same character. Associated probabilities can 
be calculated as follows. 1) the character-pronunciation pairs are derived; 2) the frequencies of 
the pairs are counted, and the relative frequency with respect to the total frequency of the 
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same Chinese character is calculated; 3) the pairs with high relative frequencies are kept as 
multiple pronunciation rules. 

As our Mandarin knowledge source, we adopted the CKIP lexicon 
(http://ckip.iis.sinica.edu.tw/CKIP/) as our pronunciation lexicon source; it contains about 
78,410 words. The length of one word in the lexicon varies from one Chinese character to ten, 
and the average of the length is 2.4 Chinese characters per word. As our Taiwanese knowledge 
resource, we adopted the Formosa lexicon (ForLex) [Lyu et al. 2000], which contains 104,179 
words. The average length of one word in it is 2.8 Chinese characters. The pronunciation 
variation for each Chinese character was assigned a probability, which was estimated based on 
the frequency count of the pronunciations observed in both lexicons. The number of 
pronunciation variations for one Chinese character was 1.2 in the CKIP lexicon, and 2.1 in the 
Formosa lexicon. The number of pronunciation variations for Taiwanese was larger than that 
for Mandarin. The reasons are that most of the Chinese characters used in Taiwanese carry a 
classic literature pronunciation and a daily life pronunciation and that Taiwanese has much 
richer tone sandhi rules. Thus, the average number of pronunciation variations for one Chinese 
character is increased. 

3.2.2 Data-Driven Approach 
Although the regular pronunciation variations can be obtained from linguistic and 
phonological information, such as a dictionary, this information is not exhaustive; many 
phenomena in real speech have not yet been described. Therefore, another approach to 
deriving pronunciation variations from acoustic clues is presented below. All of the steps are 
also shown in Figure 5. 

Figure 5. Diagram of pronunciation variations obtained with a data-driven 
approach. 
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First of all, the canonical transcription (Tcan) is generated for each Chinese character in 
the phonetic levels of Initials and tonal Finals. Secondly, for each word in the utterance, a 
baseline recognition engine based on the Initial/tonal Final acoustic models is used to perform 
forced recognition, which adopts Viterbi search with an optional phonetic network [Strik 
2003]. In this way, data-driven transcriptions (Tdd) of all the utterances in the training corpus 
can be obtained. Then, a dynamic programming algorithm is used to align Tcan with Tdd. With 
this alignment, we can obtain a confusion table, which consists of pairs of easily confused 
phonetic units along with their likelihood scores. 

A partial list of confusing phonetic units is shown as in Table 3. Using the above 
approach, we found that the major variation part in a syllable is Initial for both languages, 
especially in the retroflexion/un-retroflexion set. One of the possible reasons is that retroflex 
phonetic units exist only in Mandarin and most speakers usually do not accurately pronounce 
those retroflex units if their mother tongue is Taiwanese. These speakers tend to replace 
retroflex units with their un-retroflex counter parts. 

Table 3. Some pronunciation variations obtained with the data-driven approach, 
where Tcan and Tdd represent canonical transcription and data-driven 
transcription, respectively. 

Mandarin Taiwanese 
Tcan Tdd Tcan Tdd Tcan Tdd Tcan Tdd 
zh  z s sh gh g p t  
sh  s c ch g d  r l  
ch  c n l  bh l h t  
z zh f b k t u3 u4 

 

3.3 Searching Net 
In the searching net, we use a large-vocabulary tree structured word net, because the 
perplexity can be reduced in the tree-structured searching net compare to the linear searching 
net. Figure 6 and Figure 7 show examples for a linear searching net and a tree-structured 
searching net, respectively. There were 5 words as searching paths in the linear net, and the 
equal probability of each path was set to be 1/5. We used equation 2 to calculate the entropy 
value based on the number of branches in each path, and we then used equation 3 to calculate 
the entropy from the perplexity. The perplexity of the linear searching net was found to be 5. 
This means that the perplexity in the linear searching net equals the number of distinct words. 
On the other hand, the procedure for determining the perplexity of the tree-structured 
searching net is described as follows. First, the Chinese characters are aligned according to 
their locations in multi-character words; characters that are in the same location in each word 
are considered to be redundant and, thus, eliminated. Finally, the entropy value is also 
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calculated based on the number of branches for each node, using equation (2). In the case 
shown in Figure 7, the entropy is 2.29, and the perplexity is 4.89, which is smaller than that of 
the linear searching net shown in Figure 6. 

                   2logi i
i

entropy p p= −∑ ,                           (2) 

                       2entropyperplexity = .                              (3) 

 
Figure 6. An example of an isolated linear searching net with its probability value. 

 

 
Figure 7. An example of an isolated tree-structured searching net with its 

probability value. 

4. Experimental Results and Analysis 

4.1 Corpus 
All of the experiments employed a bi-lingual corpus, called ForSDa (Formosa Speech 
Database) [Lyu et al. 2004]. Both the training and testing data were read speech, which was 
recorded in the 16 kHz/16-bit wave-format in a normal office environment. The training set 
included a total of 89,164 utterances from 100 speakers, including 50 males and 50 females.  
Every speaker recorded speech in both languages. The utterances were phonetically balanced 
words, which were selected from a lexicon of about 40,000 words, using the phonetic 
abundant algorithm [Lyu 2003]. The length of the word varied from 1 to 6. The testing set 
included 2,000 utterances from 20 speakers; 10 speakers recorded speech in Taiwanese, and 
the other 10 speakers recorded speech in Mandarin. The statistics of the corpus employed here 
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are listed in Table 4. 

Table 4. Statistics of the bi-lingual speech corpus used for training and testing sets. 
M: Mandarin, T: Taiwanese. 

 Langue
ID. 

No. of 
Speakers

No. of 
Words 

No. of 
Hours

M 100 43078 11.3Training 
T 100 46086 11.2

Test_M M 10 1000 0.28
Test_T T 10 1000 0.28

4.2 Experimental Setup 
The experiment setup can be described as follows. Firstly, we used context dependent Initials 
and tonal Finals with 16 Gaussian mixtures in HMM modeling. The feature vectors used in the 
HMM included 42 components, with 12 mel-frequency cepstral coefficients (MFCCs), 
normalized log energy, and pitch with their first and second order derivatives. Secondly, in 
pronunciation modeling, we used three models, which included knowledge-based, data-driven, 
and combined approaches, called PKW, PDD and PKW+DD, respectively. The average number of 
pronunciations for one Chinese character for each pronunciation lexicon was 3.2, 2.7 and 3.9 
for PKW, PDD and PKW+DD, respectively. Finally, the tree-structured searching net consisted of 
30,000 words, and the word perplexity of the net was 15,249. This means that there where 
almost 15,249 candidates for each input speech utterance in the decoding phase. Additionally, 
the output of the recognizer was Chinese characters; therefore, we evaluated the performance 
based on the Chinese character error rate (CER). 

4.3 Experiment Results 
Table 5 shows the CER results for pronunciation modeling with the Taiwanese and Mandarin 
testing sets. We can draw two conclusions; firstly, when the pronunciation model PKW+DD was 
used, the CER was minimal for both languages. The reason is that PKW+DD could capture both 
within-language and cross-language pronunciation variations. Secondly, the CER of the 
Test_M set with PDD was better than that with PKW, but the CER of the Test_T set was worse. 
A possible reason is that most of the pronunciation variations in Taiwanese can be found in 
the dictionary or lexicon source, such as tone sandhi or colloquial/literate switching. However, 
in Mandarin, most of the pronunciation variations are due to co-articulation, regional accents, 
speaking rates, speaking styles, etc. Such types of the variation can only be captured in speech 
data, not in lexicons. Therefore, the CER of Test_M dropped about 2.2% (17.9%-20.1%) 
when PDD was used compared to the result obtained with PKW, but the CER of Test_T 
increased 0.7% (18.3%-17.6%). 
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Table 5. CER (Character Error Rate) results for three pronunciation models with two 
testing sets. PKW: pronunciation modeling using the knowledge-based method; 
PDD: pronunciation modeling using the data-driven approach; PKW+DD: 
pronunciation modeling using both PKW and PDD. 

 PKW PDD PKW+DD 
Test_M 20.1% 17.9% 16.2% 
Test_T 17.6% 18.3% 15.0% 

4.4 Error Analysis 
The addition of pronunciation variants to a lexicon increases the confusability, especially if 
the lexicon is large. Here, the large increase in confusability was probably the reason why 
only a small improvement or even deterioration in performance is found. The experimental 
results represented in Figure 8 show the CER performance as a function of the number of 
pronunciation variations for each Chinese character. It can be seen that the CER decreased 
when the average number of pronunciation variations increased. The lowest CER results were 
obtained when the number of pronunciation averaged 3.9. This was achieved using PKW+DD 
and by eliminating variants with probabilities smaller than 0.1. 

14
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C
E

R
(%
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Figure 8. CER performance for PKW+DD with different numbers of pronunciation 

variations per Chinese character. 

 
Moreover, the error types mentioned above can be classified into the following 3 sets. 

    A. Cross-language homophonic confusion 

    This kind of error is just like the fifth term in Table 1, and occurs when different Chinese 
words belonging to different languages have the same or similar pronunciation. Therefore, the 
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confusion of choosing the final Chinese words will occur during the decoding phase. For 
example, the pronunciation of the Chinese word "星系" in Mandarin, that is, /sing55-si51/, is 
similar with that of "先死" in Taiwanese, that is, /sing33-si51/. The same is true of "高等"  in 
Mandarin, pronounced /gau55-dng13/, and "教堂" in Taiwanese, pronounced, /gau51-dng13/. 

    B. Within-language homophonic confusion 

    This type of error is similar to the first error type, but it only occurs within one language. 
For example, the Chinese words "穢亂" and "會亂" have the same pronunciation, that is, 
/huei51-luan51/, in Mandarin, and "交待" and "交代" both have the same pronunciation in 
Mandarin, that is, /jiau55-dai51/, and in Taiwanese, that is, /gau55-dai55/. 

    C. Tone confusion: 

    This kind of error occurs due to mismatch between the tone pattern and speech features. We 
add the tone vectors to the feature parameters, the words, "水餃" and "睡覺" can be easily 
discriminated a tonal phase. However, there is also a side effect if the acoustic model in the tone 
aspect is not robust enough. A major tone error may be due to confusion between a high-level 
(55) tone and a mid-level (35) tone. Another major error may due to the confusion between a 
mid-falling (31) tone and a high-falling tone. Following are some tone confusion examples: 

 

1) "縫補" /fng35-bu31/ and "蜂舞" /fng55-u31/. 

2) "股票" /gu31-piau51/ and "顧票" /gu51-piau51/. 

     

Most of the performance deterioration observed in this experiment was caused by the 
above error types; however, the performances of deterioration are smaller than that of 
improvements by adding pronunciation variations to the lexicon. Therefore, finally, we got an 
improvement in CER result. 

5. Conclusion 

As mentioned in the introduction, the goal of this study was to convert both Taiwanese and 
Mandarin speech into Chinese characters. In order to deal with the issues of multiple 
pronunciations and pronunciation variations for each Chinese character in these two languages 
in the ASR system, we developed a one-pass, three-layer recognizer, which includes combined 
bi-lingual acoustic models, an integrated pronunciation model and a tree-structure-based 
searching net. In the pronunciation model, an integrated method is used to combine the 
knowledge-based and data-driven approaches. Since the knowledge-based approach is used, 
homophony in Chinese characters can be addressed, and since the data-driven approach is 
employed, speakers’ accents or styles can also be dealt with. 
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The experimental results showed that the CER could be improved by using the three 
different pronunciation models. The best performance was 16.2% and 15.0% for the testing 
sets Test_M and Test_T, respectively, where the perplexity was 15,249 for 30,000 words, and 
the PKW+DD pronunciation model was used. In addition, in order to limit the side effect where 
in the increase in the size of the pronunciation lexicon causes the performance to deteriorate, 
the average number of pronunciations for both languages was 3.9. 

The method proposed in this paper has been applied to two languages in the Chinese 
language family, but it can be easily extended to other languages or dialects. We have also 
discussed the major five pronunciation variations found in Taiwan. This is the first work, to 
the best of our knowledge, that has systemically investigated pronunciation variations in 
Mandarin and Taiwanese speech conversion to Chinese characters using ASR technology. 
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